Merge tag 'exynos-cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[cascardo/linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret & mask;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void *garbage)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void *garbage)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         WARN_ON(adjustment < 0);
1060         if (host)
1061                 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063         svm->vmcb->control.tsc_offset += adjustment;
1064         if (is_guest_mode(vcpu))
1065                 svm->nested.hsave->control.tsc_offset += adjustment;
1066         else
1067                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068                                      svm->vmcb->control.tsc_offset - adjustment,
1069                                      svm->vmcb->control.tsc_offset);
1070
1071         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076         u64 tsc;
1077
1078         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080         return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085         struct vmcb_control_area *control = &svm->vmcb->control;
1086         struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088         svm->vcpu.fpu_active = 1;
1089         svm->vcpu.arch.hflags = 0;
1090
1091         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099         set_dr_intercepts(svm);
1100
1101         set_exception_intercept(svm, PF_VECTOR);
1102         set_exception_intercept(svm, UD_VECTOR);
1103         set_exception_intercept(svm, MC_VECTOR);
1104
1105         set_intercept(svm, INTERCEPT_INTR);
1106         set_intercept(svm, INTERCEPT_NMI);
1107         set_intercept(svm, INTERCEPT_SMI);
1108         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109         set_intercept(svm, INTERCEPT_RDPMC);
1110         set_intercept(svm, INTERCEPT_CPUID);
1111         set_intercept(svm, INTERCEPT_INVD);
1112         set_intercept(svm, INTERCEPT_HLT);
1113         set_intercept(svm, INTERCEPT_INVLPG);
1114         set_intercept(svm, INTERCEPT_INVLPGA);
1115         set_intercept(svm, INTERCEPT_IOIO_PROT);
1116         set_intercept(svm, INTERCEPT_MSR_PROT);
1117         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118         set_intercept(svm, INTERCEPT_SHUTDOWN);
1119         set_intercept(svm, INTERCEPT_VMRUN);
1120         set_intercept(svm, INTERCEPT_VMMCALL);
1121         set_intercept(svm, INTERCEPT_VMLOAD);
1122         set_intercept(svm, INTERCEPT_VMSAVE);
1123         set_intercept(svm, INTERCEPT_STGI);
1124         set_intercept(svm, INTERCEPT_CLGI);
1125         set_intercept(svm, INTERCEPT_SKINIT);
1126         set_intercept(svm, INTERCEPT_WBINVD);
1127         set_intercept(svm, INTERCEPT_MONITOR);
1128         set_intercept(svm, INTERCEPT_MWAIT);
1129         set_intercept(svm, INTERCEPT_XSETBV);
1130
1131         control->iopm_base_pa = iopm_base;
1132         control->msrpm_base_pa = __pa(svm->msrpm);
1133         control->int_ctl = V_INTR_MASKING_MASK;
1134
1135         init_seg(&save->es);
1136         init_seg(&save->ss);
1137         init_seg(&save->ds);
1138         init_seg(&save->fs);
1139         init_seg(&save->gs);
1140
1141         save->cs.selector = 0xf000;
1142         save->cs.base = 0xffff0000;
1143         /* Executable/Readable Code Segment */
1144         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146         save->cs.limit = 0xffff;
1147
1148         save->gdtr.limit = 0xffff;
1149         save->idtr.limit = 0xffff;
1150
1151         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154         svm_set_efer(&svm->vcpu, 0);
1155         save->dr6 = 0xffff0ff0;
1156         kvm_set_rflags(&svm->vcpu, 2);
1157         save->rip = 0x0000fff0;
1158         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160         /*
1161          * This is the guest-visible cr0 value.
1162          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163          */
1164         svm->vcpu.arch.cr0 = 0;
1165         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167         save->cr4 = X86_CR4_PAE;
1168         /* rdx = ?? */
1169
1170         if (npt_enabled) {
1171                 /* Setup VMCB for Nested Paging */
1172                 control->nested_ctl = 1;
1173                 clr_intercept(svm, INTERCEPT_INVLPG);
1174                 clr_exception_intercept(svm, PF_VECTOR);
1175                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177                 save->g_pat = 0x0007040600070406ULL;
1178                 save->cr3 = 0;
1179                 save->cr4 = 0;
1180         }
1181         svm->asid_generation = 0;
1182
1183         svm->nested.vmcb = 0;
1184         svm->vcpu.arch.hflags = 0;
1185
1186         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187                 control->pause_filter_count = 3000;
1188                 set_intercept(svm, INTERCEPT_PAUSE);
1189         }
1190
1191         mark_all_dirty(svm->vmcb);
1192
1193         enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198         struct vcpu_svm *svm = to_svm(vcpu);
1199         u32 dummy;
1200         u32 eax = 1;
1201
1202         init_vmcb(svm);
1203
1204         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210         struct vcpu_svm *svm;
1211         struct page *page;
1212         struct page *msrpm_pages;
1213         struct page *hsave_page;
1214         struct page *nested_msrpm_pages;
1215         int err;
1216
1217         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218         if (!svm) {
1219                 err = -ENOMEM;
1220                 goto out;
1221         }
1222
1223         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226         if (err)
1227                 goto free_svm;
1228
1229         err = -ENOMEM;
1230         page = alloc_page(GFP_KERNEL);
1231         if (!page)
1232                 goto uninit;
1233
1234         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235         if (!msrpm_pages)
1236                 goto free_page1;
1237
1238         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239         if (!nested_msrpm_pages)
1240                 goto free_page2;
1241
1242         hsave_page = alloc_page(GFP_KERNEL);
1243         if (!hsave_page)
1244                 goto free_page3;
1245
1246         svm->nested.hsave = page_address(hsave_page);
1247
1248         svm->msrpm = page_address(msrpm_pages);
1249         svm_vcpu_init_msrpm(svm->msrpm);
1250
1251         svm->nested.msrpm = page_address(nested_msrpm_pages);
1252         svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254         svm->vmcb = page_address(page);
1255         clear_page(svm->vmcb);
1256         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257         svm->asid_generation = 0;
1258         init_vmcb(svm);
1259
1260         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1261         if (kvm_vcpu_is_bsp(&svm->vcpu))
1262                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1263
1264         svm_init_osvw(&svm->vcpu);
1265
1266         return &svm->vcpu;
1267
1268 free_page3:
1269         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1270 free_page2:
1271         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1272 free_page1:
1273         __free_page(page);
1274 uninit:
1275         kvm_vcpu_uninit(&svm->vcpu);
1276 free_svm:
1277         kmem_cache_free(kvm_vcpu_cache, svm);
1278 out:
1279         return ERR_PTR(err);
1280 }
1281
1282 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1283 {
1284         struct vcpu_svm *svm = to_svm(vcpu);
1285
1286         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1287         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1288         __free_page(virt_to_page(svm->nested.hsave));
1289         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1290         kvm_vcpu_uninit(vcpu);
1291         kmem_cache_free(kvm_vcpu_cache, svm);
1292 }
1293
1294 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1295 {
1296         struct vcpu_svm *svm = to_svm(vcpu);
1297         int i;
1298
1299         if (unlikely(cpu != vcpu->cpu)) {
1300                 svm->asid_generation = 0;
1301                 mark_all_dirty(svm->vmcb);
1302         }
1303
1304 #ifdef CONFIG_X86_64
1305         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1306 #endif
1307         savesegment(fs, svm->host.fs);
1308         savesegment(gs, svm->host.gs);
1309         svm->host.ldt = kvm_read_ldt();
1310
1311         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1312                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1313
1314         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1315             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1316                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1317                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1318         }
1319 }
1320
1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1322 {
1323         struct vcpu_svm *svm = to_svm(vcpu);
1324         int i;
1325
1326         ++vcpu->stat.host_state_reload;
1327         kvm_load_ldt(svm->host.ldt);
1328 #ifdef CONFIG_X86_64
1329         loadsegment(fs, svm->host.fs);
1330         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1331         load_gs_index(svm->host.gs);
1332 #else
1333 #ifdef CONFIG_X86_32_LAZY_GS
1334         loadsegment(gs, svm->host.gs);
1335 #endif
1336 #endif
1337         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1338                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1339 }
1340
1341 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1342 {
1343         return to_svm(vcpu)->vmcb->save.rflags;
1344 }
1345
1346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1347 {
1348        /*
1349         * Any change of EFLAGS.VM is accompained by a reload of SS
1350         * (caused by either a task switch or an inter-privilege IRET),
1351         * so we do not need to update the CPL here.
1352         */
1353         to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358         switch (reg) {
1359         case VCPU_EXREG_PDPTR:
1360                 BUG_ON(!npt_enabled);
1361                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362                 break;
1363         default:
1364                 BUG();
1365         }
1366 }
1367
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370         set_intercept(svm, INTERCEPT_VINTR);
1371 }
1372
1373 static void svm_clear_vintr(struct vcpu_svm *svm)
1374 {
1375         clr_intercept(svm, INTERCEPT_VINTR);
1376 }
1377
1378 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1379 {
1380         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1381
1382         switch (seg) {
1383         case VCPU_SREG_CS: return &save->cs;
1384         case VCPU_SREG_DS: return &save->ds;
1385         case VCPU_SREG_ES: return &save->es;
1386         case VCPU_SREG_FS: return &save->fs;
1387         case VCPU_SREG_GS: return &save->gs;
1388         case VCPU_SREG_SS: return &save->ss;
1389         case VCPU_SREG_TR: return &save->tr;
1390         case VCPU_SREG_LDTR: return &save->ldtr;
1391         }
1392         BUG();
1393         return NULL;
1394 }
1395
1396 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1397 {
1398         struct vmcb_seg *s = svm_seg(vcpu, seg);
1399
1400         return s->base;
1401 }
1402
1403 static void svm_get_segment(struct kvm_vcpu *vcpu,
1404                             struct kvm_segment *var, int seg)
1405 {
1406         struct vmcb_seg *s = svm_seg(vcpu, seg);
1407
1408         var->base = s->base;
1409         var->limit = s->limit;
1410         var->selector = s->selector;
1411         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1412         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1413         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1414         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1415         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1416         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1417         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1418         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1419
1420         /*
1421          * AMD's VMCB does not have an explicit unusable field, so emulate it
1422          * for cross vendor migration purposes by "not present"
1423          */
1424         var->unusable = !var->present || (var->type == 0);
1425
1426         switch (seg) {
1427         case VCPU_SREG_CS:
1428                 /*
1429                  * SVM always stores 0 for the 'G' bit in the CS selector in
1430                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1431                  * Intel's VMENTRY has a check on the 'G' bit.
1432                  */
1433                 var->g = s->limit > 0xfffff;
1434                 break;
1435         case VCPU_SREG_TR:
1436                 /*
1437                  * Work around a bug where the busy flag in the tr selector
1438                  * isn't exposed
1439                  */
1440                 var->type |= 0x2;
1441                 break;
1442         case VCPU_SREG_DS:
1443         case VCPU_SREG_ES:
1444         case VCPU_SREG_FS:
1445         case VCPU_SREG_GS:
1446                 /*
1447                  * The accessed bit must always be set in the segment
1448                  * descriptor cache, although it can be cleared in the
1449                  * descriptor, the cached bit always remains at 1. Since
1450                  * Intel has a check on this, set it here to support
1451                  * cross-vendor migration.
1452                  */
1453                 if (!var->unusable)
1454                         var->type |= 0x1;
1455                 break;
1456         case VCPU_SREG_SS:
1457                 /*
1458                  * On AMD CPUs sometimes the DB bit in the segment
1459                  * descriptor is left as 1, although the whole segment has
1460                  * been made unusable. Clear it here to pass an Intel VMX
1461                  * entry check when cross vendor migrating.
1462                  */
1463                 if (var->unusable)
1464                         var->db = 0;
1465                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1466                 break;
1467         }
1468 }
1469
1470 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1471 {
1472         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1473
1474         return save->cpl;
1475 }
1476
1477 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1478 {
1479         struct vcpu_svm *svm = to_svm(vcpu);
1480
1481         dt->size = svm->vmcb->save.idtr.limit;
1482         dt->address = svm->vmcb->save.idtr.base;
1483 }
1484
1485 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1486 {
1487         struct vcpu_svm *svm = to_svm(vcpu);
1488
1489         svm->vmcb->save.idtr.limit = dt->size;
1490         svm->vmcb->save.idtr.base = dt->address ;
1491         mark_dirty(svm->vmcb, VMCB_DT);
1492 }
1493
1494 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1495 {
1496         struct vcpu_svm *svm = to_svm(vcpu);
1497
1498         dt->size = svm->vmcb->save.gdtr.limit;
1499         dt->address = svm->vmcb->save.gdtr.base;
1500 }
1501
1502 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504         struct vcpu_svm *svm = to_svm(vcpu);
1505
1506         svm->vmcb->save.gdtr.limit = dt->size;
1507         svm->vmcb->save.gdtr.base = dt->address ;
1508         mark_dirty(svm->vmcb, VMCB_DT);
1509 }
1510
1511 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1512 {
1513 }
1514
1515 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1516 {
1517 }
1518
1519 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1520 {
1521 }
1522
1523 static void update_cr0_intercept(struct vcpu_svm *svm)
1524 {
1525         ulong gcr0 = svm->vcpu.arch.cr0;
1526         u64 *hcr0 = &svm->vmcb->save.cr0;
1527
1528         if (!svm->vcpu.fpu_active)
1529                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1530         else
1531                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1532                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1533
1534         mark_dirty(svm->vmcb, VMCB_CR);
1535
1536         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1537                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1538                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1539         } else {
1540                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1541                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1542         }
1543 }
1544
1545 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1546 {
1547         struct vcpu_svm *svm = to_svm(vcpu);
1548
1549 #ifdef CONFIG_X86_64
1550         if (vcpu->arch.efer & EFER_LME) {
1551                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1552                         vcpu->arch.efer |= EFER_LMA;
1553                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1554                 }
1555
1556                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1557                         vcpu->arch.efer &= ~EFER_LMA;
1558                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1559                 }
1560         }
1561 #endif
1562         vcpu->arch.cr0 = cr0;
1563
1564         if (!npt_enabled)
1565                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1566
1567         if (!vcpu->fpu_active)
1568                 cr0 |= X86_CR0_TS;
1569         /*
1570          * re-enable caching here because the QEMU bios
1571          * does not do it - this results in some delay at
1572          * reboot
1573          */
1574         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1575         svm->vmcb->save.cr0 = cr0;
1576         mark_dirty(svm->vmcb, VMCB_CR);
1577         update_cr0_intercept(svm);
1578 }
1579
1580 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1581 {
1582         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1583         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1584
1585         if (cr4 & X86_CR4_VMXE)
1586                 return 1;
1587
1588         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1589                 svm_flush_tlb(vcpu);
1590
1591         vcpu->arch.cr4 = cr4;
1592         if (!npt_enabled)
1593                 cr4 |= X86_CR4_PAE;
1594         cr4 |= host_cr4_mce;
1595         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1596         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1597         return 0;
1598 }
1599
1600 static void svm_set_segment(struct kvm_vcpu *vcpu,
1601                             struct kvm_segment *var, int seg)
1602 {
1603         struct vcpu_svm *svm = to_svm(vcpu);
1604         struct vmcb_seg *s = svm_seg(vcpu, seg);
1605
1606         s->base = var->base;
1607         s->limit = var->limit;
1608         s->selector = var->selector;
1609         if (var->unusable)
1610                 s->attrib = 0;
1611         else {
1612                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1613                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1614                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1615                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1616                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1617                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1618                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1619                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1620         }
1621
1622         /*
1623          * This is always accurate, except if SYSRET returned to a segment
1624          * with SS.DPL != 3.  Intel does not have this quirk, and always
1625          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1626          * would entail passing the CPL to userspace and back.
1627          */
1628         if (seg == VCPU_SREG_SS)
1629                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1630
1631         mark_dirty(svm->vmcb, VMCB_SEG);
1632 }
1633
1634 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1635 {
1636         struct vcpu_svm *svm = to_svm(vcpu);
1637
1638         clr_exception_intercept(svm, DB_VECTOR);
1639         clr_exception_intercept(svm, BP_VECTOR);
1640
1641         if (svm->nmi_singlestep)
1642                 set_exception_intercept(svm, DB_VECTOR);
1643
1644         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1645                 if (vcpu->guest_debug &
1646                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1647                         set_exception_intercept(svm, DB_VECTOR);
1648                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1649                         set_exception_intercept(svm, BP_VECTOR);
1650         } else
1651                 vcpu->guest_debug = 0;
1652 }
1653
1654 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1655 {
1656         if (sd->next_asid > sd->max_asid) {
1657                 ++sd->asid_generation;
1658                 sd->next_asid = 1;
1659                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1660         }
1661
1662         svm->asid_generation = sd->asid_generation;
1663         svm->vmcb->control.asid = sd->next_asid++;
1664
1665         mark_dirty(svm->vmcb, VMCB_ASID);
1666 }
1667
1668 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1669 {
1670         return to_svm(vcpu)->vmcb->save.dr6;
1671 }
1672
1673 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1674 {
1675         struct vcpu_svm *svm = to_svm(vcpu);
1676
1677         svm->vmcb->save.dr6 = value;
1678         mark_dirty(svm->vmcb, VMCB_DR);
1679 }
1680
1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1682 {
1683         struct vcpu_svm *svm = to_svm(vcpu);
1684
1685         get_debugreg(vcpu->arch.db[0], 0);
1686         get_debugreg(vcpu->arch.db[1], 1);
1687         get_debugreg(vcpu->arch.db[2], 2);
1688         get_debugreg(vcpu->arch.db[3], 3);
1689         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1690         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1691
1692         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1693         set_dr_intercepts(svm);
1694 }
1695
1696 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1697 {
1698         struct vcpu_svm *svm = to_svm(vcpu);
1699
1700         svm->vmcb->save.dr7 = value;
1701         mark_dirty(svm->vmcb, VMCB_DR);
1702 }
1703
1704 static int pf_interception(struct vcpu_svm *svm)
1705 {
1706         u64 fault_address = svm->vmcb->control.exit_info_2;
1707         u32 error_code;
1708         int r = 1;
1709
1710         switch (svm->apf_reason) {
1711         default:
1712                 error_code = svm->vmcb->control.exit_info_1;
1713
1714                 trace_kvm_page_fault(fault_address, error_code);
1715                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1716                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1717                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1718                         svm->vmcb->control.insn_bytes,
1719                         svm->vmcb->control.insn_len);
1720                 break;
1721         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1722                 svm->apf_reason = 0;
1723                 local_irq_disable();
1724                 kvm_async_pf_task_wait(fault_address);
1725                 local_irq_enable();
1726                 break;
1727         case KVM_PV_REASON_PAGE_READY:
1728                 svm->apf_reason = 0;
1729                 local_irq_disable();
1730                 kvm_async_pf_task_wake(fault_address);
1731                 local_irq_enable();
1732                 break;
1733         }
1734         return r;
1735 }
1736
1737 static int db_interception(struct vcpu_svm *svm)
1738 {
1739         struct kvm_run *kvm_run = svm->vcpu.run;
1740
1741         if (!(svm->vcpu.guest_debug &
1742               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1743                 !svm->nmi_singlestep) {
1744                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1745                 return 1;
1746         }
1747
1748         if (svm->nmi_singlestep) {
1749                 svm->nmi_singlestep = false;
1750                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1751                         svm->vmcb->save.rflags &=
1752                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1753                 update_db_bp_intercept(&svm->vcpu);
1754         }
1755
1756         if (svm->vcpu.guest_debug &
1757             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1758                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1759                 kvm_run->debug.arch.pc =
1760                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1761                 kvm_run->debug.arch.exception = DB_VECTOR;
1762                 return 0;
1763         }
1764
1765         return 1;
1766 }
1767
1768 static int bp_interception(struct vcpu_svm *svm)
1769 {
1770         struct kvm_run *kvm_run = svm->vcpu.run;
1771
1772         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1773         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1774         kvm_run->debug.arch.exception = BP_VECTOR;
1775         return 0;
1776 }
1777
1778 static int ud_interception(struct vcpu_svm *svm)
1779 {
1780         int er;
1781
1782         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1783         if (er != EMULATE_DONE)
1784                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1785         return 1;
1786 }
1787
1788 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1789 {
1790         struct vcpu_svm *svm = to_svm(vcpu);
1791
1792         clr_exception_intercept(svm, NM_VECTOR);
1793
1794         svm->vcpu.fpu_active = 1;
1795         update_cr0_intercept(svm);
1796 }
1797
1798 static int nm_interception(struct vcpu_svm *svm)
1799 {
1800         svm_fpu_activate(&svm->vcpu);
1801         return 1;
1802 }
1803
1804 static bool is_erratum_383(void)
1805 {
1806         int err, i;
1807         u64 value;
1808
1809         if (!erratum_383_found)
1810                 return false;
1811
1812         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1813         if (err)
1814                 return false;
1815
1816         /* Bit 62 may or may not be set for this mce */
1817         value &= ~(1ULL << 62);
1818
1819         if (value != 0xb600000000010015ULL)
1820                 return false;
1821
1822         /* Clear MCi_STATUS registers */
1823         for (i = 0; i < 6; ++i)
1824                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1825
1826         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1827         if (!err) {
1828                 u32 low, high;
1829
1830                 value &= ~(1ULL << 2);
1831                 low    = lower_32_bits(value);
1832                 high   = upper_32_bits(value);
1833
1834                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1835         }
1836
1837         /* Flush tlb to evict multi-match entries */
1838         __flush_tlb_all();
1839
1840         return true;
1841 }
1842
1843 static void svm_handle_mce(struct vcpu_svm *svm)
1844 {
1845         if (is_erratum_383()) {
1846                 /*
1847                  * Erratum 383 triggered. Guest state is corrupt so kill the
1848                  * guest.
1849                  */
1850                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1851
1852                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1853
1854                 return;
1855         }
1856
1857         /*
1858          * On an #MC intercept the MCE handler is not called automatically in
1859          * the host. So do it by hand here.
1860          */
1861         asm volatile (
1862                 "int $0x12\n");
1863         /* not sure if we ever come back to this point */
1864
1865         return;
1866 }
1867
1868 static int mc_interception(struct vcpu_svm *svm)
1869 {
1870         return 1;
1871 }
1872
1873 static int shutdown_interception(struct vcpu_svm *svm)
1874 {
1875         struct kvm_run *kvm_run = svm->vcpu.run;
1876
1877         /*
1878          * VMCB is undefined after a SHUTDOWN intercept
1879          * so reinitialize it.
1880          */
1881         clear_page(svm->vmcb);
1882         init_vmcb(svm);
1883
1884         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1885         return 0;
1886 }
1887
1888 static int io_interception(struct vcpu_svm *svm)
1889 {
1890         struct kvm_vcpu *vcpu = &svm->vcpu;
1891         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1892         int size, in, string;
1893         unsigned port;
1894
1895         ++svm->vcpu.stat.io_exits;
1896         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1897         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1898         if (string || in)
1899                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1900
1901         port = io_info >> 16;
1902         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1903         svm->next_rip = svm->vmcb->control.exit_info_2;
1904         skip_emulated_instruction(&svm->vcpu);
1905
1906         return kvm_fast_pio_out(vcpu, size, port);
1907 }
1908
1909 static int nmi_interception(struct vcpu_svm *svm)
1910 {
1911         return 1;
1912 }
1913
1914 static int intr_interception(struct vcpu_svm *svm)
1915 {
1916         ++svm->vcpu.stat.irq_exits;
1917         return 1;
1918 }
1919
1920 static int nop_on_interception(struct vcpu_svm *svm)
1921 {
1922         return 1;
1923 }
1924
1925 static int halt_interception(struct vcpu_svm *svm)
1926 {
1927         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1928         skip_emulated_instruction(&svm->vcpu);
1929         return kvm_emulate_halt(&svm->vcpu);
1930 }
1931
1932 static int vmmcall_interception(struct vcpu_svm *svm)
1933 {
1934         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1935         skip_emulated_instruction(&svm->vcpu);
1936         kvm_emulate_hypercall(&svm->vcpu);
1937         return 1;
1938 }
1939
1940 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1941 {
1942         struct vcpu_svm *svm = to_svm(vcpu);
1943
1944         return svm->nested.nested_cr3;
1945 }
1946
1947 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1948 {
1949         struct vcpu_svm *svm = to_svm(vcpu);
1950         u64 cr3 = svm->nested.nested_cr3;
1951         u64 pdpte;
1952         int ret;
1953
1954         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1955                                   offset_in_page(cr3) + index * 8, 8);
1956         if (ret)
1957                 return 0;
1958         return pdpte;
1959 }
1960
1961 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1962                                    unsigned long root)
1963 {
1964         struct vcpu_svm *svm = to_svm(vcpu);
1965
1966         svm->vmcb->control.nested_cr3 = root;
1967         mark_dirty(svm->vmcb, VMCB_NPT);
1968         svm_flush_tlb(vcpu);
1969 }
1970
1971 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1972                                        struct x86_exception *fault)
1973 {
1974         struct vcpu_svm *svm = to_svm(vcpu);
1975
1976         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1977         svm->vmcb->control.exit_code_hi = 0;
1978         svm->vmcb->control.exit_info_1 = fault->error_code;
1979         svm->vmcb->control.exit_info_2 = fault->address;
1980
1981         nested_svm_vmexit(svm);
1982 }
1983
1984 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1985 {
1986         kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1987
1988         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1989         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1990         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1991         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1992         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1993         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1994 }
1995
1996 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1997 {
1998         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1999 }
2000
2001 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2002 {
2003         if (!(svm->vcpu.arch.efer & EFER_SVME)
2004             || !is_paging(&svm->vcpu)) {
2005                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2006                 return 1;
2007         }
2008
2009         if (svm->vmcb->save.cpl) {
2010                 kvm_inject_gp(&svm->vcpu, 0);
2011                 return 1;
2012         }
2013
2014        return 0;
2015 }
2016
2017 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2018                                       bool has_error_code, u32 error_code)
2019 {
2020         int vmexit;
2021
2022         if (!is_guest_mode(&svm->vcpu))
2023                 return 0;
2024
2025         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2026         svm->vmcb->control.exit_code_hi = 0;
2027         svm->vmcb->control.exit_info_1 = error_code;
2028         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2029
2030         vmexit = nested_svm_intercept(svm);
2031         if (vmexit == NESTED_EXIT_DONE)
2032                 svm->nested.exit_required = true;
2033
2034         return vmexit;
2035 }
2036
2037 /* This function returns true if it is save to enable the irq window */
2038 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2039 {
2040         if (!is_guest_mode(&svm->vcpu))
2041                 return true;
2042
2043         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2044                 return true;
2045
2046         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2047                 return false;
2048
2049         /*
2050          * if vmexit was already requested (by intercepted exception
2051          * for instance) do not overwrite it with "external interrupt"
2052          * vmexit.
2053          */
2054         if (svm->nested.exit_required)
2055                 return false;
2056
2057         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2058         svm->vmcb->control.exit_info_1 = 0;
2059         svm->vmcb->control.exit_info_2 = 0;
2060
2061         if (svm->nested.intercept & 1ULL) {
2062                 /*
2063                  * The #vmexit can't be emulated here directly because this
2064                  * code path runs with irqs and preemption disabled. A
2065                  * #vmexit emulation might sleep. Only signal request for
2066                  * the #vmexit here.
2067                  */
2068                 svm->nested.exit_required = true;
2069                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2070                 return false;
2071         }
2072
2073         return true;
2074 }
2075
2076 /* This function returns true if it is save to enable the nmi window */
2077 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2078 {
2079         if (!is_guest_mode(&svm->vcpu))
2080                 return true;
2081
2082         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2083                 return true;
2084
2085         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2086         svm->nested.exit_required = true;
2087
2088         return false;
2089 }
2090
2091 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2092 {
2093         struct page *page;
2094
2095         might_sleep();
2096
2097         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2098         if (is_error_page(page))
2099                 goto error;
2100
2101         *_page = page;
2102
2103         return kmap(page);
2104
2105 error:
2106         kvm_inject_gp(&svm->vcpu, 0);
2107
2108         return NULL;
2109 }
2110
2111 static void nested_svm_unmap(struct page *page)
2112 {
2113         kunmap(page);
2114         kvm_release_page_dirty(page);
2115 }
2116
2117 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2118 {
2119         unsigned port;
2120         u8 val, bit;
2121         u64 gpa;
2122
2123         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2124                 return NESTED_EXIT_HOST;
2125
2126         port = svm->vmcb->control.exit_info_1 >> 16;
2127         gpa  = svm->nested.vmcb_iopm + (port / 8);
2128         bit  = port % 8;
2129         val  = 0;
2130
2131         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2132                 val &= (1 << bit);
2133
2134         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2135 }
2136
2137 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2138 {
2139         u32 offset, msr, value;
2140         int write, mask;
2141
2142         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2143                 return NESTED_EXIT_HOST;
2144
2145         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2146         offset = svm_msrpm_offset(msr);
2147         write  = svm->vmcb->control.exit_info_1 & 1;
2148         mask   = 1 << ((2 * (msr & 0xf)) + write);
2149
2150         if (offset == MSR_INVALID)
2151                 return NESTED_EXIT_DONE;
2152
2153         /* Offset is in 32 bit units but need in 8 bit units */
2154         offset *= 4;
2155
2156         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2157                 return NESTED_EXIT_DONE;
2158
2159         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2160 }
2161
2162 static int nested_svm_exit_special(struct vcpu_svm *svm)
2163 {
2164         u32 exit_code = svm->vmcb->control.exit_code;
2165
2166         switch (exit_code) {
2167         case SVM_EXIT_INTR:
2168         case SVM_EXIT_NMI:
2169         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2170                 return NESTED_EXIT_HOST;
2171         case SVM_EXIT_NPF:
2172                 /* For now we are always handling NPFs when using them */
2173                 if (npt_enabled)
2174                         return NESTED_EXIT_HOST;
2175                 break;
2176         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2177                 /* When we're shadowing, trap PFs, but not async PF */
2178                 if (!npt_enabled && svm->apf_reason == 0)
2179                         return NESTED_EXIT_HOST;
2180                 break;
2181         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2182                 nm_interception(svm);
2183                 break;
2184         default:
2185                 break;
2186         }
2187
2188         return NESTED_EXIT_CONTINUE;
2189 }
2190
2191 /*
2192  * If this function returns true, this #vmexit was already handled
2193  */
2194 static int nested_svm_intercept(struct vcpu_svm *svm)
2195 {
2196         u32 exit_code = svm->vmcb->control.exit_code;
2197         int vmexit = NESTED_EXIT_HOST;
2198
2199         switch (exit_code) {
2200         case SVM_EXIT_MSR:
2201                 vmexit = nested_svm_exit_handled_msr(svm);
2202                 break;
2203         case SVM_EXIT_IOIO:
2204                 vmexit = nested_svm_intercept_ioio(svm);
2205                 break;
2206         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2207                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2208                 if (svm->nested.intercept_cr & bit)
2209                         vmexit = NESTED_EXIT_DONE;
2210                 break;
2211         }
2212         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2213                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2214                 if (svm->nested.intercept_dr & bit)
2215                         vmexit = NESTED_EXIT_DONE;
2216                 break;
2217         }
2218         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2219                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2220                 if (svm->nested.intercept_exceptions & excp_bits)
2221                         vmexit = NESTED_EXIT_DONE;
2222                 /* async page fault always cause vmexit */
2223                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2224                          svm->apf_reason != 0)
2225                         vmexit = NESTED_EXIT_DONE;
2226                 break;
2227         }
2228         case SVM_EXIT_ERR: {
2229                 vmexit = NESTED_EXIT_DONE;
2230                 break;
2231         }
2232         default: {
2233                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2234                 if (svm->nested.intercept & exit_bits)
2235                         vmexit = NESTED_EXIT_DONE;
2236         }
2237         }
2238
2239         return vmexit;
2240 }
2241
2242 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2243 {
2244         int vmexit;
2245
2246         vmexit = nested_svm_intercept(svm);
2247
2248         if (vmexit == NESTED_EXIT_DONE)
2249                 nested_svm_vmexit(svm);
2250
2251         return vmexit;
2252 }
2253
2254 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2255 {
2256         struct vmcb_control_area *dst  = &dst_vmcb->control;
2257         struct vmcb_control_area *from = &from_vmcb->control;
2258
2259         dst->intercept_cr         = from->intercept_cr;
2260         dst->intercept_dr         = from->intercept_dr;
2261         dst->intercept_exceptions = from->intercept_exceptions;
2262         dst->intercept            = from->intercept;
2263         dst->iopm_base_pa         = from->iopm_base_pa;
2264         dst->msrpm_base_pa        = from->msrpm_base_pa;
2265         dst->tsc_offset           = from->tsc_offset;
2266         dst->asid                 = from->asid;
2267         dst->tlb_ctl              = from->tlb_ctl;
2268         dst->int_ctl              = from->int_ctl;
2269         dst->int_vector           = from->int_vector;
2270         dst->int_state            = from->int_state;
2271         dst->exit_code            = from->exit_code;
2272         dst->exit_code_hi         = from->exit_code_hi;
2273         dst->exit_info_1          = from->exit_info_1;
2274         dst->exit_info_2          = from->exit_info_2;
2275         dst->exit_int_info        = from->exit_int_info;
2276         dst->exit_int_info_err    = from->exit_int_info_err;
2277         dst->nested_ctl           = from->nested_ctl;
2278         dst->event_inj            = from->event_inj;
2279         dst->event_inj_err        = from->event_inj_err;
2280         dst->nested_cr3           = from->nested_cr3;
2281         dst->lbr_ctl              = from->lbr_ctl;
2282 }
2283
2284 static int nested_svm_vmexit(struct vcpu_svm *svm)
2285 {
2286         struct vmcb *nested_vmcb;
2287         struct vmcb *hsave = svm->nested.hsave;
2288         struct vmcb *vmcb = svm->vmcb;
2289         struct page *page;
2290
2291         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2292                                        vmcb->control.exit_info_1,
2293                                        vmcb->control.exit_info_2,
2294                                        vmcb->control.exit_int_info,
2295                                        vmcb->control.exit_int_info_err,
2296                                        KVM_ISA_SVM);
2297
2298         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2299         if (!nested_vmcb)
2300                 return 1;
2301
2302         /* Exit Guest-Mode */
2303         leave_guest_mode(&svm->vcpu);
2304         svm->nested.vmcb = 0;
2305
2306         /* Give the current vmcb to the guest */
2307         disable_gif(svm);
2308
2309         nested_vmcb->save.es     = vmcb->save.es;
2310         nested_vmcb->save.cs     = vmcb->save.cs;
2311         nested_vmcb->save.ss     = vmcb->save.ss;
2312         nested_vmcb->save.ds     = vmcb->save.ds;
2313         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2314         nested_vmcb->save.idtr   = vmcb->save.idtr;
2315         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2316         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2317         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2318         nested_vmcb->save.cr2    = vmcb->save.cr2;
2319         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2320         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2321         nested_vmcb->save.rip    = vmcb->save.rip;
2322         nested_vmcb->save.rsp    = vmcb->save.rsp;
2323         nested_vmcb->save.rax    = vmcb->save.rax;
2324         nested_vmcb->save.dr7    = vmcb->save.dr7;
2325         nested_vmcb->save.dr6    = vmcb->save.dr6;
2326         nested_vmcb->save.cpl    = vmcb->save.cpl;
2327
2328         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2329         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2330         nested_vmcb->control.int_state         = vmcb->control.int_state;
2331         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2332         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2333         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2334         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2335         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2336         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2337         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2338
2339         /*
2340          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2341          * to make sure that we do not lose injected events. So check event_inj
2342          * here and copy it to exit_int_info if it is valid.
2343          * Exit_int_info and event_inj can't be both valid because the case
2344          * below only happens on a VMRUN instruction intercept which has
2345          * no valid exit_int_info set.
2346          */
2347         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2348                 struct vmcb_control_area *nc = &nested_vmcb->control;
2349
2350                 nc->exit_int_info     = vmcb->control.event_inj;
2351                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2352         }
2353
2354         nested_vmcb->control.tlb_ctl           = 0;
2355         nested_vmcb->control.event_inj         = 0;
2356         nested_vmcb->control.event_inj_err     = 0;
2357
2358         /* We always set V_INTR_MASKING and remember the old value in hflags */
2359         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2360                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2361
2362         /* Restore the original control entries */
2363         copy_vmcb_control_area(vmcb, hsave);
2364
2365         kvm_clear_exception_queue(&svm->vcpu);
2366         kvm_clear_interrupt_queue(&svm->vcpu);
2367
2368         svm->nested.nested_cr3 = 0;
2369
2370         /* Restore selected save entries */
2371         svm->vmcb->save.es = hsave->save.es;
2372         svm->vmcb->save.cs = hsave->save.cs;
2373         svm->vmcb->save.ss = hsave->save.ss;
2374         svm->vmcb->save.ds = hsave->save.ds;
2375         svm->vmcb->save.gdtr = hsave->save.gdtr;
2376         svm->vmcb->save.idtr = hsave->save.idtr;
2377         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2378         svm_set_efer(&svm->vcpu, hsave->save.efer);
2379         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2380         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2381         if (npt_enabled) {
2382                 svm->vmcb->save.cr3 = hsave->save.cr3;
2383                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2384         } else {
2385                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2386         }
2387         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2388         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2389         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2390         svm->vmcb->save.dr7 = 0;
2391         svm->vmcb->save.cpl = 0;
2392         svm->vmcb->control.exit_int_info = 0;
2393
2394         mark_all_dirty(svm->vmcb);
2395
2396         nested_svm_unmap(page);
2397
2398         nested_svm_uninit_mmu_context(&svm->vcpu);
2399         kvm_mmu_reset_context(&svm->vcpu);
2400         kvm_mmu_load(&svm->vcpu);
2401
2402         return 0;
2403 }
2404
2405 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2406 {
2407         /*
2408          * This function merges the msr permission bitmaps of kvm and the
2409          * nested vmcb. It is optimized in that it only merges the parts where
2410          * the kvm msr permission bitmap may contain zero bits
2411          */
2412         int i;
2413
2414         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2415                 return true;
2416
2417         for (i = 0; i < MSRPM_OFFSETS; i++) {
2418                 u32 value, p;
2419                 u64 offset;
2420
2421                 if (msrpm_offsets[i] == 0xffffffff)
2422                         break;
2423
2424                 p      = msrpm_offsets[i];
2425                 offset = svm->nested.vmcb_msrpm + (p * 4);
2426
2427                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2428                         return false;
2429
2430                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2431         }
2432
2433         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2434
2435         return true;
2436 }
2437
2438 static bool nested_vmcb_checks(struct vmcb *vmcb)
2439 {
2440         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2441                 return false;
2442
2443         if (vmcb->control.asid == 0)
2444                 return false;
2445
2446         if (vmcb->control.nested_ctl && !npt_enabled)
2447                 return false;
2448
2449         return true;
2450 }
2451
2452 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2453 {
2454         struct vmcb *nested_vmcb;
2455         struct vmcb *hsave = svm->nested.hsave;
2456         struct vmcb *vmcb = svm->vmcb;
2457         struct page *page;
2458         u64 vmcb_gpa;
2459
2460         vmcb_gpa = svm->vmcb->save.rax;
2461
2462         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2463         if (!nested_vmcb)
2464                 return false;
2465
2466         if (!nested_vmcb_checks(nested_vmcb)) {
2467                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2468                 nested_vmcb->control.exit_code_hi = 0;
2469                 nested_vmcb->control.exit_info_1  = 0;
2470                 nested_vmcb->control.exit_info_2  = 0;
2471
2472                 nested_svm_unmap(page);
2473
2474                 return false;
2475         }
2476
2477         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2478                                nested_vmcb->save.rip,
2479                                nested_vmcb->control.int_ctl,
2480                                nested_vmcb->control.event_inj,
2481                                nested_vmcb->control.nested_ctl);
2482
2483         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2484                                     nested_vmcb->control.intercept_cr >> 16,
2485                                     nested_vmcb->control.intercept_exceptions,
2486                                     nested_vmcb->control.intercept);
2487
2488         /* Clear internal status */
2489         kvm_clear_exception_queue(&svm->vcpu);
2490         kvm_clear_interrupt_queue(&svm->vcpu);
2491
2492         /*
2493          * Save the old vmcb, so we don't need to pick what we save, but can
2494          * restore everything when a VMEXIT occurs
2495          */
2496         hsave->save.es     = vmcb->save.es;
2497         hsave->save.cs     = vmcb->save.cs;
2498         hsave->save.ss     = vmcb->save.ss;
2499         hsave->save.ds     = vmcb->save.ds;
2500         hsave->save.gdtr   = vmcb->save.gdtr;
2501         hsave->save.idtr   = vmcb->save.idtr;
2502         hsave->save.efer   = svm->vcpu.arch.efer;
2503         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2504         hsave->save.cr4    = svm->vcpu.arch.cr4;
2505         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2506         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2507         hsave->save.rsp    = vmcb->save.rsp;
2508         hsave->save.rax    = vmcb->save.rax;
2509         if (npt_enabled)
2510                 hsave->save.cr3    = vmcb->save.cr3;
2511         else
2512                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2513
2514         copy_vmcb_control_area(hsave, vmcb);
2515
2516         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2517                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2518         else
2519                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2520
2521         if (nested_vmcb->control.nested_ctl) {
2522                 kvm_mmu_unload(&svm->vcpu);
2523                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2524                 nested_svm_init_mmu_context(&svm->vcpu);
2525         }
2526
2527         /* Load the nested guest state */
2528         svm->vmcb->save.es = nested_vmcb->save.es;
2529         svm->vmcb->save.cs = nested_vmcb->save.cs;
2530         svm->vmcb->save.ss = nested_vmcb->save.ss;
2531         svm->vmcb->save.ds = nested_vmcb->save.ds;
2532         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2533         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2534         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2535         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2536         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2537         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2538         if (npt_enabled) {
2539                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2540                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2541         } else
2542                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2543
2544         /* Guest paging mode is active - reset mmu */
2545         kvm_mmu_reset_context(&svm->vcpu);
2546
2547         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2548         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2549         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2550         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2551
2552         /* In case we don't even reach vcpu_run, the fields are not updated */
2553         svm->vmcb->save.rax = nested_vmcb->save.rax;
2554         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2555         svm->vmcb->save.rip = nested_vmcb->save.rip;
2556         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2557         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2558         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2559
2560         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2561         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2562
2563         /* cache intercepts */
2564         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2565         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2566         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2567         svm->nested.intercept            = nested_vmcb->control.intercept;
2568
2569         svm_flush_tlb(&svm->vcpu);
2570         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2571         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2572                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2573         else
2574                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2575
2576         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2577                 /* We only want the cr8 intercept bits of the guest */
2578                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2579                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2580         }
2581
2582         /* We don't want to see VMMCALLs from a nested guest */
2583         clr_intercept(svm, INTERCEPT_VMMCALL);
2584
2585         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2586         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2587         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2588         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2589         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2590         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2591
2592         nested_svm_unmap(page);
2593
2594         /* Enter Guest-Mode */
2595         enter_guest_mode(&svm->vcpu);
2596
2597         /*
2598          * Merge guest and host intercepts - must be called  with vcpu in
2599          * guest-mode to take affect here
2600          */
2601         recalc_intercepts(svm);
2602
2603         svm->nested.vmcb = vmcb_gpa;
2604
2605         enable_gif(svm);
2606
2607         mark_all_dirty(svm->vmcb);
2608
2609         return true;
2610 }
2611
2612 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2613 {
2614         to_vmcb->save.fs = from_vmcb->save.fs;
2615         to_vmcb->save.gs = from_vmcb->save.gs;
2616         to_vmcb->save.tr = from_vmcb->save.tr;
2617         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2618         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2619         to_vmcb->save.star = from_vmcb->save.star;
2620         to_vmcb->save.lstar = from_vmcb->save.lstar;
2621         to_vmcb->save.cstar = from_vmcb->save.cstar;
2622         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2623         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2624         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2625         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2626 }
2627
2628 static int vmload_interception(struct vcpu_svm *svm)
2629 {
2630         struct vmcb *nested_vmcb;
2631         struct page *page;
2632
2633         if (nested_svm_check_permissions(svm))
2634                 return 1;
2635
2636         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2637         if (!nested_vmcb)
2638                 return 1;
2639
2640         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2641         skip_emulated_instruction(&svm->vcpu);
2642
2643         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2644         nested_svm_unmap(page);
2645
2646         return 1;
2647 }
2648
2649 static int vmsave_interception(struct vcpu_svm *svm)
2650 {
2651         struct vmcb *nested_vmcb;
2652         struct page *page;
2653
2654         if (nested_svm_check_permissions(svm))
2655                 return 1;
2656
2657         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2658         if (!nested_vmcb)
2659                 return 1;
2660
2661         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2662         skip_emulated_instruction(&svm->vcpu);
2663
2664         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2665         nested_svm_unmap(page);
2666
2667         return 1;
2668 }
2669
2670 static int vmrun_interception(struct vcpu_svm *svm)
2671 {
2672         if (nested_svm_check_permissions(svm))
2673                 return 1;
2674
2675         /* Save rip after vmrun instruction */
2676         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2677
2678         if (!nested_svm_vmrun(svm))
2679                 return 1;
2680
2681         if (!nested_svm_vmrun_msrpm(svm))
2682                 goto failed;
2683
2684         return 1;
2685
2686 failed:
2687
2688         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2689         svm->vmcb->control.exit_code_hi = 0;
2690         svm->vmcb->control.exit_info_1  = 0;
2691         svm->vmcb->control.exit_info_2  = 0;
2692
2693         nested_svm_vmexit(svm);
2694
2695         return 1;
2696 }
2697
2698 static int stgi_interception(struct vcpu_svm *svm)
2699 {
2700         if (nested_svm_check_permissions(svm))
2701                 return 1;
2702
2703         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2704         skip_emulated_instruction(&svm->vcpu);
2705         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2706
2707         enable_gif(svm);
2708
2709         return 1;
2710 }
2711
2712 static int clgi_interception(struct vcpu_svm *svm)
2713 {
2714         if (nested_svm_check_permissions(svm))
2715                 return 1;
2716
2717         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2718         skip_emulated_instruction(&svm->vcpu);
2719
2720         disable_gif(svm);
2721
2722         /* After a CLGI no interrupts should come */
2723         svm_clear_vintr(svm);
2724         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2725
2726         mark_dirty(svm->vmcb, VMCB_INTR);
2727
2728         return 1;
2729 }
2730
2731 static int invlpga_interception(struct vcpu_svm *svm)
2732 {
2733         struct kvm_vcpu *vcpu = &svm->vcpu;
2734
2735         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2736                           vcpu->arch.regs[VCPU_REGS_RAX]);
2737
2738         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2739         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2740
2741         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2742         skip_emulated_instruction(&svm->vcpu);
2743         return 1;
2744 }
2745
2746 static int skinit_interception(struct vcpu_svm *svm)
2747 {
2748         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2749
2750         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2751         return 1;
2752 }
2753
2754 static int xsetbv_interception(struct vcpu_svm *svm)
2755 {
2756         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2757         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2758
2759         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2760                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2761                 skip_emulated_instruction(&svm->vcpu);
2762         }
2763
2764         return 1;
2765 }
2766
2767 static int task_switch_interception(struct vcpu_svm *svm)
2768 {
2769         u16 tss_selector;
2770         int reason;
2771         int int_type = svm->vmcb->control.exit_int_info &
2772                 SVM_EXITINTINFO_TYPE_MASK;
2773         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2774         uint32_t type =
2775                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2776         uint32_t idt_v =
2777                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2778         bool has_error_code = false;
2779         u32 error_code = 0;
2780
2781         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2782
2783         if (svm->vmcb->control.exit_info_2 &
2784             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2785                 reason = TASK_SWITCH_IRET;
2786         else if (svm->vmcb->control.exit_info_2 &
2787                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2788                 reason = TASK_SWITCH_JMP;
2789         else if (idt_v)
2790                 reason = TASK_SWITCH_GATE;
2791         else
2792                 reason = TASK_SWITCH_CALL;
2793
2794         if (reason == TASK_SWITCH_GATE) {
2795                 switch (type) {
2796                 case SVM_EXITINTINFO_TYPE_NMI:
2797                         svm->vcpu.arch.nmi_injected = false;
2798                         break;
2799                 case SVM_EXITINTINFO_TYPE_EXEPT:
2800                         if (svm->vmcb->control.exit_info_2 &
2801                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2802                                 has_error_code = true;
2803                                 error_code =
2804                                         (u32)svm->vmcb->control.exit_info_2;
2805                         }
2806                         kvm_clear_exception_queue(&svm->vcpu);
2807                         break;
2808                 case SVM_EXITINTINFO_TYPE_INTR:
2809                         kvm_clear_interrupt_queue(&svm->vcpu);
2810                         break;
2811                 default:
2812                         break;
2813                 }
2814         }
2815
2816         if (reason != TASK_SWITCH_GATE ||
2817             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2818             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2819              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2820                 skip_emulated_instruction(&svm->vcpu);
2821
2822         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2823                 int_vec = -1;
2824
2825         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2826                                 has_error_code, error_code) == EMULATE_FAIL) {
2827                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2828                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2829                 svm->vcpu.run->internal.ndata = 0;
2830                 return 0;
2831         }
2832         return 1;
2833 }
2834
2835 static int cpuid_interception(struct vcpu_svm *svm)
2836 {
2837         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2838         kvm_emulate_cpuid(&svm->vcpu);
2839         return 1;
2840 }
2841
2842 static int iret_interception(struct vcpu_svm *svm)
2843 {
2844         ++svm->vcpu.stat.nmi_window_exits;
2845         clr_intercept(svm, INTERCEPT_IRET);
2846         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2847         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2848         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2849         return 1;
2850 }
2851
2852 static int invlpg_interception(struct vcpu_svm *svm)
2853 {
2854         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2855                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2856
2857         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2858         skip_emulated_instruction(&svm->vcpu);
2859         return 1;
2860 }
2861
2862 static int emulate_on_interception(struct vcpu_svm *svm)
2863 {
2864         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2865 }
2866
2867 static int rdpmc_interception(struct vcpu_svm *svm)
2868 {
2869         int err;
2870
2871         if (!static_cpu_has(X86_FEATURE_NRIPS))
2872                 return emulate_on_interception(svm);
2873
2874         err = kvm_rdpmc(&svm->vcpu);
2875         kvm_complete_insn_gp(&svm->vcpu, err);
2876
2877         return 1;
2878 }
2879
2880 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2881 {
2882         unsigned long cr0 = svm->vcpu.arch.cr0;
2883         bool ret = false;
2884         u64 intercept;
2885
2886         intercept = svm->nested.intercept;
2887
2888         if (!is_guest_mode(&svm->vcpu) ||
2889             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2890                 return false;
2891
2892         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2893         val &= ~SVM_CR0_SELECTIVE_MASK;
2894
2895         if (cr0 ^ val) {
2896                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2897                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2898         }
2899
2900         return ret;
2901 }
2902
2903 #define CR_VALID (1ULL << 63)
2904
2905 static int cr_interception(struct vcpu_svm *svm)
2906 {
2907         int reg, cr;
2908         unsigned long val;
2909         int err;
2910
2911         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2912                 return emulate_on_interception(svm);
2913
2914         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2915                 return emulate_on_interception(svm);
2916
2917         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2918         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2919
2920         err = 0;
2921         if (cr >= 16) { /* mov to cr */
2922                 cr -= 16;
2923                 val = kvm_register_read(&svm->vcpu, reg);
2924                 switch (cr) {
2925                 case 0:
2926                         if (!check_selective_cr0_intercepted(svm, val))
2927                                 err = kvm_set_cr0(&svm->vcpu, val);
2928                         else
2929                                 return 1;
2930
2931                         break;
2932                 case 3:
2933                         err = kvm_set_cr3(&svm->vcpu, val);
2934                         break;
2935                 case 4:
2936                         err = kvm_set_cr4(&svm->vcpu, val);
2937                         break;
2938                 case 8:
2939                         err = kvm_set_cr8(&svm->vcpu, val);
2940                         break;
2941                 default:
2942                         WARN(1, "unhandled write to CR%d", cr);
2943                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2944                         return 1;
2945                 }
2946         } else { /* mov from cr */
2947                 switch (cr) {
2948                 case 0:
2949                         val = kvm_read_cr0(&svm->vcpu);
2950                         break;
2951                 case 2:
2952                         val = svm->vcpu.arch.cr2;
2953                         break;
2954                 case 3:
2955                         val = kvm_read_cr3(&svm->vcpu);
2956                         break;
2957                 case 4:
2958                         val = kvm_read_cr4(&svm->vcpu);
2959                         break;
2960                 case 8:
2961                         val = kvm_get_cr8(&svm->vcpu);
2962                         break;
2963                 default:
2964                         WARN(1, "unhandled read from CR%d", cr);
2965                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2966                         return 1;
2967                 }
2968                 kvm_register_write(&svm->vcpu, reg, val);
2969         }
2970         kvm_complete_insn_gp(&svm->vcpu, err);
2971
2972         return 1;
2973 }
2974
2975 static int dr_interception(struct vcpu_svm *svm)
2976 {
2977         int reg, dr;
2978         unsigned long val;
2979         int err;
2980
2981         if (svm->vcpu.guest_debug == 0) {
2982                 /*
2983                  * No more DR vmexits; force a reload of the debug registers
2984                  * and reenter on this instruction.  The next vmexit will
2985                  * retrieve the full state of the debug registers.
2986                  */
2987                 clr_dr_intercepts(svm);
2988                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2989                 return 1;
2990         }
2991
2992         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2993                 return emulate_on_interception(svm);
2994
2995         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2996         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2997
2998         if (dr >= 16) { /* mov to DRn */
2999                 val = kvm_register_read(&svm->vcpu, reg);
3000                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3001         } else {
3002                 err = kvm_get_dr(&svm->vcpu, dr, &val);
3003                 if (!err)
3004                         kvm_register_write(&svm->vcpu, reg, val);
3005         }
3006
3007         skip_emulated_instruction(&svm->vcpu);
3008
3009         return 1;
3010 }
3011
3012 static int cr8_write_interception(struct vcpu_svm *svm)
3013 {
3014         struct kvm_run *kvm_run = svm->vcpu.run;
3015         int r;
3016
3017         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3018         /* instruction emulation calls kvm_set_cr8() */
3019         r = cr_interception(svm);
3020         if (irqchip_in_kernel(svm->vcpu.kvm))
3021                 return r;
3022         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3023                 return r;
3024         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3025         return 0;
3026 }
3027
3028 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3029 {
3030         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3031         return vmcb->control.tsc_offset +
3032                 svm_scale_tsc(vcpu, host_tsc);
3033 }
3034
3035 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3036 {
3037         struct vcpu_svm *svm = to_svm(vcpu);
3038
3039         switch (ecx) {
3040         case MSR_IA32_TSC: {
3041                 *data = svm->vmcb->control.tsc_offset +
3042                         svm_scale_tsc(vcpu, native_read_tsc());
3043
3044                 break;
3045         }
3046         case MSR_STAR:
3047                 *data = svm->vmcb->save.star;
3048                 break;
3049 #ifdef CONFIG_X86_64
3050         case MSR_LSTAR:
3051                 *data = svm->vmcb->save.lstar;
3052                 break;
3053         case MSR_CSTAR:
3054                 *data = svm->vmcb->save.cstar;
3055                 break;
3056         case MSR_KERNEL_GS_BASE:
3057                 *data = svm->vmcb->save.kernel_gs_base;
3058                 break;
3059         case MSR_SYSCALL_MASK:
3060                 *data = svm->vmcb->save.sfmask;
3061                 break;
3062 #endif
3063         case MSR_IA32_SYSENTER_CS:
3064                 *data = svm->vmcb->save.sysenter_cs;
3065                 break;
3066         case MSR_IA32_SYSENTER_EIP:
3067                 *data = svm->sysenter_eip;
3068                 break;
3069         case MSR_IA32_SYSENTER_ESP:
3070                 *data = svm->sysenter_esp;
3071                 break;
3072         /*
3073          * Nobody will change the following 5 values in the VMCB so we can
3074          * safely return them on rdmsr. They will always be 0 until LBRV is
3075          * implemented.
3076          */
3077         case MSR_IA32_DEBUGCTLMSR:
3078                 *data = svm->vmcb->save.dbgctl;
3079                 break;
3080         case MSR_IA32_LASTBRANCHFROMIP:
3081                 *data = svm->vmcb->save.br_from;
3082                 break;
3083         case MSR_IA32_LASTBRANCHTOIP:
3084                 *data = svm->vmcb->save.br_to;
3085                 break;
3086         case MSR_IA32_LASTINTFROMIP:
3087                 *data = svm->vmcb->save.last_excp_from;
3088                 break;
3089         case MSR_IA32_LASTINTTOIP:
3090                 *data = svm->vmcb->save.last_excp_to;
3091                 break;
3092         case MSR_VM_HSAVE_PA:
3093                 *data = svm->nested.hsave_msr;
3094                 break;
3095         case MSR_VM_CR:
3096                 *data = svm->nested.vm_cr_msr;
3097                 break;
3098         case MSR_IA32_UCODE_REV:
3099                 *data = 0x01000065;
3100                 break;
3101         default:
3102                 return kvm_get_msr_common(vcpu, ecx, data);
3103         }
3104         return 0;
3105 }
3106
3107 static int rdmsr_interception(struct vcpu_svm *svm)
3108 {
3109         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3110         u64 data;
3111
3112         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3113                 trace_kvm_msr_read_ex(ecx);
3114                 kvm_inject_gp(&svm->vcpu, 0);
3115         } else {
3116                 trace_kvm_msr_read(ecx, data);
3117
3118                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3119                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3120                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3121                 skip_emulated_instruction(&svm->vcpu);
3122         }
3123         return 1;
3124 }
3125
3126 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3127 {
3128         struct vcpu_svm *svm = to_svm(vcpu);
3129         int svm_dis, chg_mask;
3130
3131         if (data & ~SVM_VM_CR_VALID_MASK)
3132                 return 1;
3133
3134         chg_mask = SVM_VM_CR_VALID_MASK;
3135
3136         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3137                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3138
3139         svm->nested.vm_cr_msr &= ~chg_mask;
3140         svm->nested.vm_cr_msr |= (data & chg_mask);
3141
3142         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3143
3144         /* check for svm_disable while efer.svme is set */
3145         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3146                 return 1;
3147
3148         return 0;
3149 }
3150
3151 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3152 {
3153         struct vcpu_svm *svm = to_svm(vcpu);
3154
3155         u32 ecx = msr->index;
3156         u64 data = msr->data;
3157         switch (ecx) {
3158         case MSR_IA32_TSC:
3159                 kvm_write_tsc(vcpu, msr);
3160                 break;
3161         case MSR_STAR:
3162                 svm->vmcb->save.star = data;
3163                 break;
3164 #ifdef CONFIG_X86_64
3165         case MSR_LSTAR:
3166                 svm->vmcb->save.lstar = data;
3167                 break;
3168         case MSR_CSTAR:
3169                 svm->vmcb->save.cstar = data;
3170                 break;
3171         case MSR_KERNEL_GS_BASE:
3172                 svm->vmcb->save.kernel_gs_base = data;
3173                 break;
3174         case MSR_SYSCALL_MASK:
3175                 svm->vmcb->save.sfmask = data;
3176                 break;
3177 #endif
3178         case MSR_IA32_SYSENTER_CS:
3179                 svm->vmcb->save.sysenter_cs = data;
3180                 break;
3181         case MSR_IA32_SYSENTER_EIP:
3182                 svm->sysenter_eip = data;
3183                 svm->vmcb->save.sysenter_eip = data;
3184                 break;
3185         case MSR_IA32_SYSENTER_ESP:
3186                 svm->sysenter_esp = data;
3187                 svm->vmcb->save.sysenter_esp = data;
3188                 break;
3189         case MSR_IA32_DEBUGCTLMSR:
3190                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3191                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3192                                     __func__, data);
3193                         break;
3194                 }
3195                 if (data & DEBUGCTL_RESERVED_BITS)
3196                         return 1;
3197
3198                 svm->vmcb->save.dbgctl = data;
3199                 mark_dirty(svm->vmcb, VMCB_LBR);
3200                 if (data & (1ULL<<0))
3201                         svm_enable_lbrv(svm);
3202                 else
3203                         svm_disable_lbrv(svm);
3204                 break;
3205         case MSR_VM_HSAVE_PA:
3206                 svm->nested.hsave_msr = data;
3207                 break;
3208         case MSR_VM_CR:
3209                 return svm_set_vm_cr(vcpu, data);
3210         case MSR_VM_IGNNE:
3211                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3212                 break;
3213         default:
3214                 return kvm_set_msr_common(vcpu, msr);
3215         }
3216         return 0;
3217 }
3218
3219 static int wrmsr_interception(struct vcpu_svm *svm)
3220 {
3221         struct msr_data msr;
3222         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3223         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3224                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3225
3226         msr.data = data;
3227         msr.index = ecx;
3228         msr.host_initiated = false;
3229
3230         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3231         if (svm_set_msr(&svm->vcpu, &msr)) {
3232                 trace_kvm_msr_write_ex(ecx, data);
3233                 kvm_inject_gp(&svm->vcpu, 0);
3234         } else {
3235                 trace_kvm_msr_write(ecx, data);
3236                 skip_emulated_instruction(&svm->vcpu);
3237         }
3238         return 1;
3239 }
3240
3241 static int msr_interception(struct vcpu_svm *svm)
3242 {
3243         if (svm->vmcb->control.exit_info_1)
3244                 return wrmsr_interception(svm);
3245         else
3246                 return rdmsr_interception(svm);
3247 }
3248
3249 static int interrupt_window_interception(struct vcpu_svm *svm)
3250 {
3251         struct kvm_run *kvm_run = svm->vcpu.run;
3252
3253         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3254         svm_clear_vintr(svm);
3255         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3256         mark_dirty(svm->vmcb, VMCB_INTR);
3257         ++svm->vcpu.stat.irq_window_exits;
3258         /*
3259          * If the user space waits to inject interrupts, exit as soon as
3260          * possible
3261          */
3262         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3263             kvm_run->request_interrupt_window &&
3264             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3265                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3266                 return 0;
3267         }
3268
3269         return 1;
3270 }
3271
3272 static int pause_interception(struct vcpu_svm *svm)
3273 {
3274         kvm_vcpu_on_spin(&(svm->vcpu));
3275         return 1;
3276 }
3277
3278 static int nop_interception(struct vcpu_svm *svm)
3279 {
3280         skip_emulated_instruction(&(svm->vcpu));
3281         return 1;
3282 }
3283
3284 static int monitor_interception(struct vcpu_svm *svm)
3285 {
3286         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3287         return nop_interception(svm);
3288 }
3289
3290 static int mwait_interception(struct vcpu_svm *svm)
3291 {
3292         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3293         return nop_interception(svm);
3294 }
3295
3296 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3297         [SVM_EXIT_READ_CR0]                     = cr_interception,
3298         [SVM_EXIT_READ_CR3]                     = cr_interception,
3299         [SVM_EXIT_READ_CR4]                     = cr_interception,
3300         [SVM_EXIT_READ_CR8]                     = cr_interception,
3301         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3302         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3303         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3304         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3305         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3306         [SVM_EXIT_READ_DR0]                     = dr_interception,
3307         [SVM_EXIT_READ_DR1]                     = dr_interception,
3308         [SVM_EXIT_READ_DR2]                     = dr_interception,
3309         [SVM_EXIT_READ_DR3]                     = dr_interception,
3310         [SVM_EXIT_READ_DR4]                     = dr_interception,
3311         [SVM_EXIT_READ_DR5]                     = dr_interception,
3312         [SVM_EXIT_READ_DR6]                     = dr_interception,
3313         [SVM_EXIT_READ_DR7]                     = dr_interception,
3314         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3315         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3316         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3317         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3318         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3319         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3320         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3321         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3322         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3323         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3324         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3325         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3326         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3327         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3328         [SVM_EXIT_INTR]                         = intr_interception,
3329         [SVM_EXIT_NMI]                          = nmi_interception,
3330         [SVM_EXIT_SMI]                          = nop_on_interception,
3331         [SVM_EXIT_INIT]                         = nop_on_interception,
3332         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3333         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3334         [SVM_EXIT_CPUID]                        = cpuid_interception,
3335         [SVM_EXIT_IRET]                         = iret_interception,
3336         [SVM_EXIT_INVD]                         = emulate_on_interception,
3337         [SVM_EXIT_PAUSE]                        = pause_interception,
3338         [SVM_EXIT_HLT]                          = halt_interception,
3339         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3340         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3341         [SVM_EXIT_IOIO]                         = io_interception,
3342         [SVM_EXIT_MSR]                          = msr_interception,
3343         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3344         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3345         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3346         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3347         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3348         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3349         [SVM_EXIT_STGI]                         = stgi_interception,
3350         [SVM_EXIT_CLGI]                         = clgi_interception,
3351         [SVM_EXIT_SKINIT]                       = skinit_interception,
3352         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3353         [SVM_EXIT_MONITOR]                      = monitor_interception,
3354         [SVM_EXIT_MWAIT]                        = mwait_interception,
3355         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3356         [SVM_EXIT_NPF]                          = pf_interception,
3357 };
3358
3359 static void dump_vmcb(struct kvm_vcpu *vcpu)
3360 {
3361         struct vcpu_svm *svm = to_svm(vcpu);
3362         struct vmcb_control_area *control = &svm->vmcb->control;
3363         struct vmcb_save_area *save = &svm->vmcb->save;
3364
3365         pr_err("VMCB Control Area:\n");
3366         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3367         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3368         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3369         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3370         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3371         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3372         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3373         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3374         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3375         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3376         pr_err("%-20s%d\n", "asid:", control->asid);
3377         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3378         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3379         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3380         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3381         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3382         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3383         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3384         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3385         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3386         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3387         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3388         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3389         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3390         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3391         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3392         pr_err("VMCB State Save Area:\n");
3393         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394                "es:",
3395                save->es.selector, save->es.attrib,
3396                save->es.limit, save->es.base);
3397         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3398                "cs:",
3399                save->cs.selector, save->cs.attrib,
3400                save->cs.limit, save->cs.base);
3401         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3402                "ss:",
3403                save->ss.selector, save->ss.attrib,
3404                save->ss.limit, save->ss.base);
3405         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3406                "ds:",
3407                save->ds.selector, save->ds.attrib,
3408                save->ds.limit, save->ds.base);
3409         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3410                "fs:",
3411                save->fs.selector, save->fs.attrib,
3412                save->fs.limit, save->fs.base);
3413         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3414                "gs:",
3415                save->gs.selector, save->gs.attrib,
3416                save->gs.limit, save->gs.base);
3417         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3418                "gdtr:",
3419                save->gdtr.selector, save->gdtr.attrib,
3420                save->gdtr.limit, save->gdtr.base);
3421         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3422                "ldtr:",
3423                save->ldtr.selector, save->ldtr.attrib,
3424                save->ldtr.limit, save->ldtr.base);
3425         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3426                "idtr:",
3427                save->idtr.selector, save->idtr.attrib,
3428                save->idtr.limit, save->idtr.base);
3429         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3430                "tr:",
3431                save->tr.selector, save->tr.attrib,
3432                save->tr.limit, save->tr.base);
3433         pr_err("cpl:            %d                efer:         %016llx\n",
3434                 save->cpl, save->efer);
3435         pr_err("%-15s %016llx %-13s %016llx\n",
3436                "cr0:", save->cr0, "cr2:", save->cr2);
3437         pr_err("%-15s %016llx %-13s %016llx\n",
3438                "cr3:", save->cr3, "cr4:", save->cr4);
3439         pr_err("%-15s %016llx %-13s %016llx\n",
3440                "dr6:", save->dr6, "dr7:", save->dr7);
3441         pr_err("%-15s %016llx %-13s %016llx\n",
3442                "rip:", save->rip, "rflags:", save->rflags);
3443         pr_err("%-15s %016llx %-13s %016llx\n",
3444                "rsp:", save->rsp, "rax:", save->rax);
3445         pr_err("%-15s %016llx %-13s %016llx\n",
3446                "star:", save->star, "lstar:", save->lstar);
3447         pr_err("%-15s %016llx %-13s %016llx\n",
3448                "cstar:", save->cstar, "sfmask:", save->sfmask);
3449         pr_err("%-15s %016llx %-13s %016llx\n",
3450                "kernel_gs_base:", save->kernel_gs_base,
3451                "sysenter_cs:", save->sysenter_cs);
3452         pr_err("%-15s %016llx %-13s %016llx\n",
3453                "sysenter_esp:", save->sysenter_esp,
3454                "sysenter_eip:", save->sysenter_eip);
3455         pr_err("%-15s %016llx %-13s %016llx\n",
3456                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3457         pr_err("%-15s %016llx %-13s %016llx\n",
3458                "br_from:", save->br_from, "br_to:", save->br_to);
3459         pr_err("%-15s %016llx %-13s %016llx\n",
3460                "excp_from:", save->last_excp_from,
3461                "excp_to:", save->last_excp_to);
3462 }
3463
3464 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3465 {
3466         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3467
3468         *info1 = control->exit_info_1;
3469         *info2 = control->exit_info_2;
3470 }
3471
3472 static int handle_exit(struct kvm_vcpu *vcpu)
3473 {
3474         struct vcpu_svm *svm = to_svm(vcpu);
3475         struct kvm_run *kvm_run = vcpu->run;
3476         u32 exit_code = svm->vmcb->control.exit_code;
3477
3478         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3479                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3480         if (npt_enabled)
3481                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3482
3483         if (unlikely(svm->nested.exit_required)) {
3484                 nested_svm_vmexit(svm);
3485                 svm->nested.exit_required = false;
3486
3487                 return 1;
3488         }
3489
3490         if (is_guest_mode(vcpu)) {
3491                 int vmexit;
3492
3493                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3494                                         svm->vmcb->control.exit_info_1,
3495                                         svm->vmcb->control.exit_info_2,
3496                                         svm->vmcb->control.exit_int_info,
3497                                         svm->vmcb->control.exit_int_info_err,
3498                                         KVM_ISA_SVM);
3499
3500                 vmexit = nested_svm_exit_special(svm);
3501
3502                 if (vmexit == NESTED_EXIT_CONTINUE)
3503                         vmexit = nested_svm_exit_handled(svm);
3504
3505                 if (vmexit == NESTED_EXIT_DONE)
3506                         return 1;
3507         }
3508
3509         svm_complete_interrupts(svm);
3510
3511         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3512                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3513                 kvm_run->fail_entry.hardware_entry_failure_reason
3514                         = svm->vmcb->control.exit_code;
3515                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3516                 dump_vmcb(vcpu);
3517                 return 0;
3518         }
3519
3520         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3521             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3522             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3523             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3524                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3525                        "exit_code 0x%x\n",
3526                        __func__, svm->vmcb->control.exit_int_info,
3527                        exit_code);
3528
3529         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3530             || !svm_exit_handlers[exit_code]) {
3531                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3532                 kvm_run->hw.hardware_exit_reason = exit_code;
3533                 return 0;
3534         }
3535
3536         return svm_exit_handlers[exit_code](svm);
3537 }
3538
3539 static void reload_tss(struct kvm_vcpu *vcpu)
3540 {
3541         int cpu = raw_smp_processor_id();
3542
3543         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3544         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3545         load_TR_desc();
3546 }
3547
3548 static void pre_svm_run(struct vcpu_svm *svm)
3549 {
3550         int cpu = raw_smp_processor_id();
3551
3552         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3553
3554         /* FIXME: handle wraparound of asid_generation */
3555         if (svm->asid_generation != sd->asid_generation)
3556                 new_asid(svm, sd);
3557 }
3558
3559 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3560 {
3561         struct vcpu_svm *svm = to_svm(vcpu);
3562
3563         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3564         vcpu->arch.hflags |= HF_NMI_MASK;
3565         set_intercept(svm, INTERCEPT_IRET);
3566         ++vcpu->stat.nmi_injections;
3567 }
3568
3569 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3570 {
3571         struct vmcb_control_area *control;
3572
3573         control = &svm->vmcb->control;
3574         control->int_vector = irq;
3575         control->int_ctl &= ~V_INTR_PRIO_MASK;
3576         control->int_ctl |= V_IRQ_MASK |
3577                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3578         mark_dirty(svm->vmcb, VMCB_INTR);
3579 }
3580
3581 static void svm_set_irq(struct kvm_vcpu *vcpu)
3582 {
3583         struct vcpu_svm *svm = to_svm(vcpu);
3584
3585         BUG_ON(!(gif_set(svm)));
3586
3587         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3588         ++vcpu->stat.irq_injections;
3589
3590         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3591                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3592 }
3593
3594 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3595 {
3596         struct vcpu_svm *svm = to_svm(vcpu);
3597
3598         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3599                 return;
3600
3601         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3602
3603         if (irr == -1)
3604                 return;
3605
3606         if (tpr >= irr)
3607                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3608 }
3609
3610 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3611 {
3612         return;
3613 }
3614
3615 static int svm_vm_has_apicv(struct kvm *kvm)
3616 {
3617         return 0;
3618 }
3619
3620 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3621 {
3622         return;
3623 }
3624
3625 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3626 {
3627         return;
3628 }
3629
3630 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3631 {
3632         return;
3633 }
3634
3635 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3636 {
3637         struct vcpu_svm *svm = to_svm(vcpu);
3638         struct vmcb *vmcb = svm->vmcb;
3639         int ret;
3640         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3641               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3642         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3643
3644         return ret;
3645 }
3646
3647 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3648 {
3649         struct vcpu_svm *svm = to_svm(vcpu);
3650
3651         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3652 }
3653
3654 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3655 {
3656         struct vcpu_svm *svm = to_svm(vcpu);
3657
3658         if (masked) {
3659                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3660                 set_intercept(svm, INTERCEPT_IRET);
3661         } else {
3662                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3663                 clr_intercept(svm, INTERCEPT_IRET);
3664         }
3665 }
3666
3667 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3668 {
3669         struct vcpu_svm *svm = to_svm(vcpu);
3670         struct vmcb *vmcb = svm->vmcb;
3671         int ret;
3672
3673         if (!gif_set(svm) ||
3674              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3675                 return 0;
3676
3677         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3678
3679         if (is_guest_mode(vcpu))
3680                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3681
3682         return ret;
3683 }
3684
3685 static void enable_irq_window(struct kvm_vcpu *vcpu)
3686 {
3687         struct vcpu_svm *svm = to_svm(vcpu);
3688
3689         /*
3690          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3691          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3692          * get that intercept, this function will be called again though and
3693          * we'll get the vintr intercept.
3694          */
3695         if (gif_set(svm) && nested_svm_intr(svm)) {
3696                 svm_set_vintr(svm);
3697                 svm_inject_irq(svm, 0x0);
3698         }
3699 }
3700
3701 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3702 {
3703         struct vcpu_svm *svm = to_svm(vcpu);
3704
3705         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3706             == HF_NMI_MASK)
3707                 return; /* IRET will cause a vm exit */
3708
3709         /*
3710          * Something prevents NMI from been injected. Single step over possible
3711          * problem (IRET or exception injection or interrupt shadow)
3712          */
3713         svm->nmi_singlestep = true;
3714         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3715         update_db_bp_intercept(vcpu);
3716 }
3717
3718 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3719 {
3720         return 0;
3721 }
3722
3723 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3724 {
3725         struct vcpu_svm *svm = to_svm(vcpu);
3726
3727         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3728                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3729         else
3730                 svm->asid_generation--;
3731 }
3732
3733 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3734 {
3735 }
3736
3737 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3738 {
3739         struct vcpu_svm *svm = to_svm(vcpu);
3740
3741         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3742                 return;
3743
3744         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3745                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3746                 kvm_set_cr8(vcpu, cr8);
3747         }
3748 }
3749
3750 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3751 {
3752         struct vcpu_svm *svm = to_svm(vcpu);
3753         u64 cr8;
3754
3755         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3756                 return;
3757
3758         cr8 = kvm_get_cr8(vcpu);
3759         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3760         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3761 }
3762
3763 static void svm_complete_interrupts(struct vcpu_svm *svm)
3764 {
3765         u8 vector;
3766         int type;
3767         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3768         unsigned int3_injected = svm->int3_injected;
3769
3770         svm->int3_injected = 0;
3771
3772         /*
3773          * If we've made progress since setting HF_IRET_MASK, we've
3774          * executed an IRET and can allow NMI injection.
3775          */
3776         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3777             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3778                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3779                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3780         }
3781
3782         svm->vcpu.arch.nmi_injected = false;
3783         kvm_clear_exception_queue(&svm->vcpu);
3784         kvm_clear_interrupt_queue(&svm->vcpu);
3785
3786         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3787                 return;
3788
3789         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3790
3791         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3792         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3793
3794         switch (type) {
3795         case SVM_EXITINTINFO_TYPE_NMI:
3796                 svm->vcpu.arch.nmi_injected = true;
3797                 break;
3798         case SVM_EXITINTINFO_TYPE_EXEPT:
3799                 /*
3800                  * In case of software exceptions, do not reinject the vector,
3801                  * but re-execute the instruction instead. Rewind RIP first
3802                  * if we emulated INT3 before.
3803                  */
3804                 if (kvm_exception_is_soft(vector)) {
3805                         if (vector == BP_VECTOR && int3_injected &&
3806                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3807                                 kvm_rip_write(&svm->vcpu,
3808                                               kvm_rip_read(&svm->vcpu) -
3809                                               int3_injected);
3810                         break;
3811                 }
3812                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3813                         u32 err = svm->vmcb->control.exit_int_info_err;
3814                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3815
3816                 } else
3817                         kvm_requeue_exception(&svm->vcpu, vector);
3818                 break;
3819         case SVM_EXITINTINFO_TYPE_INTR:
3820                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3821                 break;
3822         default:
3823                 break;
3824         }
3825 }
3826
3827 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3828 {
3829         struct vcpu_svm *svm = to_svm(vcpu);
3830         struct vmcb_control_area *control = &svm->vmcb->control;
3831
3832         control->exit_int_info = control->event_inj;
3833         control->exit_int_info_err = control->event_inj_err;
3834         control->event_inj = 0;
3835         svm_complete_interrupts(svm);
3836 }
3837
3838 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3839 {
3840         struct vcpu_svm *svm = to_svm(vcpu);
3841
3842         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3843         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3844         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3845
3846         /*
3847          * A vmexit emulation is required before the vcpu can be executed
3848          * again.
3849          */
3850         if (unlikely(svm->nested.exit_required))
3851                 return;
3852
3853         pre_svm_run(svm);
3854
3855         sync_lapic_to_cr8(vcpu);
3856
3857         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3858
3859         clgi();
3860
3861         local_irq_enable();
3862
3863         asm volatile (
3864                 "push %%" _ASM_BP "; \n\t"
3865                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3866                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3867                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3868                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3869                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3870                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3871 #ifdef CONFIG_X86_64
3872                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3873                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3874                 "mov %c[r10](%[svm]), %%r10 \n\t"
3875                 "mov %c[r11](%[svm]), %%r11 \n\t"
3876                 "mov %c[r12](%[svm]), %%r12 \n\t"
3877                 "mov %c[r13](%[svm]), %%r13 \n\t"
3878                 "mov %c[r14](%[svm]), %%r14 \n\t"
3879                 "mov %c[r15](%[svm]), %%r15 \n\t"
3880 #endif
3881
3882                 /* Enter guest mode */
3883                 "push %%" _ASM_AX " \n\t"
3884                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3885                 __ex(SVM_VMLOAD) "\n\t"
3886                 __ex(SVM_VMRUN) "\n\t"
3887                 __ex(SVM_VMSAVE) "\n\t"
3888                 "pop %%" _ASM_AX " \n\t"
3889
3890                 /* Save guest registers, load host registers */
3891                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3892                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3893                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3894                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3895                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3896                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3897 #ifdef CONFIG_X86_64
3898                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3899                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3900                 "mov %%r10, %c[r10](%[svm]) \n\t"
3901                 "mov %%r11, %c[r11](%[svm]) \n\t"
3902                 "mov %%r12, %c[r12](%[svm]) \n\t"
3903                 "mov %%r13, %c[r13](%[svm]) \n\t"
3904                 "mov %%r14, %c[r14](%[svm]) \n\t"
3905                 "mov %%r15, %c[r15](%[svm]) \n\t"
3906 #endif
3907                 "pop %%" _ASM_BP
3908                 :
3909                 : [svm]"a"(svm),
3910                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3911                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3912                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3913                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3914                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3915                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3916                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3917 #ifdef CONFIG_X86_64
3918                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3919                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3920                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3921                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3922                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3923                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3924                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3925                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3926 #endif
3927                 : "cc", "memory"
3928 #ifdef CONFIG_X86_64
3929                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3930                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3931 #else
3932                 , "ebx", "ecx", "edx", "esi", "edi"
3933 #endif
3934                 );
3935
3936 #ifdef CONFIG_X86_64
3937         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3938 #else
3939         loadsegment(fs, svm->host.fs);
3940 #ifndef CONFIG_X86_32_LAZY_GS
3941         loadsegment(gs, svm->host.gs);
3942 #endif
3943 #endif
3944
3945         reload_tss(vcpu);
3946
3947         local_irq_disable();
3948
3949         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3950         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3951         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3952         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3953
3954         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3955
3956         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3957                 kvm_before_handle_nmi(&svm->vcpu);
3958
3959         stgi();
3960
3961         /* Any pending NMI will happen here */
3962
3963         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3964                 kvm_after_handle_nmi(&svm->vcpu);
3965
3966         sync_cr8_to_lapic(vcpu);
3967
3968         svm->next_rip = 0;
3969
3970         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3971
3972         /* if exit due to PF check for async PF */
3973         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3974                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3975
3976         if (npt_enabled) {
3977                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3978                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3979         }
3980
3981         /*
3982          * We need to handle MC intercepts here before the vcpu has a chance to
3983          * change the physical cpu
3984          */
3985         if (unlikely(svm->vmcb->control.exit_code ==
3986                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3987                 svm_handle_mce(svm);
3988
3989         mark_all_clean(svm->vmcb);
3990 }
3991
3992 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3993 {
3994         struct vcpu_svm *svm = to_svm(vcpu);
3995
3996         svm->vmcb->save.cr3 = root;
3997         mark_dirty(svm->vmcb, VMCB_CR);
3998         svm_flush_tlb(vcpu);
3999 }
4000
4001 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4002 {
4003         struct vcpu_svm *svm = to_svm(vcpu);
4004
4005         svm->vmcb->control.nested_cr3 = root;
4006         mark_dirty(svm->vmcb, VMCB_NPT);
4007
4008         /* Also sync guest cr3 here in case we live migrate */
4009         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4010         mark_dirty(svm->vmcb, VMCB_CR);
4011
4012         svm_flush_tlb(vcpu);
4013 }
4014
4015 static int is_disabled(void)
4016 {
4017         u64 vm_cr;
4018
4019         rdmsrl(MSR_VM_CR, vm_cr);
4020         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4021                 return 1;
4022
4023         return 0;
4024 }
4025
4026 static void
4027 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4028 {
4029         /*
4030          * Patch in the VMMCALL instruction:
4031          */
4032         hypercall[0] = 0x0f;
4033         hypercall[1] = 0x01;
4034         hypercall[2] = 0xd9;
4035 }
4036
4037 static void svm_check_processor_compat(void *rtn)
4038 {
4039         *(int *)rtn = 0;
4040 }
4041
4042 static bool svm_cpu_has_accelerated_tpr(void)
4043 {
4044         return false;
4045 }
4046
4047 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4048 {
4049         return 0;
4050 }
4051
4052 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4053 {
4054 }
4055
4056 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4057 {
4058         switch (func) {
4059         case 0x80000001:
4060                 if (nested)
4061                         entry->ecx |= (1 << 2); /* Set SVM bit */
4062                 break;
4063         case 0x8000000A:
4064                 entry->eax = 1; /* SVM revision 1 */
4065                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4066                                    ASID emulation to nested SVM */
4067                 entry->ecx = 0; /* Reserved */
4068                 entry->edx = 0; /* Per default do not support any
4069                                    additional features */
4070
4071                 /* Support next_rip if host supports it */
4072                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4073                         entry->edx |= SVM_FEATURE_NRIP;
4074
4075                 /* Support NPT for the guest if enabled */
4076                 if (npt_enabled)
4077                         entry->edx |= SVM_FEATURE_NPT;
4078
4079                 break;
4080         }
4081 }
4082
4083 static int svm_get_lpage_level(void)
4084 {
4085         return PT_PDPE_LEVEL;
4086 }
4087
4088 static bool svm_rdtscp_supported(void)
4089 {
4090         return false;
4091 }
4092
4093 static bool svm_invpcid_supported(void)
4094 {
4095         return false;
4096 }
4097
4098 static bool svm_mpx_supported(void)
4099 {
4100         return false;
4101 }
4102
4103 static bool svm_has_wbinvd_exit(void)
4104 {
4105         return true;
4106 }
4107
4108 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4109 {
4110         struct vcpu_svm *svm = to_svm(vcpu);
4111
4112         set_exception_intercept(svm, NM_VECTOR);
4113         update_cr0_intercept(svm);
4114 }
4115
4116 #define PRE_EX(exit)  { .exit_code = (exit), \
4117                         .stage = X86_ICPT_PRE_EXCEPT, }
4118 #define POST_EX(exit) { .exit_code = (exit), \
4119                         .stage = X86_ICPT_POST_EXCEPT, }
4120 #define POST_MEM(exit) { .exit_code = (exit), \
4121                         .stage = X86_ICPT_POST_MEMACCESS, }
4122
4123 static const struct __x86_intercept {
4124         u32 exit_code;
4125         enum x86_intercept_stage stage;
4126 } x86_intercept_map[] = {
4127         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4128         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4129         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4130         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4131         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4132         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4133         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4134         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4135         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4136         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4137         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4138         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4139         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4140         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4141         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4142         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4143         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4144         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4145         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4146         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4147         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4148         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4149         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4150         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4151         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4152         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4153         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4154         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4155         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4156         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4157         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4158         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4159         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4160         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4161         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4162         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4163         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4164         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4165         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4166         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4167         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4168         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4169         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4170         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4171         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4172         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4173 };
4174
4175 #undef PRE_EX
4176 #undef POST_EX
4177 #undef POST_MEM
4178
4179 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4180                                struct x86_instruction_info *info,
4181                                enum x86_intercept_stage stage)
4182 {
4183         struct vcpu_svm *svm = to_svm(vcpu);
4184         int vmexit, ret = X86EMUL_CONTINUE;
4185         struct __x86_intercept icpt_info;
4186         struct vmcb *vmcb = svm->vmcb;
4187
4188         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4189                 goto out;
4190
4191         icpt_info = x86_intercept_map[info->intercept];
4192
4193         if (stage != icpt_info.stage)
4194                 goto out;
4195
4196         switch (icpt_info.exit_code) {
4197         case SVM_EXIT_READ_CR0:
4198                 if (info->intercept == x86_intercept_cr_read)
4199                         icpt_info.exit_code += info->modrm_reg;
4200                 break;
4201         case SVM_EXIT_WRITE_CR0: {
4202                 unsigned long cr0, val;
4203                 u64 intercept;
4204
4205                 if (info->intercept == x86_intercept_cr_write)
4206                         icpt_info.exit_code += info->modrm_reg;
4207
4208                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4209                         break;
4210
4211                 intercept = svm->nested.intercept;
4212
4213                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4214                         break;
4215
4216                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4217                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4218
4219                 if (info->intercept == x86_intercept_lmsw) {
4220                         cr0 &= 0xfUL;
4221                         val &= 0xfUL;
4222                         /* lmsw can't clear PE - catch this here */
4223                         if (cr0 & X86_CR0_PE)
4224                                 val |= X86_CR0_PE;
4225                 }
4226
4227                 if (cr0 ^ val)
4228                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4229
4230                 break;
4231         }
4232         case SVM_EXIT_READ_DR0:
4233         case SVM_EXIT_WRITE_DR0:
4234                 icpt_info.exit_code += info->modrm_reg;
4235                 break;
4236         case SVM_EXIT_MSR:
4237                 if (info->intercept == x86_intercept_wrmsr)
4238                         vmcb->control.exit_info_1 = 1;
4239                 else
4240                         vmcb->control.exit_info_1 = 0;
4241                 break;
4242         case SVM_EXIT_PAUSE:
4243                 /*
4244                  * We get this for NOP only, but pause
4245                  * is rep not, check this here
4246                  */
4247                 if (info->rep_prefix != REPE_PREFIX)
4248                         goto out;
4249         case SVM_EXIT_IOIO: {
4250                 u64 exit_info;
4251                 u32 bytes;
4252
4253                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4254
4255                 if (info->intercept == x86_intercept_in ||
4256                     info->intercept == x86_intercept_ins) {
4257                         exit_info |= SVM_IOIO_TYPE_MASK;
4258                         bytes = info->src_bytes;
4259                 } else {
4260                         bytes = info->dst_bytes;
4261                 }
4262
4263                 if (info->intercept == x86_intercept_outs ||
4264                     info->intercept == x86_intercept_ins)
4265                         exit_info |= SVM_IOIO_STR_MASK;
4266
4267                 if (info->rep_prefix)
4268                         exit_info |= SVM_IOIO_REP_MASK;
4269
4270                 bytes = min(bytes, 4u);
4271
4272                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4273
4274                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4275
4276                 vmcb->control.exit_info_1 = exit_info;
4277                 vmcb->control.exit_info_2 = info->next_rip;
4278
4279                 break;
4280         }
4281         default:
4282                 break;
4283         }
4284
4285         vmcb->control.next_rip  = info->next_rip;
4286         vmcb->control.exit_code = icpt_info.exit_code;
4287         vmexit = nested_svm_exit_handled(svm);
4288
4289         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4290                                            : X86EMUL_CONTINUE;
4291
4292 out:
4293         return ret;
4294 }
4295
4296 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4297 {
4298         local_irq_enable();
4299 }
4300
4301 static struct kvm_x86_ops svm_x86_ops = {
4302         .cpu_has_kvm_support = has_svm,
4303         .disabled_by_bios = is_disabled,
4304         .hardware_setup = svm_hardware_setup,
4305         .hardware_unsetup = svm_hardware_unsetup,
4306         .check_processor_compatibility = svm_check_processor_compat,
4307         .hardware_enable = svm_hardware_enable,
4308         .hardware_disable = svm_hardware_disable,
4309         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4310
4311         .vcpu_create = svm_create_vcpu,
4312         .vcpu_free = svm_free_vcpu,
4313         .vcpu_reset = svm_vcpu_reset,
4314
4315         .prepare_guest_switch = svm_prepare_guest_switch,
4316         .vcpu_load = svm_vcpu_load,
4317         .vcpu_put = svm_vcpu_put,
4318
4319         .update_db_bp_intercept = update_db_bp_intercept,
4320         .get_msr = svm_get_msr,
4321         .set_msr = svm_set_msr,
4322         .get_segment_base = svm_get_segment_base,
4323         .get_segment = svm_get_segment,
4324         .set_segment = svm_set_segment,
4325         .get_cpl = svm_get_cpl,
4326         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4327         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4328         .decache_cr3 = svm_decache_cr3,
4329         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4330         .set_cr0 = svm_set_cr0,
4331         .set_cr3 = svm_set_cr3,
4332         .set_cr4 = svm_set_cr4,
4333         .set_efer = svm_set_efer,
4334         .get_idt = svm_get_idt,
4335         .set_idt = svm_set_idt,
4336         .get_gdt = svm_get_gdt,
4337         .set_gdt = svm_set_gdt,
4338         .get_dr6 = svm_get_dr6,
4339         .set_dr6 = svm_set_dr6,
4340         .set_dr7 = svm_set_dr7,
4341         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4342         .cache_reg = svm_cache_reg,
4343         .get_rflags = svm_get_rflags,
4344         .set_rflags = svm_set_rflags,
4345         .fpu_activate = svm_fpu_activate,
4346         .fpu_deactivate = svm_fpu_deactivate,
4347
4348         .tlb_flush = svm_flush_tlb,
4349
4350         .run = svm_vcpu_run,
4351         .handle_exit = handle_exit,
4352         .skip_emulated_instruction = skip_emulated_instruction,
4353         .set_interrupt_shadow = svm_set_interrupt_shadow,
4354         .get_interrupt_shadow = svm_get_interrupt_shadow,
4355         .patch_hypercall = svm_patch_hypercall,
4356         .set_irq = svm_set_irq,
4357         .set_nmi = svm_inject_nmi,
4358         .queue_exception = svm_queue_exception,
4359         .cancel_injection = svm_cancel_injection,
4360         .interrupt_allowed = svm_interrupt_allowed,
4361         .nmi_allowed = svm_nmi_allowed,
4362         .get_nmi_mask = svm_get_nmi_mask,
4363         .set_nmi_mask = svm_set_nmi_mask,
4364         .enable_nmi_window = enable_nmi_window,
4365         .enable_irq_window = enable_irq_window,
4366         .update_cr8_intercept = update_cr8_intercept,
4367         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4368         .vm_has_apicv = svm_vm_has_apicv,
4369         .load_eoi_exitmap = svm_load_eoi_exitmap,
4370         .hwapic_isr_update = svm_hwapic_isr_update,
4371         .sync_pir_to_irr = svm_sync_pir_to_irr,
4372
4373         .set_tss_addr = svm_set_tss_addr,
4374         .get_tdp_level = get_npt_level,
4375         .get_mt_mask = svm_get_mt_mask,
4376
4377         .get_exit_info = svm_get_exit_info,
4378
4379         .get_lpage_level = svm_get_lpage_level,
4380
4381         .cpuid_update = svm_cpuid_update,
4382
4383         .rdtscp_supported = svm_rdtscp_supported,
4384         .invpcid_supported = svm_invpcid_supported,
4385         .mpx_supported = svm_mpx_supported,
4386
4387         .set_supported_cpuid = svm_set_supported_cpuid,
4388
4389         .has_wbinvd_exit = svm_has_wbinvd_exit,
4390
4391         .set_tsc_khz = svm_set_tsc_khz,
4392         .read_tsc_offset = svm_read_tsc_offset,
4393         .write_tsc_offset = svm_write_tsc_offset,
4394         .adjust_tsc_offset = svm_adjust_tsc_offset,
4395         .compute_tsc_offset = svm_compute_tsc_offset,
4396         .read_l1_tsc = svm_read_l1_tsc,
4397
4398         .set_tdp_cr3 = set_tdp_cr3,
4399
4400         .check_intercept = svm_check_intercept,
4401         .handle_external_intr = svm_handle_external_intr,
4402 };
4403
4404 static int __init svm_init(void)
4405 {
4406         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4407                         __alignof__(struct vcpu_svm), THIS_MODULE);
4408 }
4409
4410 static void __exit svm_exit(void)
4411 {
4412         kvm_exit();
4413 }
4414
4415 module_init(svm_init)
4416 module_exit(svm_exit)