Merge tag 'for-v3.19/omap-a' of git://git.kernel.org/pub/scm/linux/kernel/git/pjw...
[cascardo/linux.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         WARN_ON(adjustment < 0);
1060         if (host)
1061                 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063         svm->vmcb->control.tsc_offset += adjustment;
1064         if (is_guest_mode(vcpu))
1065                 svm->nested.hsave->control.tsc_offset += adjustment;
1066         else
1067                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068                                      svm->vmcb->control.tsc_offset - adjustment,
1069                                      svm->vmcb->control.tsc_offset);
1070
1071         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076         u64 tsc;
1077
1078         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080         return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085         struct vmcb_control_area *control = &svm->vmcb->control;
1086         struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088         svm->vcpu.fpu_active = 1;
1089         svm->vcpu.arch.hflags = 0;
1090
1091         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099         set_dr_intercepts(svm);
1100
1101         set_exception_intercept(svm, PF_VECTOR);
1102         set_exception_intercept(svm, UD_VECTOR);
1103         set_exception_intercept(svm, MC_VECTOR);
1104
1105         set_intercept(svm, INTERCEPT_INTR);
1106         set_intercept(svm, INTERCEPT_NMI);
1107         set_intercept(svm, INTERCEPT_SMI);
1108         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109         set_intercept(svm, INTERCEPT_RDPMC);
1110         set_intercept(svm, INTERCEPT_CPUID);
1111         set_intercept(svm, INTERCEPT_INVD);
1112         set_intercept(svm, INTERCEPT_HLT);
1113         set_intercept(svm, INTERCEPT_INVLPG);
1114         set_intercept(svm, INTERCEPT_INVLPGA);
1115         set_intercept(svm, INTERCEPT_IOIO_PROT);
1116         set_intercept(svm, INTERCEPT_MSR_PROT);
1117         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118         set_intercept(svm, INTERCEPT_SHUTDOWN);
1119         set_intercept(svm, INTERCEPT_VMRUN);
1120         set_intercept(svm, INTERCEPT_VMMCALL);
1121         set_intercept(svm, INTERCEPT_VMLOAD);
1122         set_intercept(svm, INTERCEPT_VMSAVE);
1123         set_intercept(svm, INTERCEPT_STGI);
1124         set_intercept(svm, INTERCEPT_CLGI);
1125         set_intercept(svm, INTERCEPT_SKINIT);
1126         set_intercept(svm, INTERCEPT_WBINVD);
1127         set_intercept(svm, INTERCEPT_MONITOR);
1128         set_intercept(svm, INTERCEPT_MWAIT);
1129         set_intercept(svm, INTERCEPT_XSETBV);
1130
1131         control->iopm_base_pa = iopm_base;
1132         control->msrpm_base_pa = __pa(svm->msrpm);
1133         control->int_ctl = V_INTR_MASKING_MASK;
1134
1135         init_seg(&save->es);
1136         init_seg(&save->ss);
1137         init_seg(&save->ds);
1138         init_seg(&save->fs);
1139         init_seg(&save->gs);
1140
1141         save->cs.selector = 0xf000;
1142         save->cs.base = 0xffff0000;
1143         /* Executable/Readable Code Segment */
1144         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146         save->cs.limit = 0xffff;
1147
1148         save->gdtr.limit = 0xffff;
1149         save->idtr.limit = 0xffff;
1150
1151         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154         svm_set_efer(&svm->vcpu, 0);
1155         save->dr6 = 0xffff0ff0;
1156         kvm_set_rflags(&svm->vcpu, 2);
1157         save->rip = 0x0000fff0;
1158         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160         /*
1161          * This is the guest-visible cr0 value.
1162          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163          */
1164         svm->vcpu.arch.cr0 = 0;
1165         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167         save->cr4 = X86_CR4_PAE;
1168         /* rdx = ?? */
1169
1170         if (npt_enabled) {
1171                 /* Setup VMCB for Nested Paging */
1172                 control->nested_ctl = 1;
1173                 clr_intercept(svm, INTERCEPT_INVLPG);
1174                 clr_exception_intercept(svm, PF_VECTOR);
1175                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177                 save->g_pat = 0x0007040600070406ULL;
1178                 save->cr3 = 0;
1179                 save->cr4 = 0;
1180         }
1181         svm->asid_generation = 0;
1182
1183         svm->nested.vmcb = 0;
1184         svm->vcpu.arch.hflags = 0;
1185
1186         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187                 control->pause_filter_count = 3000;
1188                 set_intercept(svm, INTERCEPT_PAUSE);
1189         }
1190
1191         mark_all_dirty(svm->vmcb);
1192
1193         enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198         struct vcpu_svm *svm = to_svm(vcpu);
1199         u32 dummy;
1200         u32 eax = 1;
1201
1202         init_vmcb(svm);
1203
1204         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210         struct vcpu_svm *svm;
1211         struct page *page;
1212         struct page *msrpm_pages;
1213         struct page *hsave_page;
1214         struct page *nested_msrpm_pages;
1215         int err;
1216
1217         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218         if (!svm) {
1219                 err = -ENOMEM;
1220                 goto out;
1221         }
1222
1223         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226         if (err)
1227                 goto free_svm;
1228
1229         err = -ENOMEM;
1230         page = alloc_page(GFP_KERNEL);
1231         if (!page)
1232                 goto uninit;
1233
1234         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235         if (!msrpm_pages)
1236                 goto free_page1;
1237
1238         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239         if (!nested_msrpm_pages)
1240                 goto free_page2;
1241
1242         hsave_page = alloc_page(GFP_KERNEL);
1243         if (!hsave_page)
1244                 goto free_page3;
1245
1246         svm->nested.hsave = page_address(hsave_page);
1247
1248         svm->msrpm = page_address(msrpm_pages);
1249         svm_vcpu_init_msrpm(svm->msrpm);
1250
1251         svm->nested.msrpm = page_address(nested_msrpm_pages);
1252         svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254         svm->vmcb = page_address(page);
1255         clear_page(svm->vmcb);
1256         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257         svm->asid_generation = 0;
1258         init_vmcb(svm);
1259
1260         svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1261                                    MSR_IA32_APICBASE_ENABLE;
1262         if (kvm_vcpu_is_bsp(&svm->vcpu))
1263                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1264
1265         svm_init_osvw(&svm->vcpu);
1266
1267         return &svm->vcpu;
1268
1269 free_page3:
1270         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1271 free_page2:
1272         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1273 free_page1:
1274         __free_page(page);
1275 uninit:
1276         kvm_vcpu_uninit(&svm->vcpu);
1277 free_svm:
1278         kmem_cache_free(kvm_vcpu_cache, svm);
1279 out:
1280         return ERR_PTR(err);
1281 }
1282
1283 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1284 {
1285         struct vcpu_svm *svm = to_svm(vcpu);
1286
1287         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1288         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1289         __free_page(virt_to_page(svm->nested.hsave));
1290         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1291         kvm_vcpu_uninit(vcpu);
1292         kmem_cache_free(kvm_vcpu_cache, svm);
1293 }
1294
1295 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1296 {
1297         struct vcpu_svm *svm = to_svm(vcpu);
1298         int i;
1299
1300         if (unlikely(cpu != vcpu->cpu)) {
1301                 svm->asid_generation = 0;
1302                 mark_all_dirty(svm->vmcb);
1303         }
1304
1305 #ifdef CONFIG_X86_64
1306         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1307 #endif
1308         savesegment(fs, svm->host.fs);
1309         savesegment(gs, svm->host.gs);
1310         svm->host.ldt = kvm_read_ldt();
1311
1312         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1313                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1314
1315         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1316             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1317                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1318                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1319         }
1320 }
1321
1322 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1323 {
1324         struct vcpu_svm *svm = to_svm(vcpu);
1325         int i;
1326
1327         ++vcpu->stat.host_state_reload;
1328         kvm_load_ldt(svm->host.ldt);
1329 #ifdef CONFIG_X86_64
1330         loadsegment(fs, svm->host.fs);
1331         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1332         load_gs_index(svm->host.gs);
1333 #else
1334 #ifdef CONFIG_X86_32_LAZY_GS
1335         loadsegment(gs, svm->host.gs);
1336 #endif
1337 #endif
1338         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1339                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1340 }
1341
1342 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1343 {
1344         return to_svm(vcpu)->vmcb->save.rflags;
1345 }
1346
1347 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1348 {
1349        /*
1350         * Any change of EFLAGS.VM is accompained by a reload of SS
1351         * (caused by either a task switch or an inter-privilege IRET),
1352         * so we do not need to update the CPL here.
1353         */
1354         to_svm(vcpu)->vmcb->save.rflags = rflags;
1355 }
1356
1357 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1358 {
1359         switch (reg) {
1360         case VCPU_EXREG_PDPTR:
1361                 BUG_ON(!npt_enabled);
1362                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1363                 break;
1364         default:
1365                 BUG();
1366         }
1367 }
1368
1369 static void svm_set_vintr(struct vcpu_svm *svm)
1370 {
1371         set_intercept(svm, INTERCEPT_VINTR);
1372 }
1373
1374 static void svm_clear_vintr(struct vcpu_svm *svm)
1375 {
1376         clr_intercept(svm, INTERCEPT_VINTR);
1377 }
1378
1379 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1380 {
1381         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1382
1383         switch (seg) {
1384         case VCPU_SREG_CS: return &save->cs;
1385         case VCPU_SREG_DS: return &save->ds;
1386         case VCPU_SREG_ES: return &save->es;
1387         case VCPU_SREG_FS: return &save->fs;
1388         case VCPU_SREG_GS: return &save->gs;
1389         case VCPU_SREG_SS: return &save->ss;
1390         case VCPU_SREG_TR: return &save->tr;
1391         case VCPU_SREG_LDTR: return &save->ldtr;
1392         }
1393         BUG();
1394         return NULL;
1395 }
1396
1397 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1398 {
1399         struct vmcb_seg *s = svm_seg(vcpu, seg);
1400
1401         return s->base;
1402 }
1403
1404 static void svm_get_segment(struct kvm_vcpu *vcpu,
1405                             struct kvm_segment *var, int seg)
1406 {
1407         struct vmcb_seg *s = svm_seg(vcpu, seg);
1408
1409         var->base = s->base;
1410         var->limit = s->limit;
1411         var->selector = s->selector;
1412         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1413         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1414         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1415         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1416         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1417         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1418         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1419
1420         /*
1421          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1422          * However, the SVM spec states that the G bit is not observed by the
1423          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1424          * So let's synthesize a legal G bit for all segments, this helps
1425          * running KVM nested. It also helps cross-vendor migration, because
1426          * Intel's vmentry has a check on the 'G' bit.
1427          */
1428         var->g = s->limit > 0xfffff;
1429
1430         /*
1431          * AMD's VMCB does not have an explicit unusable field, so emulate it
1432          * for cross vendor migration purposes by "not present"
1433          */
1434         var->unusable = !var->present || (var->type == 0);
1435
1436         switch (seg) {
1437         case VCPU_SREG_TR:
1438                 /*
1439                  * Work around a bug where the busy flag in the tr selector
1440                  * isn't exposed
1441                  */
1442                 var->type |= 0x2;
1443                 break;
1444         case VCPU_SREG_DS:
1445         case VCPU_SREG_ES:
1446         case VCPU_SREG_FS:
1447         case VCPU_SREG_GS:
1448                 /*
1449                  * The accessed bit must always be set in the segment
1450                  * descriptor cache, although it can be cleared in the
1451                  * descriptor, the cached bit always remains at 1. Since
1452                  * Intel has a check on this, set it here to support
1453                  * cross-vendor migration.
1454                  */
1455                 if (!var->unusable)
1456                         var->type |= 0x1;
1457                 break;
1458         case VCPU_SREG_SS:
1459                 /*
1460                  * On AMD CPUs sometimes the DB bit in the segment
1461                  * descriptor is left as 1, although the whole segment has
1462                  * been made unusable. Clear it here to pass an Intel VMX
1463                  * entry check when cross vendor migrating.
1464                  */
1465                 if (var->unusable)
1466                         var->db = 0;
1467                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1468                 break;
1469         }
1470 }
1471
1472 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1473 {
1474         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1475
1476         return save->cpl;
1477 }
1478
1479 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1480 {
1481         struct vcpu_svm *svm = to_svm(vcpu);
1482
1483         dt->size = svm->vmcb->save.idtr.limit;
1484         dt->address = svm->vmcb->save.idtr.base;
1485 }
1486
1487 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1488 {
1489         struct vcpu_svm *svm = to_svm(vcpu);
1490
1491         svm->vmcb->save.idtr.limit = dt->size;
1492         svm->vmcb->save.idtr.base = dt->address ;
1493         mark_dirty(svm->vmcb, VMCB_DT);
1494 }
1495
1496 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1497 {
1498         struct vcpu_svm *svm = to_svm(vcpu);
1499
1500         dt->size = svm->vmcb->save.gdtr.limit;
1501         dt->address = svm->vmcb->save.gdtr.base;
1502 }
1503
1504 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1505 {
1506         struct vcpu_svm *svm = to_svm(vcpu);
1507
1508         svm->vmcb->save.gdtr.limit = dt->size;
1509         svm->vmcb->save.gdtr.base = dt->address ;
1510         mark_dirty(svm->vmcb, VMCB_DT);
1511 }
1512
1513 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1514 {
1515 }
1516
1517 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1518 {
1519 }
1520
1521 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1522 {
1523 }
1524
1525 static void update_cr0_intercept(struct vcpu_svm *svm)
1526 {
1527         ulong gcr0 = svm->vcpu.arch.cr0;
1528         u64 *hcr0 = &svm->vmcb->save.cr0;
1529
1530         if (!svm->vcpu.fpu_active)
1531                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1532         else
1533                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1534                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1535
1536         mark_dirty(svm->vmcb, VMCB_CR);
1537
1538         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1539                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1540                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1541         } else {
1542                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1543                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544         }
1545 }
1546
1547 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1548 {
1549         struct vcpu_svm *svm = to_svm(vcpu);
1550
1551 #ifdef CONFIG_X86_64
1552         if (vcpu->arch.efer & EFER_LME) {
1553                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1554                         vcpu->arch.efer |= EFER_LMA;
1555                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1556                 }
1557
1558                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1559                         vcpu->arch.efer &= ~EFER_LMA;
1560                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1561                 }
1562         }
1563 #endif
1564         vcpu->arch.cr0 = cr0;
1565
1566         if (!npt_enabled)
1567                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1568
1569         if (!vcpu->fpu_active)
1570                 cr0 |= X86_CR0_TS;
1571         /*
1572          * re-enable caching here because the QEMU bios
1573          * does not do it - this results in some delay at
1574          * reboot
1575          */
1576         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1577         svm->vmcb->save.cr0 = cr0;
1578         mark_dirty(svm->vmcb, VMCB_CR);
1579         update_cr0_intercept(svm);
1580 }
1581
1582 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1583 {
1584         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1585         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1586
1587         if (cr4 & X86_CR4_VMXE)
1588                 return 1;
1589
1590         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1591                 svm_flush_tlb(vcpu);
1592
1593         vcpu->arch.cr4 = cr4;
1594         if (!npt_enabled)
1595                 cr4 |= X86_CR4_PAE;
1596         cr4 |= host_cr4_mce;
1597         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1598         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1599         return 0;
1600 }
1601
1602 static void svm_set_segment(struct kvm_vcpu *vcpu,
1603                             struct kvm_segment *var, int seg)
1604 {
1605         struct vcpu_svm *svm = to_svm(vcpu);
1606         struct vmcb_seg *s = svm_seg(vcpu, seg);
1607
1608         s->base = var->base;
1609         s->limit = var->limit;
1610         s->selector = var->selector;
1611         if (var->unusable)
1612                 s->attrib = 0;
1613         else {
1614                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1615                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1616                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1617                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1618                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1619                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1620                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1621                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1622         }
1623
1624         /*
1625          * This is always accurate, except if SYSRET returned to a segment
1626          * with SS.DPL != 3.  Intel does not have this quirk, and always
1627          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1628          * would entail passing the CPL to userspace and back.
1629          */
1630         if (seg == VCPU_SREG_SS)
1631                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1632
1633         mark_dirty(svm->vmcb, VMCB_SEG);
1634 }
1635
1636 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1637 {
1638         struct vcpu_svm *svm = to_svm(vcpu);
1639
1640         clr_exception_intercept(svm, DB_VECTOR);
1641         clr_exception_intercept(svm, BP_VECTOR);
1642
1643         if (svm->nmi_singlestep)
1644                 set_exception_intercept(svm, DB_VECTOR);
1645
1646         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1647                 if (vcpu->guest_debug &
1648                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1649                         set_exception_intercept(svm, DB_VECTOR);
1650                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1651                         set_exception_intercept(svm, BP_VECTOR);
1652         } else
1653                 vcpu->guest_debug = 0;
1654 }
1655
1656 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1657 {
1658         if (sd->next_asid > sd->max_asid) {
1659                 ++sd->asid_generation;
1660                 sd->next_asid = 1;
1661                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1662         }
1663
1664         svm->asid_generation = sd->asid_generation;
1665         svm->vmcb->control.asid = sd->next_asid++;
1666
1667         mark_dirty(svm->vmcb, VMCB_ASID);
1668 }
1669
1670 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1671 {
1672         return to_svm(vcpu)->vmcb->save.dr6;
1673 }
1674
1675 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1676 {
1677         struct vcpu_svm *svm = to_svm(vcpu);
1678
1679         svm->vmcb->save.dr6 = value;
1680         mark_dirty(svm->vmcb, VMCB_DR);
1681 }
1682
1683 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1684 {
1685         struct vcpu_svm *svm = to_svm(vcpu);
1686
1687         get_debugreg(vcpu->arch.db[0], 0);
1688         get_debugreg(vcpu->arch.db[1], 1);
1689         get_debugreg(vcpu->arch.db[2], 2);
1690         get_debugreg(vcpu->arch.db[3], 3);
1691         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1692         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1693
1694         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1695         set_dr_intercepts(svm);
1696 }
1697
1698 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1699 {
1700         struct vcpu_svm *svm = to_svm(vcpu);
1701
1702         svm->vmcb->save.dr7 = value;
1703         mark_dirty(svm->vmcb, VMCB_DR);
1704 }
1705
1706 static int pf_interception(struct vcpu_svm *svm)
1707 {
1708         u64 fault_address = svm->vmcb->control.exit_info_2;
1709         u32 error_code;
1710         int r = 1;
1711
1712         switch (svm->apf_reason) {
1713         default:
1714                 error_code = svm->vmcb->control.exit_info_1;
1715
1716                 trace_kvm_page_fault(fault_address, error_code);
1717                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1718                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1719                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1720                         svm->vmcb->control.insn_bytes,
1721                         svm->vmcb->control.insn_len);
1722                 break;
1723         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1724                 svm->apf_reason = 0;
1725                 local_irq_disable();
1726                 kvm_async_pf_task_wait(fault_address);
1727                 local_irq_enable();
1728                 break;
1729         case KVM_PV_REASON_PAGE_READY:
1730                 svm->apf_reason = 0;
1731                 local_irq_disable();
1732                 kvm_async_pf_task_wake(fault_address);
1733                 local_irq_enable();
1734                 break;
1735         }
1736         return r;
1737 }
1738
1739 static int db_interception(struct vcpu_svm *svm)
1740 {
1741         struct kvm_run *kvm_run = svm->vcpu.run;
1742
1743         if (!(svm->vcpu.guest_debug &
1744               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1745                 !svm->nmi_singlestep) {
1746                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1747                 return 1;
1748         }
1749
1750         if (svm->nmi_singlestep) {
1751                 svm->nmi_singlestep = false;
1752                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1753                         svm->vmcb->save.rflags &=
1754                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1755                 update_db_bp_intercept(&svm->vcpu);
1756         }
1757
1758         if (svm->vcpu.guest_debug &
1759             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1760                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1761                 kvm_run->debug.arch.pc =
1762                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1763                 kvm_run->debug.arch.exception = DB_VECTOR;
1764                 return 0;
1765         }
1766
1767         return 1;
1768 }
1769
1770 static int bp_interception(struct vcpu_svm *svm)
1771 {
1772         struct kvm_run *kvm_run = svm->vcpu.run;
1773
1774         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1775         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1776         kvm_run->debug.arch.exception = BP_VECTOR;
1777         return 0;
1778 }
1779
1780 static int ud_interception(struct vcpu_svm *svm)
1781 {
1782         int er;
1783
1784         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1785         if (er != EMULATE_DONE)
1786                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1787         return 1;
1788 }
1789
1790 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1791 {
1792         struct vcpu_svm *svm = to_svm(vcpu);
1793
1794         clr_exception_intercept(svm, NM_VECTOR);
1795
1796         svm->vcpu.fpu_active = 1;
1797         update_cr0_intercept(svm);
1798 }
1799
1800 static int nm_interception(struct vcpu_svm *svm)
1801 {
1802         svm_fpu_activate(&svm->vcpu);
1803         return 1;
1804 }
1805
1806 static bool is_erratum_383(void)
1807 {
1808         int err, i;
1809         u64 value;
1810
1811         if (!erratum_383_found)
1812                 return false;
1813
1814         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1815         if (err)
1816                 return false;
1817
1818         /* Bit 62 may or may not be set for this mce */
1819         value &= ~(1ULL << 62);
1820
1821         if (value != 0xb600000000010015ULL)
1822                 return false;
1823
1824         /* Clear MCi_STATUS registers */
1825         for (i = 0; i < 6; ++i)
1826                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1827
1828         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1829         if (!err) {
1830                 u32 low, high;
1831
1832                 value &= ~(1ULL << 2);
1833                 low    = lower_32_bits(value);
1834                 high   = upper_32_bits(value);
1835
1836                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1837         }
1838
1839         /* Flush tlb to evict multi-match entries */
1840         __flush_tlb_all();
1841
1842         return true;
1843 }
1844
1845 static void svm_handle_mce(struct vcpu_svm *svm)
1846 {
1847         if (is_erratum_383()) {
1848                 /*
1849                  * Erratum 383 triggered. Guest state is corrupt so kill the
1850                  * guest.
1851                  */
1852                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1853
1854                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1855
1856                 return;
1857         }
1858
1859         /*
1860          * On an #MC intercept the MCE handler is not called automatically in
1861          * the host. So do it by hand here.
1862          */
1863         asm volatile (
1864                 "int $0x12\n");
1865         /* not sure if we ever come back to this point */
1866
1867         return;
1868 }
1869
1870 static int mc_interception(struct vcpu_svm *svm)
1871 {
1872         return 1;
1873 }
1874
1875 static int shutdown_interception(struct vcpu_svm *svm)
1876 {
1877         struct kvm_run *kvm_run = svm->vcpu.run;
1878
1879         /*
1880          * VMCB is undefined after a SHUTDOWN intercept
1881          * so reinitialize it.
1882          */
1883         clear_page(svm->vmcb);
1884         init_vmcb(svm);
1885
1886         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1887         return 0;
1888 }
1889
1890 static int io_interception(struct vcpu_svm *svm)
1891 {
1892         struct kvm_vcpu *vcpu = &svm->vcpu;
1893         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1894         int size, in, string;
1895         unsigned port;
1896
1897         ++svm->vcpu.stat.io_exits;
1898         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1899         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1900         if (string || in)
1901                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1902
1903         port = io_info >> 16;
1904         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1905         svm->next_rip = svm->vmcb->control.exit_info_2;
1906         skip_emulated_instruction(&svm->vcpu);
1907
1908         return kvm_fast_pio_out(vcpu, size, port);
1909 }
1910
1911 static int nmi_interception(struct vcpu_svm *svm)
1912 {
1913         return 1;
1914 }
1915
1916 static int intr_interception(struct vcpu_svm *svm)
1917 {
1918         ++svm->vcpu.stat.irq_exits;
1919         return 1;
1920 }
1921
1922 static int nop_on_interception(struct vcpu_svm *svm)
1923 {
1924         return 1;
1925 }
1926
1927 static int halt_interception(struct vcpu_svm *svm)
1928 {
1929         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1930         skip_emulated_instruction(&svm->vcpu);
1931         return kvm_emulate_halt(&svm->vcpu);
1932 }
1933
1934 static int vmmcall_interception(struct vcpu_svm *svm)
1935 {
1936         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1937         skip_emulated_instruction(&svm->vcpu);
1938         kvm_emulate_hypercall(&svm->vcpu);
1939         return 1;
1940 }
1941
1942 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1943 {
1944         struct vcpu_svm *svm = to_svm(vcpu);
1945
1946         return svm->nested.nested_cr3;
1947 }
1948
1949 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1950 {
1951         struct vcpu_svm *svm = to_svm(vcpu);
1952         u64 cr3 = svm->nested.nested_cr3;
1953         u64 pdpte;
1954         int ret;
1955
1956         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1957                                   offset_in_page(cr3) + index * 8, 8);
1958         if (ret)
1959                 return 0;
1960         return pdpte;
1961 }
1962
1963 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1964                                    unsigned long root)
1965 {
1966         struct vcpu_svm *svm = to_svm(vcpu);
1967
1968         svm->vmcb->control.nested_cr3 = root;
1969         mark_dirty(svm->vmcb, VMCB_NPT);
1970         svm_flush_tlb(vcpu);
1971 }
1972
1973 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1974                                        struct x86_exception *fault)
1975 {
1976         struct vcpu_svm *svm = to_svm(vcpu);
1977
1978         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1979                 /*
1980                  * TODO: track the cause of the nested page fault, and
1981                  * correctly fill in the high bits of exit_info_1.
1982                  */
1983                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1984                 svm->vmcb->control.exit_code_hi = 0;
1985                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1986                 svm->vmcb->control.exit_info_2 = fault->address;
1987         }
1988
1989         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1990         svm->vmcb->control.exit_info_1 |= fault->error_code;
1991
1992         /*
1993          * The present bit is always zero for page structure faults on real
1994          * hardware.
1995          */
1996         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1997                 svm->vmcb->control.exit_info_1 &= ~1;
1998
1999         nested_svm_vmexit(svm);
2000 }
2001
2002 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2003 {
2004         kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
2005
2006         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2007         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2008         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2009         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2010         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2011         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2012 }
2013
2014 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2015 {
2016         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2017 }
2018
2019 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2020 {
2021         if (!(svm->vcpu.arch.efer & EFER_SVME)
2022             || !is_paging(&svm->vcpu)) {
2023                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2024                 return 1;
2025         }
2026
2027         if (svm->vmcb->save.cpl) {
2028                 kvm_inject_gp(&svm->vcpu, 0);
2029                 return 1;
2030         }
2031
2032        return 0;
2033 }
2034
2035 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2036                                       bool has_error_code, u32 error_code)
2037 {
2038         int vmexit;
2039
2040         if (!is_guest_mode(&svm->vcpu))
2041                 return 0;
2042
2043         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2044         svm->vmcb->control.exit_code_hi = 0;
2045         svm->vmcb->control.exit_info_1 = error_code;
2046         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2047
2048         vmexit = nested_svm_intercept(svm);
2049         if (vmexit == NESTED_EXIT_DONE)
2050                 svm->nested.exit_required = true;
2051
2052         return vmexit;
2053 }
2054
2055 /* This function returns true if it is save to enable the irq window */
2056 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2057 {
2058         if (!is_guest_mode(&svm->vcpu))
2059                 return true;
2060
2061         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2062                 return true;
2063
2064         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2065                 return false;
2066
2067         /*
2068          * if vmexit was already requested (by intercepted exception
2069          * for instance) do not overwrite it with "external interrupt"
2070          * vmexit.
2071          */
2072         if (svm->nested.exit_required)
2073                 return false;
2074
2075         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2076         svm->vmcb->control.exit_info_1 = 0;
2077         svm->vmcb->control.exit_info_2 = 0;
2078
2079         if (svm->nested.intercept & 1ULL) {
2080                 /*
2081                  * The #vmexit can't be emulated here directly because this
2082                  * code path runs with irqs and preemption disabled. A
2083                  * #vmexit emulation might sleep. Only signal request for
2084                  * the #vmexit here.
2085                  */
2086                 svm->nested.exit_required = true;
2087                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2088                 return false;
2089         }
2090
2091         return true;
2092 }
2093
2094 /* This function returns true if it is save to enable the nmi window */
2095 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2096 {
2097         if (!is_guest_mode(&svm->vcpu))
2098                 return true;
2099
2100         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2101                 return true;
2102
2103         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2104         svm->nested.exit_required = true;
2105
2106         return false;
2107 }
2108
2109 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2110 {
2111         struct page *page;
2112
2113         might_sleep();
2114
2115         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2116         if (is_error_page(page))
2117                 goto error;
2118
2119         *_page = page;
2120
2121         return kmap(page);
2122
2123 error:
2124         kvm_inject_gp(&svm->vcpu, 0);
2125
2126         return NULL;
2127 }
2128
2129 static void nested_svm_unmap(struct page *page)
2130 {
2131         kunmap(page);
2132         kvm_release_page_dirty(page);
2133 }
2134
2135 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2136 {
2137         unsigned port, size, iopm_len;
2138         u16 val, mask;
2139         u8 start_bit;
2140         u64 gpa;
2141
2142         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2143                 return NESTED_EXIT_HOST;
2144
2145         port = svm->vmcb->control.exit_info_1 >> 16;
2146         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2147                 SVM_IOIO_SIZE_SHIFT;
2148         gpa  = svm->nested.vmcb_iopm + (port / 8);
2149         start_bit = port % 8;
2150         iopm_len = (start_bit + size > 8) ? 2 : 1;
2151         mask = (0xf >> (4 - size)) << start_bit;
2152         val = 0;
2153
2154         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2155                 return NESTED_EXIT_DONE;
2156
2157         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2158 }
2159
2160 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2161 {
2162         u32 offset, msr, value;
2163         int write, mask;
2164
2165         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2166                 return NESTED_EXIT_HOST;
2167
2168         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2169         offset = svm_msrpm_offset(msr);
2170         write  = svm->vmcb->control.exit_info_1 & 1;
2171         mask   = 1 << ((2 * (msr & 0xf)) + write);
2172
2173         if (offset == MSR_INVALID)
2174                 return NESTED_EXIT_DONE;
2175
2176         /* Offset is in 32 bit units but need in 8 bit units */
2177         offset *= 4;
2178
2179         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2180                 return NESTED_EXIT_DONE;
2181
2182         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2183 }
2184
2185 static int nested_svm_exit_special(struct vcpu_svm *svm)
2186 {
2187         u32 exit_code = svm->vmcb->control.exit_code;
2188
2189         switch (exit_code) {
2190         case SVM_EXIT_INTR:
2191         case SVM_EXIT_NMI:
2192         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2193                 return NESTED_EXIT_HOST;
2194         case SVM_EXIT_NPF:
2195                 /* For now we are always handling NPFs when using them */
2196                 if (npt_enabled)
2197                         return NESTED_EXIT_HOST;
2198                 break;
2199         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2200                 /* When we're shadowing, trap PFs, but not async PF */
2201                 if (!npt_enabled && svm->apf_reason == 0)
2202                         return NESTED_EXIT_HOST;
2203                 break;
2204         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2205                 nm_interception(svm);
2206                 break;
2207         default:
2208                 break;
2209         }
2210
2211         return NESTED_EXIT_CONTINUE;
2212 }
2213
2214 /*
2215  * If this function returns true, this #vmexit was already handled
2216  */
2217 static int nested_svm_intercept(struct vcpu_svm *svm)
2218 {
2219         u32 exit_code = svm->vmcb->control.exit_code;
2220         int vmexit = NESTED_EXIT_HOST;
2221
2222         switch (exit_code) {
2223         case SVM_EXIT_MSR:
2224                 vmexit = nested_svm_exit_handled_msr(svm);
2225                 break;
2226         case SVM_EXIT_IOIO:
2227                 vmexit = nested_svm_intercept_ioio(svm);
2228                 break;
2229         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2230                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2231                 if (svm->nested.intercept_cr & bit)
2232                         vmexit = NESTED_EXIT_DONE;
2233                 break;
2234         }
2235         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2236                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2237                 if (svm->nested.intercept_dr & bit)
2238                         vmexit = NESTED_EXIT_DONE;
2239                 break;
2240         }
2241         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2242                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2243                 if (svm->nested.intercept_exceptions & excp_bits)
2244                         vmexit = NESTED_EXIT_DONE;
2245                 /* async page fault always cause vmexit */
2246                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2247                          svm->apf_reason != 0)
2248                         vmexit = NESTED_EXIT_DONE;
2249                 break;
2250         }
2251         case SVM_EXIT_ERR: {
2252                 vmexit = NESTED_EXIT_DONE;
2253                 break;
2254         }
2255         default: {
2256                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2257                 if (svm->nested.intercept & exit_bits)
2258                         vmexit = NESTED_EXIT_DONE;
2259         }
2260         }
2261
2262         return vmexit;
2263 }
2264
2265 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2266 {
2267         int vmexit;
2268
2269         vmexit = nested_svm_intercept(svm);
2270
2271         if (vmexit == NESTED_EXIT_DONE)
2272                 nested_svm_vmexit(svm);
2273
2274         return vmexit;
2275 }
2276
2277 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2278 {
2279         struct vmcb_control_area *dst  = &dst_vmcb->control;
2280         struct vmcb_control_area *from = &from_vmcb->control;
2281
2282         dst->intercept_cr         = from->intercept_cr;
2283         dst->intercept_dr         = from->intercept_dr;
2284         dst->intercept_exceptions = from->intercept_exceptions;
2285         dst->intercept            = from->intercept;
2286         dst->iopm_base_pa         = from->iopm_base_pa;
2287         dst->msrpm_base_pa        = from->msrpm_base_pa;
2288         dst->tsc_offset           = from->tsc_offset;
2289         dst->asid                 = from->asid;
2290         dst->tlb_ctl              = from->tlb_ctl;
2291         dst->int_ctl              = from->int_ctl;
2292         dst->int_vector           = from->int_vector;
2293         dst->int_state            = from->int_state;
2294         dst->exit_code            = from->exit_code;
2295         dst->exit_code_hi         = from->exit_code_hi;
2296         dst->exit_info_1          = from->exit_info_1;
2297         dst->exit_info_2          = from->exit_info_2;
2298         dst->exit_int_info        = from->exit_int_info;
2299         dst->exit_int_info_err    = from->exit_int_info_err;
2300         dst->nested_ctl           = from->nested_ctl;
2301         dst->event_inj            = from->event_inj;
2302         dst->event_inj_err        = from->event_inj_err;
2303         dst->nested_cr3           = from->nested_cr3;
2304         dst->lbr_ctl              = from->lbr_ctl;
2305 }
2306
2307 static int nested_svm_vmexit(struct vcpu_svm *svm)
2308 {
2309         struct vmcb *nested_vmcb;
2310         struct vmcb *hsave = svm->nested.hsave;
2311         struct vmcb *vmcb = svm->vmcb;
2312         struct page *page;
2313
2314         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2315                                        vmcb->control.exit_info_1,
2316                                        vmcb->control.exit_info_2,
2317                                        vmcb->control.exit_int_info,
2318                                        vmcb->control.exit_int_info_err,
2319                                        KVM_ISA_SVM);
2320
2321         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2322         if (!nested_vmcb)
2323                 return 1;
2324
2325         /* Exit Guest-Mode */
2326         leave_guest_mode(&svm->vcpu);
2327         svm->nested.vmcb = 0;
2328
2329         /* Give the current vmcb to the guest */
2330         disable_gif(svm);
2331
2332         nested_vmcb->save.es     = vmcb->save.es;
2333         nested_vmcb->save.cs     = vmcb->save.cs;
2334         nested_vmcb->save.ss     = vmcb->save.ss;
2335         nested_vmcb->save.ds     = vmcb->save.ds;
2336         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2337         nested_vmcb->save.idtr   = vmcb->save.idtr;
2338         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2339         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2340         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2341         nested_vmcb->save.cr2    = vmcb->save.cr2;
2342         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2343         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2344         nested_vmcb->save.rip    = vmcb->save.rip;
2345         nested_vmcb->save.rsp    = vmcb->save.rsp;
2346         nested_vmcb->save.rax    = vmcb->save.rax;
2347         nested_vmcb->save.dr7    = vmcb->save.dr7;
2348         nested_vmcb->save.dr6    = vmcb->save.dr6;
2349         nested_vmcb->save.cpl    = vmcb->save.cpl;
2350
2351         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2352         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2353         nested_vmcb->control.int_state         = vmcb->control.int_state;
2354         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2355         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2356         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2357         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2358         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2359         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2360         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2361
2362         /*
2363          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2364          * to make sure that we do not lose injected events. So check event_inj
2365          * here and copy it to exit_int_info if it is valid.
2366          * Exit_int_info and event_inj can't be both valid because the case
2367          * below only happens on a VMRUN instruction intercept which has
2368          * no valid exit_int_info set.
2369          */
2370         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2371                 struct vmcb_control_area *nc = &nested_vmcb->control;
2372
2373                 nc->exit_int_info     = vmcb->control.event_inj;
2374                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2375         }
2376
2377         nested_vmcb->control.tlb_ctl           = 0;
2378         nested_vmcb->control.event_inj         = 0;
2379         nested_vmcb->control.event_inj_err     = 0;
2380
2381         /* We always set V_INTR_MASKING and remember the old value in hflags */
2382         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2383                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2384
2385         /* Restore the original control entries */
2386         copy_vmcb_control_area(vmcb, hsave);
2387
2388         kvm_clear_exception_queue(&svm->vcpu);
2389         kvm_clear_interrupt_queue(&svm->vcpu);
2390
2391         svm->nested.nested_cr3 = 0;
2392
2393         /* Restore selected save entries */
2394         svm->vmcb->save.es = hsave->save.es;
2395         svm->vmcb->save.cs = hsave->save.cs;
2396         svm->vmcb->save.ss = hsave->save.ss;
2397         svm->vmcb->save.ds = hsave->save.ds;
2398         svm->vmcb->save.gdtr = hsave->save.gdtr;
2399         svm->vmcb->save.idtr = hsave->save.idtr;
2400         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2401         svm_set_efer(&svm->vcpu, hsave->save.efer);
2402         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2403         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2404         if (npt_enabled) {
2405                 svm->vmcb->save.cr3 = hsave->save.cr3;
2406                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2407         } else {
2408                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2409         }
2410         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2411         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2412         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2413         svm->vmcb->save.dr7 = 0;
2414         svm->vmcb->save.cpl = 0;
2415         svm->vmcb->control.exit_int_info = 0;
2416
2417         mark_all_dirty(svm->vmcb);
2418
2419         nested_svm_unmap(page);
2420
2421         nested_svm_uninit_mmu_context(&svm->vcpu);
2422         kvm_mmu_reset_context(&svm->vcpu);
2423         kvm_mmu_load(&svm->vcpu);
2424
2425         return 0;
2426 }
2427
2428 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2429 {
2430         /*
2431          * This function merges the msr permission bitmaps of kvm and the
2432          * nested vmcb. It is optimized in that it only merges the parts where
2433          * the kvm msr permission bitmap may contain zero bits
2434          */
2435         int i;
2436
2437         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2438                 return true;
2439
2440         for (i = 0; i < MSRPM_OFFSETS; i++) {
2441                 u32 value, p;
2442                 u64 offset;
2443
2444                 if (msrpm_offsets[i] == 0xffffffff)
2445                         break;
2446
2447                 p      = msrpm_offsets[i];
2448                 offset = svm->nested.vmcb_msrpm + (p * 4);
2449
2450                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2451                         return false;
2452
2453                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2454         }
2455
2456         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2457
2458         return true;
2459 }
2460
2461 static bool nested_vmcb_checks(struct vmcb *vmcb)
2462 {
2463         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2464                 return false;
2465
2466         if (vmcb->control.asid == 0)
2467                 return false;
2468
2469         if (vmcb->control.nested_ctl && !npt_enabled)
2470                 return false;
2471
2472         return true;
2473 }
2474
2475 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2476 {
2477         struct vmcb *nested_vmcb;
2478         struct vmcb *hsave = svm->nested.hsave;
2479         struct vmcb *vmcb = svm->vmcb;
2480         struct page *page;
2481         u64 vmcb_gpa;
2482
2483         vmcb_gpa = svm->vmcb->save.rax;
2484
2485         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2486         if (!nested_vmcb)
2487                 return false;
2488
2489         if (!nested_vmcb_checks(nested_vmcb)) {
2490                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2491                 nested_vmcb->control.exit_code_hi = 0;
2492                 nested_vmcb->control.exit_info_1  = 0;
2493                 nested_vmcb->control.exit_info_2  = 0;
2494
2495                 nested_svm_unmap(page);
2496
2497                 return false;
2498         }
2499
2500         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2501                                nested_vmcb->save.rip,
2502                                nested_vmcb->control.int_ctl,
2503                                nested_vmcb->control.event_inj,
2504                                nested_vmcb->control.nested_ctl);
2505
2506         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2507                                     nested_vmcb->control.intercept_cr >> 16,
2508                                     nested_vmcb->control.intercept_exceptions,
2509                                     nested_vmcb->control.intercept);
2510
2511         /* Clear internal status */
2512         kvm_clear_exception_queue(&svm->vcpu);
2513         kvm_clear_interrupt_queue(&svm->vcpu);
2514
2515         /*
2516          * Save the old vmcb, so we don't need to pick what we save, but can
2517          * restore everything when a VMEXIT occurs
2518          */
2519         hsave->save.es     = vmcb->save.es;
2520         hsave->save.cs     = vmcb->save.cs;
2521         hsave->save.ss     = vmcb->save.ss;
2522         hsave->save.ds     = vmcb->save.ds;
2523         hsave->save.gdtr   = vmcb->save.gdtr;
2524         hsave->save.idtr   = vmcb->save.idtr;
2525         hsave->save.efer   = svm->vcpu.arch.efer;
2526         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2527         hsave->save.cr4    = svm->vcpu.arch.cr4;
2528         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2529         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2530         hsave->save.rsp    = vmcb->save.rsp;
2531         hsave->save.rax    = vmcb->save.rax;
2532         if (npt_enabled)
2533                 hsave->save.cr3    = vmcb->save.cr3;
2534         else
2535                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2536
2537         copy_vmcb_control_area(hsave, vmcb);
2538
2539         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2540                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2541         else
2542                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2543
2544         if (nested_vmcb->control.nested_ctl) {
2545                 kvm_mmu_unload(&svm->vcpu);
2546                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2547                 nested_svm_init_mmu_context(&svm->vcpu);
2548         }
2549
2550         /* Load the nested guest state */
2551         svm->vmcb->save.es = nested_vmcb->save.es;
2552         svm->vmcb->save.cs = nested_vmcb->save.cs;
2553         svm->vmcb->save.ss = nested_vmcb->save.ss;
2554         svm->vmcb->save.ds = nested_vmcb->save.ds;
2555         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2556         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2557         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2558         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2559         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2560         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2561         if (npt_enabled) {
2562                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2563                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2564         } else
2565                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2566
2567         /* Guest paging mode is active - reset mmu */
2568         kvm_mmu_reset_context(&svm->vcpu);
2569
2570         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2571         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2572         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2573         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2574
2575         /* In case we don't even reach vcpu_run, the fields are not updated */
2576         svm->vmcb->save.rax = nested_vmcb->save.rax;
2577         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2578         svm->vmcb->save.rip = nested_vmcb->save.rip;
2579         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2580         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2581         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2582
2583         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2584         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2585
2586         /* cache intercepts */
2587         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2588         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2589         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2590         svm->nested.intercept            = nested_vmcb->control.intercept;
2591
2592         svm_flush_tlb(&svm->vcpu);
2593         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2594         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2595                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2596         else
2597                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2598
2599         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2600                 /* We only want the cr8 intercept bits of the guest */
2601                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2602                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2603         }
2604
2605         /* We don't want to see VMMCALLs from a nested guest */
2606         clr_intercept(svm, INTERCEPT_VMMCALL);
2607
2608         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2609         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2610         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2611         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2612         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2613         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2614
2615         nested_svm_unmap(page);
2616
2617         /* Enter Guest-Mode */
2618         enter_guest_mode(&svm->vcpu);
2619
2620         /*
2621          * Merge guest and host intercepts - must be called  with vcpu in
2622          * guest-mode to take affect here
2623          */
2624         recalc_intercepts(svm);
2625
2626         svm->nested.vmcb = vmcb_gpa;
2627
2628         enable_gif(svm);
2629
2630         mark_all_dirty(svm->vmcb);
2631
2632         return true;
2633 }
2634
2635 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2636 {
2637         to_vmcb->save.fs = from_vmcb->save.fs;
2638         to_vmcb->save.gs = from_vmcb->save.gs;
2639         to_vmcb->save.tr = from_vmcb->save.tr;
2640         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2641         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2642         to_vmcb->save.star = from_vmcb->save.star;
2643         to_vmcb->save.lstar = from_vmcb->save.lstar;
2644         to_vmcb->save.cstar = from_vmcb->save.cstar;
2645         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2646         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2647         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2648         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2649 }
2650
2651 static int vmload_interception(struct vcpu_svm *svm)
2652 {
2653         struct vmcb *nested_vmcb;
2654         struct page *page;
2655
2656         if (nested_svm_check_permissions(svm))
2657                 return 1;
2658
2659         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2660         if (!nested_vmcb)
2661                 return 1;
2662
2663         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2664         skip_emulated_instruction(&svm->vcpu);
2665
2666         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2667         nested_svm_unmap(page);
2668
2669         return 1;
2670 }
2671
2672 static int vmsave_interception(struct vcpu_svm *svm)
2673 {
2674         struct vmcb *nested_vmcb;
2675         struct page *page;
2676
2677         if (nested_svm_check_permissions(svm))
2678                 return 1;
2679
2680         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2681         if (!nested_vmcb)
2682                 return 1;
2683
2684         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2685         skip_emulated_instruction(&svm->vcpu);
2686
2687         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2688         nested_svm_unmap(page);
2689
2690         return 1;
2691 }
2692
2693 static int vmrun_interception(struct vcpu_svm *svm)
2694 {
2695         if (nested_svm_check_permissions(svm))
2696                 return 1;
2697
2698         /* Save rip after vmrun instruction */
2699         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2700
2701         if (!nested_svm_vmrun(svm))
2702                 return 1;
2703
2704         if (!nested_svm_vmrun_msrpm(svm))
2705                 goto failed;
2706
2707         return 1;
2708
2709 failed:
2710
2711         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2712         svm->vmcb->control.exit_code_hi = 0;
2713         svm->vmcb->control.exit_info_1  = 0;
2714         svm->vmcb->control.exit_info_2  = 0;
2715
2716         nested_svm_vmexit(svm);
2717
2718         return 1;
2719 }
2720
2721 static int stgi_interception(struct vcpu_svm *svm)
2722 {
2723         if (nested_svm_check_permissions(svm))
2724                 return 1;
2725
2726         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2727         skip_emulated_instruction(&svm->vcpu);
2728         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2729
2730         enable_gif(svm);
2731
2732         return 1;
2733 }
2734
2735 static int clgi_interception(struct vcpu_svm *svm)
2736 {
2737         if (nested_svm_check_permissions(svm))
2738                 return 1;
2739
2740         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2741         skip_emulated_instruction(&svm->vcpu);
2742
2743         disable_gif(svm);
2744
2745         /* After a CLGI no interrupts should come */
2746         svm_clear_vintr(svm);
2747         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2748
2749         mark_dirty(svm->vmcb, VMCB_INTR);
2750
2751         return 1;
2752 }
2753
2754 static int invlpga_interception(struct vcpu_svm *svm)
2755 {
2756         struct kvm_vcpu *vcpu = &svm->vcpu;
2757
2758         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2759                           vcpu->arch.regs[VCPU_REGS_RAX]);
2760
2761         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2762         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2763
2764         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2765         skip_emulated_instruction(&svm->vcpu);
2766         return 1;
2767 }
2768
2769 static int skinit_interception(struct vcpu_svm *svm)
2770 {
2771         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2772
2773         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2774         return 1;
2775 }
2776
2777 static int xsetbv_interception(struct vcpu_svm *svm)
2778 {
2779         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2780         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2781
2782         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2783                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2784                 skip_emulated_instruction(&svm->vcpu);
2785         }
2786
2787         return 1;
2788 }
2789
2790 static int task_switch_interception(struct vcpu_svm *svm)
2791 {
2792         u16 tss_selector;
2793         int reason;
2794         int int_type = svm->vmcb->control.exit_int_info &
2795                 SVM_EXITINTINFO_TYPE_MASK;
2796         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2797         uint32_t type =
2798                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2799         uint32_t idt_v =
2800                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2801         bool has_error_code = false;
2802         u32 error_code = 0;
2803
2804         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2805
2806         if (svm->vmcb->control.exit_info_2 &
2807             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2808                 reason = TASK_SWITCH_IRET;
2809         else if (svm->vmcb->control.exit_info_2 &
2810                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2811                 reason = TASK_SWITCH_JMP;
2812         else if (idt_v)
2813                 reason = TASK_SWITCH_GATE;
2814         else
2815                 reason = TASK_SWITCH_CALL;
2816
2817         if (reason == TASK_SWITCH_GATE) {
2818                 switch (type) {
2819                 case SVM_EXITINTINFO_TYPE_NMI:
2820                         svm->vcpu.arch.nmi_injected = false;
2821                         break;
2822                 case SVM_EXITINTINFO_TYPE_EXEPT:
2823                         if (svm->vmcb->control.exit_info_2 &
2824                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2825                                 has_error_code = true;
2826                                 error_code =
2827                                         (u32)svm->vmcb->control.exit_info_2;
2828                         }
2829                         kvm_clear_exception_queue(&svm->vcpu);
2830                         break;
2831                 case SVM_EXITINTINFO_TYPE_INTR:
2832                         kvm_clear_interrupt_queue(&svm->vcpu);
2833                         break;
2834                 default:
2835                         break;
2836                 }
2837         }
2838
2839         if (reason != TASK_SWITCH_GATE ||
2840             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2841             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2842              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2843                 skip_emulated_instruction(&svm->vcpu);
2844
2845         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2846                 int_vec = -1;
2847
2848         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2849                                 has_error_code, error_code) == EMULATE_FAIL) {
2850                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2851                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2852                 svm->vcpu.run->internal.ndata = 0;
2853                 return 0;
2854         }
2855         return 1;
2856 }
2857
2858 static int cpuid_interception(struct vcpu_svm *svm)
2859 {
2860         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2861         kvm_emulate_cpuid(&svm->vcpu);
2862         return 1;
2863 }
2864
2865 static int iret_interception(struct vcpu_svm *svm)
2866 {
2867         ++svm->vcpu.stat.nmi_window_exits;
2868         clr_intercept(svm, INTERCEPT_IRET);
2869         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2870         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2871         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2872         return 1;
2873 }
2874
2875 static int invlpg_interception(struct vcpu_svm *svm)
2876 {
2877         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2878                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2879
2880         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2881         skip_emulated_instruction(&svm->vcpu);
2882         return 1;
2883 }
2884
2885 static int emulate_on_interception(struct vcpu_svm *svm)
2886 {
2887         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2888 }
2889
2890 static int rdpmc_interception(struct vcpu_svm *svm)
2891 {
2892         int err;
2893
2894         if (!static_cpu_has(X86_FEATURE_NRIPS))
2895                 return emulate_on_interception(svm);
2896
2897         err = kvm_rdpmc(&svm->vcpu);
2898         kvm_complete_insn_gp(&svm->vcpu, err);
2899
2900         return 1;
2901 }
2902
2903 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2904 {
2905         unsigned long cr0 = svm->vcpu.arch.cr0;
2906         bool ret = false;
2907         u64 intercept;
2908
2909         intercept = svm->nested.intercept;
2910
2911         if (!is_guest_mode(&svm->vcpu) ||
2912             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2913                 return false;
2914
2915         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2916         val &= ~SVM_CR0_SELECTIVE_MASK;
2917
2918         if (cr0 ^ val) {
2919                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2920                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2921         }
2922
2923         return ret;
2924 }
2925
2926 #define CR_VALID (1ULL << 63)
2927
2928 static int cr_interception(struct vcpu_svm *svm)
2929 {
2930         int reg, cr;
2931         unsigned long val;
2932         int err;
2933
2934         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2935                 return emulate_on_interception(svm);
2936
2937         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2938                 return emulate_on_interception(svm);
2939
2940         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2941         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2942
2943         err = 0;
2944         if (cr >= 16) { /* mov to cr */
2945                 cr -= 16;
2946                 val = kvm_register_read(&svm->vcpu, reg);
2947                 switch (cr) {
2948                 case 0:
2949                         if (!check_selective_cr0_intercepted(svm, val))
2950                                 err = kvm_set_cr0(&svm->vcpu, val);
2951                         else
2952                                 return 1;
2953
2954                         break;
2955                 case 3:
2956                         err = kvm_set_cr3(&svm->vcpu, val);
2957                         break;
2958                 case 4:
2959                         err = kvm_set_cr4(&svm->vcpu, val);
2960                         break;
2961                 case 8:
2962                         err = kvm_set_cr8(&svm->vcpu, val);
2963                         break;
2964                 default:
2965                         WARN(1, "unhandled write to CR%d", cr);
2966                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2967                         return 1;
2968                 }
2969         } else { /* mov from cr */
2970                 switch (cr) {
2971                 case 0:
2972                         val = kvm_read_cr0(&svm->vcpu);
2973                         break;
2974                 case 2:
2975                         val = svm->vcpu.arch.cr2;
2976                         break;
2977                 case 3:
2978                         val = kvm_read_cr3(&svm->vcpu);
2979                         break;
2980                 case 4:
2981                         val = kvm_read_cr4(&svm->vcpu);
2982                         break;
2983                 case 8:
2984                         val = kvm_get_cr8(&svm->vcpu);
2985                         break;
2986                 default:
2987                         WARN(1, "unhandled read from CR%d", cr);
2988                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2989                         return 1;
2990                 }
2991                 kvm_register_write(&svm->vcpu, reg, val);
2992         }
2993         kvm_complete_insn_gp(&svm->vcpu, err);
2994
2995         return 1;
2996 }
2997
2998 static int dr_interception(struct vcpu_svm *svm)
2999 {
3000         int reg, dr;
3001         unsigned long val;
3002         int err;
3003
3004         if (svm->vcpu.guest_debug == 0) {
3005                 /*
3006                  * No more DR vmexits; force a reload of the debug registers
3007                  * and reenter on this instruction.  The next vmexit will
3008                  * retrieve the full state of the debug registers.
3009                  */
3010                 clr_dr_intercepts(svm);
3011                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3012                 return 1;
3013         }
3014
3015         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3016                 return emulate_on_interception(svm);
3017
3018         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3019         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3020
3021         if (dr >= 16) { /* mov to DRn */
3022                 val = kvm_register_read(&svm->vcpu, reg);
3023                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3024         } else {
3025                 err = kvm_get_dr(&svm->vcpu, dr, &val);
3026                 if (!err)
3027                         kvm_register_write(&svm->vcpu, reg, val);
3028         }
3029
3030         skip_emulated_instruction(&svm->vcpu);
3031
3032         return 1;
3033 }
3034
3035 static int cr8_write_interception(struct vcpu_svm *svm)
3036 {
3037         struct kvm_run *kvm_run = svm->vcpu.run;
3038         int r;
3039
3040         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3041         /* instruction emulation calls kvm_set_cr8() */
3042         r = cr_interception(svm);
3043         if (irqchip_in_kernel(svm->vcpu.kvm))
3044                 return r;
3045         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3046                 return r;
3047         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3048         return 0;
3049 }
3050
3051 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3052 {
3053         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3054         return vmcb->control.tsc_offset +
3055                 svm_scale_tsc(vcpu, host_tsc);
3056 }
3057
3058 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3059 {
3060         struct vcpu_svm *svm = to_svm(vcpu);
3061
3062         switch (ecx) {
3063         case MSR_IA32_TSC: {
3064                 *data = svm->vmcb->control.tsc_offset +
3065                         svm_scale_tsc(vcpu, native_read_tsc());
3066
3067                 break;
3068         }
3069         case MSR_STAR:
3070                 *data = svm->vmcb->save.star;
3071                 break;
3072 #ifdef CONFIG_X86_64
3073         case MSR_LSTAR:
3074                 *data = svm->vmcb->save.lstar;
3075                 break;
3076         case MSR_CSTAR:
3077                 *data = svm->vmcb->save.cstar;
3078                 break;
3079         case MSR_KERNEL_GS_BASE:
3080                 *data = svm->vmcb->save.kernel_gs_base;
3081                 break;
3082         case MSR_SYSCALL_MASK:
3083                 *data = svm->vmcb->save.sfmask;
3084                 break;
3085 #endif
3086         case MSR_IA32_SYSENTER_CS:
3087                 *data = svm->vmcb->save.sysenter_cs;
3088                 break;
3089         case MSR_IA32_SYSENTER_EIP:
3090                 *data = svm->sysenter_eip;
3091                 break;
3092         case MSR_IA32_SYSENTER_ESP:
3093                 *data = svm->sysenter_esp;
3094                 break;
3095         /*
3096          * Nobody will change the following 5 values in the VMCB so we can
3097          * safely return them on rdmsr. They will always be 0 until LBRV is
3098          * implemented.
3099          */
3100         case MSR_IA32_DEBUGCTLMSR:
3101                 *data = svm->vmcb->save.dbgctl;
3102                 break;
3103         case MSR_IA32_LASTBRANCHFROMIP:
3104                 *data = svm->vmcb->save.br_from;
3105                 break;
3106         case MSR_IA32_LASTBRANCHTOIP:
3107                 *data = svm->vmcb->save.br_to;
3108                 break;
3109         case MSR_IA32_LASTINTFROMIP:
3110                 *data = svm->vmcb->save.last_excp_from;
3111                 break;
3112         case MSR_IA32_LASTINTTOIP:
3113                 *data = svm->vmcb->save.last_excp_to;
3114                 break;
3115         case MSR_VM_HSAVE_PA:
3116                 *data = svm->nested.hsave_msr;
3117                 break;
3118         case MSR_VM_CR:
3119                 *data = svm->nested.vm_cr_msr;
3120                 break;
3121         case MSR_IA32_UCODE_REV:
3122                 *data = 0x01000065;
3123                 break;
3124         default:
3125                 return kvm_get_msr_common(vcpu, ecx, data);
3126         }
3127         return 0;
3128 }
3129
3130 static int rdmsr_interception(struct vcpu_svm *svm)
3131 {
3132         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3133         u64 data;
3134
3135         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3136                 trace_kvm_msr_read_ex(ecx);
3137                 kvm_inject_gp(&svm->vcpu, 0);
3138         } else {
3139                 trace_kvm_msr_read(ecx, data);
3140
3141                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3142                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3143                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3144                 skip_emulated_instruction(&svm->vcpu);
3145         }
3146         return 1;
3147 }
3148
3149 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3150 {
3151         struct vcpu_svm *svm = to_svm(vcpu);
3152         int svm_dis, chg_mask;
3153
3154         if (data & ~SVM_VM_CR_VALID_MASK)
3155                 return 1;
3156
3157         chg_mask = SVM_VM_CR_VALID_MASK;
3158
3159         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3160                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3161
3162         svm->nested.vm_cr_msr &= ~chg_mask;
3163         svm->nested.vm_cr_msr |= (data & chg_mask);
3164
3165         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3166
3167         /* check for svm_disable while efer.svme is set */
3168         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3169                 return 1;
3170
3171         return 0;
3172 }
3173
3174 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3175 {
3176         struct vcpu_svm *svm = to_svm(vcpu);
3177
3178         u32 ecx = msr->index;
3179         u64 data = msr->data;
3180         switch (ecx) {
3181         case MSR_IA32_TSC:
3182                 kvm_write_tsc(vcpu, msr);
3183                 break;
3184         case MSR_STAR:
3185                 svm->vmcb->save.star = data;
3186                 break;
3187 #ifdef CONFIG_X86_64
3188         case MSR_LSTAR:
3189                 svm->vmcb->save.lstar = data;
3190                 break;
3191         case MSR_CSTAR:
3192                 svm->vmcb->save.cstar = data;
3193                 break;
3194         case MSR_KERNEL_GS_BASE:
3195                 svm->vmcb->save.kernel_gs_base = data;
3196                 break;
3197         case MSR_SYSCALL_MASK:
3198                 svm->vmcb->save.sfmask = data;
3199                 break;
3200 #endif
3201         case MSR_IA32_SYSENTER_CS:
3202                 svm->vmcb->save.sysenter_cs = data;
3203                 break;
3204         case MSR_IA32_SYSENTER_EIP:
3205                 svm->sysenter_eip = data;
3206                 svm->vmcb->save.sysenter_eip = data;
3207                 break;
3208         case MSR_IA32_SYSENTER_ESP:
3209                 svm->sysenter_esp = data;
3210                 svm->vmcb->save.sysenter_esp = data;
3211                 break;
3212         case MSR_IA32_DEBUGCTLMSR:
3213                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3214                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3215                                     __func__, data);
3216                         break;
3217                 }
3218                 if (data & DEBUGCTL_RESERVED_BITS)
3219                         return 1;
3220
3221                 svm->vmcb->save.dbgctl = data;
3222                 mark_dirty(svm->vmcb, VMCB_LBR);
3223                 if (data & (1ULL<<0))
3224                         svm_enable_lbrv(svm);
3225                 else
3226                         svm_disable_lbrv(svm);
3227                 break;
3228         case MSR_VM_HSAVE_PA:
3229                 svm->nested.hsave_msr = data;
3230                 break;
3231         case MSR_VM_CR:
3232                 return svm_set_vm_cr(vcpu, data);
3233         case MSR_VM_IGNNE:
3234                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3235                 break;
3236         default:
3237                 return kvm_set_msr_common(vcpu, msr);
3238         }
3239         return 0;
3240 }
3241
3242 static int wrmsr_interception(struct vcpu_svm *svm)
3243 {
3244         struct msr_data msr;
3245         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3246         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3247                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3248
3249         msr.data = data;
3250         msr.index = ecx;
3251         msr.host_initiated = false;
3252
3253         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3254         if (kvm_set_msr(&svm->vcpu, &msr)) {
3255                 trace_kvm_msr_write_ex(ecx, data);
3256                 kvm_inject_gp(&svm->vcpu, 0);
3257         } else {
3258                 trace_kvm_msr_write(ecx, data);
3259                 skip_emulated_instruction(&svm->vcpu);
3260         }
3261         return 1;
3262 }
3263
3264 static int msr_interception(struct vcpu_svm *svm)
3265 {
3266         if (svm->vmcb->control.exit_info_1)
3267                 return wrmsr_interception(svm);
3268         else
3269                 return rdmsr_interception(svm);
3270 }
3271
3272 static int interrupt_window_interception(struct vcpu_svm *svm)
3273 {
3274         struct kvm_run *kvm_run = svm->vcpu.run;
3275
3276         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3277         svm_clear_vintr(svm);
3278         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3279         mark_dirty(svm->vmcb, VMCB_INTR);
3280         ++svm->vcpu.stat.irq_window_exits;
3281         /*
3282          * If the user space waits to inject interrupts, exit as soon as
3283          * possible
3284          */
3285         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3286             kvm_run->request_interrupt_window &&
3287             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3288                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3289                 return 0;
3290         }
3291
3292         return 1;
3293 }
3294
3295 static int pause_interception(struct vcpu_svm *svm)
3296 {
3297         kvm_vcpu_on_spin(&(svm->vcpu));
3298         return 1;
3299 }
3300
3301 static int nop_interception(struct vcpu_svm *svm)
3302 {
3303         skip_emulated_instruction(&(svm->vcpu));
3304         return 1;
3305 }
3306
3307 static int monitor_interception(struct vcpu_svm *svm)
3308 {
3309         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3310         return nop_interception(svm);
3311 }
3312
3313 static int mwait_interception(struct vcpu_svm *svm)
3314 {
3315         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3316         return nop_interception(svm);
3317 }
3318
3319 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3320         [SVM_EXIT_READ_CR0]                     = cr_interception,
3321         [SVM_EXIT_READ_CR3]                     = cr_interception,
3322         [SVM_EXIT_READ_CR4]                     = cr_interception,
3323         [SVM_EXIT_READ_CR8]                     = cr_interception,
3324         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3325         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3326         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3327         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3328         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3329         [SVM_EXIT_READ_DR0]                     = dr_interception,
3330         [SVM_EXIT_READ_DR1]                     = dr_interception,
3331         [SVM_EXIT_READ_DR2]                     = dr_interception,
3332         [SVM_EXIT_READ_DR3]                     = dr_interception,
3333         [SVM_EXIT_READ_DR4]                     = dr_interception,
3334         [SVM_EXIT_READ_DR5]                     = dr_interception,
3335         [SVM_EXIT_READ_DR6]                     = dr_interception,
3336         [SVM_EXIT_READ_DR7]                     = dr_interception,
3337         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3338         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3339         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3340         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3341         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3342         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3343         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3344         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3345         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3346         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3347         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3348         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3349         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3350         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3351         [SVM_EXIT_INTR]                         = intr_interception,
3352         [SVM_EXIT_NMI]                          = nmi_interception,
3353         [SVM_EXIT_SMI]                          = nop_on_interception,
3354         [SVM_EXIT_INIT]                         = nop_on_interception,
3355         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3356         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3357         [SVM_EXIT_CPUID]                        = cpuid_interception,
3358         [SVM_EXIT_IRET]                         = iret_interception,
3359         [SVM_EXIT_INVD]                         = emulate_on_interception,
3360         [SVM_EXIT_PAUSE]                        = pause_interception,
3361         [SVM_EXIT_HLT]                          = halt_interception,
3362         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3363         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3364         [SVM_EXIT_IOIO]                         = io_interception,
3365         [SVM_EXIT_MSR]                          = msr_interception,
3366         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3367         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3368         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3369         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3370         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3371         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3372         [SVM_EXIT_STGI]                         = stgi_interception,
3373         [SVM_EXIT_CLGI]                         = clgi_interception,
3374         [SVM_EXIT_SKINIT]                       = skinit_interception,
3375         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3376         [SVM_EXIT_MONITOR]                      = monitor_interception,
3377         [SVM_EXIT_MWAIT]                        = mwait_interception,
3378         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3379         [SVM_EXIT_NPF]                          = pf_interception,
3380 };
3381
3382 static void dump_vmcb(struct kvm_vcpu *vcpu)
3383 {
3384         struct vcpu_svm *svm = to_svm(vcpu);
3385         struct vmcb_control_area *control = &svm->vmcb->control;
3386         struct vmcb_save_area *save = &svm->vmcb->save;
3387
3388         pr_err("VMCB Control Area:\n");
3389         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3390         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3391         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3392         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3393         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3394         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3395         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3396         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3397         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3398         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3399         pr_err("%-20s%d\n", "asid:", control->asid);
3400         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3401         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3402         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3403         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3404         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3405         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3406         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3407         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3408         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3409         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3410         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3411         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3412         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3413         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3414         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3415         pr_err("VMCB State Save Area:\n");
3416         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3417                "es:",
3418                save->es.selector, save->es.attrib,
3419                save->es.limit, save->es.base);
3420         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3421                "cs:",
3422                save->cs.selector, save->cs.attrib,
3423                save->cs.limit, save->cs.base);
3424         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3425                "ss:",
3426                save->ss.selector, save->ss.attrib,
3427                save->ss.limit, save->ss.base);
3428         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3429                "ds:",
3430                save->ds.selector, save->ds.attrib,
3431                save->ds.limit, save->ds.base);
3432         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3433                "fs:",
3434                save->fs.selector, save->fs.attrib,
3435                save->fs.limit, save->fs.base);
3436         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3437                "gs:",
3438                save->gs.selector, save->gs.attrib,
3439                save->gs.limit, save->gs.base);
3440         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3441                "gdtr:",
3442                save->gdtr.selector, save->gdtr.attrib,
3443                save->gdtr.limit, save->gdtr.base);
3444         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3445                "ldtr:",
3446                save->ldtr.selector, save->ldtr.attrib,
3447                save->ldtr.limit, save->ldtr.base);
3448         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3449                "idtr:",
3450                save->idtr.selector, save->idtr.attrib,
3451                save->idtr.limit, save->idtr.base);
3452         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3453                "tr:",
3454                save->tr.selector, save->tr.attrib,
3455                save->tr.limit, save->tr.base);
3456         pr_err("cpl:            %d                efer:         %016llx\n",
3457                 save->cpl, save->efer);
3458         pr_err("%-15s %016llx %-13s %016llx\n",
3459                "cr0:", save->cr0, "cr2:", save->cr2);
3460         pr_err("%-15s %016llx %-13s %016llx\n",
3461                "cr3:", save->cr3, "cr4:", save->cr4);
3462         pr_err("%-15s %016llx %-13s %016llx\n",
3463                "dr6:", save->dr6, "dr7:", save->dr7);
3464         pr_err("%-15s %016llx %-13s %016llx\n",
3465                "rip:", save->rip, "rflags:", save->rflags);
3466         pr_err("%-15s %016llx %-13s %016llx\n",
3467                "rsp:", save->rsp, "rax:", save->rax);
3468         pr_err("%-15s %016llx %-13s %016llx\n",
3469                "star:", save->star, "lstar:", save->lstar);
3470         pr_err("%-15s %016llx %-13s %016llx\n",
3471                "cstar:", save->cstar, "sfmask:", save->sfmask);
3472         pr_err("%-15s %016llx %-13s %016llx\n",
3473                "kernel_gs_base:", save->kernel_gs_base,
3474                "sysenter_cs:", save->sysenter_cs);
3475         pr_err("%-15s %016llx %-13s %016llx\n",
3476                "sysenter_esp:", save->sysenter_esp,
3477                "sysenter_eip:", save->sysenter_eip);
3478         pr_err("%-15s %016llx %-13s %016llx\n",
3479                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3480         pr_err("%-15s %016llx %-13s %016llx\n",
3481                "br_from:", save->br_from, "br_to:", save->br_to);
3482         pr_err("%-15s %016llx %-13s %016llx\n",
3483                "excp_from:", save->last_excp_from,
3484                "excp_to:", save->last_excp_to);
3485 }
3486
3487 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3488 {
3489         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3490
3491         *info1 = control->exit_info_1;
3492         *info2 = control->exit_info_2;
3493 }
3494
3495 static int handle_exit(struct kvm_vcpu *vcpu)
3496 {
3497         struct vcpu_svm *svm = to_svm(vcpu);
3498         struct kvm_run *kvm_run = vcpu->run;
3499         u32 exit_code = svm->vmcb->control.exit_code;
3500
3501         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3502                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3503         if (npt_enabled)
3504                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3505
3506         if (unlikely(svm->nested.exit_required)) {
3507                 nested_svm_vmexit(svm);
3508                 svm->nested.exit_required = false;
3509
3510                 return 1;
3511         }
3512
3513         if (is_guest_mode(vcpu)) {
3514                 int vmexit;
3515
3516                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3517                                         svm->vmcb->control.exit_info_1,
3518                                         svm->vmcb->control.exit_info_2,
3519                                         svm->vmcb->control.exit_int_info,
3520                                         svm->vmcb->control.exit_int_info_err,
3521                                         KVM_ISA_SVM);
3522
3523                 vmexit = nested_svm_exit_special(svm);
3524
3525                 if (vmexit == NESTED_EXIT_CONTINUE)
3526                         vmexit = nested_svm_exit_handled(svm);
3527
3528                 if (vmexit == NESTED_EXIT_DONE)
3529                         return 1;
3530         }
3531
3532         svm_complete_interrupts(svm);
3533
3534         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3535                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3536                 kvm_run->fail_entry.hardware_entry_failure_reason
3537                         = svm->vmcb->control.exit_code;
3538                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3539                 dump_vmcb(vcpu);
3540                 return 0;
3541         }
3542
3543         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3544             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3545             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3546             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3547                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3548                        "exit_code 0x%x\n",
3549                        __func__, svm->vmcb->control.exit_int_info,
3550                        exit_code);
3551
3552         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3553             || !svm_exit_handlers[exit_code]) {
3554                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code);
3555                 kvm_queue_exception(vcpu, UD_VECTOR);
3556                 return 1;
3557         }
3558
3559         return svm_exit_handlers[exit_code](svm);
3560 }
3561
3562 static void reload_tss(struct kvm_vcpu *vcpu)
3563 {
3564         int cpu = raw_smp_processor_id();
3565
3566         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3567         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3568         load_TR_desc();
3569 }
3570
3571 static void pre_svm_run(struct vcpu_svm *svm)
3572 {
3573         int cpu = raw_smp_processor_id();
3574
3575         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3576
3577         /* FIXME: handle wraparound of asid_generation */
3578         if (svm->asid_generation != sd->asid_generation)
3579                 new_asid(svm, sd);
3580 }
3581
3582 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3583 {
3584         struct vcpu_svm *svm = to_svm(vcpu);
3585
3586         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3587         vcpu->arch.hflags |= HF_NMI_MASK;
3588         set_intercept(svm, INTERCEPT_IRET);
3589         ++vcpu->stat.nmi_injections;
3590 }
3591
3592 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3593 {
3594         struct vmcb_control_area *control;
3595
3596         control = &svm->vmcb->control;
3597         control->int_vector = irq;
3598         control->int_ctl &= ~V_INTR_PRIO_MASK;
3599         control->int_ctl |= V_IRQ_MASK |
3600                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3601         mark_dirty(svm->vmcb, VMCB_INTR);
3602 }
3603
3604 static void svm_set_irq(struct kvm_vcpu *vcpu)
3605 {
3606         struct vcpu_svm *svm = to_svm(vcpu);
3607
3608         BUG_ON(!(gif_set(svm)));
3609
3610         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3611         ++vcpu->stat.irq_injections;
3612
3613         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3614                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3615 }
3616
3617 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620
3621         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3622                 return;
3623
3624         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3625
3626         if (irr == -1)
3627                 return;
3628
3629         if (tpr >= irr)
3630                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3631 }
3632
3633 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3634 {
3635         return;
3636 }
3637
3638 static int svm_vm_has_apicv(struct kvm *kvm)
3639 {
3640         return 0;
3641 }
3642
3643 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3644 {
3645         return;
3646 }
3647
3648 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3649 {
3650         return;
3651 }
3652
3653 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3654 {
3655         return;
3656 }
3657
3658 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3659 {
3660         struct vcpu_svm *svm = to_svm(vcpu);
3661         struct vmcb *vmcb = svm->vmcb;
3662         int ret;
3663         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3664               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3665         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3666
3667         return ret;
3668 }
3669
3670 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3671 {
3672         struct vcpu_svm *svm = to_svm(vcpu);
3673
3674         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3675 }
3676
3677 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3678 {
3679         struct vcpu_svm *svm = to_svm(vcpu);
3680
3681         if (masked) {
3682                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3683                 set_intercept(svm, INTERCEPT_IRET);
3684         } else {
3685                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3686                 clr_intercept(svm, INTERCEPT_IRET);
3687         }
3688 }
3689
3690 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3691 {
3692         struct vcpu_svm *svm = to_svm(vcpu);
3693         struct vmcb *vmcb = svm->vmcb;
3694         int ret;
3695
3696         if (!gif_set(svm) ||
3697              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3698                 return 0;
3699
3700         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3701
3702         if (is_guest_mode(vcpu))
3703                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3704
3705         return ret;
3706 }
3707
3708 static void enable_irq_window(struct kvm_vcpu *vcpu)
3709 {
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711
3712         /*
3713          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3714          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3715          * get that intercept, this function will be called again though and
3716          * we'll get the vintr intercept.
3717          */
3718         if (gif_set(svm) && nested_svm_intr(svm)) {
3719                 svm_set_vintr(svm);
3720                 svm_inject_irq(svm, 0x0);
3721         }
3722 }
3723
3724 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3725 {
3726         struct vcpu_svm *svm = to_svm(vcpu);
3727
3728         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3729             == HF_NMI_MASK)
3730                 return; /* IRET will cause a vm exit */
3731
3732         /*
3733          * Something prevents NMI from been injected. Single step over possible
3734          * problem (IRET or exception injection or interrupt shadow)
3735          */
3736         svm->nmi_singlestep = true;
3737         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3738         update_db_bp_intercept(vcpu);
3739 }
3740
3741 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3742 {
3743         return 0;
3744 }
3745
3746 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3747 {
3748         struct vcpu_svm *svm = to_svm(vcpu);
3749
3750         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3751                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3752         else
3753                 svm->asid_generation--;
3754 }
3755
3756 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3757 {
3758 }
3759
3760 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3761 {
3762         struct vcpu_svm *svm = to_svm(vcpu);
3763
3764         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3765                 return;
3766
3767         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3768                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3769                 kvm_set_cr8(vcpu, cr8);
3770         }
3771 }
3772
3773 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3774 {
3775         struct vcpu_svm *svm = to_svm(vcpu);
3776         u64 cr8;
3777
3778         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3779                 return;
3780
3781         cr8 = kvm_get_cr8(vcpu);
3782         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3783         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3784 }
3785
3786 static void svm_complete_interrupts(struct vcpu_svm *svm)
3787 {
3788         u8 vector;
3789         int type;
3790         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3791         unsigned int3_injected = svm->int3_injected;
3792
3793         svm->int3_injected = 0;
3794
3795         /*
3796          * If we've made progress since setting HF_IRET_MASK, we've
3797          * executed an IRET and can allow NMI injection.
3798          */
3799         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3800             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3801                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3802                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3803         }
3804
3805         svm->vcpu.arch.nmi_injected = false;
3806         kvm_clear_exception_queue(&svm->vcpu);
3807         kvm_clear_interrupt_queue(&svm->vcpu);
3808
3809         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3810                 return;
3811
3812         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3813
3814         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3815         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3816
3817         switch (type) {
3818         case SVM_EXITINTINFO_TYPE_NMI:
3819                 svm->vcpu.arch.nmi_injected = true;
3820                 break;
3821         case SVM_EXITINTINFO_TYPE_EXEPT:
3822                 /*
3823                  * In case of software exceptions, do not reinject the vector,
3824                  * but re-execute the instruction instead. Rewind RIP first
3825                  * if we emulated INT3 before.
3826                  */
3827                 if (kvm_exception_is_soft(vector)) {
3828                         if (vector == BP_VECTOR && int3_injected &&
3829                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3830                                 kvm_rip_write(&svm->vcpu,
3831                                               kvm_rip_read(&svm->vcpu) -
3832                                               int3_injected);
3833                         break;
3834                 }
3835                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3836                         u32 err = svm->vmcb->control.exit_int_info_err;
3837                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3838
3839                 } else
3840                         kvm_requeue_exception(&svm->vcpu, vector);
3841                 break;
3842         case SVM_EXITINTINFO_TYPE_INTR:
3843                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3844                 break;
3845         default:
3846                 break;
3847         }
3848 }
3849
3850 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3851 {
3852         struct vcpu_svm *svm = to_svm(vcpu);
3853         struct vmcb_control_area *control = &svm->vmcb->control;
3854
3855         control->exit_int_info = control->event_inj;
3856         control->exit_int_info_err = control->event_inj_err;
3857         control->event_inj = 0;
3858         svm_complete_interrupts(svm);
3859 }
3860
3861 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3862 {
3863         struct vcpu_svm *svm = to_svm(vcpu);
3864
3865         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3866         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3867         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3868
3869         /*
3870          * A vmexit emulation is required before the vcpu can be executed
3871          * again.
3872          */
3873         if (unlikely(svm->nested.exit_required))
3874                 return;
3875
3876         pre_svm_run(svm);
3877
3878         sync_lapic_to_cr8(vcpu);
3879
3880         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3881
3882         clgi();
3883
3884         local_irq_enable();
3885
3886         asm volatile (
3887                 "push %%" _ASM_BP "; \n\t"
3888                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3889                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3890                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3891                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3892                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3893                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3894 #ifdef CONFIG_X86_64
3895                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3896                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3897                 "mov %c[r10](%[svm]), %%r10 \n\t"
3898                 "mov %c[r11](%[svm]), %%r11 \n\t"
3899                 "mov %c[r12](%[svm]), %%r12 \n\t"
3900                 "mov %c[r13](%[svm]), %%r13 \n\t"
3901                 "mov %c[r14](%[svm]), %%r14 \n\t"
3902                 "mov %c[r15](%[svm]), %%r15 \n\t"
3903 #endif
3904
3905                 /* Enter guest mode */
3906                 "push %%" _ASM_AX " \n\t"
3907                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3908                 __ex(SVM_VMLOAD) "\n\t"
3909                 __ex(SVM_VMRUN) "\n\t"
3910                 __ex(SVM_VMSAVE) "\n\t"
3911                 "pop %%" _ASM_AX " \n\t"
3912
3913                 /* Save guest registers, load host registers */
3914                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3915                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3916                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3917                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3918                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3919                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3920 #ifdef CONFIG_X86_64
3921                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3922                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3923                 "mov %%r10, %c[r10](%[svm]) \n\t"
3924                 "mov %%r11, %c[r11](%[svm]) \n\t"
3925                 "mov %%r12, %c[r12](%[svm]) \n\t"
3926                 "mov %%r13, %c[r13](%[svm]) \n\t"
3927                 "mov %%r14, %c[r14](%[svm]) \n\t"
3928                 "mov %%r15, %c[r15](%[svm]) \n\t"
3929 #endif
3930                 "pop %%" _ASM_BP
3931                 :
3932                 : [svm]"a"(svm),
3933                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3934                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3935                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3936                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3937                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3938                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3939                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3940 #ifdef CONFIG_X86_64
3941                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3942                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3943                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3944                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3945                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3946                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3947                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3948                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3949 #endif
3950                 : "cc", "memory"
3951 #ifdef CONFIG_X86_64
3952                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3953                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3954 #else
3955                 , "ebx", "ecx", "edx", "esi", "edi"
3956 #endif
3957                 );
3958
3959 #ifdef CONFIG_X86_64
3960         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3961 #else
3962         loadsegment(fs, svm->host.fs);
3963 #ifndef CONFIG_X86_32_LAZY_GS
3964         loadsegment(gs, svm->host.gs);
3965 #endif
3966 #endif
3967
3968         reload_tss(vcpu);
3969
3970         local_irq_disable();
3971
3972         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3973         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3974         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3975         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3976
3977         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3978
3979         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3980                 kvm_before_handle_nmi(&svm->vcpu);
3981
3982         stgi();
3983
3984         /* Any pending NMI will happen here */
3985
3986         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3987                 kvm_after_handle_nmi(&svm->vcpu);
3988
3989         sync_cr8_to_lapic(vcpu);
3990
3991         svm->next_rip = 0;
3992
3993         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3994
3995         /* if exit due to PF check for async PF */
3996         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3997                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3998
3999         if (npt_enabled) {
4000                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4001                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4002         }
4003
4004         /*
4005          * We need to handle MC intercepts here before the vcpu has a chance to
4006          * change the physical cpu
4007          */
4008         if (unlikely(svm->vmcb->control.exit_code ==
4009                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4010                 svm_handle_mce(svm);
4011
4012         mark_all_clean(svm->vmcb);
4013 }
4014
4015 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4016 {
4017         struct vcpu_svm *svm = to_svm(vcpu);
4018
4019         svm->vmcb->save.cr3 = root;
4020         mark_dirty(svm->vmcb, VMCB_CR);
4021         svm_flush_tlb(vcpu);
4022 }
4023
4024 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4025 {
4026         struct vcpu_svm *svm = to_svm(vcpu);
4027
4028         svm->vmcb->control.nested_cr3 = root;
4029         mark_dirty(svm->vmcb, VMCB_NPT);
4030
4031         /* Also sync guest cr3 here in case we live migrate */
4032         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4033         mark_dirty(svm->vmcb, VMCB_CR);
4034
4035         svm_flush_tlb(vcpu);
4036 }
4037
4038 static int is_disabled(void)
4039 {
4040         u64 vm_cr;
4041
4042         rdmsrl(MSR_VM_CR, vm_cr);
4043         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4044                 return 1;
4045
4046         return 0;
4047 }
4048
4049 static void
4050 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4051 {
4052         /*
4053          * Patch in the VMMCALL instruction:
4054          */
4055         hypercall[0] = 0x0f;
4056         hypercall[1] = 0x01;
4057         hypercall[2] = 0xd9;
4058 }
4059
4060 static void svm_check_processor_compat(void *rtn)
4061 {
4062         *(int *)rtn = 0;
4063 }
4064
4065 static bool svm_cpu_has_accelerated_tpr(void)
4066 {
4067         return false;
4068 }
4069
4070 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4071 {
4072         return 0;
4073 }
4074
4075 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4076 {
4077 }
4078
4079 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4080 {
4081         switch (func) {
4082         case 0x80000001:
4083                 if (nested)
4084                         entry->ecx |= (1 << 2); /* Set SVM bit */
4085                 break;
4086         case 0x8000000A:
4087                 entry->eax = 1; /* SVM revision 1 */
4088                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4089                                    ASID emulation to nested SVM */
4090                 entry->ecx = 0; /* Reserved */
4091                 entry->edx = 0; /* Per default do not support any
4092                                    additional features */
4093
4094                 /* Support next_rip if host supports it */
4095                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4096                         entry->edx |= SVM_FEATURE_NRIP;
4097
4098                 /* Support NPT for the guest if enabled */
4099                 if (npt_enabled)
4100                         entry->edx |= SVM_FEATURE_NPT;
4101
4102                 break;
4103         }
4104 }
4105
4106 static int svm_get_lpage_level(void)
4107 {
4108         return PT_PDPE_LEVEL;
4109 }
4110
4111 static bool svm_rdtscp_supported(void)
4112 {
4113         return false;
4114 }
4115
4116 static bool svm_invpcid_supported(void)
4117 {
4118         return false;
4119 }
4120
4121 static bool svm_mpx_supported(void)
4122 {
4123         return false;
4124 }
4125
4126 static bool svm_has_wbinvd_exit(void)
4127 {
4128         return true;
4129 }
4130
4131 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4132 {
4133         struct vcpu_svm *svm = to_svm(vcpu);
4134
4135         set_exception_intercept(svm, NM_VECTOR);
4136         update_cr0_intercept(svm);
4137 }
4138
4139 #define PRE_EX(exit)  { .exit_code = (exit), \
4140                         .stage = X86_ICPT_PRE_EXCEPT, }
4141 #define POST_EX(exit) { .exit_code = (exit), \
4142                         .stage = X86_ICPT_POST_EXCEPT, }
4143 #define POST_MEM(exit) { .exit_code = (exit), \
4144                         .stage = X86_ICPT_POST_MEMACCESS, }
4145
4146 static const struct __x86_intercept {
4147         u32 exit_code;
4148         enum x86_intercept_stage stage;
4149 } x86_intercept_map[] = {
4150         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4151         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4152         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4153         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4154         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4155         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4156         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4157         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4158         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4159         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4160         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4161         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4162         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4163         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4164         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4165         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4166         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4167         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4168         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4169         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4170         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4171         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4172         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4173         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4174         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4175         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4176         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4177         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4178         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4179         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4180         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4181         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4182         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4183         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4184         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4185         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4186         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4187         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4188         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4189         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4190         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4191         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4192         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4193         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4194         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4195         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4196 };
4197
4198 #undef PRE_EX
4199 #undef POST_EX
4200 #undef POST_MEM
4201
4202 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4203                                struct x86_instruction_info *info,
4204                                enum x86_intercept_stage stage)
4205 {
4206         struct vcpu_svm *svm = to_svm(vcpu);
4207         int vmexit, ret = X86EMUL_CONTINUE;
4208         struct __x86_intercept icpt_info;
4209         struct vmcb *vmcb = svm->vmcb;
4210
4211         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4212                 goto out;
4213
4214         icpt_info = x86_intercept_map[info->intercept];
4215
4216         if (stage != icpt_info.stage)
4217                 goto out;
4218
4219         switch (icpt_info.exit_code) {
4220         case SVM_EXIT_READ_CR0:
4221                 if (info->intercept == x86_intercept_cr_read)
4222                         icpt_info.exit_code += info->modrm_reg;
4223                 break;
4224         case SVM_EXIT_WRITE_CR0: {
4225                 unsigned long cr0, val;
4226                 u64 intercept;
4227
4228                 if (info->intercept == x86_intercept_cr_write)
4229                         icpt_info.exit_code += info->modrm_reg;
4230
4231                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4232                     info->intercept == x86_intercept_clts)
4233                         break;
4234
4235                 intercept = svm->nested.intercept;
4236
4237                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4238                         break;
4239
4240                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4241                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4242
4243                 if (info->intercept == x86_intercept_lmsw) {
4244                         cr0 &= 0xfUL;
4245                         val &= 0xfUL;
4246                         /* lmsw can't clear PE - catch this here */
4247                         if (cr0 & X86_CR0_PE)
4248                                 val |= X86_CR0_PE;
4249                 }
4250
4251                 if (cr0 ^ val)
4252                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4253
4254                 break;
4255         }
4256         case SVM_EXIT_READ_DR0:
4257         case SVM_EXIT_WRITE_DR0:
4258                 icpt_info.exit_code += info->modrm_reg;
4259                 break;
4260         case SVM_EXIT_MSR:
4261                 if (info->intercept == x86_intercept_wrmsr)
4262                         vmcb->control.exit_info_1 = 1;
4263                 else
4264                         vmcb->control.exit_info_1 = 0;
4265                 break;
4266         case SVM_EXIT_PAUSE:
4267                 /*
4268                  * We get this for NOP only, but pause
4269                  * is rep not, check this here
4270                  */
4271                 if (info->rep_prefix != REPE_PREFIX)
4272                         goto out;
4273         case SVM_EXIT_IOIO: {
4274                 u64 exit_info;
4275                 u32 bytes;
4276
4277                 if (info->intercept == x86_intercept_in ||
4278                     info->intercept == x86_intercept_ins) {
4279                         exit_info = ((info->src_val & 0xffff) << 16) |
4280                                 SVM_IOIO_TYPE_MASK;
4281                         bytes = info->dst_bytes;
4282                 } else {
4283                         exit_info = (info->dst_val & 0xffff) << 16;
4284                         bytes = info->src_bytes;
4285                 }
4286
4287                 if (info->intercept == x86_intercept_outs ||
4288                     info->intercept == x86_intercept_ins)
4289                         exit_info |= SVM_IOIO_STR_MASK;
4290
4291                 if (info->rep_prefix)
4292                         exit_info |= SVM_IOIO_REP_MASK;
4293
4294                 bytes = min(bytes, 4u);
4295
4296                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4297
4298                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4299
4300                 vmcb->control.exit_info_1 = exit_info;
4301                 vmcb->control.exit_info_2 = info->next_rip;
4302
4303                 break;
4304         }
4305         default:
4306                 break;
4307         }
4308
4309         vmcb->control.next_rip  = info->next_rip;
4310         vmcb->control.exit_code = icpt_info.exit_code;
4311         vmexit = nested_svm_exit_handled(svm);
4312
4313         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4314                                            : X86EMUL_CONTINUE;
4315
4316 out:
4317         return ret;
4318 }
4319
4320 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4321 {
4322         local_irq_enable();
4323 }
4324
4325 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4326 {
4327 }
4328
4329 static struct kvm_x86_ops svm_x86_ops = {
4330         .cpu_has_kvm_support = has_svm,
4331         .disabled_by_bios = is_disabled,
4332         .hardware_setup = svm_hardware_setup,
4333         .hardware_unsetup = svm_hardware_unsetup,
4334         .check_processor_compatibility = svm_check_processor_compat,
4335         .hardware_enable = svm_hardware_enable,
4336         .hardware_disable = svm_hardware_disable,
4337         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4338
4339         .vcpu_create = svm_create_vcpu,
4340         .vcpu_free = svm_free_vcpu,
4341         .vcpu_reset = svm_vcpu_reset,
4342
4343         .prepare_guest_switch = svm_prepare_guest_switch,
4344         .vcpu_load = svm_vcpu_load,
4345         .vcpu_put = svm_vcpu_put,
4346
4347         .update_db_bp_intercept = update_db_bp_intercept,
4348         .get_msr = svm_get_msr,
4349         .set_msr = svm_set_msr,
4350         .get_segment_base = svm_get_segment_base,
4351         .get_segment = svm_get_segment,
4352         .set_segment = svm_set_segment,
4353         .get_cpl = svm_get_cpl,
4354         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4355         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4356         .decache_cr3 = svm_decache_cr3,
4357         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4358         .set_cr0 = svm_set_cr0,
4359         .set_cr3 = svm_set_cr3,
4360         .set_cr4 = svm_set_cr4,
4361         .set_efer = svm_set_efer,
4362         .get_idt = svm_get_idt,
4363         .set_idt = svm_set_idt,
4364         .get_gdt = svm_get_gdt,
4365         .set_gdt = svm_set_gdt,
4366         .get_dr6 = svm_get_dr6,
4367         .set_dr6 = svm_set_dr6,
4368         .set_dr7 = svm_set_dr7,
4369         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4370         .cache_reg = svm_cache_reg,
4371         .get_rflags = svm_get_rflags,
4372         .set_rflags = svm_set_rflags,
4373         .fpu_deactivate = svm_fpu_deactivate,
4374
4375         .tlb_flush = svm_flush_tlb,
4376
4377         .run = svm_vcpu_run,
4378         .handle_exit = handle_exit,
4379         .skip_emulated_instruction = skip_emulated_instruction,
4380         .set_interrupt_shadow = svm_set_interrupt_shadow,
4381         .get_interrupt_shadow = svm_get_interrupt_shadow,
4382         .patch_hypercall = svm_patch_hypercall,
4383         .set_irq = svm_set_irq,
4384         .set_nmi = svm_inject_nmi,
4385         .queue_exception = svm_queue_exception,
4386         .cancel_injection = svm_cancel_injection,
4387         .interrupt_allowed = svm_interrupt_allowed,
4388         .nmi_allowed = svm_nmi_allowed,
4389         .get_nmi_mask = svm_get_nmi_mask,
4390         .set_nmi_mask = svm_set_nmi_mask,
4391         .enable_nmi_window = enable_nmi_window,
4392         .enable_irq_window = enable_irq_window,
4393         .update_cr8_intercept = update_cr8_intercept,
4394         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4395         .vm_has_apicv = svm_vm_has_apicv,
4396         .load_eoi_exitmap = svm_load_eoi_exitmap,
4397         .hwapic_isr_update = svm_hwapic_isr_update,
4398         .sync_pir_to_irr = svm_sync_pir_to_irr,
4399
4400         .set_tss_addr = svm_set_tss_addr,
4401         .get_tdp_level = get_npt_level,
4402         .get_mt_mask = svm_get_mt_mask,
4403
4404         .get_exit_info = svm_get_exit_info,
4405
4406         .get_lpage_level = svm_get_lpage_level,
4407
4408         .cpuid_update = svm_cpuid_update,
4409
4410         .rdtscp_supported = svm_rdtscp_supported,
4411         .invpcid_supported = svm_invpcid_supported,
4412         .mpx_supported = svm_mpx_supported,
4413
4414         .set_supported_cpuid = svm_set_supported_cpuid,
4415
4416         .has_wbinvd_exit = svm_has_wbinvd_exit,
4417
4418         .set_tsc_khz = svm_set_tsc_khz,
4419         .read_tsc_offset = svm_read_tsc_offset,
4420         .write_tsc_offset = svm_write_tsc_offset,
4421         .adjust_tsc_offset = svm_adjust_tsc_offset,
4422         .compute_tsc_offset = svm_compute_tsc_offset,
4423         .read_l1_tsc = svm_read_l1_tsc,
4424
4425         .set_tdp_cr3 = set_tdp_cr3,
4426
4427         .check_intercept = svm_check_intercept,
4428         .handle_external_intr = svm_handle_external_intr,
4429
4430         .sched_in = svm_sched_in,
4431 };
4432
4433 static int __init svm_init(void)
4434 {
4435         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4436                         __alignof__(struct vcpu_svm), THIS_MODULE);
4437 }
4438
4439 static void __exit svm_exit(void)
4440 {
4441         kvm_exit();
4442 }
4443
4444 module_init(svm_init)
4445 module_exit(svm_exit)