4eb2fca335c97606c954a410d15d33182dcda3fd
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
165         { "hypercalls", VCPU_STAT(hypercalls) },
166         { "request_irq", VCPU_STAT(request_irq_exits) },
167         { "irq_exits", VCPU_STAT(irq_exits) },
168         { "host_state_reload", VCPU_STAT(host_state_reload) },
169         { "efer_reload", VCPU_STAT(efer_reload) },
170         { "fpu_reload", VCPU_STAT(fpu_reload) },
171         { "insn_emulation", VCPU_STAT(insn_emulation) },
172         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173         { "irq_injections", VCPU_STAT(irq_injections) },
174         { "nmi_injections", VCPU_STAT(nmi_injections) },
175         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
177         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179         { "mmu_flooded", VM_STAT(mmu_flooded) },
180         { "mmu_recycled", VM_STAT(mmu_recycled) },
181         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182         { "mmu_unsync", VM_STAT(mmu_unsync) },
183         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184         { "largepages", VM_STAT(lpages) },
185         { NULL }
186 };
187
188 u64 __read_mostly host_xcr0;
189
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194         int i;
195         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196                 vcpu->arch.apf.gfns[i] = ~0;
197 }
198
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201         unsigned slot;
202         struct kvm_shared_msrs *locals
203                 = container_of(urn, struct kvm_shared_msrs, urn);
204         struct kvm_shared_msr_values *values;
205
206         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207                 values = &locals->values[slot];
208                 if (values->host != values->curr) {
209                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
210                         values->curr = values->host;
211                 }
212         }
213         locals->registered = false;
214         user_return_notifier_unregister(urn);
215 }
216
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219         u64 value;
220         unsigned int cpu = smp_processor_id();
221         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222
223         /* only read, and nobody should modify it at this time,
224          * so don't need lock */
225         if (slot >= shared_msrs_global.nr) {
226                 printk(KERN_ERR "kvm: invalid MSR slot!");
227                 return;
228         }
229         rdmsrl_safe(msr, &value);
230         smsr->values[slot].host = value;
231         smsr->values[slot].curr = value;
232 }
233
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237         shared_msrs_global.msrs[slot] = msr;
238         if (slot >= shared_msrs_global.nr)
239                 shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242
243 static void kvm_shared_msr_cpu_online(void)
244 {
245         unsigned i;
246
247         for (i = 0; i < shared_msrs_global.nr; ++i)
248                 shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255         int err;
256
257         if (((value ^ smsr->values[slot].curr) & mask) == 0)
258                 return 0;
259         smsr->values[slot].curr = value;
260         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261         if (err)
262                 return 1;
263
264         if (!smsr->registered) {
265                 smsr->urn.on_user_return = kvm_on_user_return;
266                 user_return_notifier_register(&smsr->urn);
267                 smsr->registered = true;
268         }
269         return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272
273 static void drop_user_return_notifiers(void)
274 {
275         unsigned int cpu = smp_processor_id();
276         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277
278         if (smsr->registered)
279                 kvm_on_user_return(&smsr->urn);
280 }
281
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290         u64 old_state = vcpu->arch.apic_base &
291                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292         u64 new_state = msr_info->data &
293                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296
297         if (!msr_info->host_initiated &&
298             ((msr_info->data & reserved_bits) != 0 ||
299              new_state == X2APIC_ENABLE ||
300              (new_state == MSR_IA32_APICBASE_ENABLE &&
301               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303               old_state == 0)))
304                 return 1;
305
306         kvm_lapic_set_base(vcpu, msr_info->data);
307         return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313         /* Fault while not rebooting.  We want the trace. */
314         BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317
318 #define EXCPT_BENIGN            0
319 #define EXCPT_CONTRIBUTORY      1
320 #define EXCPT_PF                2
321
322 static int exception_class(int vector)
323 {
324         switch (vector) {
325         case PF_VECTOR:
326                 return EXCPT_PF;
327         case DE_VECTOR:
328         case TS_VECTOR:
329         case NP_VECTOR:
330         case SS_VECTOR:
331         case GP_VECTOR:
332                 return EXCPT_CONTRIBUTORY;
333         default:
334                 break;
335         }
336         return EXCPT_BENIGN;
337 }
338
339 #define EXCPT_FAULT             0
340 #define EXCPT_TRAP              1
341 #define EXCPT_ABORT             2
342 #define EXCPT_INTERRUPT         3
343
344 static int exception_type(int vector)
345 {
346         unsigned int mask;
347
348         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349                 return EXCPT_INTERRUPT;
350
351         mask = 1 << vector;
352
353         /* #DB is trap, as instruction watchpoints are handled elsewhere */
354         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355                 return EXCPT_TRAP;
356
357         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358                 return EXCPT_ABORT;
359
360         /* Reserved exceptions will result in fault */
361         return EXCPT_FAULT;
362 }
363
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365                 unsigned nr, bool has_error, u32 error_code,
366                 bool reinject)
367 {
368         u32 prev_nr;
369         int class1, class2;
370
371         kvm_make_request(KVM_REQ_EVENT, vcpu);
372
373         if (!vcpu->arch.exception.pending) {
374         queue:
375                 if (has_error && !is_protmode(vcpu))
376                         has_error = false;
377                 vcpu->arch.exception.pending = true;
378                 vcpu->arch.exception.has_error_code = has_error;
379                 vcpu->arch.exception.nr = nr;
380                 vcpu->arch.exception.error_code = error_code;
381                 vcpu->arch.exception.reinject = reinject;
382                 return;
383         }
384
385         /* to check exception */
386         prev_nr = vcpu->arch.exception.nr;
387         if (prev_nr == DF_VECTOR) {
388                 /* triple fault -> shutdown */
389                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390                 return;
391         }
392         class1 = exception_class(prev_nr);
393         class2 = exception_class(nr);
394         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396                 /* generate double fault per SDM Table 5-5 */
397                 vcpu->arch.exception.pending = true;
398                 vcpu->arch.exception.has_error_code = true;
399                 vcpu->arch.exception.nr = DF_VECTOR;
400                 vcpu->arch.exception.error_code = 0;
401         } else
402                 /* replace previous exception with a new one in a hope
403                    that instruction re-execution will regenerate lost
404                    exception */
405                 goto queue;
406 }
407
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410         kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416         kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422         if (err)
423                 kvm_inject_gp(vcpu, 0);
424         else
425                 kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431         ++vcpu->stat.pf_guest;
432         vcpu->arch.cr2 = fault->address;
433         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441         else
442                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443
444         return fault->nested_page_fault;
445 }
446
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449         atomic_inc(&vcpu->arch.nmi_queued);
450         kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456         kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462         kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473                 return true;
474         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475         return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482                 return true;
483
484         kvm_queue_exception(vcpu, UD_VECTOR);
485         return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495                             gfn_t ngfn, void *data, int offset, int len,
496                             u32 access)
497 {
498         struct x86_exception exception;
499         gfn_t real_gfn;
500         gpa_t ngpa;
501
502         ngpa     = gfn_to_gpa(ngfn);
503         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504         if (real_gfn == UNMAPPED_GVA)
505                 return -EFAULT;
506
507         real_gfn = gpa_to_gfn(real_gfn);
508
509         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514                                void *data, int offset, int len, u32 access)
515 {
516         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517                                        data, offset, len, access);
518 }
519
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527         int i;
528         int ret;
529         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530
531         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532                                       offset * sizeof(u64), sizeof(pdpte),
533                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
534         if (ret < 0) {
535                 ret = 0;
536                 goto out;
537         }
538         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539                 if (is_present_gpte(pdpte[i]) &&
540                     (pdpte[i] &
541                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542                         ret = 0;
543                         goto out;
544                 }
545         }
546         ret = 1;
547
548         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549         __set_bit(VCPU_EXREG_PDPTR,
550                   (unsigned long *)&vcpu->arch.regs_avail);
551         __set_bit(VCPU_EXREG_PDPTR,
552                   (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554
555         return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562         bool changed = true;
563         int offset;
564         gfn_t gfn;
565         int r;
566
567         if (is_long_mode(vcpu) || !is_pae(vcpu))
568                 return false;
569
570         if (!test_bit(VCPU_EXREG_PDPTR,
571                       (unsigned long *)&vcpu->arch.regs_avail))
572                 return true;
573
574         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
578         if (r < 0)
579                 goto out;
580         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582
583         return changed;
584 }
585
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588         unsigned long old_cr0 = kvm_read_cr0(vcpu);
589         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590
591         cr0 |= X86_CR0_ET;
592
593 #ifdef CONFIG_X86_64
594         if (cr0 & 0xffffffff00000000UL)
595                 return 1;
596 #endif
597
598         cr0 &= ~CR0_RESERVED_BITS;
599
600         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601                 return 1;
602
603         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604                 return 1;
605
606         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608                 if ((vcpu->arch.efer & EFER_LME)) {
609                         int cs_db, cs_l;
610
611                         if (!is_pae(vcpu))
612                                 return 1;
613                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614                         if (cs_l)
615                                 return 1;
616                 } else
617 #endif
618                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619                                                  kvm_read_cr3(vcpu)))
620                         return 1;
621         }
622
623         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624                 return 1;
625
626         kvm_x86_ops->set_cr0(vcpu, cr0);
627
628         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629                 kvm_clear_async_pf_completion_queue(vcpu);
630                 kvm_async_pf_hash_reset(vcpu);
631         }
632
633         if ((cr0 ^ old_cr0) & update_bits)
634                 kvm_mmu_reset_context(vcpu);
635
636         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640
641         return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654                         !vcpu->guest_xcr0_loaded) {
655                 /* kvm_set_xcr() also depends on this */
656                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657                 vcpu->guest_xcr0_loaded = 1;
658         }
659 }
660
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663         if (vcpu->guest_xcr0_loaded) {
664                 if (vcpu->arch.xcr0 != host_xcr0)
665                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666                 vcpu->guest_xcr0_loaded = 0;
667         }
668 }
669
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672         u64 xcr0 = xcr;
673         u64 old_xcr0 = vcpu->arch.xcr0;
674         u64 valid_bits;
675
676         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677         if (index != XCR_XFEATURE_ENABLED_MASK)
678                 return 1;
679         if (!(xcr0 & XFEATURE_MASK_FP))
680                 return 1;
681         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682                 return 1;
683
684         /*
685          * Do not allow the guest to set bits that we do not support
686          * saving.  However, xcr0 bit 0 is always set, even if the
687          * emulated CPU does not support XSAVE (see fx_init).
688          */
689         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690         if (xcr0 & ~valid_bits)
691                 return 1;
692
693         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695                 return 1;
696
697         if (xcr0 & XFEATURE_MASK_AVX512) {
698                 if (!(xcr0 & XFEATURE_MASK_YMM))
699                         return 1;
700                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701                         return 1;
702         }
703         kvm_put_guest_xcr0(vcpu);
704         vcpu->arch.xcr0 = xcr0;
705
706         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707                 kvm_update_cpuid(vcpu);
708         return 0;
709 }
710
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714             __kvm_set_xcr(vcpu, index, xcr)) {
715                 kvm_inject_gp(vcpu, 0);
716                 return 1;
717         }
718         return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724         unsigned long old_cr4 = kvm_read_cr4(vcpu);
725         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727
728         if (cr4 & CR4_RESERVED_BITS)
729                 return 1;
730
731         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732                 return 1;
733
734         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735                 return 1;
736
737         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738                 return 1;
739
740         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741                 return 1;
742
743         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744                 return 1;
745
746         if (is_long_mode(vcpu)) {
747                 if (!(cr4 & X86_CR4_PAE))
748                         return 1;
749         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750                    && ((cr4 ^ old_cr4) & pdptr_bits)
751                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752                                    kvm_read_cr3(vcpu)))
753                 return 1;
754
755         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756                 if (!guest_cpuid_has_pcid(vcpu))
757                         return 1;
758
759                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761                         return 1;
762         }
763
764         if (kvm_x86_ops->set_cr4(vcpu, cr4))
765                 return 1;
766
767         if (((cr4 ^ old_cr4) & pdptr_bits) ||
768             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769                 kvm_mmu_reset_context(vcpu);
770
771         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772                 kvm_update_cpuid(vcpu);
773
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781         cr3 &= ~CR3_PCID_INVD;
782 #endif
783
784         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785                 kvm_mmu_sync_roots(vcpu);
786                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787                 return 0;
788         }
789
790         if (is_long_mode(vcpu)) {
791                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
792                         return 1;
793         } else if (is_pae(vcpu) && is_paging(vcpu) &&
794                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795                 return 1;
796
797         vcpu->arch.cr3 = cr3;
798         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799         kvm_mmu_new_cr3(vcpu);
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806         if (cr8 & CR8_RESERVED_BITS)
807                 return 1;
808         if (lapic_in_kernel(vcpu))
809                 kvm_lapic_set_tpr(vcpu, cr8);
810         else
811                 vcpu->arch.cr8 = cr8;
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818         if (lapic_in_kernel(vcpu))
819                 return kvm_lapic_get_cr8(vcpu);
820         else
821                 return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827         int i;
828
829         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830                 for (i = 0; i < KVM_NR_DB_REGS; i++)
831                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833         }
834 }
835
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844         unsigned long dr7;
845
846         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847                 dr7 = vcpu->arch.guest_debug_dr7;
848         else
849                 dr7 = vcpu->arch.dr7;
850         kvm_x86_ops->set_dr7(vcpu, dr7);
851         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852         if (dr7 & DR7_BP_EN_MASK)
853                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858         u64 fixed = DR6_FIXED_1;
859
860         if (!guest_cpuid_has_rtm(vcpu))
861                 fixed |= DR6_RTM;
862         return fixed;
863 }
864
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867         switch (dr) {
868         case 0 ... 3:
869                 vcpu->arch.db[dr] = val;
870                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871                         vcpu->arch.eff_db[dr] = val;
872                 break;
873         case 4:
874                 /* fall through */
875         case 6:
876                 if (val & 0xffffffff00000000ULL)
877                         return -1; /* #GP */
878                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879                 kvm_update_dr6(vcpu);
880                 break;
881         case 5:
882                 /* fall through */
883         default: /* 7 */
884                 if (val & 0xffffffff00000000ULL)
885                         return -1; /* #GP */
886                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887                 kvm_update_dr7(vcpu);
888                 break;
889         }
890
891         return 0;
892 }
893
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896         if (__kvm_set_dr(vcpu, dr, val)) {
897                 kvm_inject_gp(vcpu, 0);
898                 return 1;
899         }
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906         switch (dr) {
907         case 0 ... 3:
908                 *val = vcpu->arch.db[dr];
909                 break;
910         case 4:
911                 /* fall through */
912         case 6:
913                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914                         *val = vcpu->arch.dr6;
915                 else
916                         *val = kvm_x86_ops->get_dr6(vcpu);
917                 break;
918         case 5:
919                 /* fall through */
920         default: /* 7 */
921                 *val = vcpu->arch.dr7;
922                 break;
923         }
924         return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931         u64 data;
932         int err;
933
934         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935         if (err)
936                 return err;
937         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939         return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952
953 static u32 msrs_to_save[] = {
954         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955         MSR_STAR,
956 #ifdef CONFIG_X86_64
957         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962
963 static unsigned num_msrs_to_save;
964
965 static u32 emulated_msrs[] = {
966         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972         HV_X64_MSR_RESET,
973         HV_X64_MSR_VP_INDEX,
974         HV_X64_MSR_VP_RUNTIME,
975         HV_X64_MSR_SCONTROL,
976         HV_X64_MSR_STIMER0_CONFIG,
977         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978         MSR_KVM_PV_EOI_EN,
979
980         MSR_IA32_TSC_ADJUST,
981         MSR_IA32_TSCDEADLINE,
982         MSR_IA32_MISC_ENABLE,
983         MSR_IA32_MCG_STATUS,
984         MSR_IA32_MCG_CTL,
985         MSR_IA32_SMBASE,
986 };
987
988 static unsigned num_emulated_msrs;
989
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992         if (efer & efer_reserved_bits)
993                 return false;
994
995         if (efer & EFER_FFXSR) {
996                 struct kvm_cpuid_entry2 *feat;
997
998                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000                         return false;
1001         }
1002
1003         if (efer & EFER_SVME) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008                         return false;
1009         }
1010
1011         return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017         u64 old_efer = vcpu->arch.efer;
1018
1019         if (!kvm_valid_efer(vcpu, efer))
1020                 return 1;
1021
1022         if (is_paging(vcpu)
1023             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024                 return 1;
1025
1026         efer &= ~EFER_LMA;
1027         efer |= vcpu->arch.efer & EFER_LMA;
1028
1029         kvm_x86_ops->set_efer(vcpu, efer);
1030
1031         /* Update reserved bits */
1032         if ((efer ^ old_efer) & EFER_NX)
1033                 kvm_mmu_reset_context(vcpu);
1034
1035         return 0;
1036 }
1037
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051         switch (msr->index) {
1052         case MSR_FS_BASE:
1053         case MSR_GS_BASE:
1054         case MSR_KERNEL_GS_BASE:
1055         case MSR_CSTAR:
1056         case MSR_LSTAR:
1057                 if (is_noncanonical_address(msr->data))
1058                         return 1;
1059                 break;
1060         case MSR_IA32_SYSENTER_EIP:
1061         case MSR_IA32_SYSENTER_ESP:
1062                 /*
1063                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064                  * non-canonical address is written on Intel but not on
1065                  * AMD (which ignores the top 32-bits, because it does
1066                  * not implement 64-bit SYSENTER).
1067                  *
1068                  * 64-bit code should hence be able to write a non-canonical
1069                  * value on AMD.  Making the address canonical ensures that
1070                  * vmentry does not fail on Intel after writing a non-canonical
1071                  * value, and that something deterministic happens if the guest
1072                  * invokes 64-bit SYSENTER.
1073                  */
1074                 msr->data = get_canonical(msr->data);
1075         }
1076         return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085         struct msr_data msr;
1086         int r;
1087
1088         msr.index = index;
1089         msr.host_initiated = true;
1090         r = kvm_get_msr(vcpu, &msr);
1091         if (r)
1092                 return r;
1093
1094         *data = msr.data;
1095         return 0;
1096 }
1097
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100         struct msr_data msr;
1101
1102         msr.data = *data;
1103         msr.index = index;
1104         msr.host_initiated = true;
1105         return kvm_set_msr(vcpu, &msr);
1106 }
1107
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110         seqcount_t      seq;
1111
1112         struct { /* extract of a clocksource struct */
1113                 int vclock_mode;
1114                 cycle_t cycle_last;
1115                 cycle_t mask;
1116                 u32     mult;
1117                 u32     shift;
1118         } clock;
1119
1120         u64             boot_ns;
1121         u64             nsec_base;
1122 };
1123
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129         u64 boot_ns;
1130
1131         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132
1133         write_seqcount_begin(&vdata->seq);
1134
1135         /* copy pvclock gtod data */
1136         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1137         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1138         vdata->clock.mask               = tk->tkr_mono.mask;
1139         vdata->clock.mult               = tk->tkr_mono.mult;
1140         vdata->clock.shift              = tk->tkr_mono.shift;
1141
1142         vdata->boot_ns                  = boot_ns;
1143         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1144
1145         write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151         /*
1152          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153          * vcpu_enter_guest.  This function is only called from
1154          * the physical CPU that is running vcpu.
1155          */
1156         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161         int version;
1162         int r;
1163         struct pvclock_wall_clock wc;
1164         struct timespec boot;
1165
1166         if (!wall_clock)
1167                 return;
1168
1169         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170         if (r)
1171                 return;
1172
1173         if (version & 1)
1174                 ++version;  /* first time write, random junk */
1175
1176         ++version;
1177
1178         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179                 return;
1180
1181         /*
1182          * The guest calculates current wall clock time by adding
1183          * system time (updated by kvm_guest_time_update below) to the
1184          * wall clock specified here.  guest system time equals host
1185          * system time for us, thus we must fill in host boot time here.
1186          */
1187         getboottime(&boot);
1188
1189         if (kvm->arch.kvmclock_offset) {
1190                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191                 boot = timespec_sub(boot, ts);
1192         }
1193         wc.sec = boot.tv_sec;
1194         wc.nsec = boot.tv_nsec;
1195         wc.version = version;
1196
1197         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198
1199         version++;
1200         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205         do_shl32_div32(dividend, divisor);
1206         return dividend;
1207 }
1208
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210                                s8 *pshift, u32 *pmultiplier)
1211 {
1212         uint64_t scaled64;
1213         int32_t  shift = 0;
1214         uint64_t tps64;
1215         uint32_t tps32;
1216
1217         tps64 = base_hz;
1218         scaled64 = scaled_hz;
1219         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220                 tps64 >>= 1;
1221                 shift--;
1222         }
1223
1224         tps32 = (uint32_t)tps64;
1225         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227                         scaled64 >>= 1;
1228                 else
1229                         tps32 <<= 1;
1230                 shift++;
1231         }
1232
1233         *pshift = shift;
1234         *pmultiplier = div_frac(scaled64, tps32);
1235
1236         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250                                    vcpu->arch.virtual_tsc_shift);
1251 }
1252
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255         u64 v = (u64)khz * (1000000 + ppm);
1256         do_div(v, 1000000);
1257         return v;
1258 }
1259
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262         u64 ratio;
1263
1264         /* Guest TSC same frequency as host TSC? */
1265         if (!scale) {
1266                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267                 return 0;
1268         }
1269
1270         /* TSC scaling supported? */
1271         if (!kvm_has_tsc_control) {
1272                 if (user_tsc_khz > tsc_khz) {
1273                         vcpu->arch.tsc_catchup = 1;
1274                         vcpu->arch.tsc_always_catchup = 1;
1275                         return 0;
1276                 } else {
1277                         WARN(1, "user requested TSC rate below hardware speed\n");
1278                         return -1;
1279                 }
1280         }
1281
1282         /* TSC scaling required  - calculate ratio */
1283         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284                                 user_tsc_khz, tsc_khz);
1285
1286         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288                           user_tsc_khz);
1289                 return -1;
1290         }
1291
1292         vcpu->arch.tsc_scaling_ratio = ratio;
1293         return 0;
1294 }
1295
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1297 {
1298         u32 thresh_lo, thresh_hi;
1299         int use_scaling = 0;
1300
1301         /* tsc_khz can be zero if TSC calibration fails */
1302         if (user_tsc_khz == 0) {
1303                 /* set tsc_scaling_ratio to a safe value */
1304                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305                 return -1;
1306         }
1307
1308         /* Compute a scale to convert nanoseconds in TSC cycles */
1309         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1310                            &vcpu->arch.virtual_tsc_shift,
1311                            &vcpu->arch.virtual_tsc_mult);
1312         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1313
1314         /*
1315          * Compute the variation in TSC rate which is acceptable
1316          * within the range of tolerance and decide if the
1317          * rate being applied is within that bounds of the hardware
1318          * rate.  If so, no scaling or compensation need be done.
1319          */
1320         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1323                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1324                 use_scaling = 1;
1325         }
1326         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1327 }
1328
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332                                       vcpu->arch.virtual_tsc_mult,
1333                                       vcpu->arch.virtual_tsc_shift);
1334         tsc += vcpu->arch.this_tsc_write;
1335         return tsc;
1336 }
1337
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341         bool vcpus_matched;
1342         struct kvm_arch *ka = &vcpu->kvm->arch;
1343         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344
1345         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346                          atomic_read(&vcpu->kvm->online_vcpus));
1347
1348         /*
1349          * Once the masterclock is enabled, always perform request in
1350          * order to update it.
1351          *
1352          * In order to enable masterclock, the host clocksource must be TSC
1353          * and the vcpus need to have matched TSCs.  When that happens,
1354          * perform request to enable masterclock.
1355          */
1356         if (ka->use_master_clock ||
1357             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359
1360         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361                             atomic_read(&vcpu->kvm->online_vcpus),
1362                             ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389         u64 _tsc = tsc;
1390         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391
1392         if (ratio != kvm_default_tsc_scaling_ratio)
1393                 _tsc = __scale_tsc(ratio, tsc);
1394
1395         return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401         u64 tsc;
1402
1403         tsc = kvm_scale_tsc(vcpu, rdtsc());
1404
1405         return target_tsc - tsc;
1406 }
1407
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416         struct kvm *kvm = vcpu->kvm;
1417         u64 offset, ns, elapsed;
1418         unsigned long flags;
1419         s64 usdiff;
1420         bool matched;
1421         bool already_matched;
1422         u64 data = msr->data;
1423
1424         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425         offset = kvm_compute_tsc_offset(vcpu, data);
1426         ns = get_kernel_ns();
1427         elapsed = ns - kvm->arch.last_tsc_nsec;
1428
1429         if (vcpu->arch.virtual_tsc_khz) {
1430                 int faulted = 0;
1431
1432                 /* n.b - signed multiplication and division required */
1433                 usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437                 /* do_div() only does unsigned */
1438                 asm("1: idivl %[divisor]\n"
1439                     "2: xor %%edx, %%edx\n"
1440                     "   movl $0, %[faulted]\n"
1441                     "3:\n"
1442                     ".section .fixup,\"ax\"\n"
1443                     "4: movl $1, %[faulted]\n"
1444                     "   jmp  3b\n"
1445                     ".previous\n"
1446
1447                 _ASM_EXTABLE(1b, 4b)
1448
1449                 : "=A"(usdiff), [faulted] "=r" (faulted)
1450                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451
1452 #endif
1453                 do_div(elapsed, 1000);
1454                 usdiff -= elapsed;
1455                 if (usdiff < 0)
1456                         usdiff = -usdiff;
1457
1458                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1459                 if (faulted)
1460                         usdiff = USEC_PER_SEC;
1461         } else
1462                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463
1464         /*
1465          * Special case: TSC write with a small delta (1 second) of virtual
1466          * cycle time against real time is interpreted as an attempt to
1467          * synchronize the CPU.
1468          *
1469          * For a reliable TSC, we can match TSC offsets, and for an unstable
1470          * TSC, we add elapsed time in this computation.  We could let the
1471          * compensation code attempt to catch up if we fall behind, but
1472          * it's better to try to match offsets from the beginning.
1473          */
1474         if (usdiff < USEC_PER_SEC &&
1475             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476                 if (!check_tsc_unstable()) {
1477                         offset = kvm->arch.cur_tsc_offset;
1478                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1479                 } else {
1480                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1481                         data += delta;
1482                         offset = kvm_compute_tsc_offset(vcpu, data);
1483                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484                 }
1485                 matched = true;
1486                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487         } else {
1488                 /*
1489                  * We split periods of matched TSC writes into generations.
1490                  * For each generation, we track the original measured
1491                  * nanosecond time, offset, and write, so if TSCs are in
1492                  * sync, we can match exact offset, and if not, we can match
1493                  * exact software computation in compute_guest_tsc()
1494                  *
1495                  * These values are tracked in kvm->arch.cur_xxx variables.
1496                  */
1497                 kvm->arch.cur_tsc_generation++;
1498                 kvm->arch.cur_tsc_nsec = ns;
1499                 kvm->arch.cur_tsc_write = data;
1500                 kvm->arch.cur_tsc_offset = offset;
1501                 matched = false;
1502                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503                          kvm->arch.cur_tsc_generation, data);
1504         }
1505
1506         /*
1507          * We also track th most recent recorded KHZ, write and time to
1508          * allow the matching interval to be extended at each write.
1509          */
1510         kvm->arch.last_tsc_nsec = ns;
1511         kvm->arch.last_tsc_write = data;
1512         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513
1514         vcpu->arch.last_guest_tsc = data;
1515
1516         /* Keep track of which generation this VCPU has synchronized to */
1517         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520
1521         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522                 update_ia32_tsc_adjust_msr(vcpu, offset);
1523         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525
1526         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527         if (!matched) {
1528                 kvm->arch.nr_vcpus_matched_tsc = 0;
1529         } else if (!already_matched) {
1530                 kvm->arch.nr_vcpus_matched_tsc++;
1531         }
1532
1533         kvm_track_tsc_matching(vcpu);
1534         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540                                            s64 adjustment)
1541 {
1542         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548                 WARN_ON(adjustment < 0);
1549         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552
1553 #ifdef CONFIG_X86_64
1554
1555 static cycle_t read_tsc(void)
1556 {
1557         cycle_t ret = (cycle_t)rdtsc_ordered();
1558         u64 last = pvclock_gtod_data.clock.cycle_last;
1559
1560         if (likely(ret >= last))
1561                 return ret;
1562
1563         /*
1564          * GCC likes to generate cmov here, but this branch is extremely
1565          * predictable (it's just a function of time and the likely is
1566          * very likely) and there's a data dependence, so force GCC
1567          * to generate a branch instead.  I don't barrier() because
1568          * we don't actually need a barrier, and if this function
1569          * ever gets inlined it will generate worse code.
1570          */
1571         asm volatile ("");
1572         return last;
1573 }
1574
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577         long v;
1578         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579
1580         *cycle_now = read_tsc();
1581
1582         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583         return v * gtod->clock.mult;
1584 }
1585
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589         unsigned long seq;
1590         int mode;
1591         u64 ns;
1592
1593         do {
1594                 seq = read_seqcount_begin(&gtod->seq);
1595                 mode = gtod->clock.vclock_mode;
1596                 ns = gtod->nsec_base;
1597                 ns += vgettsc(cycle_now);
1598                 ns >>= gtod->clock.shift;
1599                 ns += gtod->boot_ns;
1600         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601         *t = ns;
1602
1603         return mode;
1604 }
1605
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609         /* checked again under seqlock below */
1610         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611                 return false;
1612
1613         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.                                   | timespec1 = timespec0 + N
1631  *                                      | tsc1 = tsc0 + M
1632  * 3. transition to guest               | transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1635  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  *      - ret0 < ret1
1640  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *              ...
1642  *      - 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661         struct kvm_arch *ka = &kvm->arch;
1662         int vclock_mode;
1663         bool host_tsc_clocksource, vcpus_matched;
1664
1665         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666                         atomic_read(&kvm->online_vcpus));
1667
1668         /*
1669          * If the host uses TSC clock, then passthrough TSC as stable
1670          * to the guest.
1671          */
1672         host_tsc_clocksource = kvm_get_time_and_clockread(
1673                                         &ka->master_kernel_ns,
1674                                         &ka->master_cycle_now);
1675
1676         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677                                 && !backwards_tsc_observed
1678                                 && !ka->boot_vcpu_runs_old_kvmclock;
1679
1680         if (ka->use_master_clock)
1681                 atomic_set(&kvm_guest_has_master_clock, 1);
1682
1683         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685                                         vcpus_matched);
1686 #endif
1687 }
1688
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697         int i;
1698         struct kvm_vcpu *vcpu;
1699         struct kvm_arch *ka = &kvm->arch;
1700
1701         spin_lock(&ka->pvclock_gtod_sync_lock);
1702         kvm_make_mclock_inprogress_request(kvm);
1703         /* no guest entries from this point */
1704         pvclock_update_vm_gtod_copy(kvm);
1705
1706         kvm_for_each_vcpu(i, vcpu, kvm)
1707                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708
1709         /* guest entries allowed */
1710         kvm_for_each_vcpu(i, vcpu, kvm)
1711                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712
1713         spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719         unsigned long flags, tgt_tsc_khz;
1720         struct kvm_vcpu_arch *vcpu = &v->arch;
1721         struct kvm_arch *ka = &v->kvm->arch;
1722         s64 kernel_ns;
1723         u64 tsc_timestamp, host_tsc;
1724         struct pvclock_vcpu_time_info guest_hv_clock;
1725         u8 pvclock_flags;
1726         bool use_master_clock;
1727
1728         kernel_ns = 0;
1729         host_tsc = 0;
1730
1731         /*
1732          * If the host uses TSC clock, then passthrough TSC as stable
1733          * to the guest.
1734          */
1735         spin_lock(&ka->pvclock_gtod_sync_lock);
1736         use_master_clock = ka->use_master_clock;
1737         if (use_master_clock) {
1738                 host_tsc = ka->master_cycle_now;
1739                 kernel_ns = ka->master_kernel_ns;
1740         }
1741         spin_unlock(&ka->pvclock_gtod_sync_lock);
1742
1743         /* Keep irq disabled to prevent changes to the clock */
1744         local_irq_save(flags);
1745         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746         if (unlikely(tgt_tsc_khz == 0)) {
1747                 local_irq_restore(flags);
1748                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749                 return 1;
1750         }
1751         if (!use_master_clock) {
1752                 host_tsc = rdtsc();
1753                 kernel_ns = get_kernel_ns();
1754         }
1755
1756         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757
1758         /*
1759          * We may have to catch up the TSC to match elapsed wall clock
1760          * time for two reasons, even if kvmclock is used.
1761          *   1) CPU could have been running below the maximum TSC rate
1762          *   2) Broken TSC compensation resets the base at each VCPU
1763          *      entry to avoid unknown leaps of TSC even when running
1764          *      again on the same CPU.  This may cause apparent elapsed
1765          *      time to disappear, and the guest to stand still or run
1766          *      very slowly.
1767          */
1768         if (vcpu->tsc_catchup) {
1769                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1770                 if (tsc > tsc_timestamp) {
1771                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772                         tsc_timestamp = tsc;
1773                 }
1774         }
1775
1776         local_irq_restore(flags);
1777
1778         if (!vcpu->pv_time_enabled)
1779                 return 0;
1780
1781         if (kvm_has_tsc_control)
1782                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1783
1784         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1785                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1786                                    &vcpu->hv_clock.tsc_shift,
1787                                    &vcpu->hv_clock.tsc_to_system_mul);
1788                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1789         }
1790
1791         /* With all the info we got, fill in the values */
1792         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1793         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1794         vcpu->last_guest_tsc = tsc_timestamp;
1795
1796         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797                 &guest_hv_clock, sizeof(guest_hv_clock))))
1798                 return 0;
1799
1800         /* This VCPU is paused, but it's legal for a guest to read another
1801          * VCPU's kvmclock, so we really have to follow the specification where
1802          * it says that version is odd if data is being modified, and even after
1803          * it is consistent.
1804          *
1805          * Version field updates must be kept separate.  This is because
1806          * kvm_write_guest_cached might use a "rep movs" instruction, and
1807          * writes within a string instruction are weakly ordered.  So there
1808          * are three writes overall.
1809          *
1810          * As a small optimization, only write the version field in the first
1811          * and third write.  The vcpu->pv_time cache is still valid, because the
1812          * version field is the first in the struct.
1813          */
1814         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815
1816         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818                                 &vcpu->hv_clock,
1819                                 sizeof(vcpu->hv_clock.version));
1820
1821         smp_wmb();
1822
1823         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825
1826         if (vcpu->pvclock_set_guest_stopped_request) {
1827                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1828                 vcpu->pvclock_set_guest_stopped_request = false;
1829         }
1830
1831         /* If the host uses TSC clocksource, then it is stable */
1832         if (use_master_clock)
1833                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1834
1835         vcpu->hv_clock.flags = pvclock_flags;
1836
1837         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1838
1839         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840                                 &vcpu->hv_clock,
1841                                 sizeof(vcpu->hv_clock));
1842
1843         smp_wmb();
1844
1845         vcpu->hv_clock.version++;
1846         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1847                                 &vcpu->hv_clock,
1848                                 sizeof(vcpu->hv_clock.version));
1849         return 0;
1850 }
1851
1852 /*
1853  * kvmclock updates which are isolated to a given vcpu, such as
1854  * vcpu->cpu migration, should not allow system_timestamp from
1855  * the rest of the vcpus to remain static. Otherwise ntp frequency
1856  * correction applies to one vcpu's system_timestamp but not
1857  * the others.
1858  *
1859  * So in those cases, request a kvmclock update for all vcpus.
1860  * We need to rate-limit these requests though, as they can
1861  * considerably slow guests that have a large number of vcpus.
1862  * The time for a remote vcpu to update its kvmclock is bound
1863  * by the delay we use to rate-limit the updates.
1864  */
1865
1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867
1868 static void kvmclock_update_fn(struct work_struct *work)
1869 {
1870         int i;
1871         struct delayed_work *dwork = to_delayed_work(work);
1872         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1873                                            kvmclock_update_work);
1874         struct kvm *kvm = container_of(ka, struct kvm, arch);
1875         struct kvm_vcpu *vcpu;
1876
1877         kvm_for_each_vcpu(i, vcpu, kvm) {
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1879                 kvm_vcpu_kick(vcpu);
1880         }
1881 }
1882
1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1884 {
1885         struct kvm *kvm = v->kvm;
1886
1887         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1888         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1889                                         KVMCLOCK_UPDATE_DELAY);
1890 }
1891
1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893
1894 static void kvmclock_sync_fn(struct work_struct *work)
1895 {
1896         struct delayed_work *dwork = to_delayed_work(work);
1897         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1898                                            kvmclock_sync_work);
1899         struct kvm *kvm = container_of(ka, struct kvm, arch);
1900
1901         if (!kvmclock_periodic_sync)
1902                 return;
1903
1904         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1905         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1906                                         KVMCLOCK_SYNC_PERIOD);
1907 }
1908
1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1910 {
1911         u64 mcg_cap = vcpu->arch.mcg_cap;
1912         unsigned bank_num = mcg_cap & 0xff;
1913
1914         switch (msr) {
1915         case MSR_IA32_MCG_STATUS:
1916                 vcpu->arch.mcg_status = data;
1917                 break;
1918         case MSR_IA32_MCG_CTL:
1919                 if (!(mcg_cap & MCG_CTL_P))
1920                         return 1;
1921                 if (data != 0 && data != ~(u64)0)
1922                         return -1;
1923                 vcpu->arch.mcg_ctl = data;
1924                 break;
1925         default:
1926                 if (msr >= MSR_IA32_MC0_CTL &&
1927                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1928                         u32 offset = msr - MSR_IA32_MC0_CTL;
1929                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1930                          * some Linux kernels though clear bit 10 in bank 4 to
1931                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1932                          * this to avoid an uncatched #GP in the guest
1933                          */
1934                         if ((offset & 0x3) == 0 &&
1935                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1936                                 return -1;
1937                         vcpu->arch.mce_banks[offset] = data;
1938                         break;
1939                 }
1940                 return 1;
1941         }
1942         return 0;
1943 }
1944
1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1946 {
1947         struct kvm *kvm = vcpu->kvm;
1948         int lm = is_long_mode(vcpu);
1949         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1950                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1951         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1952                 : kvm->arch.xen_hvm_config.blob_size_32;
1953         u32 page_num = data & ~PAGE_MASK;
1954         u64 page_addr = data & PAGE_MASK;
1955         u8 *page;
1956         int r;
1957
1958         r = -E2BIG;
1959         if (page_num >= blob_size)
1960                 goto out;
1961         r = -ENOMEM;
1962         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1963         if (IS_ERR(page)) {
1964                 r = PTR_ERR(page);
1965                 goto out;
1966         }
1967         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1968                 goto out_free;
1969         r = 0;
1970 out_free:
1971         kfree(page);
1972 out:
1973         return r;
1974 }
1975
1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1977 {
1978         gpa_t gpa = data & ~0x3f;
1979
1980         /* Bits 2:5 are reserved, Should be zero */
1981         if (data & 0x3c)
1982                 return 1;
1983
1984         vcpu->arch.apf.msr_val = data;
1985
1986         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1987                 kvm_clear_async_pf_completion_queue(vcpu);
1988                 kvm_async_pf_hash_reset(vcpu);
1989                 return 0;
1990         }
1991
1992         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1993                                         sizeof(u32)))
1994                 return 1;
1995
1996         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1997         kvm_async_pf_wakeup_all(vcpu);
1998         return 0;
1999 }
2000
2001 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2002 {
2003         vcpu->arch.pv_time_enabled = false;
2004 }
2005
2006 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2007 {
2008         u64 delta;
2009
2010         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2011                 return;
2012
2013         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2014         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2015         vcpu->arch.st.accum_steal = delta;
2016 }
2017
2018 static void record_steal_time(struct kvm_vcpu *vcpu)
2019 {
2020         accumulate_steal_time(vcpu);
2021
2022         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2023                 return;
2024
2025         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2026                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2027                 return;
2028
2029         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2030         vcpu->arch.st.steal.version += 2;
2031         vcpu->arch.st.accum_steal = 0;
2032
2033         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2034                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2035 }
2036
2037 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2038 {
2039         bool pr = false;
2040         u32 msr = msr_info->index;
2041         u64 data = msr_info->data;
2042
2043         switch (msr) {
2044         case MSR_AMD64_NB_CFG:
2045         case MSR_IA32_UCODE_REV:
2046         case MSR_IA32_UCODE_WRITE:
2047         case MSR_VM_HSAVE_PA:
2048         case MSR_AMD64_PATCH_LOADER:
2049         case MSR_AMD64_BU_CFG2:
2050                 break;
2051
2052         case MSR_EFER:
2053                 return set_efer(vcpu, data);
2054         case MSR_K7_HWCR:
2055                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2056                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2057                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2058                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2059                 if (data != 0) {
2060                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2061                                     data);
2062                         return 1;
2063                 }
2064                 break;
2065         case MSR_FAM10H_MMIO_CONF_BASE:
2066                 if (data != 0) {
2067                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2068                                     "0x%llx\n", data);
2069                         return 1;
2070                 }
2071                 break;
2072         case MSR_IA32_DEBUGCTLMSR:
2073                 if (!data) {
2074                         /* We support the non-activated case already */
2075                         break;
2076                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2077                         /* Values other than LBR and BTF are vendor-specific,
2078                            thus reserved and should throw a #GP */
2079                         return 1;
2080                 }
2081                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2082                             __func__, data);
2083                 break;
2084         case 0x200 ... 0x2ff:
2085                 return kvm_mtrr_set_msr(vcpu, msr, data);
2086         case MSR_IA32_APICBASE:
2087                 return kvm_set_apic_base(vcpu, msr_info);
2088         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2089                 return kvm_x2apic_msr_write(vcpu, msr, data);
2090         case MSR_IA32_TSCDEADLINE:
2091                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2092                 break;
2093         case MSR_IA32_TSC_ADJUST:
2094                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2095                         if (!msr_info->host_initiated) {
2096                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2097                                 adjust_tsc_offset_guest(vcpu, adj);
2098                         }
2099                         vcpu->arch.ia32_tsc_adjust_msr = data;
2100                 }
2101                 break;
2102         case MSR_IA32_MISC_ENABLE:
2103                 vcpu->arch.ia32_misc_enable_msr = data;
2104                 break;
2105         case MSR_IA32_SMBASE:
2106                 if (!msr_info->host_initiated)
2107                         return 1;
2108                 vcpu->arch.smbase = data;
2109                 break;
2110         case MSR_KVM_WALL_CLOCK_NEW:
2111         case MSR_KVM_WALL_CLOCK:
2112                 vcpu->kvm->arch.wall_clock = data;
2113                 kvm_write_wall_clock(vcpu->kvm, data);
2114                 break;
2115         case MSR_KVM_SYSTEM_TIME_NEW:
2116         case MSR_KVM_SYSTEM_TIME: {
2117                 u64 gpa_offset;
2118                 struct kvm_arch *ka = &vcpu->kvm->arch;
2119
2120                 kvmclock_reset(vcpu);
2121
2122                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2123                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2124
2125                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2126                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2127                                         &vcpu->requests);
2128
2129                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2130                 }
2131
2132                 vcpu->arch.time = data;
2133                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2134
2135                 /* we verify if the enable bit is set... */
2136                 if (!(data & 1))
2137                         break;
2138
2139                 gpa_offset = data & ~(PAGE_MASK | 1);
2140
2141                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2142                      &vcpu->arch.pv_time, data & ~1ULL,
2143                      sizeof(struct pvclock_vcpu_time_info)))
2144                         vcpu->arch.pv_time_enabled = false;
2145                 else
2146                         vcpu->arch.pv_time_enabled = true;
2147
2148                 break;
2149         }
2150         case MSR_KVM_ASYNC_PF_EN:
2151                 if (kvm_pv_enable_async_pf(vcpu, data))
2152                         return 1;
2153                 break;
2154         case MSR_KVM_STEAL_TIME:
2155
2156                 if (unlikely(!sched_info_on()))
2157                         return 1;
2158
2159                 if (data & KVM_STEAL_RESERVED_MASK)
2160                         return 1;
2161
2162                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2163                                                 data & KVM_STEAL_VALID_BITS,
2164                                                 sizeof(struct kvm_steal_time)))
2165                         return 1;
2166
2167                 vcpu->arch.st.msr_val = data;
2168
2169                 if (!(data & KVM_MSR_ENABLED))
2170                         break;
2171
2172                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2173
2174                 break;
2175         case MSR_KVM_PV_EOI_EN:
2176                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2177                         return 1;
2178                 break;
2179
2180         case MSR_IA32_MCG_CTL:
2181         case MSR_IA32_MCG_STATUS:
2182         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2183                 return set_msr_mce(vcpu, msr, data);
2184
2185         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2186         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2187                 pr = true; /* fall through */
2188         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2189         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2190                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2191                         return kvm_pmu_set_msr(vcpu, msr_info);
2192
2193                 if (pr || data != 0)
2194                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2195                                     "0x%x data 0x%llx\n", msr, data);
2196                 break;
2197         case MSR_K7_CLK_CTL:
2198                 /*
2199                  * Ignore all writes to this no longer documented MSR.
2200                  * Writes are only relevant for old K7 processors,
2201                  * all pre-dating SVM, but a recommended workaround from
2202                  * AMD for these chips. It is possible to specify the
2203                  * affected processor models on the command line, hence
2204                  * the need to ignore the workaround.
2205                  */
2206                 break;
2207         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2208         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2209         case HV_X64_MSR_CRASH_CTL:
2210         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2211                 return kvm_hv_set_msr_common(vcpu, msr, data,
2212                                              msr_info->host_initiated);
2213         case MSR_IA32_BBL_CR_CTL3:
2214                 /* Drop writes to this legacy MSR -- see rdmsr
2215                  * counterpart for further detail.
2216                  */
2217                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2218                 break;
2219         case MSR_AMD64_OSVW_ID_LENGTH:
2220                 if (!guest_cpuid_has_osvw(vcpu))
2221                         return 1;
2222                 vcpu->arch.osvw.length = data;
2223                 break;
2224         case MSR_AMD64_OSVW_STATUS:
2225                 if (!guest_cpuid_has_osvw(vcpu))
2226                         return 1;
2227                 vcpu->arch.osvw.status = data;
2228                 break;
2229         default:
2230                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2231                         return xen_hvm_config(vcpu, data);
2232                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2233                         return kvm_pmu_set_msr(vcpu, msr_info);
2234                 if (!ignore_msrs) {
2235                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2236                                     msr, data);
2237                         return 1;
2238                 } else {
2239                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2240                                     msr, data);
2241                         break;
2242                 }
2243         }
2244         return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2247
2248
2249 /*
2250  * Reads an msr value (of 'msr_index') into 'pdata'.
2251  * Returns 0 on success, non-0 otherwise.
2252  * Assumes vcpu_load() was already called.
2253  */
2254 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2255 {
2256         return kvm_x86_ops->get_msr(vcpu, msr);
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_get_msr);
2259
2260 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2261 {
2262         u64 data;
2263         u64 mcg_cap = vcpu->arch.mcg_cap;
2264         unsigned bank_num = mcg_cap & 0xff;
2265
2266         switch (msr) {
2267         case MSR_IA32_P5_MC_ADDR:
2268         case MSR_IA32_P5_MC_TYPE:
2269                 data = 0;
2270                 break;
2271         case MSR_IA32_MCG_CAP:
2272                 data = vcpu->arch.mcg_cap;
2273                 break;
2274         case MSR_IA32_MCG_CTL:
2275                 if (!(mcg_cap & MCG_CTL_P))
2276                         return 1;
2277                 data = vcpu->arch.mcg_ctl;
2278                 break;
2279         case MSR_IA32_MCG_STATUS:
2280                 data = vcpu->arch.mcg_status;
2281                 break;
2282         default:
2283                 if (msr >= MSR_IA32_MC0_CTL &&
2284                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2285                         u32 offset = msr - MSR_IA32_MC0_CTL;
2286                         data = vcpu->arch.mce_banks[offset];
2287                         break;
2288                 }
2289                 return 1;
2290         }
2291         *pdata = data;
2292         return 0;
2293 }
2294
2295 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2296 {
2297         switch (msr_info->index) {
2298         case MSR_IA32_PLATFORM_ID:
2299         case MSR_IA32_EBL_CR_POWERON:
2300         case MSR_IA32_DEBUGCTLMSR:
2301         case MSR_IA32_LASTBRANCHFROMIP:
2302         case MSR_IA32_LASTBRANCHTOIP:
2303         case MSR_IA32_LASTINTFROMIP:
2304         case MSR_IA32_LASTINTTOIP:
2305         case MSR_K8_SYSCFG:
2306         case MSR_K8_TSEG_ADDR:
2307         case MSR_K8_TSEG_MASK:
2308         case MSR_K7_HWCR:
2309         case MSR_VM_HSAVE_PA:
2310         case MSR_K8_INT_PENDING_MSG:
2311         case MSR_AMD64_NB_CFG:
2312         case MSR_FAM10H_MMIO_CONF_BASE:
2313         case MSR_AMD64_BU_CFG2:
2314                 msr_info->data = 0;
2315                 break;
2316         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2317         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2318         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2319         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2320                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2321                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2322                 msr_info->data = 0;
2323                 break;
2324         case MSR_IA32_UCODE_REV:
2325                 msr_info->data = 0x100000000ULL;
2326                 break;
2327         case MSR_MTRRcap:
2328         case 0x200 ... 0x2ff:
2329                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2330         case 0xcd: /* fsb frequency */
2331                 msr_info->data = 3;
2332                 break;
2333                 /*
2334                  * MSR_EBC_FREQUENCY_ID
2335                  * Conservative value valid for even the basic CPU models.
2336                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2337                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2338                  * and 266MHz for model 3, or 4. Set Core Clock
2339                  * Frequency to System Bus Frequency Ratio to 1 (bits
2340                  * 31:24) even though these are only valid for CPU
2341                  * models > 2, however guests may end up dividing or
2342                  * multiplying by zero otherwise.
2343                  */
2344         case MSR_EBC_FREQUENCY_ID:
2345                 msr_info->data = 1 << 24;
2346                 break;
2347         case MSR_IA32_APICBASE:
2348                 msr_info->data = kvm_get_apic_base(vcpu);
2349                 break;
2350         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2351                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2352                 break;
2353         case MSR_IA32_TSCDEADLINE:
2354                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2355                 break;
2356         case MSR_IA32_TSC_ADJUST:
2357                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2358                 break;
2359         case MSR_IA32_MISC_ENABLE:
2360                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2361                 break;
2362         case MSR_IA32_SMBASE:
2363                 if (!msr_info->host_initiated)
2364                         return 1;
2365                 msr_info->data = vcpu->arch.smbase;
2366                 break;
2367         case MSR_IA32_PERF_STATUS:
2368                 /* TSC increment by tick */
2369                 msr_info->data = 1000ULL;
2370                 /* CPU multiplier */
2371                 msr_info->data |= (((uint64_t)4ULL) << 40);
2372                 break;
2373         case MSR_EFER:
2374                 msr_info->data = vcpu->arch.efer;
2375                 break;
2376         case MSR_KVM_WALL_CLOCK:
2377         case MSR_KVM_WALL_CLOCK_NEW:
2378                 msr_info->data = vcpu->kvm->arch.wall_clock;
2379                 break;
2380         case MSR_KVM_SYSTEM_TIME:
2381         case MSR_KVM_SYSTEM_TIME_NEW:
2382                 msr_info->data = vcpu->arch.time;
2383                 break;
2384         case MSR_KVM_ASYNC_PF_EN:
2385                 msr_info->data = vcpu->arch.apf.msr_val;
2386                 break;
2387         case MSR_KVM_STEAL_TIME:
2388                 msr_info->data = vcpu->arch.st.msr_val;
2389                 break;
2390         case MSR_KVM_PV_EOI_EN:
2391                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2392                 break;
2393         case MSR_IA32_P5_MC_ADDR:
2394         case MSR_IA32_P5_MC_TYPE:
2395         case MSR_IA32_MCG_CAP:
2396         case MSR_IA32_MCG_CTL:
2397         case MSR_IA32_MCG_STATUS:
2398         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2399                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2400         case MSR_K7_CLK_CTL:
2401                 /*
2402                  * Provide expected ramp-up count for K7. All other
2403                  * are set to zero, indicating minimum divisors for
2404                  * every field.
2405                  *
2406                  * This prevents guest kernels on AMD host with CPU
2407                  * type 6, model 8 and higher from exploding due to
2408                  * the rdmsr failing.
2409                  */
2410                 msr_info->data = 0x20000000;
2411                 break;
2412         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2413         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2414         case HV_X64_MSR_CRASH_CTL:
2415         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2416                 return kvm_hv_get_msr_common(vcpu,
2417                                              msr_info->index, &msr_info->data);
2418                 break;
2419         case MSR_IA32_BBL_CR_CTL3:
2420                 /* This legacy MSR exists but isn't fully documented in current
2421                  * silicon.  It is however accessed by winxp in very narrow
2422                  * scenarios where it sets bit #19, itself documented as
2423                  * a "reserved" bit.  Best effort attempt to source coherent
2424                  * read data here should the balance of the register be
2425                  * interpreted by the guest:
2426                  *
2427                  * L2 cache control register 3: 64GB range, 256KB size,
2428                  * enabled, latency 0x1, configured
2429                  */
2430                 msr_info->data = 0xbe702111;
2431                 break;
2432         case MSR_AMD64_OSVW_ID_LENGTH:
2433                 if (!guest_cpuid_has_osvw(vcpu))
2434                         return 1;
2435                 msr_info->data = vcpu->arch.osvw.length;
2436                 break;
2437         case MSR_AMD64_OSVW_STATUS:
2438                 if (!guest_cpuid_has_osvw(vcpu))
2439                         return 1;
2440                 msr_info->data = vcpu->arch.osvw.status;
2441                 break;
2442         default:
2443                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2444                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2445                 if (!ignore_msrs) {
2446                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2447                         return 1;
2448                 } else {
2449                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2450                         msr_info->data = 0;
2451                 }
2452                 break;
2453         }
2454         return 0;
2455 }
2456 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2457
2458 /*
2459  * Read or write a bunch of msrs. All parameters are kernel addresses.
2460  *
2461  * @return number of msrs set successfully.
2462  */
2463 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2464                     struct kvm_msr_entry *entries,
2465                     int (*do_msr)(struct kvm_vcpu *vcpu,
2466                                   unsigned index, u64 *data))
2467 {
2468         int i, idx;
2469
2470         idx = srcu_read_lock(&vcpu->kvm->srcu);
2471         for (i = 0; i < msrs->nmsrs; ++i)
2472                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2473                         break;
2474         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2475
2476         return i;
2477 }
2478
2479 /*
2480  * Read or write a bunch of msrs. Parameters are user addresses.
2481  *
2482  * @return number of msrs set successfully.
2483  */
2484 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2485                   int (*do_msr)(struct kvm_vcpu *vcpu,
2486                                 unsigned index, u64 *data),
2487                   int writeback)
2488 {
2489         struct kvm_msrs msrs;
2490         struct kvm_msr_entry *entries;
2491         int r, n;
2492         unsigned size;
2493
2494         r = -EFAULT;
2495         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2496                 goto out;
2497
2498         r = -E2BIG;
2499         if (msrs.nmsrs >= MAX_IO_MSRS)
2500                 goto out;
2501
2502         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2503         entries = memdup_user(user_msrs->entries, size);
2504         if (IS_ERR(entries)) {
2505                 r = PTR_ERR(entries);
2506                 goto out;
2507         }
2508
2509         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2510         if (r < 0)
2511                 goto out_free;
2512
2513         r = -EFAULT;
2514         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2515                 goto out_free;
2516
2517         r = n;
2518
2519 out_free:
2520         kfree(entries);
2521 out:
2522         return r;
2523 }
2524
2525 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2526 {
2527         int r;
2528
2529         switch (ext) {
2530         case KVM_CAP_IRQCHIP:
2531         case KVM_CAP_HLT:
2532         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2533         case KVM_CAP_SET_TSS_ADDR:
2534         case KVM_CAP_EXT_CPUID:
2535         case KVM_CAP_EXT_EMUL_CPUID:
2536         case KVM_CAP_CLOCKSOURCE:
2537         case KVM_CAP_PIT:
2538         case KVM_CAP_NOP_IO_DELAY:
2539         case KVM_CAP_MP_STATE:
2540         case KVM_CAP_SYNC_MMU:
2541         case KVM_CAP_USER_NMI:
2542         case KVM_CAP_REINJECT_CONTROL:
2543         case KVM_CAP_IRQ_INJECT_STATUS:
2544         case KVM_CAP_IOEVENTFD:
2545         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2546         case KVM_CAP_PIT2:
2547         case KVM_CAP_PIT_STATE2:
2548         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2549         case KVM_CAP_XEN_HVM:
2550         case KVM_CAP_ADJUST_CLOCK:
2551         case KVM_CAP_VCPU_EVENTS:
2552         case KVM_CAP_HYPERV:
2553         case KVM_CAP_HYPERV_VAPIC:
2554         case KVM_CAP_HYPERV_SPIN:
2555         case KVM_CAP_HYPERV_SYNIC:
2556         case KVM_CAP_PCI_SEGMENT:
2557         case KVM_CAP_DEBUGREGS:
2558         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2559         case KVM_CAP_XSAVE:
2560         case KVM_CAP_ASYNC_PF:
2561         case KVM_CAP_GET_TSC_KHZ:
2562         case KVM_CAP_KVMCLOCK_CTRL:
2563         case KVM_CAP_READONLY_MEM:
2564         case KVM_CAP_HYPERV_TIME:
2565         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2566         case KVM_CAP_TSC_DEADLINE_TIMER:
2567         case KVM_CAP_ENABLE_CAP_VM:
2568         case KVM_CAP_DISABLE_QUIRKS:
2569         case KVM_CAP_SET_BOOT_CPU_ID:
2570         case KVM_CAP_SPLIT_IRQCHIP:
2571 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2572         case KVM_CAP_ASSIGN_DEV_IRQ:
2573         case KVM_CAP_PCI_2_3:
2574 #endif
2575                 r = 1;
2576                 break;
2577         case KVM_CAP_X86_SMM:
2578                 /* SMBASE is usually relocated above 1M on modern chipsets,
2579                  * and SMM handlers might indeed rely on 4G segment limits,
2580                  * so do not report SMM to be available if real mode is
2581                  * emulated via vm86 mode.  Still, do not go to great lengths
2582                  * to avoid userspace's usage of the feature, because it is a
2583                  * fringe case that is not enabled except via specific settings
2584                  * of the module parameters.
2585                  */
2586                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2587                 break;
2588         case KVM_CAP_COALESCED_MMIO:
2589                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2590                 break;
2591         case KVM_CAP_VAPIC:
2592                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2593                 break;
2594         case KVM_CAP_NR_VCPUS:
2595                 r = KVM_SOFT_MAX_VCPUS;
2596                 break;
2597         case KVM_CAP_MAX_VCPUS:
2598                 r = KVM_MAX_VCPUS;
2599                 break;
2600         case KVM_CAP_NR_MEMSLOTS:
2601                 r = KVM_USER_MEM_SLOTS;
2602                 break;
2603         case KVM_CAP_PV_MMU:    /* obsolete */
2604                 r = 0;
2605                 break;
2606 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2607         case KVM_CAP_IOMMU:
2608                 r = iommu_present(&pci_bus_type);
2609                 break;
2610 #endif
2611         case KVM_CAP_MCE:
2612                 r = KVM_MAX_MCE_BANKS;
2613                 break;
2614         case KVM_CAP_XCRS:
2615                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2616                 break;
2617         case KVM_CAP_TSC_CONTROL:
2618                 r = kvm_has_tsc_control;
2619                 break;
2620         default:
2621                 r = 0;
2622                 break;
2623         }
2624         return r;
2625
2626 }
2627
2628 long kvm_arch_dev_ioctl(struct file *filp,
2629                         unsigned int ioctl, unsigned long arg)
2630 {
2631         void __user *argp = (void __user *)arg;
2632         long r;
2633
2634         switch (ioctl) {
2635         case KVM_GET_MSR_INDEX_LIST: {
2636                 struct kvm_msr_list __user *user_msr_list = argp;
2637                 struct kvm_msr_list msr_list;
2638                 unsigned n;
2639
2640                 r = -EFAULT;
2641                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2642                         goto out;
2643                 n = msr_list.nmsrs;
2644                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2645                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2646                         goto out;
2647                 r = -E2BIG;
2648                 if (n < msr_list.nmsrs)
2649                         goto out;
2650                 r = -EFAULT;
2651                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2652                                  num_msrs_to_save * sizeof(u32)))
2653                         goto out;
2654                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2655                                  &emulated_msrs,
2656                                  num_emulated_msrs * sizeof(u32)))
2657                         goto out;
2658                 r = 0;
2659                 break;
2660         }
2661         case KVM_GET_SUPPORTED_CPUID:
2662         case KVM_GET_EMULATED_CPUID: {
2663                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2664                 struct kvm_cpuid2 cpuid;
2665
2666                 r = -EFAULT;
2667                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2668                         goto out;
2669
2670                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2671                                             ioctl);
2672                 if (r)
2673                         goto out;
2674
2675                 r = -EFAULT;
2676                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2677                         goto out;
2678                 r = 0;
2679                 break;
2680         }
2681         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2682                 u64 mce_cap;
2683
2684                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2685                 r = -EFAULT;
2686                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2687                         goto out;
2688                 r = 0;
2689                 break;
2690         }
2691         default:
2692                 r = -EINVAL;
2693         }
2694 out:
2695         return r;
2696 }
2697
2698 static void wbinvd_ipi(void *garbage)
2699 {
2700         wbinvd();
2701 }
2702
2703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2704 {
2705         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2706 }
2707
2708 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2709 {
2710         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2711 }
2712
2713 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2714 {
2715         /* Address WBINVD may be executed by guest */
2716         if (need_emulate_wbinvd(vcpu)) {
2717                 if (kvm_x86_ops->has_wbinvd_exit())
2718                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2719                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2720                         smp_call_function_single(vcpu->cpu,
2721                                         wbinvd_ipi, NULL, 1);
2722         }
2723
2724         kvm_x86_ops->vcpu_load(vcpu, cpu);
2725
2726         /* Apply any externally detected TSC adjustments (due to suspend) */
2727         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2728                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2729                 vcpu->arch.tsc_offset_adjustment = 0;
2730                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2731         }
2732
2733         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2734                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2735                                 rdtsc() - vcpu->arch.last_host_tsc;
2736                 if (tsc_delta < 0)
2737                         mark_tsc_unstable("KVM discovered backwards TSC");
2738                 if (check_tsc_unstable()) {
2739                         u64 offset = kvm_compute_tsc_offset(vcpu,
2740                                                 vcpu->arch.last_guest_tsc);
2741                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2742                         vcpu->arch.tsc_catchup = 1;
2743                 }
2744                 /*
2745                  * On a host with synchronized TSC, there is no need to update
2746                  * kvmclock on vcpu->cpu migration
2747                  */
2748                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2749                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2750                 if (vcpu->cpu != cpu)
2751                         kvm_migrate_timers(vcpu);
2752                 vcpu->cpu = cpu;
2753         }
2754
2755         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2756 }
2757
2758 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2759 {
2760         kvm_x86_ops->vcpu_put(vcpu);
2761         kvm_put_guest_fpu(vcpu);
2762         vcpu->arch.last_host_tsc = rdtsc();
2763 }
2764
2765 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2766                                     struct kvm_lapic_state *s)
2767 {
2768         if (vcpu->arch.apicv_active)
2769                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2770
2771         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2772
2773         return 0;
2774 }
2775
2776 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2777                                     struct kvm_lapic_state *s)
2778 {
2779         kvm_apic_post_state_restore(vcpu, s);
2780         update_cr8_intercept(vcpu);
2781
2782         return 0;
2783 }
2784
2785 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2786 {
2787         return (!lapic_in_kernel(vcpu) ||
2788                 kvm_apic_accept_pic_intr(vcpu));
2789 }
2790
2791 /*
2792  * if userspace requested an interrupt window, check that the
2793  * interrupt window is open.
2794  *
2795  * No need to exit to userspace if we already have an interrupt queued.
2796  */
2797 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2798 {
2799         return kvm_arch_interrupt_allowed(vcpu) &&
2800                 !kvm_cpu_has_interrupt(vcpu) &&
2801                 !kvm_event_needs_reinjection(vcpu) &&
2802                 kvm_cpu_accept_dm_intr(vcpu);
2803 }
2804
2805 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2806                                     struct kvm_interrupt *irq)
2807 {
2808         if (irq->irq >= KVM_NR_INTERRUPTS)
2809                 return -EINVAL;
2810
2811         if (!irqchip_in_kernel(vcpu->kvm)) {
2812                 kvm_queue_interrupt(vcpu, irq->irq, false);
2813                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2814                 return 0;
2815         }
2816
2817         /*
2818          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2819          * fail for in-kernel 8259.
2820          */
2821         if (pic_in_kernel(vcpu->kvm))
2822                 return -ENXIO;
2823
2824         if (vcpu->arch.pending_external_vector != -1)
2825                 return -EEXIST;
2826
2827         vcpu->arch.pending_external_vector = irq->irq;
2828         kvm_make_request(KVM_REQ_EVENT, vcpu);
2829         return 0;
2830 }
2831
2832 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2833 {
2834         kvm_inject_nmi(vcpu);
2835
2836         return 0;
2837 }
2838
2839 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2840 {
2841         kvm_make_request(KVM_REQ_SMI, vcpu);
2842
2843         return 0;
2844 }
2845
2846 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2847                                            struct kvm_tpr_access_ctl *tac)
2848 {
2849         if (tac->flags)
2850                 return -EINVAL;
2851         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2852         return 0;
2853 }
2854
2855 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2856                                         u64 mcg_cap)
2857 {
2858         int r;
2859         unsigned bank_num = mcg_cap & 0xff, bank;
2860
2861         r = -EINVAL;
2862         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2863                 goto out;
2864         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2865                 goto out;
2866         r = 0;
2867         vcpu->arch.mcg_cap = mcg_cap;
2868         /* Init IA32_MCG_CTL to all 1s */
2869         if (mcg_cap & MCG_CTL_P)
2870                 vcpu->arch.mcg_ctl = ~(u64)0;
2871         /* Init IA32_MCi_CTL to all 1s */
2872         for (bank = 0; bank < bank_num; bank++)
2873                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2874 out:
2875         return r;
2876 }
2877
2878 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2879                                       struct kvm_x86_mce *mce)
2880 {
2881         u64 mcg_cap = vcpu->arch.mcg_cap;
2882         unsigned bank_num = mcg_cap & 0xff;
2883         u64 *banks = vcpu->arch.mce_banks;
2884
2885         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2886                 return -EINVAL;
2887         /*
2888          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2889          * reporting is disabled
2890          */
2891         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2892             vcpu->arch.mcg_ctl != ~(u64)0)
2893                 return 0;
2894         banks += 4 * mce->bank;
2895         /*
2896          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2897          * reporting is disabled for the bank
2898          */
2899         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2900                 return 0;
2901         if (mce->status & MCI_STATUS_UC) {
2902                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2903                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2904                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2905                         return 0;
2906                 }
2907                 if (banks[1] & MCI_STATUS_VAL)
2908                         mce->status |= MCI_STATUS_OVER;
2909                 banks[2] = mce->addr;
2910                 banks[3] = mce->misc;
2911                 vcpu->arch.mcg_status = mce->mcg_status;
2912                 banks[1] = mce->status;
2913                 kvm_queue_exception(vcpu, MC_VECTOR);
2914         } else if (!(banks[1] & MCI_STATUS_VAL)
2915                    || !(banks[1] & MCI_STATUS_UC)) {
2916                 if (banks[1] & MCI_STATUS_VAL)
2917                         mce->status |= MCI_STATUS_OVER;
2918                 banks[2] = mce->addr;
2919                 banks[3] = mce->misc;
2920                 banks[1] = mce->status;
2921         } else
2922                 banks[1] |= MCI_STATUS_OVER;
2923         return 0;
2924 }
2925
2926 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2927                                                struct kvm_vcpu_events *events)
2928 {
2929         process_nmi(vcpu);
2930         events->exception.injected =
2931                 vcpu->arch.exception.pending &&
2932                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2933         events->exception.nr = vcpu->arch.exception.nr;
2934         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2935         events->exception.pad = 0;
2936         events->exception.error_code = vcpu->arch.exception.error_code;
2937
2938         events->interrupt.injected =
2939                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2940         events->interrupt.nr = vcpu->arch.interrupt.nr;
2941         events->interrupt.soft = 0;
2942         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2943
2944         events->nmi.injected = vcpu->arch.nmi_injected;
2945         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2946         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2947         events->nmi.pad = 0;
2948
2949         events->sipi_vector = 0; /* never valid when reporting to user space */
2950
2951         events->smi.smm = is_smm(vcpu);
2952         events->smi.pending = vcpu->arch.smi_pending;
2953         events->smi.smm_inside_nmi =
2954                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2955         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2956
2957         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2958                          | KVM_VCPUEVENT_VALID_SHADOW
2959                          | KVM_VCPUEVENT_VALID_SMM);
2960         memset(&events->reserved, 0, sizeof(events->reserved));
2961 }
2962
2963 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2964                                               struct kvm_vcpu_events *events)
2965 {
2966         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2967                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2968                               | KVM_VCPUEVENT_VALID_SHADOW
2969                               | KVM_VCPUEVENT_VALID_SMM))
2970                 return -EINVAL;
2971
2972         process_nmi(vcpu);
2973         vcpu->arch.exception.pending = events->exception.injected;
2974         vcpu->arch.exception.nr = events->exception.nr;
2975         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2976         vcpu->arch.exception.error_code = events->exception.error_code;
2977
2978         vcpu->arch.interrupt.pending = events->interrupt.injected;
2979         vcpu->arch.interrupt.nr = events->interrupt.nr;
2980         vcpu->arch.interrupt.soft = events->interrupt.soft;
2981         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2982                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2983                                                   events->interrupt.shadow);
2984
2985         vcpu->arch.nmi_injected = events->nmi.injected;
2986         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2987                 vcpu->arch.nmi_pending = events->nmi.pending;
2988         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2989
2990         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2991             lapic_in_kernel(vcpu))
2992                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2993
2994         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2995                 if (events->smi.smm)
2996                         vcpu->arch.hflags |= HF_SMM_MASK;
2997                 else
2998                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2999                 vcpu->arch.smi_pending = events->smi.pending;
3000                 if (events->smi.smm_inside_nmi)
3001                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3002                 else
3003                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3004                 if (lapic_in_kernel(vcpu)) {
3005                         if (events->smi.latched_init)
3006                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3007                         else
3008                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3009                 }
3010         }
3011
3012         kvm_make_request(KVM_REQ_EVENT, vcpu);
3013
3014         return 0;
3015 }
3016
3017 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3018                                              struct kvm_debugregs *dbgregs)
3019 {
3020         unsigned long val;
3021
3022         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3023         kvm_get_dr(vcpu, 6, &val);
3024         dbgregs->dr6 = val;
3025         dbgregs->dr7 = vcpu->arch.dr7;
3026         dbgregs->flags = 0;
3027         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3028 }
3029
3030 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3031                                             struct kvm_debugregs *dbgregs)
3032 {
3033         if (dbgregs->flags)
3034                 return -EINVAL;
3035
3036         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3037         kvm_update_dr0123(vcpu);
3038         vcpu->arch.dr6 = dbgregs->dr6;
3039         kvm_update_dr6(vcpu);
3040         vcpu->arch.dr7 = dbgregs->dr7;
3041         kvm_update_dr7(vcpu);
3042
3043         return 0;
3044 }
3045
3046 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3047
3048 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3049 {
3050         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3051         u64 xstate_bv = xsave->header.xfeatures;
3052         u64 valid;
3053
3054         /*
3055          * Copy legacy XSAVE area, to avoid complications with CPUID
3056          * leaves 0 and 1 in the loop below.
3057          */
3058         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3059
3060         /* Set XSTATE_BV */
3061         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3062
3063         /*
3064          * Copy each region from the possibly compacted offset to the
3065          * non-compacted offset.
3066          */
3067         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3068         while (valid) {
3069                 u64 feature = valid & -valid;
3070                 int index = fls64(feature) - 1;
3071                 void *src = get_xsave_addr(xsave, feature);
3072
3073                 if (src) {
3074                         u32 size, offset, ecx, edx;
3075                         cpuid_count(XSTATE_CPUID, index,
3076                                     &size, &offset, &ecx, &edx);
3077                         memcpy(dest + offset, src, size);
3078                 }
3079
3080                 valid -= feature;
3081         }
3082 }
3083
3084 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3085 {
3086         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3087         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3088         u64 valid;
3089
3090         /*
3091          * Copy legacy XSAVE area, to avoid complications with CPUID
3092          * leaves 0 and 1 in the loop below.
3093          */
3094         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3095
3096         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3097         xsave->header.xfeatures = xstate_bv;
3098         if (cpu_has_xsaves)
3099                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3100
3101         /*
3102          * Copy each region from the non-compacted offset to the
3103          * possibly compacted offset.
3104          */
3105         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3106         while (valid) {
3107                 u64 feature = valid & -valid;
3108                 int index = fls64(feature) - 1;
3109                 void *dest = get_xsave_addr(xsave, feature);
3110
3111                 if (dest) {
3112                         u32 size, offset, ecx, edx;
3113                         cpuid_count(XSTATE_CPUID, index,
3114                                     &size, &offset, &ecx, &edx);
3115                         memcpy(dest, src + offset, size);
3116                 }
3117
3118                 valid -= feature;
3119         }
3120 }
3121
3122 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3123                                          struct kvm_xsave *guest_xsave)
3124 {
3125         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3126                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3127                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3128         } else {
3129                 memcpy(guest_xsave->region,
3130                         &vcpu->arch.guest_fpu.state.fxsave,
3131                         sizeof(struct fxregs_state));
3132                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3133                         XFEATURE_MASK_FPSSE;
3134         }
3135 }
3136
3137 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3138                                         struct kvm_xsave *guest_xsave)
3139 {
3140         u64 xstate_bv =
3141                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3142
3143         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3144                 /*
3145                  * Here we allow setting states that are not present in
3146                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3147                  * with old userspace.
3148                  */
3149                 if (xstate_bv & ~kvm_supported_xcr0())
3150                         return -EINVAL;
3151                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3152         } else {
3153                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3154                         return -EINVAL;
3155                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3156                         guest_xsave->region, sizeof(struct fxregs_state));
3157         }
3158         return 0;
3159 }
3160
3161 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3162                                         struct kvm_xcrs *guest_xcrs)
3163 {
3164         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3165                 guest_xcrs->nr_xcrs = 0;
3166                 return;
3167         }
3168
3169         guest_xcrs->nr_xcrs = 1;
3170         guest_xcrs->flags = 0;
3171         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3172         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3173 }
3174
3175 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3176                                        struct kvm_xcrs *guest_xcrs)
3177 {
3178         int i, r = 0;
3179
3180         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3181                 return -EINVAL;
3182
3183         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3184                 return -EINVAL;
3185
3186         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3187                 /* Only support XCR0 currently */
3188                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3189                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3190                                 guest_xcrs->xcrs[i].value);
3191                         break;
3192                 }
3193         if (r)
3194                 r = -EINVAL;
3195         return r;
3196 }
3197
3198 /*
3199  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3200  * stopped by the hypervisor.  This function will be called from the host only.
3201  * EINVAL is returned when the host attempts to set the flag for a guest that
3202  * does not support pv clocks.
3203  */
3204 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3205 {
3206         if (!vcpu->arch.pv_time_enabled)
3207                 return -EINVAL;
3208         vcpu->arch.pvclock_set_guest_stopped_request = true;
3209         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3210         return 0;
3211 }
3212
3213 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3214                                      struct kvm_enable_cap *cap)
3215 {
3216         if (cap->flags)
3217                 return -EINVAL;
3218
3219         switch (cap->cap) {
3220         case KVM_CAP_HYPERV_SYNIC:
3221                 return kvm_hv_activate_synic(vcpu);
3222         default:
3223                 return -EINVAL;
3224         }
3225 }
3226
3227 long kvm_arch_vcpu_ioctl(struct file *filp,
3228                          unsigned int ioctl, unsigned long arg)
3229 {
3230         struct kvm_vcpu *vcpu = filp->private_data;
3231         void __user *argp = (void __user *)arg;
3232         int r;
3233         union {
3234                 struct kvm_lapic_state *lapic;
3235                 struct kvm_xsave *xsave;
3236                 struct kvm_xcrs *xcrs;
3237                 void *buffer;
3238         } u;
3239
3240         u.buffer = NULL;
3241         switch (ioctl) {
3242         case KVM_GET_LAPIC: {
3243                 r = -EINVAL;
3244                 if (!lapic_in_kernel(vcpu))
3245                         goto out;
3246                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3247
3248                 r = -ENOMEM;
3249                 if (!u.lapic)
3250                         goto out;
3251                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3252                 if (r)
3253                         goto out;
3254                 r = -EFAULT;
3255                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3256                         goto out;
3257                 r = 0;
3258                 break;
3259         }
3260         case KVM_SET_LAPIC: {
3261                 r = -EINVAL;
3262                 if (!lapic_in_kernel(vcpu))
3263                         goto out;
3264                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3265                 if (IS_ERR(u.lapic))
3266                         return PTR_ERR(u.lapic);
3267
3268                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3269                 break;
3270         }
3271         case KVM_INTERRUPT: {
3272                 struct kvm_interrupt irq;
3273
3274                 r = -EFAULT;
3275                 if (copy_from_user(&irq, argp, sizeof irq))
3276                         goto out;
3277                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3278                 break;
3279         }
3280         case KVM_NMI: {
3281                 r = kvm_vcpu_ioctl_nmi(vcpu);
3282                 break;
3283         }
3284         case KVM_SMI: {
3285                 r = kvm_vcpu_ioctl_smi(vcpu);
3286                 break;
3287         }
3288         case KVM_SET_CPUID: {
3289                 struct kvm_cpuid __user *cpuid_arg = argp;
3290                 struct kvm_cpuid cpuid;
3291
3292                 r = -EFAULT;
3293                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3294                         goto out;
3295                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3296                 break;
3297         }
3298         case KVM_SET_CPUID2: {
3299                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3300                 struct kvm_cpuid2 cpuid;
3301
3302                 r = -EFAULT;
3303                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3304                         goto out;
3305                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3306                                               cpuid_arg->entries);
3307                 break;
3308         }
3309         case KVM_GET_CPUID2: {
3310                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3311                 struct kvm_cpuid2 cpuid;
3312
3313                 r = -EFAULT;
3314                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3315                         goto out;
3316                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3317                                               cpuid_arg->entries);
3318                 if (r)
3319                         goto out;
3320                 r = -EFAULT;
3321                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3322                         goto out;
3323                 r = 0;
3324                 break;
3325         }
3326         case KVM_GET_MSRS:
3327                 r = msr_io(vcpu, argp, do_get_msr, 1);
3328                 break;
3329         case KVM_SET_MSRS:
3330                 r = msr_io(vcpu, argp, do_set_msr, 0);
3331                 break;
3332         case KVM_TPR_ACCESS_REPORTING: {
3333                 struct kvm_tpr_access_ctl tac;
3334
3335                 r = -EFAULT;
3336                 if (copy_from_user(&tac, argp, sizeof tac))
3337                         goto out;
3338                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3339                 if (r)
3340                         goto out;
3341                 r = -EFAULT;
3342                 if (copy_to_user(argp, &tac, sizeof tac))
3343                         goto out;
3344                 r = 0;
3345                 break;
3346         };
3347         case KVM_SET_VAPIC_ADDR: {
3348                 struct kvm_vapic_addr va;
3349
3350                 r = -EINVAL;
3351                 if (!lapic_in_kernel(vcpu))
3352                         goto out;
3353                 r = -EFAULT;
3354                 if (copy_from_user(&va, argp, sizeof va))
3355                         goto out;
3356                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3357                 break;
3358         }
3359         case KVM_X86_SETUP_MCE: {
3360                 u64 mcg_cap;
3361
3362                 r = -EFAULT;
3363                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3364                         goto out;
3365                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3366                 break;
3367         }
3368         case KVM_X86_SET_MCE: {
3369                 struct kvm_x86_mce mce;
3370
3371                 r = -EFAULT;
3372                 if (copy_from_user(&mce, argp, sizeof mce))
3373                         goto out;
3374                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3375                 break;
3376         }
3377         case KVM_GET_VCPU_EVENTS: {
3378                 struct kvm_vcpu_events events;
3379
3380                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3381
3382                 r = -EFAULT;
3383                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3384                         break;
3385                 r = 0;
3386                 break;
3387         }
3388         case KVM_SET_VCPU_EVENTS: {
3389                 struct kvm_vcpu_events events;
3390
3391                 r = -EFAULT;
3392                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3393                         break;
3394
3395                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3396                 break;
3397         }
3398         case KVM_GET_DEBUGREGS: {
3399                 struct kvm_debugregs dbgregs;
3400
3401                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3402
3403                 r = -EFAULT;
3404                 if (copy_to_user(argp, &dbgregs,
3405                                  sizeof(struct kvm_debugregs)))
3406                         break;
3407                 r = 0;
3408                 break;
3409         }
3410         case KVM_SET_DEBUGREGS: {
3411                 struct kvm_debugregs dbgregs;
3412
3413                 r = -EFAULT;
3414                 if (copy_from_user(&dbgregs, argp,
3415                                    sizeof(struct kvm_debugregs)))
3416                         break;
3417
3418                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3419                 break;
3420         }
3421         case KVM_GET_XSAVE: {
3422                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3423                 r = -ENOMEM;
3424                 if (!u.xsave)
3425                         break;
3426
3427                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3428
3429                 r = -EFAULT;
3430                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3431                         break;
3432                 r = 0;
3433                 break;
3434         }
3435         case KVM_SET_XSAVE: {
3436                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3437                 if (IS_ERR(u.xsave))
3438                         return PTR_ERR(u.xsave);
3439
3440                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3441                 break;
3442         }
3443         case KVM_GET_XCRS: {
3444                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3445                 r = -ENOMEM;
3446                 if (!u.xcrs)
3447                         break;
3448
3449                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3450
3451                 r = -EFAULT;
3452                 if (copy_to_user(argp, u.xcrs,
3453                                  sizeof(struct kvm_xcrs)))
3454                         break;
3455                 r = 0;
3456                 break;
3457         }
3458         case KVM_SET_XCRS: {
3459                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3460                 if (IS_ERR(u.xcrs))
3461                         return PTR_ERR(u.xcrs);
3462
3463                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3464                 break;
3465         }
3466         case KVM_SET_TSC_KHZ: {
3467                 u32 user_tsc_khz;
3468
3469                 r = -EINVAL;
3470                 user_tsc_khz = (u32)arg;
3471
3472                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3473                         goto out;
3474
3475                 if (user_tsc_khz == 0)
3476                         user_tsc_khz = tsc_khz;
3477
3478                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3479                         r = 0;
3480
3481                 goto out;
3482         }
3483         case KVM_GET_TSC_KHZ: {
3484                 r = vcpu->arch.virtual_tsc_khz;
3485                 goto out;
3486         }
3487         case KVM_KVMCLOCK_CTRL: {
3488                 r = kvm_set_guest_paused(vcpu);
3489                 goto out;
3490         }
3491         case KVM_ENABLE_CAP: {
3492                 struct kvm_enable_cap cap;
3493
3494                 r = -EFAULT;
3495                 if (copy_from_user(&cap, argp, sizeof(cap)))
3496                         goto out;
3497                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3498                 break;
3499         }
3500         default:
3501                 r = -EINVAL;
3502         }
3503 out:
3504         kfree(u.buffer);
3505         return r;
3506 }
3507
3508 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3509 {
3510         return VM_FAULT_SIGBUS;
3511 }
3512
3513 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3514 {
3515         int ret;
3516
3517         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3518                 return -EINVAL;
3519         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3520         return ret;
3521 }
3522
3523 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3524                                               u64 ident_addr)
3525 {
3526         kvm->arch.ept_identity_map_addr = ident_addr;
3527         return 0;
3528 }
3529
3530 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3531                                           u32 kvm_nr_mmu_pages)
3532 {
3533         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3534                 return -EINVAL;
3535
3536         mutex_lock(&kvm->slots_lock);
3537
3538         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3539         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3540
3541         mutex_unlock(&kvm->slots_lock);
3542         return 0;
3543 }
3544
3545 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3546 {
3547         return kvm->arch.n_max_mmu_pages;
3548 }
3549
3550 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3551 {
3552         int r;
3553
3554         r = 0;
3555         switch (chip->chip_id) {
3556         case KVM_IRQCHIP_PIC_MASTER:
3557                 memcpy(&chip->chip.pic,
3558                         &pic_irqchip(kvm)->pics[0],
3559                         sizeof(struct kvm_pic_state));
3560                 break;
3561         case KVM_IRQCHIP_PIC_SLAVE:
3562                 memcpy(&chip->chip.pic,
3563                         &pic_irqchip(kvm)->pics[1],
3564                         sizeof(struct kvm_pic_state));
3565                 break;
3566         case KVM_IRQCHIP_IOAPIC:
3567                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3568                 break;
3569         default:
3570                 r = -EINVAL;
3571                 break;
3572         }
3573         return r;
3574 }
3575
3576 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3577 {
3578         int r;
3579
3580         r = 0;
3581         switch (chip->chip_id) {
3582         case KVM_IRQCHIP_PIC_MASTER:
3583                 spin_lock(&pic_irqchip(kvm)->lock);
3584                 memcpy(&pic_irqchip(kvm)->pics[0],
3585                         &chip->chip.pic,
3586                         sizeof(struct kvm_pic_state));
3587                 spin_unlock(&pic_irqchip(kvm)->lock);
3588                 break;
3589         case KVM_IRQCHIP_PIC_SLAVE:
3590                 spin_lock(&pic_irqchip(kvm)->lock);
3591                 memcpy(&pic_irqchip(kvm)->pics[1],
3592                         &chip->chip.pic,
3593                         sizeof(struct kvm_pic_state));
3594                 spin_unlock(&pic_irqchip(kvm)->lock);
3595                 break;
3596         case KVM_IRQCHIP_IOAPIC:
3597                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3598                 break;
3599         default:
3600                 r = -EINVAL;
3601                 break;
3602         }
3603         kvm_pic_update_irq(pic_irqchip(kvm));
3604         return r;
3605 }
3606
3607 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3608 {
3609         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3610
3611         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3612
3613         mutex_lock(&kps->lock);
3614         memcpy(ps, &kps->channels, sizeof(*ps));
3615         mutex_unlock(&kps->lock);
3616         return 0;
3617 }
3618
3619 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3620 {
3621         int i;
3622         struct kvm_pit *pit = kvm->arch.vpit;
3623
3624         mutex_lock(&pit->pit_state.lock);
3625         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3626         for (i = 0; i < 3; i++)
3627                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3628         mutex_unlock(&pit->pit_state.lock);
3629         return 0;
3630 }
3631
3632 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3633 {
3634         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3635         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3636                 sizeof(ps->channels));
3637         ps->flags = kvm->arch.vpit->pit_state.flags;
3638         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3639         memset(&ps->reserved, 0, sizeof(ps->reserved));
3640         return 0;
3641 }
3642
3643 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3644 {
3645         int start = 0;
3646         int i;
3647         u32 prev_legacy, cur_legacy;
3648         struct kvm_pit *pit = kvm->arch.vpit;
3649
3650         mutex_lock(&pit->pit_state.lock);
3651         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3652         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3653         if (!prev_legacy && cur_legacy)
3654                 start = 1;
3655         memcpy(&pit->pit_state.channels, &ps->channels,
3656                sizeof(pit->pit_state.channels));
3657         pit->pit_state.flags = ps->flags;
3658         for (i = 0; i < 3; i++)
3659                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3660                                    start && i == 0);
3661         mutex_unlock(&pit->pit_state.lock);
3662         return 0;
3663 }
3664
3665 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3666                                  struct kvm_reinject_control *control)
3667 {
3668         struct kvm_pit *pit = kvm->arch.vpit;
3669
3670         if (!pit)
3671                 return -ENXIO;
3672
3673         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3674          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3675          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3676          */
3677         mutex_lock(&pit->pit_state.lock);
3678         kvm_pit_set_reinject(pit, control->pit_reinject);
3679         mutex_unlock(&pit->pit_state.lock);
3680
3681         return 0;
3682 }
3683
3684 /**
3685  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3686  * @kvm: kvm instance
3687  * @log: slot id and address to which we copy the log
3688  *
3689  * Steps 1-4 below provide general overview of dirty page logging. See
3690  * kvm_get_dirty_log_protect() function description for additional details.
3691  *
3692  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3693  * always flush the TLB (step 4) even if previous step failed  and the dirty
3694  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3695  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3696  * writes will be marked dirty for next log read.
3697  *
3698  *   1. Take a snapshot of the bit and clear it if needed.
3699  *   2. Write protect the corresponding page.
3700  *   3. Copy the snapshot to the userspace.
3701  *   4. Flush TLB's if needed.
3702  */
3703 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3704 {
3705         bool is_dirty = false;
3706         int r;
3707
3708         mutex_lock(&kvm->slots_lock);
3709
3710         /*
3711          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3712          */
3713         if (kvm_x86_ops->flush_log_dirty)
3714                 kvm_x86_ops->flush_log_dirty(kvm);
3715
3716         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3717
3718         /*
3719          * All the TLBs can be flushed out of mmu lock, see the comments in
3720          * kvm_mmu_slot_remove_write_access().
3721          */
3722         lockdep_assert_held(&kvm->slots_lock);
3723         if (is_dirty)
3724                 kvm_flush_remote_tlbs(kvm);
3725
3726         mutex_unlock(&kvm->slots_lock);
3727         return r;
3728 }
3729
3730 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3731                         bool line_status)
3732 {
3733         if (!irqchip_in_kernel(kvm))
3734                 return -ENXIO;
3735
3736         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3737                                         irq_event->irq, irq_event->level,
3738                                         line_status);
3739         return 0;
3740 }
3741
3742 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3743                                    struct kvm_enable_cap *cap)
3744 {
3745         int r;
3746
3747         if (cap->flags)
3748                 return -EINVAL;
3749
3750         switch (cap->cap) {
3751         case KVM_CAP_DISABLE_QUIRKS:
3752                 kvm->arch.disabled_quirks = cap->args[0];
3753                 r = 0;
3754                 break;
3755         case KVM_CAP_SPLIT_IRQCHIP: {
3756                 mutex_lock(&kvm->lock);
3757                 r = -EINVAL;
3758                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3759                         goto split_irqchip_unlock;
3760                 r = -EEXIST;
3761                 if (irqchip_in_kernel(kvm))
3762                         goto split_irqchip_unlock;
3763                 if (atomic_read(&kvm->online_vcpus))
3764                         goto split_irqchip_unlock;
3765                 r = kvm_setup_empty_irq_routing(kvm);
3766                 if (r)
3767                         goto split_irqchip_unlock;
3768                 /* Pairs with irqchip_in_kernel. */
3769                 smp_wmb();
3770                 kvm->arch.irqchip_split = true;
3771                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3772                 r = 0;
3773 split_irqchip_unlock:
3774                 mutex_unlock(&kvm->lock);
3775                 break;
3776         }
3777         default:
3778                 r = -EINVAL;
3779                 break;
3780         }
3781         return r;
3782 }
3783
3784 long kvm_arch_vm_ioctl(struct file *filp,
3785                        unsigned int ioctl, unsigned long arg)
3786 {
3787         struct kvm *kvm = filp->private_data;
3788         void __user *argp = (void __user *)arg;
3789         int r = -ENOTTY;
3790         /*
3791          * This union makes it completely explicit to gcc-3.x
3792          * that these two variables' stack usage should be
3793          * combined, not added together.
3794          */
3795         union {
3796                 struct kvm_pit_state ps;
3797                 struct kvm_pit_state2 ps2;
3798                 struct kvm_pit_config pit_config;
3799         } u;
3800
3801         switch (ioctl) {
3802         case KVM_SET_TSS_ADDR:
3803                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3804                 break;
3805         case KVM_SET_IDENTITY_MAP_ADDR: {
3806                 u64 ident_addr;
3807
3808                 r = -EFAULT;
3809                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3810                         goto out;
3811                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3812                 break;
3813         }
3814         case KVM_SET_NR_MMU_PAGES:
3815                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3816                 break;
3817         case KVM_GET_NR_MMU_PAGES:
3818                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3819                 break;
3820         case KVM_CREATE_IRQCHIP: {
3821                 struct kvm_pic *vpic;
3822
3823                 mutex_lock(&kvm->lock);
3824                 r = -EEXIST;
3825                 if (kvm->arch.vpic)
3826                         goto create_irqchip_unlock;
3827                 r = -EINVAL;
3828                 if (atomic_read(&kvm->online_vcpus))
3829                         goto create_irqchip_unlock;
3830                 r = -ENOMEM;
3831                 vpic = kvm_create_pic(kvm);
3832                 if (vpic) {
3833                         r = kvm_ioapic_init(kvm);
3834                         if (r) {
3835                                 mutex_lock(&kvm->slots_lock);
3836                                 kvm_destroy_pic(vpic);
3837                                 mutex_unlock(&kvm->slots_lock);
3838                                 goto create_irqchip_unlock;
3839                         }
3840                 } else
3841                         goto create_irqchip_unlock;
3842                 r = kvm_setup_default_irq_routing(kvm);
3843                 if (r) {
3844                         mutex_lock(&kvm->slots_lock);
3845                         mutex_lock(&kvm->irq_lock);
3846                         kvm_ioapic_destroy(kvm);
3847                         kvm_destroy_pic(vpic);
3848                         mutex_unlock(&kvm->irq_lock);
3849                         mutex_unlock(&kvm->slots_lock);
3850                         goto create_irqchip_unlock;
3851                 }
3852                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3853                 smp_wmb();
3854                 kvm->arch.vpic = vpic;
3855         create_irqchip_unlock:
3856                 mutex_unlock(&kvm->lock);
3857                 break;
3858         }
3859         case KVM_CREATE_PIT:
3860                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3861                 goto create_pit;
3862         case KVM_CREATE_PIT2:
3863                 r = -EFAULT;
3864                 if (copy_from_user(&u.pit_config, argp,
3865                                    sizeof(struct kvm_pit_config)))
3866                         goto out;
3867         create_pit:
3868                 mutex_lock(&kvm->slots_lock);
3869                 r = -EEXIST;
3870                 if (kvm->arch.vpit)
3871                         goto create_pit_unlock;
3872                 r = -ENOMEM;
3873                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3874                 if (kvm->arch.vpit)
3875                         r = 0;
3876         create_pit_unlock:
3877                 mutex_unlock(&kvm->slots_lock);
3878                 break;
3879         case KVM_GET_IRQCHIP: {
3880                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3881                 struct kvm_irqchip *chip;
3882
3883                 chip = memdup_user(argp, sizeof(*chip));
3884                 if (IS_ERR(chip)) {
3885                         r = PTR_ERR(chip);
3886                         goto out;
3887                 }
3888
3889                 r = -ENXIO;
3890                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3891                         goto get_irqchip_out;
3892                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3893                 if (r)
3894                         goto get_irqchip_out;
3895                 r = -EFAULT;
3896                 if (copy_to_user(argp, chip, sizeof *chip))
3897                         goto get_irqchip_out;
3898                 r = 0;
3899         get_irqchip_out:
3900                 kfree(chip);
3901                 break;
3902         }
3903         case KVM_SET_IRQCHIP: {
3904                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3905                 struct kvm_irqchip *chip;
3906
3907                 chip = memdup_user(argp, sizeof(*chip));
3908                 if (IS_ERR(chip)) {
3909                         r = PTR_ERR(chip);
3910                         goto out;
3911                 }
3912
3913                 r = -ENXIO;
3914                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3915                         goto set_irqchip_out;
3916                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3917                 if (r)
3918                         goto set_irqchip_out;
3919                 r = 0;
3920         set_irqchip_out:
3921                 kfree(chip);
3922                 break;
3923         }
3924         case KVM_GET_PIT: {
3925                 r = -EFAULT;
3926                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3927                         goto out;
3928                 r = -ENXIO;
3929                 if (!kvm->arch.vpit)
3930                         goto out;
3931                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3932                 if (r)
3933                         goto out;
3934                 r = -EFAULT;
3935                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3936                         goto out;
3937                 r = 0;
3938                 break;
3939         }
3940         case KVM_SET_PIT: {
3941                 r = -EFAULT;
3942                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3943                         goto out;
3944                 r = -ENXIO;
3945                 if (!kvm->arch.vpit)
3946                         goto out;
3947                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3948                 break;
3949         }
3950         case KVM_GET_PIT2: {
3951                 r = -ENXIO;
3952                 if (!kvm->arch.vpit)
3953                         goto out;
3954                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3955                 if (r)
3956                         goto out;
3957                 r = -EFAULT;
3958                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3959                         goto out;
3960                 r = 0;
3961                 break;
3962         }
3963         case KVM_SET_PIT2: {
3964                 r = -EFAULT;
3965                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3966                         goto out;
3967                 r = -ENXIO;
3968                 if (!kvm->arch.vpit)
3969                         goto out;
3970                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3971                 break;
3972         }
3973         case KVM_REINJECT_CONTROL: {
3974                 struct kvm_reinject_control control;
3975                 r =  -EFAULT;
3976                 if (copy_from_user(&control, argp, sizeof(control)))
3977                         goto out;
3978                 r = kvm_vm_ioctl_reinject(kvm, &control);
3979                 break;
3980         }
3981         case KVM_SET_BOOT_CPU_ID:
3982                 r = 0;
3983                 mutex_lock(&kvm->lock);
3984                 if (atomic_read(&kvm->online_vcpus) != 0)
3985                         r = -EBUSY;
3986                 else
3987                         kvm->arch.bsp_vcpu_id = arg;
3988                 mutex_unlock(&kvm->lock);
3989                 break;
3990         case KVM_XEN_HVM_CONFIG: {
3991                 r = -EFAULT;
3992                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3993                                    sizeof(struct kvm_xen_hvm_config)))
3994                         goto out;
3995                 r = -EINVAL;
3996                 if (kvm->arch.xen_hvm_config.flags)
3997                         goto out;
3998                 r = 0;
3999                 break;
4000         }
4001         case KVM_SET_CLOCK: {
4002                 struct kvm_clock_data user_ns;
4003                 u64 now_ns;
4004                 s64 delta;
4005
4006                 r = -EFAULT;
4007                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4008                         goto out;
4009
4010                 r = -EINVAL;
4011                 if (user_ns.flags)
4012                         goto out;
4013
4014                 r = 0;
4015                 local_irq_disable();
4016                 now_ns = get_kernel_ns();
4017                 delta = user_ns.clock - now_ns;
4018                 local_irq_enable();
4019                 kvm->arch.kvmclock_offset = delta;
4020                 kvm_gen_update_masterclock(kvm);
4021                 break;
4022         }
4023         case KVM_GET_CLOCK: {
4024                 struct kvm_clock_data user_ns;
4025                 u64 now_ns;
4026
4027                 local_irq_disable();
4028                 now_ns = get_kernel_ns();
4029                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4030                 local_irq_enable();
4031                 user_ns.flags = 0;
4032                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4033
4034                 r = -EFAULT;
4035                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4036                         goto out;
4037                 r = 0;
4038                 break;
4039         }
4040         case KVM_ENABLE_CAP: {
4041                 struct kvm_enable_cap cap;
4042
4043                 r = -EFAULT;
4044                 if (copy_from_user(&cap, argp, sizeof(cap)))
4045                         goto out;
4046                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4047                 break;
4048         }
4049         default:
4050                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4051         }
4052 out:
4053         return r;
4054 }
4055
4056 static void kvm_init_msr_list(void)
4057 {
4058         u32 dummy[2];
4059         unsigned i, j;
4060
4061         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4062                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4063                         continue;
4064
4065                 /*
4066                  * Even MSRs that are valid in the host may not be exposed
4067                  * to the guests in some cases.
4068                  */
4069                 switch (msrs_to_save[i]) {
4070                 case MSR_IA32_BNDCFGS:
4071                         if (!kvm_x86_ops->mpx_supported())
4072                                 continue;
4073                         break;
4074                 case MSR_TSC_AUX:
4075                         if (!kvm_x86_ops->rdtscp_supported())
4076                                 continue;
4077                         break;
4078                 default:
4079                         break;
4080                 }
4081
4082                 if (j < i)
4083                         msrs_to_save[j] = msrs_to_save[i];
4084                 j++;
4085         }
4086         num_msrs_to_save = j;
4087
4088         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4089                 switch (emulated_msrs[i]) {
4090                 case MSR_IA32_SMBASE:
4091                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4092                                 continue;
4093                         break;
4094                 default:
4095                         break;
4096                 }
4097
4098                 if (j < i)
4099                         emulated_msrs[j] = emulated_msrs[i];
4100                 j++;
4101         }
4102         num_emulated_msrs = j;
4103 }
4104
4105 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4106                            const void *v)
4107 {
4108         int handled = 0;
4109         int n;
4110
4111         do {
4112                 n = min(len, 8);
4113                 if (!(lapic_in_kernel(vcpu) &&
4114                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4115                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4116                         break;
4117                 handled += n;
4118                 addr += n;
4119                 len -= n;
4120                 v += n;
4121         } while (len);
4122
4123         return handled;
4124 }
4125
4126 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4127 {
4128         int handled = 0;
4129         int n;
4130
4131         do {
4132                 n = min(len, 8);
4133                 if (!(lapic_in_kernel(vcpu) &&
4134                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4135                                          addr, n, v))
4136                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4137                         break;
4138                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4139                 handled += n;
4140                 addr += n;
4141                 len -= n;
4142                 v += n;
4143         } while (len);
4144
4145         return handled;
4146 }
4147
4148 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4149                         struct kvm_segment *var, int seg)
4150 {
4151         kvm_x86_ops->set_segment(vcpu, var, seg);
4152 }
4153
4154 void kvm_get_segment(struct kvm_vcpu *vcpu,
4155                      struct kvm_segment *var, int seg)
4156 {
4157         kvm_x86_ops->get_segment(vcpu, var, seg);
4158 }
4159
4160 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4161                            struct x86_exception *exception)
4162 {
4163         gpa_t t_gpa;
4164
4165         BUG_ON(!mmu_is_nested(vcpu));
4166
4167         /* NPT walks are always user-walks */
4168         access |= PFERR_USER_MASK;
4169         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4170
4171         return t_gpa;
4172 }
4173
4174 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4175                               struct x86_exception *exception)
4176 {
4177         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4178         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4179 }
4180
4181  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4182                                 struct x86_exception *exception)
4183 {
4184         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4185         access |= PFERR_FETCH_MASK;
4186         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4187 }
4188
4189 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4190                                struct x86_exception *exception)
4191 {
4192         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193         access |= PFERR_WRITE_MASK;
4194         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4195 }
4196
4197 /* uses this to access any guest's mapped memory without checking CPL */
4198 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4199                                 struct x86_exception *exception)
4200 {
4201         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4202 }
4203
4204 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4205                                       struct kvm_vcpu *vcpu, u32 access,
4206                                       struct x86_exception *exception)
4207 {
4208         void *data = val;
4209         int r = X86EMUL_CONTINUE;
4210
4211         while (bytes) {
4212                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4213                                                             exception);
4214                 unsigned offset = addr & (PAGE_SIZE-1);
4215                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4216                 int ret;
4217
4218                 if (gpa == UNMAPPED_GVA)
4219                         return X86EMUL_PROPAGATE_FAULT;
4220                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4221                                                offset, toread);
4222                 if (ret < 0) {
4223                         r = X86EMUL_IO_NEEDED;
4224                         goto out;
4225                 }
4226
4227                 bytes -= toread;
4228                 data += toread;
4229                 addr += toread;
4230         }
4231 out:
4232         return r;
4233 }
4234
4235 /* used for instruction fetching */
4236 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4237                                 gva_t addr, void *val, unsigned int bytes,
4238                                 struct x86_exception *exception)
4239 {
4240         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4241         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4242         unsigned offset;
4243         int ret;
4244
4245         /* Inline kvm_read_guest_virt_helper for speed.  */
4246         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4247                                                     exception);
4248         if (unlikely(gpa == UNMAPPED_GVA))
4249                 return X86EMUL_PROPAGATE_FAULT;
4250
4251         offset = addr & (PAGE_SIZE-1);
4252         if (WARN_ON(offset + bytes > PAGE_SIZE))
4253                 bytes = (unsigned)PAGE_SIZE - offset;
4254         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4255                                        offset, bytes);
4256         if (unlikely(ret < 0))
4257                 return X86EMUL_IO_NEEDED;
4258
4259         return X86EMUL_CONTINUE;
4260 }
4261
4262 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4263                                gva_t addr, void *val, unsigned int bytes,
4264                                struct x86_exception *exception)
4265 {
4266         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4267         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4268
4269         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4270                                           exception);
4271 }
4272 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4273
4274 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4275                                       gva_t addr, void *val, unsigned int bytes,
4276                                       struct x86_exception *exception)
4277 {
4278         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4280 }
4281
4282 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4283                 unsigned long addr, void *val, unsigned int bytes)
4284 {
4285         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4286         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4287
4288         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4289 }
4290
4291 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4292                                        gva_t addr, void *val,
4293                                        unsigned int bytes,
4294                                        struct x86_exception *exception)
4295 {
4296         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4297         void *data = val;
4298         int r = X86EMUL_CONTINUE;
4299
4300         while (bytes) {
4301                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4302                                                              PFERR_WRITE_MASK,
4303                                                              exception);
4304                 unsigned offset = addr & (PAGE_SIZE-1);
4305                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4306                 int ret;
4307
4308                 if (gpa == UNMAPPED_GVA)
4309                         return X86EMUL_PROPAGATE_FAULT;
4310                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4311                 if (ret < 0) {
4312                         r = X86EMUL_IO_NEEDED;
4313                         goto out;
4314                 }
4315
4316                 bytes -= towrite;
4317                 data += towrite;
4318                 addr += towrite;
4319         }
4320 out:
4321         return r;
4322 }
4323 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4324
4325 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4326                                 gpa_t *gpa, struct x86_exception *exception,
4327                                 bool write)
4328 {
4329         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4330                 | (write ? PFERR_WRITE_MASK : 0);
4331
4332         /*
4333          * currently PKRU is only applied to ept enabled guest so
4334          * there is no pkey in EPT page table for L1 guest or EPT
4335          * shadow page table for L2 guest.
4336          */
4337         if (vcpu_match_mmio_gva(vcpu, gva)
4338             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4339                                  vcpu->arch.access, 0, access)) {
4340                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4341                                         (gva & (PAGE_SIZE - 1));
4342                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4343                 return 1;
4344         }
4345
4346         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4347
4348         if (*gpa == UNMAPPED_GVA)
4349                 return -1;
4350
4351         /* For APIC access vmexit */
4352         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4353                 return 1;
4354
4355         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4356                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4357                 return 1;
4358         }
4359
4360         return 0;
4361 }
4362
4363 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4364                         const void *val, int bytes)
4365 {
4366         int ret;
4367
4368         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4369         if (ret < 0)
4370                 return 0;
4371         kvm_page_track_write(vcpu, gpa, val, bytes);
4372         return 1;
4373 }
4374
4375 struct read_write_emulator_ops {
4376         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4377                                   int bytes);
4378         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4379                                   void *val, int bytes);
4380         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4381                                int bytes, void *val);
4382         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4383                                     void *val, int bytes);
4384         bool write;
4385 };
4386
4387 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4388 {
4389         if (vcpu->mmio_read_completed) {
4390                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4391                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4392                 vcpu->mmio_read_completed = 0;
4393                 return 1;
4394         }
4395
4396         return 0;
4397 }
4398
4399 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4400                         void *val, int bytes)
4401 {
4402         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4403 }
4404
4405 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4406                          void *val, int bytes)
4407 {
4408         return emulator_write_phys(vcpu, gpa, val, bytes);
4409 }
4410
4411 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4412 {
4413         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4414         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4415 }
4416
4417 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4418                           void *val, int bytes)
4419 {
4420         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4421         return X86EMUL_IO_NEEDED;
4422 }
4423
4424 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4425                            void *val, int bytes)
4426 {
4427         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4428
4429         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4430         return X86EMUL_CONTINUE;
4431 }
4432
4433 static const struct read_write_emulator_ops read_emultor = {
4434         .read_write_prepare = read_prepare,
4435         .read_write_emulate = read_emulate,
4436         .read_write_mmio = vcpu_mmio_read,
4437         .read_write_exit_mmio = read_exit_mmio,
4438 };
4439
4440 static const struct read_write_emulator_ops write_emultor = {
4441         .read_write_emulate = write_emulate,
4442         .read_write_mmio = write_mmio,
4443         .read_write_exit_mmio = write_exit_mmio,
4444         .write = true,
4445 };
4446
4447 static int emulator_read_write_onepage(unsigned long addr, void *val,
4448                                        unsigned int bytes,
4449                                        struct x86_exception *exception,
4450                                        struct kvm_vcpu *vcpu,
4451                                        const struct read_write_emulator_ops *ops)
4452 {
4453         gpa_t gpa;
4454         int handled, ret;
4455         bool write = ops->write;
4456         struct kvm_mmio_fragment *frag;
4457
4458         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4459
4460         if (ret < 0)
4461                 return X86EMUL_PROPAGATE_FAULT;
4462
4463         /* For APIC access vmexit */
4464         if (ret)
4465                 goto mmio;
4466
4467         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4468                 return X86EMUL_CONTINUE;
4469
4470 mmio:
4471         /*
4472          * Is this MMIO handled locally?
4473          */
4474         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4475         if (handled == bytes)
4476                 return X86EMUL_CONTINUE;
4477
4478         gpa += handled;
4479         bytes -= handled;
4480         val += handled;
4481
4482         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4483         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4484         frag->gpa = gpa;
4485         frag->data = val;
4486         frag->len = bytes;
4487         return X86EMUL_CONTINUE;
4488 }
4489
4490 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4491                         unsigned long addr,
4492                         void *val, unsigned int bytes,
4493                         struct x86_exception *exception,
4494                         const struct read_write_emulator_ops *ops)
4495 {
4496         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4497         gpa_t gpa;
4498         int rc;
4499
4500         if (ops->read_write_prepare &&
4501                   ops->read_write_prepare(vcpu, val, bytes))
4502                 return X86EMUL_CONTINUE;
4503
4504         vcpu->mmio_nr_fragments = 0;
4505
4506         /* Crossing a page boundary? */
4507         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4508                 int now;
4509
4510                 now = -addr & ~PAGE_MASK;
4511                 rc = emulator_read_write_onepage(addr, val, now, exception,
4512                                                  vcpu, ops);
4513
4514                 if (rc != X86EMUL_CONTINUE)
4515                         return rc;
4516                 addr += now;
4517                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4518                         addr = (u32)addr;
4519                 val += now;
4520                 bytes -= now;
4521         }
4522
4523         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4524                                          vcpu, ops);
4525         if (rc != X86EMUL_CONTINUE)
4526                 return rc;
4527
4528         if (!vcpu->mmio_nr_fragments)
4529                 return rc;
4530
4531         gpa = vcpu->mmio_fragments[0].gpa;
4532
4533         vcpu->mmio_needed = 1;
4534         vcpu->mmio_cur_fragment = 0;
4535
4536         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4537         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4538         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4539         vcpu->run->mmio.phys_addr = gpa;
4540
4541         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4542 }
4543
4544 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4545                                   unsigned long addr,
4546                                   void *val,
4547                                   unsigned int bytes,
4548                                   struct x86_exception *exception)
4549 {
4550         return emulator_read_write(ctxt, addr, val, bytes,
4551                                    exception, &read_emultor);
4552 }
4553
4554 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4555                             unsigned long addr,
4556                             const void *val,
4557                             unsigned int bytes,
4558                             struct x86_exception *exception)
4559 {
4560         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4561                                    exception, &write_emultor);
4562 }
4563
4564 #define CMPXCHG_TYPE(t, ptr, old, new) \
4565         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4566
4567 #ifdef CONFIG_X86_64
4568 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4569 #else
4570 #  define CMPXCHG64(ptr, old, new) \
4571         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4572 #endif
4573
4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4575                                      unsigned long addr,
4576                                      const void *old,
4577                                      const void *new,
4578                                      unsigned int bytes,
4579                                      struct x86_exception *exception)
4580 {
4581         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4582         gpa_t gpa;
4583         struct page *page;
4584         char *kaddr;
4585         bool exchanged;
4586
4587         /* guests cmpxchg8b have to be emulated atomically */
4588         if (bytes > 8 || (bytes & (bytes - 1)))
4589                 goto emul_write;
4590
4591         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4592
4593         if (gpa == UNMAPPED_GVA ||
4594             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4595                 goto emul_write;
4596
4597         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4598                 goto emul_write;
4599
4600         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4601         if (is_error_page(page))
4602                 goto emul_write;
4603
4604         kaddr = kmap_atomic(page);
4605         kaddr += offset_in_page(gpa);
4606         switch (bytes) {
4607         case 1:
4608                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4609                 break;
4610         case 2:
4611                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4612                 break;
4613         case 4:
4614                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4615                 break;
4616         case 8:
4617                 exchanged = CMPXCHG64(kaddr, old, new);
4618                 break;
4619         default:
4620                 BUG();
4621         }
4622         kunmap_atomic(kaddr);
4623         kvm_release_page_dirty(page);
4624
4625         if (!exchanged)
4626                 return X86EMUL_CMPXCHG_FAILED;
4627
4628         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4629         kvm_page_track_write(vcpu, gpa, new, bytes);
4630
4631         return X86EMUL_CONTINUE;
4632
4633 emul_write:
4634         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4635
4636         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4637 }
4638
4639 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4640 {
4641         /* TODO: String I/O for in kernel device */
4642         int r;
4643
4644         if (vcpu->arch.pio.in)
4645                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4646                                     vcpu->arch.pio.size, pd);
4647         else
4648                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4649                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4650                                      pd);
4651         return r;
4652 }
4653
4654 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4655                                unsigned short port, void *val,
4656                                unsigned int count, bool in)
4657 {
4658         vcpu->arch.pio.port = port;
4659         vcpu->arch.pio.in = in;
4660         vcpu->arch.pio.count  = count;
4661         vcpu->arch.pio.size = size;
4662
4663         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4664                 vcpu->arch.pio.count = 0;
4665                 return 1;
4666         }
4667
4668         vcpu->run->exit_reason = KVM_EXIT_IO;
4669         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4670         vcpu->run->io.size = size;
4671         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4672         vcpu->run->io.count = count;
4673         vcpu->run->io.port = port;
4674
4675         return 0;
4676 }
4677
4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4679                                     int size, unsigned short port, void *val,
4680                                     unsigned int count)
4681 {
4682         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683         int ret;
4684
4685         if (vcpu->arch.pio.count)
4686                 goto data_avail;
4687
4688         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4689         if (ret) {
4690 data_avail:
4691                 memcpy(val, vcpu->arch.pio_data, size * count);
4692                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4693                 vcpu->arch.pio.count = 0;
4694                 return 1;
4695         }
4696
4697         return 0;
4698 }
4699
4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4701                                      int size, unsigned short port,
4702                                      const void *val, unsigned int count)
4703 {
4704         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705
4706         memcpy(vcpu->arch.pio_data, val, size * count);
4707         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4708         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4709 }
4710
4711 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4712 {
4713         return kvm_x86_ops->get_segment_base(vcpu, seg);
4714 }
4715
4716 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4717 {
4718         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4719 }
4720
4721 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4722 {
4723         if (!need_emulate_wbinvd(vcpu))
4724                 return X86EMUL_CONTINUE;
4725
4726         if (kvm_x86_ops->has_wbinvd_exit()) {
4727                 int cpu = get_cpu();
4728
4729                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4730                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4731                                 wbinvd_ipi, NULL, 1);
4732                 put_cpu();
4733                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4734         } else
4735                 wbinvd();
4736         return X86EMUL_CONTINUE;
4737 }
4738
4739 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4740 {
4741         kvm_x86_ops->skip_emulated_instruction(vcpu);
4742         return kvm_emulate_wbinvd_noskip(vcpu);
4743 }
4744 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4745
4746
4747
4748 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4749 {
4750         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4751 }
4752
4753 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4754                            unsigned long *dest)
4755 {
4756         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4757 }
4758
4759 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4760                            unsigned long value)
4761 {
4762
4763         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4764 }
4765
4766 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4767 {
4768         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4769 }
4770
4771 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4772 {
4773         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4774         unsigned long value;
4775
4776         switch (cr) {
4777         case 0:
4778                 value = kvm_read_cr0(vcpu);
4779                 break;
4780         case 2:
4781                 value = vcpu->arch.cr2;
4782                 break;
4783         case 3:
4784                 value = kvm_read_cr3(vcpu);
4785                 break;
4786         case 4:
4787                 value = kvm_read_cr4(vcpu);
4788                 break;
4789         case 8:
4790                 value = kvm_get_cr8(vcpu);
4791                 break;
4792         default:
4793                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4794                 return 0;
4795         }
4796
4797         return value;
4798 }
4799
4800 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4801 {
4802         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4803         int res = 0;
4804
4805         switch (cr) {
4806         case 0:
4807                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4808                 break;
4809         case 2:
4810                 vcpu->arch.cr2 = val;
4811                 break;
4812         case 3:
4813                 res = kvm_set_cr3(vcpu, val);
4814                 break;
4815         case 4:
4816                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4817                 break;
4818         case 8:
4819                 res = kvm_set_cr8(vcpu, val);
4820                 break;
4821         default:
4822                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4823                 res = -1;
4824         }
4825
4826         return res;
4827 }
4828
4829 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4830 {
4831         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4832 }
4833
4834 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4835 {
4836         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4837 }
4838
4839 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4840 {
4841         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4842 }
4843
4844 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4845 {
4846         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4847 }
4848
4849 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4850 {
4851         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4852 }
4853
4854 static unsigned long emulator_get_cached_segment_base(
4855         struct x86_emulate_ctxt *ctxt, int seg)
4856 {
4857         return get_segment_base(emul_to_vcpu(ctxt), seg);
4858 }
4859
4860 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4861                                  struct desc_struct *desc, u32 *base3,
4862                                  int seg)
4863 {
4864         struct kvm_segment var;
4865
4866         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4867         *selector = var.selector;
4868
4869         if (var.unusable) {
4870                 memset(desc, 0, sizeof(*desc));
4871                 return false;
4872         }
4873
4874         if (var.g)
4875                 var.limit >>= 12;
4876         set_desc_limit(desc, var.limit);
4877         set_desc_base(desc, (unsigned long)var.base);
4878 #ifdef CONFIG_X86_64
4879         if (base3)
4880                 *base3 = var.base >> 32;
4881 #endif
4882         desc->type = var.type;
4883         desc->s = var.s;
4884         desc->dpl = var.dpl;
4885         desc->p = var.present;
4886         desc->avl = var.avl;
4887         desc->l = var.l;
4888         desc->d = var.db;
4889         desc->g = var.g;
4890
4891         return true;
4892 }
4893
4894 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4895                                  struct desc_struct *desc, u32 base3,
4896                                  int seg)
4897 {
4898         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4899         struct kvm_segment var;
4900
4901         var.selector = selector;
4902         var.base = get_desc_base(desc);
4903 #ifdef CONFIG_X86_64
4904         var.base |= ((u64)base3) << 32;
4905 #endif
4906         var.limit = get_desc_limit(desc);
4907         if (desc->g)
4908                 var.limit = (var.limit << 12) | 0xfff;
4909         var.type = desc->type;
4910         var.dpl = desc->dpl;
4911         var.db = desc->d;
4912         var.s = desc->s;
4913         var.l = desc->l;
4914         var.g = desc->g;
4915         var.avl = desc->avl;
4916         var.present = desc->p;
4917         var.unusable = !var.present;
4918         var.padding = 0;
4919
4920         kvm_set_segment(vcpu, &var, seg);
4921         return;
4922 }
4923
4924 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4925                             u32 msr_index, u64 *pdata)
4926 {
4927         struct msr_data msr;
4928         int r;
4929
4930         msr.index = msr_index;
4931         msr.host_initiated = false;
4932         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4933         if (r)
4934                 return r;
4935
4936         *pdata = msr.data;
4937         return 0;
4938 }
4939
4940 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4941                             u32 msr_index, u64 data)
4942 {
4943         struct msr_data msr;
4944
4945         msr.data = data;
4946         msr.index = msr_index;
4947         msr.host_initiated = false;
4948         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4949 }
4950
4951 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4952 {
4953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954
4955         return vcpu->arch.smbase;
4956 }
4957
4958 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4959 {
4960         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961
4962         vcpu->arch.smbase = smbase;
4963 }
4964
4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4966                               u32 pmc)
4967 {
4968         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4969 }
4970
4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4972                              u32 pmc, u64 *pdata)
4973 {
4974         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4975 }
4976
4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4978 {
4979         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4980 }
4981
4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4983 {
4984         preempt_disable();
4985         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4986         /*
4987          * CR0.TS may reference the host fpu state, not the guest fpu state,
4988          * so it may be clear at this point.
4989          */
4990         clts();
4991 }
4992
4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4994 {
4995         preempt_enable();
4996 }
4997
4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4999                               struct x86_instruction_info *info,
5000                               enum x86_intercept_stage stage)
5001 {
5002         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5003 }
5004
5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5006                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5007 {
5008         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5009 }
5010
5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5012 {
5013         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5014 }
5015
5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5017 {
5018         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5019 }
5020
5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5022 {
5023         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5024 }
5025
5026 static const struct x86_emulate_ops emulate_ops = {
5027         .read_gpr            = emulator_read_gpr,
5028         .write_gpr           = emulator_write_gpr,
5029         .read_std            = kvm_read_guest_virt_system,
5030         .write_std           = kvm_write_guest_virt_system,
5031         .read_phys           = kvm_read_guest_phys_system,
5032         .fetch               = kvm_fetch_guest_virt,
5033         .read_emulated       = emulator_read_emulated,
5034         .write_emulated      = emulator_write_emulated,
5035         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5036         .invlpg              = emulator_invlpg,
5037         .pio_in_emulated     = emulator_pio_in_emulated,
5038         .pio_out_emulated    = emulator_pio_out_emulated,
5039         .get_segment         = emulator_get_segment,
5040         .set_segment         = emulator_set_segment,
5041         .get_cached_segment_base = emulator_get_cached_segment_base,
5042         .get_gdt             = emulator_get_gdt,
5043         .get_idt             = emulator_get_idt,
5044         .set_gdt             = emulator_set_gdt,
5045         .set_idt             = emulator_set_idt,
5046         .get_cr              = emulator_get_cr,
5047         .set_cr              = emulator_set_cr,
5048         .cpl                 = emulator_get_cpl,
5049         .get_dr              = emulator_get_dr,
5050         .set_dr              = emulator_set_dr,
5051         .get_smbase          = emulator_get_smbase,
5052         .set_smbase          = emulator_set_smbase,
5053         .set_msr             = emulator_set_msr,
5054         .get_msr             = emulator_get_msr,
5055         .check_pmc           = emulator_check_pmc,
5056         .read_pmc            = emulator_read_pmc,
5057         .halt                = emulator_halt,
5058         .wbinvd              = emulator_wbinvd,
5059         .fix_hypercall       = emulator_fix_hypercall,
5060         .get_fpu             = emulator_get_fpu,
5061         .put_fpu             = emulator_put_fpu,
5062         .intercept           = emulator_intercept,
5063         .get_cpuid           = emulator_get_cpuid,
5064         .set_nmi_mask        = emulator_set_nmi_mask,
5065 };
5066
5067 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5068 {
5069         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5070         /*
5071          * an sti; sti; sequence only disable interrupts for the first
5072          * instruction. So, if the last instruction, be it emulated or
5073          * not, left the system with the INT_STI flag enabled, it
5074          * means that the last instruction is an sti. We should not
5075          * leave the flag on in this case. The same goes for mov ss
5076          */
5077         if (int_shadow & mask)
5078                 mask = 0;
5079         if (unlikely(int_shadow || mask)) {
5080                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5081                 if (!mask)
5082                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5083         }
5084 }
5085
5086 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5087 {
5088         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5089         if (ctxt->exception.vector == PF_VECTOR)
5090                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5091
5092         if (ctxt->exception.error_code_valid)
5093                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5094                                       ctxt->exception.error_code);
5095         else
5096                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5097         return false;
5098 }
5099
5100 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5101 {
5102         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5103         int cs_db, cs_l;
5104
5105         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5106
5107         ctxt->eflags = kvm_get_rflags(vcpu);
5108         ctxt->eip = kvm_rip_read(vcpu);
5109         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5110                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5111                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5112                      cs_db                              ? X86EMUL_MODE_PROT32 :
5113                                                           X86EMUL_MODE_PROT16;
5114         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5115         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5116         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5117         ctxt->emul_flags = vcpu->arch.hflags;
5118
5119         init_decode_cache(ctxt);
5120         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5121 }
5122
5123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5124 {
5125         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5126         int ret;
5127
5128         init_emulate_ctxt(vcpu);
5129
5130         ctxt->op_bytes = 2;
5131         ctxt->ad_bytes = 2;
5132         ctxt->_eip = ctxt->eip + inc_eip;
5133         ret = emulate_int_real(ctxt, irq);
5134
5135         if (ret != X86EMUL_CONTINUE)
5136                 return EMULATE_FAIL;
5137
5138         ctxt->eip = ctxt->_eip;
5139         kvm_rip_write(vcpu, ctxt->eip);
5140         kvm_set_rflags(vcpu, ctxt->eflags);
5141
5142         if (irq == NMI_VECTOR)
5143                 vcpu->arch.nmi_pending = 0;
5144         else
5145                 vcpu->arch.interrupt.pending = false;
5146
5147         return EMULATE_DONE;
5148 }
5149 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5150
5151 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5152 {
5153         int r = EMULATE_DONE;
5154
5155         ++vcpu->stat.insn_emulation_fail;
5156         trace_kvm_emulate_insn_failed(vcpu);
5157         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5158                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5159                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5160                 vcpu->run->internal.ndata = 0;
5161                 r = EMULATE_FAIL;
5162         }
5163         kvm_queue_exception(vcpu, UD_VECTOR);
5164
5165         return r;
5166 }
5167
5168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5169                                   bool write_fault_to_shadow_pgtable,
5170                                   int emulation_type)
5171 {
5172         gpa_t gpa = cr2;
5173         kvm_pfn_t pfn;
5174
5175         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5176                 return false;
5177
5178         if (!vcpu->arch.mmu.direct_map) {
5179                 /*
5180                  * Write permission should be allowed since only
5181                  * write access need to be emulated.
5182                  */
5183                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5184
5185                 /*
5186                  * If the mapping is invalid in guest, let cpu retry
5187                  * it to generate fault.
5188                  */
5189                 if (gpa == UNMAPPED_GVA)
5190                         return true;
5191         }
5192
5193         /*
5194          * Do not retry the unhandleable instruction if it faults on the
5195          * readonly host memory, otherwise it will goto a infinite loop:
5196          * retry instruction -> write #PF -> emulation fail -> retry
5197          * instruction -> ...
5198          */
5199         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5200
5201         /*
5202          * If the instruction failed on the error pfn, it can not be fixed,
5203          * report the error to userspace.
5204          */
5205         if (is_error_noslot_pfn(pfn))
5206                 return false;
5207
5208         kvm_release_pfn_clean(pfn);
5209
5210         /* The instructions are well-emulated on direct mmu. */
5211         if (vcpu->arch.mmu.direct_map) {
5212                 unsigned int indirect_shadow_pages;
5213
5214                 spin_lock(&vcpu->kvm->mmu_lock);
5215                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5216                 spin_unlock(&vcpu->kvm->mmu_lock);
5217
5218                 if (indirect_shadow_pages)
5219                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5220
5221                 return true;
5222         }
5223
5224         /*
5225          * if emulation was due to access to shadowed page table
5226          * and it failed try to unshadow page and re-enter the
5227          * guest to let CPU execute the instruction.
5228          */
5229         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5230
5231         /*
5232          * If the access faults on its page table, it can not
5233          * be fixed by unprotecting shadow page and it should
5234          * be reported to userspace.
5235          */
5236         return !write_fault_to_shadow_pgtable;
5237 }
5238
5239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5240                               unsigned long cr2,  int emulation_type)
5241 {
5242         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5243         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5244
5245         last_retry_eip = vcpu->arch.last_retry_eip;
5246         last_retry_addr = vcpu->arch.last_retry_addr;
5247
5248         /*
5249          * If the emulation is caused by #PF and it is non-page_table
5250          * writing instruction, it means the VM-EXIT is caused by shadow
5251          * page protected, we can zap the shadow page and retry this
5252          * instruction directly.
5253          *
5254          * Note: if the guest uses a non-page-table modifying instruction
5255          * on the PDE that points to the instruction, then we will unmap
5256          * the instruction and go to an infinite loop. So, we cache the
5257          * last retried eip and the last fault address, if we meet the eip
5258          * and the address again, we can break out of the potential infinite
5259          * loop.
5260          */
5261         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5262
5263         if (!(emulation_type & EMULTYPE_RETRY))
5264                 return false;
5265
5266         if (x86_page_table_writing_insn(ctxt))
5267                 return false;
5268
5269         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5270                 return false;
5271
5272         vcpu->arch.last_retry_eip = ctxt->eip;
5273         vcpu->arch.last_retry_addr = cr2;
5274
5275         if (!vcpu->arch.mmu.direct_map)
5276                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5277
5278         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5279
5280         return true;
5281 }
5282
5283 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5284 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5285
5286 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5287 {
5288         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5289                 /* This is a good place to trace that we are exiting SMM.  */
5290                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5291
5292                 if (unlikely(vcpu->arch.smi_pending)) {
5293                         kvm_make_request(KVM_REQ_SMI, vcpu);
5294                         vcpu->arch.smi_pending = 0;
5295                 } else {
5296                         /* Process a latched INIT, if any.  */
5297                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5298                 }
5299         }
5300
5301         kvm_mmu_reset_context(vcpu);
5302 }
5303
5304 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5305 {
5306         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5307
5308         vcpu->arch.hflags = emul_flags;
5309
5310         if (changed & HF_SMM_MASK)
5311                 kvm_smm_changed(vcpu);
5312 }
5313
5314 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5315                                 unsigned long *db)
5316 {
5317         u32 dr6 = 0;
5318         int i;
5319         u32 enable, rwlen;
5320
5321         enable = dr7;
5322         rwlen = dr7 >> 16;
5323         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5324                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5325                         dr6 |= (1 << i);
5326         return dr6;
5327 }
5328
5329 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5330 {
5331         struct kvm_run *kvm_run = vcpu->run;
5332
5333         /*
5334          * rflags is the old, "raw" value of the flags.  The new value has
5335          * not been saved yet.
5336          *
5337          * This is correct even for TF set by the guest, because "the
5338          * processor will not generate this exception after the instruction
5339          * that sets the TF flag".
5340          */
5341         if (unlikely(rflags & X86_EFLAGS_TF)) {
5342                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5343                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5344                                                   DR6_RTM;
5345                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5346                         kvm_run->debug.arch.exception = DB_VECTOR;
5347                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5348                         *r = EMULATE_USER_EXIT;
5349                 } else {
5350                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5351                         /*
5352                          * "Certain debug exceptions may clear bit 0-3.  The
5353                          * remaining contents of the DR6 register are never
5354                          * cleared by the processor".
5355                          */
5356                         vcpu->arch.dr6 &= ~15;
5357                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5358                         kvm_queue_exception(vcpu, DB_VECTOR);
5359                 }
5360         }
5361 }
5362
5363 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5364 {
5365         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5366             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5367                 struct kvm_run *kvm_run = vcpu->run;
5368                 unsigned long eip = kvm_get_linear_rip(vcpu);
5369                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5370                                            vcpu->arch.guest_debug_dr7,
5371                                            vcpu->arch.eff_db);
5372
5373                 if (dr6 != 0) {
5374                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5375                         kvm_run->debug.arch.pc = eip;
5376                         kvm_run->debug.arch.exception = DB_VECTOR;
5377                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5378                         *r = EMULATE_USER_EXIT;
5379                         return true;
5380                 }
5381         }
5382
5383         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5384             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5385                 unsigned long eip = kvm_get_linear_rip(vcpu);
5386                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5387                                            vcpu->arch.dr7,
5388                                            vcpu->arch.db);
5389
5390                 if (dr6 != 0) {
5391                         vcpu->arch.dr6 &= ~15;
5392                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5393                         kvm_queue_exception(vcpu, DB_VECTOR);
5394                         *r = EMULATE_DONE;
5395                         return true;
5396                 }
5397         }
5398
5399         return false;
5400 }
5401
5402 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5403                             unsigned long cr2,
5404                             int emulation_type,
5405                             void *insn,
5406                             int insn_len)
5407 {
5408         int r;
5409         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5410         bool writeback = true;
5411         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5412
5413         /*
5414          * Clear write_fault_to_shadow_pgtable here to ensure it is
5415          * never reused.
5416          */
5417         vcpu->arch.write_fault_to_shadow_pgtable = false;
5418         kvm_clear_exception_queue(vcpu);
5419
5420         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5421                 init_emulate_ctxt(vcpu);
5422
5423                 /*
5424                  * We will reenter on the same instruction since
5425                  * we do not set complete_userspace_io.  This does not
5426                  * handle watchpoints yet, those would be handled in
5427                  * the emulate_ops.
5428                  */
5429                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5430                         return r;
5431
5432                 ctxt->interruptibility = 0;
5433                 ctxt->have_exception = false;
5434                 ctxt->exception.vector = -1;
5435                 ctxt->perm_ok = false;
5436
5437                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5438
5439                 r = x86_decode_insn(ctxt, insn, insn_len);
5440
5441                 trace_kvm_emulate_insn_start(vcpu);
5442                 ++vcpu->stat.insn_emulation;
5443                 if (r != EMULATION_OK)  {
5444                         if (emulation_type & EMULTYPE_TRAP_UD)
5445                                 return EMULATE_FAIL;
5446                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5447                                                 emulation_type))
5448                                 return EMULATE_DONE;
5449                         if (emulation_type & EMULTYPE_SKIP)
5450                                 return EMULATE_FAIL;
5451                         return handle_emulation_failure(vcpu);
5452                 }
5453         }
5454
5455         if (emulation_type & EMULTYPE_SKIP) {
5456                 kvm_rip_write(vcpu, ctxt->_eip);
5457                 if (ctxt->eflags & X86_EFLAGS_RF)
5458                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5459                 return EMULATE_DONE;
5460         }
5461
5462         if (retry_instruction(ctxt, cr2, emulation_type))
5463                 return EMULATE_DONE;
5464
5465         /* this is needed for vmware backdoor interface to work since it
5466            changes registers values  during IO operation */
5467         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5468                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5469                 emulator_invalidate_register_cache(ctxt);
5470         }
5471
5472 restart:
5473         r = x86_emulate_insn(ctxt);
5474
5475         if (r == EMULATION_INTERCEPTED)
5476                 return EMULATE_DONE;
5477
5478         if (r == EMULATION_FAILED) {
5479                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5480                                         emulation_type))
5481                         return EMULATE_DONE;
5482
5483                 return handle_emulation_failure(vcpu);
5484         }
5485
5486         if (ctxt->have_exception) {
5487                 r = EMULATE_DONE;
5488                 if (inject_emulated_exception(vcpu))
5489                         return r;
5490         } else if (vcpu->arch.pio.count) {
5491                 if (!vcpu->arch.pio.in) {
5492                         /* FIXME: return into emulator if single-stepping.  */
5493                         vcpu->arch.pio.count = 0;
5494                 } else {
5495                         writeback = false;
5496                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5497                 }
5498                 r = EMULATE_USER_EXIT;
5499         } else if (vcpu->mmio_needed) {
5500                 if (!vcpu->mmio_is_write)
5501                         writeback = false;
5502                 r = EMULATE_USER_EXIT;
5503                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5504         } else if (r == EMULATION_RESTART)
5505                 goto restart;
5506         else
5507                 r = EMULATE_DONE;
5508
5509         if (writeback) {
5510                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5511                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5512                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5513                 if (vcpu->arch.hflags != ctxt->emul_flags)
5514                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5515                 kvm_rip_write(vcpu, ctxt->eip);
5516                 if (r == EMULATE_DONE)
5517                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5518                 if (!ctxt->have_exception ||
5519                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5520                         __kvm_set_rflags(vcpu, ctxt->eflags);
5521
5522                 /*
5523                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5524                  * do nothing, and it will be requested again as soon as
5525                  * the shadow expires.  But we still need to check here,
5526                  * because POPF has no interrupt shadow.
5527                  */
5528                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5529                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5530         } else
5531                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5532
5533         return r;
5534 }
5535 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5536
5537 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5538 {
5539         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5540         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5541                                             size, port, &val, 1);
5542         /* do not return to emulator after return from userspace */
5543         vcpu->arch.pio.count = 0;
5544         return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5547
5548 static void tsc_bad(void *info)
5549 {
5550         __this_cpu_write(cpu_tsc_khz, 0);
5551 }
5552
5553 static void tsc_khz_changed(void *data)
5554 {
5555         struct cpufreq_freqs *freq = data;
5556         unsigned long khz = 0;
5557
5558         if (data)
5559                 khz = freq->new;
5560         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5561                 khz = cpufreq_quick_get(raw_smp_processor_id());
5562         if (!khz)
5563                 khz = tsc_khz;
5564         __this_cpu_write(cpu_tsc_khz, khz);
5565 }
5566
5567 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5568                                      void *data)
5569 {
5570         struct cpufreq_freqs *freq = data;
5571         struct kvm *kvm;
5572         struct kvm_vcpu *vcpu;
5573         int i, send_ipi = 0;
5574
5575         /*
5576          * We allow guests to temporarily run on slowing clocks,
5577          * provided we notify them after, or to run on accelerating
5578          * clocks, provided we notify them before.  Thus time never
5579          * goes backwards.
5580          *
5581          * However, we have a problem.  We can't atomically update
5582          * the frequency of a given CPU from this function; it is
5583          * merely a notifier, which can be called from any CPU.
5584          * Changing the TSC frequency at arbitrary points in time
5585          * requires a recomputation of local variables related to
5586          * the TSC for each VCPU.  We must flag these local variables
5587          * to be updated and be sure the update takes place with the
5588          * new frequency before any guests proceed.
5589          *
5590          * Unfortunately, the combination of hotplug CPU and frequency
5591          * change creates an intractable locking scenario; the order
5592          * of when these callouts happen is undefined with respect to
5593          * CPU hotplug, and they can race with each other.  As such,
5594          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5595          * undefined; you can actually have a CPU frequency change take
5596          * place in between the computation of X and the setting of the
5597          * variable.  To protect against this problem, all updates of
5598          * the per_cpu tsc_khz variable are done in an interrupt
5599          * protected IPI, and all callers wishing to update the value
5600          * must wait for a synchronous IPI to complete (which is trivial
5601          * if the caller is on the CPU already).  This establishes the
5602          * necessary total order on variable updates.
5603          *
5604          * Note that because a guest time update may take place
5605          * anytime after the setting of the VCPU's request bit, the
5606          * correct TSC value must be set before the request.  However,
5607          * to ensure the update actually makes it to any guest which
5608          * starts running in hardware virtualization between the set
5609          * and the acquisition of the spinlock, we must also ping the
5610          * CPU after setting the request bit.
5611          *
5612          */
5613
5614         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5615                 return 0;
5616         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5617                 return 0;
5618
5619         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5620
5621         spin_lock(&kvm_lock);
5622         list_for_each_entry(kvm, &vm_list, vm_list) {
5623                 kvm_for_each_vcpu(i, vcpu, kvm) {
5624                         if (vcpu->cpu != freq->cpu)
5625                                 continue;
5626                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5627                         if (vcpu->cpu != smp_processor_id())
5628                                 send_ipi = 1;
5629                 }
5630         }
5631         spin_unlock(&kvm_lock);
5632
5633         if (freq->old < freq->new && send_ipi) {
5634                 /*
5635                  * We upscale the frequency.  Must make the guest
5636                  * doesn't see old kvmclock values while running with
5637                  * the new frequency, otherwise we risk the guest sees
5638                  * time go backwards.
5639                  *
5640                  * In case we update the frequency for another cpu
5641                  * (which might be in guest context) send an interrupt
5642                  * to kick the cpu out of guest context.  Next time
5643                  * guest context is entered kvmclock will be updated,
5644                  * so the guest will not see stale values.
5645                  */
5646                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5647         }
5648         return 0;
5649 }
5650
5651 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5652         .notifier_call  = kvmclock_cpufreq_notifier
5653 };
5654
5655 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5656                                         unsigned long action, void *hcpu)
5657 {
5658         unsigned int cpu = (unsigned long)hcpu;
5659
5660         switch (action) {
5661                 case CPU_ONLINE:
5662                 case CPU_DOWN_FAILED:
5663                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664                         break;
5665                 case CPU_DOWN_PREPARE:
5666                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5667                         break;
5668         }
5669         return NOTIFY_OK;
5670 }
5671
5672 static struct notifier_block kvmclock_cpu_notifier_block = {
5673         .notifier_call  = kvmclock_cpu_notifier,
5674         .priority = -INT_MAX
5675 };
5676
5677 static void kvm_timer_init(void)
5678 {
5679         int cpu;
5680
5681         max_tsc_khz = tsc_khz;
5682
5683         cpu_notifier_register_begin();
5684         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5685 #ifdef CONFIG_CPU_FREQ
5686                 struct cpufreq_policy policy;
5687                 memset(&policy, 0, sizeof(policy));
5688                 cpu = get_cpu();
5689                 cpufreq_get_policy(&policy, cpu);
5690                 if (policy.cpuinfo.max_freq)
5691                         max_tsc_khz = policy.cpuinfo.max_freq;
5692                 put_cpu();
5693 #endif
5694                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5695                                           CPUFREQ_TRANSITION_NOTIFIER);
5696         }
5697         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5698         for_each_online_cpu(cpu)
5699                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5700
5701         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5702         cpu_notifier_register_done();
5703
5704 }
5705
5706 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5707
5708 int kvm_is_in_guest(void)
5709 {
5710         return __this_cpu_read(current_vcpu) != NULL;
5711 }
5712
5713 static int kvm_is_user_mode(void)
5714 {
5715         int user_mode = 3;
5716
5717         if (__this_cpu_read(current_vcpu))
5718                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5719
5720         return user_mode != 0;
5721 }
5722
5723 static unsigned long kvm_get_guest_ip(void)
5724 {
5725         unsigned long ip = 0;
5726
5727         if (__this_cpu_read(current_vcpu))
5728                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5729
5730         return ip;
5731 }
5732
5733 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5734         .is_in_guest            = kvm_is_in_guest,
5735         .is_user_mode           = kvm_is_user_mode,
5736         .get_guest_ip           = kvm_get_guest_ip,
5737 };
5738
5739 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5740 {
5741         __this_cpu_write(current_vcpu, vcpu);
5742 }
5743 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5744
5745 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5746 {
5747         __this_cpu_write(current_vcpu, NULL);
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5750
5751 static void kvm_set_mmio_spte_mask(void)
5752 {
5753         u64 mask;
5754         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5755
5756         /*
5757          * Set the reserved bits and the present bit of an paging-structure
5758          * entry to generate page fault with PFER.RSV = 1.
5759          */
5760          /* Mask the reserved physical address bits. */
5761         mask = rsvd_bits(maxphyaddr, 51);
5762
5763         /* Bit 62 is always reserved for 32bit host. */
5764         mask |= 0x3ull << 62;
5765
5766         /* Set the present bit. */
5767         mask |= 1ull;
5768
5769 #ifdef CONFIG_X86_64
5770         /*
5771          * If reserved bit is not supported, clear the present bit to disable
5772          * mmio page fault.
5773          */
5774         if (maxphyaddr == 52)
5775                 mask &= ~1ull;
5776 #endif
5777
5778         kvm_mmu_set_mmio_spte_mask(mask);
5779 }
5780
5781 #ifdef CONFIG_X86_64
5782 static void pvclock_gtod_update_fn(struct work_struct *work)
5783 {
5784         struct kvm *kvm;
5785
5786         struct kvm_vcpu *vcpu;
5787         int i;
5788
5789         spin_lock(&kvm_lock);
5790         list_for_each_entry(kvm, &vm_list, vm_list)
5791                 kvm_for_each_vcpu(i, vcpu, kvm)
5792                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5793         atomic_set(&kvm_guest_has_master_clock, 0);
5794         spin_unlock(&kvm_lock);
5795 }
5796
5797 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5798
5799 /*
5800  * Notification about pvclock gtod data update.
5801  */
5802 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5803                                void *priv)
5804 {
5805         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5806         struct timekeeper *tk = priv;
5807
5808         update_pvclock_gtod(tk);
5809
5810         /* disable master clock if host does not trust, or does not
5811          * use, TSC clocksource
5812          */
5813         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5814             atomic_read(&kvm_guest_has_master_clock) != 0)
5815                 queue_work(system_long_wq, &pvclock_gtod_work);
5816
5817         return 0;
5818 }
5819
5820 static struct notifier_block pvclock_gtod_notifier = {
5821         .notifier_call = pvclock_gtod_notify,
5822 };
5823 #endif
5824
5825 int kvm_arch_init(void *opaque)
5826 {
5827         int r;
5828         struct kvm_x86_ops *ops = opaque;
5829
5830         if (kvm_x86_ops) {
5831                 printk(KERN_ERR "kvm: already loaded the other module\n");
5832                 r = -EEXIST;
5833                 goto out;
5834         }
5835
5836         if (!ops->cpu_has_kvm_support()) {
5837                 printk(KERN_ERR "kvm: no hardware support\n");
5838                 r = -EOPNOTSUPP;
5839                 goto out;
5840         }
5841         if (ops->disabled_by_bios()) {
5842                 printk(KERN_ERR "kvm: disabled by bios\n");
5843                 r = -EOPNOTSUPP;
5844                 goto out;
5845         }
5846
5847         r = -ENOMEM;
5848         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5849         if (!shared_msrs) {
5850                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5851                 goto out;
5852         }
5853
5854         r = kvm_mmu_module_init();
5855         if (r)
5856                 goto out_free_percpu;
5857
5858         kvm_set_mmio_spte_mask();
5859
5860         kvm_x86_ops = ops;
5861
5862         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5863                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5864
5865         kvm_timer_init();
5866
5867         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5868
5869         if (boot_cpu_has(X86_FEATURE_XSAVE))
5870                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5871
5872         kvm_lapic_init();
5873 #ifdef CONFIG_X86_64
5874         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5875 #endif
5876
5877         return 0;
5878
5879 out_free_percpu:
5880         free_percpu(shared_msrs);
5881 out:
5882         return r;
5883 }
5884
5885 void kvm_arch_exit(void)
5886 {
5887         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5888
5889         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5890                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5891                                             CPUFREQ_TRANSITION_NOTIFIER);
5892         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5893 #ifdef CONFIG_X86_64
5894         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5895 #endif
5896         kvm_x86_ops = NULL;
5897         kvm_mmu_module_exit();
5898         free_percpu(shared_msrs);
5899 }
5900
5901 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5902 {
5903         ++vcpu->stat.halt_exits;
5904         if (lapic_in_kernel(vcpu)) {
5905                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5906                 return 1;
5907         } else {
5908                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5909                 return 0;
5910         }
5911 }
5912 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5913
5914 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5915 {
5916         kvm_x86_ops->skip_emulated_instruction(vcpu);
5917         return kvm_vcpu_halt(vcpu);
5918 }
5919 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5920
5921 /*
5922  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5923  *
5924  * @apicid - apicid of vcpu to be kicked.
5925  */
5926 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5927 {
5928         struct kvm_lapic_irq lapic_irq;
5929
5930         lapic_irq.shorthand = 0;
5931         lapic_irq.dest_mode = 0;
5932         lapic_irq.dest_id = apicid;
5933         lapic_irq.msi_redir_hint = false;
5934
5935         lapic_irq.delivery_mode = APIC_DM_REMRD;
5936         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5937 }
5938
5939 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5940 {
5941         vcpu->arch.apicv_active = false;
5942         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5943 }
5944
5945 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5946 {
5947         unsigned long nr, a0, a1, a2, a3, ret;
5948         int op_64_bit, r = 1;
5949
5950         kvm_x86_ops->skip_emulated_instruction(vcpu);
5951
5952         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5953                 return kvm_hv_hypercall(vcpu);
5954
5955         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5956         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5957         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5958         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5959         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5960
5961         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5962
5963         op_64_bit = is_64_bit_mode(vcpu);
5964         if (!op_64_bit) {
5965                 nr &= 0xFFFFFFFF;
5966                 a0 &= 0xFFFFFFFF;
5967                 a1 &= 0xFFFFFFFF;
5968                 a2 &= 0xFFFFFFFF;
5969                 a3 &= 0xFFFFFFFF;
5970         }
5971
5972         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5973                 ret = -KVM_EPERM;
5974                 goto out;
5975         }
5976
5977         switch (nr) {
5978         case KVM_HC_VAPIC_POLL_IRQ:
5979                 ret = 0;
5980                 break;
5981         case KVM_HC_KICK_CPU:
5982                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5983                 ret = 0;
5984                 break;
5985         default:
5986                 ret = -KVM_ENOSYS;
5987                 break;
5988         }
5989 out:
5990         if (!op_64_bit)
5991                 ret = (u32)ret;
5992         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5993         ++vcpu->stat.hypercalls;
5994         return r;
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5997
5998 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5999 {
6000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6001         char instruction[3];
6002         unsigned long rip = kvm_rip_read(vcpu);
6003
6004         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6005
6006         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6007 }
6008
6009 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6010 {
6011         return vcpu->run->request_interrupt_window &&
6012                 likely(!pic_in_kernel(vcpu->kvm));
6013 }
6014
6015 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6016 {
6017         struct kvm_run *kvm_run = vcpu->run;
6018
6019         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6020         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6021         kvm_run->cr8 = kvm_get_cr8(vcpu);
6022         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6023         kvm_run->ready_for_interrupt_injection =
6024                 pic_in_kernel(vcpu->kvm) ||
6025                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6026 }
6027
6028 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6029 {
6030         int max_irr, tpr;
6031
6032         if (!kvm_x86_ops->update_cr8_intercept)
6033                 return;
6034
6035         if (!lapic_in_kernel(vcpu))
6036                 return;
6037
6038         if (vcpu->arch.apicv_active)
6039                 return;
6040
6041         if (!vcpu->arch.apic->vapic_addr)
6042                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6043         else
6044                 max_irr = -1;
6045
6046         if (max_irr != -1)
6047                 max_irr >>= 4;
6048
6049         tpr = kvm_lapic_get_cr8(vcpu);
6050
6051         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6052 }
6053
6054 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6055 {
6056         int r;
6057
6058         /* try to reinject previous events if any */
6059         if (vcpu->arch.exception.pending) {
6060                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6061                                         vcpu->arch.exception.has_error_code,
6062                                         vcpu->arch.exception.error_code);
6063
6064                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6065                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6066                                              X86_EFLAGS_RF);
6067
6068                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6069                     (vcpu->arch.dr7 & DR7_GD)) {
6070                         vcpu->arch.dr7 &= ~DR7_GD;
6071                         kvm_update_dr7(vcpu);
6072                 }
6073
6074                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6075                                           vcpu->arch.exception.has_error_code,
6076                                           vcpu->arch.exception.error_code,
6077                                           vcpu->arch.exception.reinject);
6078                 return 0;
6079         }
6080
6081         if (vcpu->arch.nmi_injected) {
6082                 kvm_x86_ops->set_nmi(vcpu);
6083                 return 0;
6084         }
6085
6086         if (vcpu->arch.interrupt.pending) {
6087                 kvm_x86_ops->set_irq(vcpu);
6088                 return 0;
6089         }
6090
6091         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6092                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6093                 if (r != 0)
6094                         return r;
6095         }
6096
6097         /* try to inject new event if pending */
6098         if (vcpu->arch.nmi_pending) {
6099                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6100                         --vcpu->arch.nmi_pending;
6101                         vcpu->arch.nmi_injected = true;
6102                         kvm_x86_ops->set_nmi(vcpu);
6103                 }
6104         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6105                 /*
6106                  * Because interrupts can be injected asynchronously, we are
6107                  * calling check_nested_events again here to avoid a race condition.
6108                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6109                  * proposal and current concerns.  Perhaps we should be setting
6110                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6111                  */
6112                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6113                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6114                         if (r != 0)
6115                                 return r;
6116                 }
6117                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6118                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6119                                             false);
6120                         kvm_x86_ops->set_irq(vcpu);
6121                 }
6122         }
6123         return 0;
6124 }
6125
6126 static void process_nmi(struct kvm_vcpu *vcpu)
6127 {
6128         unsigned limit = 2;
6129
6130         /*
6131          * x86 is limited to one NMI running, and one NMI pending after it.
6132          * If an NMI is already in progress, limit further NMIs to just one.
6133          * Otherwise, allow two (and we'll inject the first one immediately).
6134          */
6135         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6136                 limit = 1;
6137
6138         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6139         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6140         kvm_make_request(KVM_REQ_EVENT, vcpu);
6141 }
6142
6143 #define put_smstate(type, buf, offset, val)                       \
6144         *(type *)((buf) + (offset) - 0x7e00) = val
6145
6146 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6147 {
6148         u32 flags = 0;
6149         flags |= seg->g       << 23;
6150         flags |= seg->db      << 22;
6151         flags |= seg->l       << 21;
6152         flags |= seg->avl     << 20;
6153         flags |= seg->present << 15;
6154         flags |= seg->dpl     << 13;
6155         flags |= seg->s       << 12;
6156         flags |= seg->type    << 8;
6157         return flags;
6158 }
6159
6160 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6161 {
6162         struct kvm_segment seg;
6163         int offset;
6164
6165         kvm_get_segment(vcpu, &seg, n);
6166         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6167
6168         if (n < 3)
6169                 offset = 0x7f84 + n * 12;
6170         else
6171                 offset = 0x7f2c + (n - 3) * 12;
6172
6173         put_smstate(u32, buf, offset + 8, seg.base);
6174         put_smstate(u32, buf, offset + 4, seg.limit);
6175         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6176 }
6177
6178 #ifdef CONFIG_X86_64
6179 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6180 {
6181         struct kvm_segment seg;
6182         int offset;
6183         u16 flags;
6184
6185         kvm_get_segment(vcpu, &seg, n);
6186         offset = 0x7e00 + n * 16;
6187
6188         flags = process_smi_get_segment_flags(&seg) >> 8;
6189         put_smstate(u16, buf, offset, seg.selector);
6190         put_smstate(u16, buf, offset + 2, flags);
6191         put_smstate(u32, buf, offset + 4, seg.limit);
6192         put_smstate(u64, buf, offset + 8, seg.base);
6193 }
6194 #endif
6195
6196 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6197 {
6198         struct desc_ptr dt;
6199         struct kvm_segment seg;
6200         unsigned long val;
6201         int i;
6202
6203         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6204         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6205         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6206         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6207
6208         for (i = 0; i < 8; i++)
6209                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6210
6211         kvm_get_dr(vcpu, 6, &val);
6212         put_smstate(u32, buf, 0x7fcc, (u32)val);
6213         kvm_get_dr(vcpu, 7, &val);
6214         put_smstate(u32, buf, 0x7fc8, (u32)val);
6215
6216         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6217         put_smstate(u32, buf, 0x7fc4, seg.selector);
6218         put_smstate(u32, buf, 0x7f64, seg.base);
6219         put_smstate(u32, buf, 0x7f60, seg.limit);
6220         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6221
6222         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6223         put_smstate(u32, buf, 0x7fc0, seg.selector);
6224         put_smstate(u32, buf, 0x7f80, seg.base);
6225         put_smstate(u32, buf, 0x7f7c, seg.limit);
6226         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6227
6228         kvm_x86_ops->get_gdt(vcpu, &dt);
6229         put_smstate(u32, buf, 0x7f74, dt.address);
6230         put_smstate(u32, buf, 0x7f70, dt.size);
6231
6232         kvm_x86_ops->get_idt(vcpu, &dt);
6233         put_smstate(u32, buf, 0x7f58, dt.address);
6234         put_smstate(u32, buf, 0x7f54, dt.size);
6235
6236         for (i = 0; i < 6; i++)
6237                 process_smi_save_seg_32(vcpu, buf, i);
6238
6239         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6240
6241         /* revision id */
6242         put_smstate(u32, buf, 0x7efc, 0x00020000);
6243         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6244 }
6245
6246 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6247 {
6248 #ifdef CONFIG_X86_64
6249         struct desc_ptr dt;
6250         struct kvm_segment seg;
6251         unsigned long val;
6252         int i;
6253
6254         for (i = 0; i < 16; i++)
6255                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6256
6257         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6258         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6259
6260         kvm_get_dr(vcpu, 6, &val);
6261         put_smstate(u64, buf, 0x7f68, val);
6262         kvm_get_dr(vcpu, 7, &val);
6263         put_smstate(u64, buf, 0x7f60, val);
6264
6265         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6266         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6267         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6268
6269         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6270
6271         /* revision id */
6272         put_smstate(u32, buf, 0x7efc, 0x00020064);
6273
6274         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6275
6276         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6277         put_smstate(u16, buf, 0x7e90, seg.selector);
6278         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6279         put_smstate(u32, buf, 0x7e94, seg.limit);
6280         put_smstate(u64, buf, 0x7e98, seg.base);
6281
6282         kvm_x86_ops->get_idt(vcpu, &dt);
6283         put_smstate(u32, buf, 0x7e84, dt.size);
6284         put_smstate(u64, buf, 0x7e88, dt.address);
6285
6286         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6287         put_smstate(u16, buf, 0x7e70, seg.selector);
6288         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6289         put_smstate(u32, buf, 0x7e74, seg.limit);
6290         put_smstate(u64, buf, 0x7e78, seg.base);
6291
6292         kvm_x86_ops->get_gdt(vcpu, &dt);
6293         put_smstate(u32, buf, 0x7e64, dt.size);
6294         put_smstate(u64, buf, 0x7e68, dt.address);
6295
6296         for (i = 0; i < 6; i++)
6297                 process_smi_save_seg_64(vcpu, buf, i);
6298 #else
6299         WARN_ON_ONCE(1);
6300 #endif
6301 }
6302
6303 static void process_smi(struct kvm_vcpu *vcpu)
6304 {
6305         struct kvm_segment cs, ds;
6306         struct desc_ptr dt;
6307         char buf[512];
6308         u32 cr0;
6309
6310         if (is_smm(vcpu)) {
6311                 vcpu->arch.smi_pending = true;
6312                 return;
6313         }
6314
6315         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6316         vcpu->arch.hflags |= HF_SMM_MASK;
6317         memset(buf, 0, 512);
6318         if (guest_cpuid_has_longmode(vcpu))
6319                 process_smi_save_state_64(vcpu, buf);
6320         else
6321                 process_smi_save_state_32(vcpu, buf);
6322
6323         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6324
6325         if (kvm_x86_ops->get_nmi_mask(vcpu))
6326                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6327         else
6328                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6329
6330         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6331         kvm_rip_write(vcpu, 0x8000);
6332
6333         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6334         kvm_x86_ops->set_cr0(vcpu, cr0);
6335         vcpu->arch.cr0 = cr0;
6336
6337         kvm_x86_ops->set_cr4(vcpu, 0);
6338
6339         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6340         dt.address = dt.size = 0;
6341         kvm_x86_ops->set_idt(vcpu, &dt);
6342
6343         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6344
6345         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6346         cs.base = vcpu->arch.smbase;
6347
6348         ds.selector = 0;
6349         ds.base = 0;
6350
6351         cs.limit    = ds.limit = 0xffffffff;
6352         cs.type     = ds.type = 0x3;
6353         cs.dpl      = ds.dpl = 0;
6354         cs.db       = ds.db = 0;
6355         cs.s        = ds.s = 1;
6356         cs.l        = ds.l = 0;
6357         cs.g        = ds.g = 1;
6358         cs.avl      = ds.avl = 0;
6359         cs.present  = ds.present = 1;
6360         cs.unusable = ds.unusable = 0;
6361         cs.padding  = ds.padding = 0;
6362
6363         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6364         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6365         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6366         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6367         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6368         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6369
6370         if (guest_cpuid_has_longmode(vcpu))
6371                 kvm_x86_ops->set_efer(vcpu, 0);
6372
6373         kvm_update_cpuid(vcpu);
6374         kvm_mmu_reset_context(vcpu);
6375 }
6376
6377 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6378 {
6379         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6380 }
6381
6382 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6383 {
6384         u64 eoi_exit_bitmap[4];
6385
6386         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6387                 return;
6388
6389         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6390
6391         if (irqchip_split(vcpu->kvm))
6392                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6393         else {
6394                 if (vcpu->arch.apicv_active)
6395                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6396                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6397         }
6398         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6399                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6400         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6401 }
6402
6403 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6404 {
6405         ++vcpu->stat.tlb_flush;
6406         kvm_x86_ops->tlb_flush(vcpu);
6407 }
6408
6409 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6410 {
6411         struct page *page = NULL;
6412
6413         if (!lapic_in_kernel(vcpu))
6414                 return;
6415
6416         if (!kvm_x86_ops->set_apic_access_page_addr)
6417                 return;
6418
6419         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6420         if (is_error_page(page))
6421                 return;
6422         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6423
6424         /*
6425          * Do not pin apic access page in memory, the MMU notifier
6426          * will call us again if it is migrated or swapped out.
6427          */
6428         put_page(page);
6429 }
6430 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6431
6432 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6433                                            unsigned long address)
6434 {
6435         /*
6436          * The physical address of apic access page is stored in the VMCS.
6437          * Update it when it becomes invalid.
6438          */
6439         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6440                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6441 }
6442
6443 /*
6444  * Returns 1 to let vcpu_run() continue the guest execution loop without
6445  * exiting to the userspace.  Otherwise, the value will be returned to the
6446  * userspace.
6447  */
6448 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6449 {
6450         int r;
6451         bool req_int_win =
6452                 dm_request_for_irq_injection(vcpu) &&
6453                 kvm_cpu_accept_dm_intr(vcpu);
6454
6455         bool req_immediate_exit = false;
6456
6457         if (vcpu->requests) {
6458                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6459                         kvm_mmu_unload(vcpu);
6460                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6461                         __kvm_migrate_timers(vcpu);
6462                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6463                         kvm_gen_update_masterclock(vcpu->kvm);
6464                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6465                         kvm_gen_kvmclock_update(vcpu);
6466                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6467                         r = kvm_guest_time_update(vcpu);
6468                         if (unlikely(r))
6469                                 goto out;
6470                 }
6471                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6472                         kvm_mmu_sync_roots(vcpu);
6473                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6474                         kvm_vcpu_flush_tlb(vcpu);
6475                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6476                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6477                         r = 0;
6478                         goto out;
6479                 }
6480                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6481                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6482                         r = 0;
6483                         goto out;
6484                 }
6485                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6486                         vcpu->fpu_active = 0;
6487                         kvm_x86_ops->fpu_deactivate(vcpu);
6488                 }
6489                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6490                         /* Page is swapped out. Do synthetic halt */
6491                         vcpu->arch.apf.halted = true;
6492                         r = 1;
6493                         goto out;
6494                 }
6495                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6496                         record_steal_time(vcpu);
6497                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6498                         process_smi(vcpu);
6499                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6500                         process_nmi(vcpu);
6501                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6502                         kvm_pmu_handle_event(vcpu);
6503                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6504                         kvm_pmu_deliver_pmi(vcpu);
6505                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6506                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6507                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6508                                      vcpu->arch.ioapic_handled_vectors)) {
6509                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6510                                 vcpu->run->eoi.vector =
6511                                                 vcpu->arch.pending_ioapic_eoi;
6512                                 r = 0;
6513                                 goto out;
6514                         }
6515                 }
6516                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6517                         vcpu_scan_ioapic(vcpu);
6518                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6519                         kvm_vcpu_reload_apic_access_page(vcpu);
6520                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6521                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6522                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6523                         r = 0;
6524                         goto out;
6525                 }
6526                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6527                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6528                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6529                         r = 0;
6530                         goto out;
6531                 }
6532                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6533                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6534                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6535                         r = 0;
6536                         goto out;
6537                 }
6538
6539                 /*
6540                  * KVM_REQ_HV_STIMER has to be processed after
6541                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6542                  * depend on the guest clock being up-to-date
6543                  */
6544                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6545                         kvm_hv_process_stimers(vcpu);
6546         }
6547
6548         /*
6549          * KVM_REQ_EVENT is not set when posted interrupts are set by
6550          * VT-d hardware, so we have to update RVI unconditionally.
6551          */
6552         if (kvm_lapic_enabled(vcpu)) {
6553                 /*
6554                  * Update architecture specific hints for APIC
6555                  * virtual interrupt delivery.
6556                  */
6557                 if (vcpu->arch.apicv_active)
6558                         kvm_x86_ops->hwapic_irr_update(vcpu,
6559                                 kvm_lapic_find_highest_irr(vcpu));
6560         }
6561
6562         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6563                 kvm_apic_accept_events(vcpu);
6564                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6565                         r = 1;
6566                         goto out;
6567                 }
6568
6569                 if (inject_pending_event(vcpu, req_int_win) != 0)
6570                         req_immediate_exit = true;
6571                 /* enable NMI/IRQ window open exits if needed */
6572                 else if (vcpu->arch.nmi_pending)
6573                         kvm_x86_ops->enable_nmi_window(vcpu);
6574                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6575                         kvm_x86_ops->enable_irq_window(vcpu);
6576
6577                 if (kvm_lapic_enabled(vcpu)) {
6578                         update_cr8_intercept(vcpu);
6579                         kvm_lapic_sync_to_vapic(vcpu);
6580                 }
6581         }
6582
6583         r = kvm_mmu_reload(vcpu);
6584         if (unlikely(r)) {
6585                 goto cancel_injection;
6586         }
6587
6588         preempt_disable();
6589
6590         kvm_x86_ops->prepare_guest_switch(vcpu);
6591         if (vcpu->fpu_active)
6592                 kvm_load_guest_fpu(vcpu);
6593         kvm_load_guest_xcr0(vcpu);
6594
6595         vcpu->mode = IN_GUEST_MODE;
6596
6597         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6598
6599         /*
6600          * We should set ->mode before check ->requests,
6601          * Please see the comment in kvm_make_all_cpus_request.
6602          * This also orders the write to mode from any reads
6603          * to the page tables done while the VCPU is running.
6604          * Please see the comment in kvm_flush_remote_tlbs.
6605          */
6606         smp_mb__after_srcu_read_unlock();
6607
6608         local_irq_disable();
6609
6610         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6611             || need_resched() || signal_pending(current)) {
6612                 vcpu->mode = OUTSIDE_GUEST_MODE;
6613                 smp_wmb();
6614                 local_irq_enable();
6615                 preempt_enable();
6616                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6617                 r = 1;
6618                 goto cancel_injection;
6619         }
6620
6621         if (req_immediate_exit)
6622                 smp_send_reschedule(vcpu->cpu);
6623
6624         trace_kvm_entry(vcpu->vcpu_id);
6625         wait_lapic_expire(vcpu);
6626         __kvm_guest_enter();
6627
6628         if (unlikely(vcpu->arch.switch_db_regs)) {
6629                 set_debugreg(0, 7);
6630                 set_debugreg(vcpu->arch.eff_db[0], 0);
6631                 set_debugreg(vcpu->arch.eff_db[1], 1);
6632                 set_debugreg(vcpu->arch.eff_db[2], 2);
6633                 set_debugreg(vcpu->arch.eff_db[3], 3);
6634                 set_debugreg(vcpu->arch.dr6, 6);
6635                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6636         }
6637
6638         kvm_x86_ops->run(vcpu);
6639
6640         /*
6641          * Do this here before restoring debug registers on the host.  And
6642          * since we do this before handling the vmexit, a DR access vmexit
6643          * can (a) read the correct value of the debug registers, (b) set
6644          * KVM_DEBUGREG_WONT_EXIT again.
6645          */
6646         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6647                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6648                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6649                 kvm_update_dr0123(vcpu);
6650                 kvm_update_dr6(vcpu);
6651                 kvm_update_dr7(vcpu);
6652                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6653         }
6654
6655         /*
6656          * If the guest has used debug registers, at least dr7
6657          * will be disabled while returning to the host.
6658          * If we don't have active breakpoints in the host, we don't
6659          * care about the messed up debug address registers. But if
6660          * we have some of them active, restore the old state.
6661          */
6662         if (hw_breakpoint_active())
6663                 hw_breakpoint_restore();
6664
6665         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6666
6667         vcpu->mode = OUTSIDE_GUEST_MODE;
6668         smp_wmb();
6669
6670         /* Interrupt is enabled by handle_external_intr() */
6671         kvm_x86_ops->handle_external_intr(vcpu);
6672
6673         ++vcpu->stat.exits;
6674
6675         /*
6676          * We must have an instruction between local_irq_enable() and
6677          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6678          * the interrupt shadow.  The stat.exits increment will do nicely.
6679          * But we need to prevent reordering, hence this barrier():
6680          */
6681         barrier();
6682
6683         kvm_guest_exit();
6684
6685         preempt_enable();
6686
6687         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6688
6689         /*
6690          * Profile KVM exit RIPs:
6691          */
6692         if (unlikely(prof_on == KVM_PROFILING)) {
6693                 unsigned long rip = kvm_rip_read(vcpu);
6694                 profile_hit(KVM_PROFILING, (void *)rip);
6695         }
6696
6697         if (unlikely(vcpu->arch.tsc_always_catchup))
6698                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6699
6700         if (vcpu->arch.apic_attention)
6701                 kvm_lapic_sync_from_vapic(vcpu);
6702
6703         r = kvm_x86_ops->handle_exit(vcpu);
6704         return r;
6705
6706 cancel_injection:
6707         kvm_x86_ops->cancel_injection(vcpu);
6708         if (unlikely(vcpu->arch.apic_attention))
6709                 kvm_lapic_sync_from_vapic(vcpu);
6710 out:
6711         return r;
6712 }
6713
6714 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6715 {
6716         if (!kvm_arch_vcpu_runnable(vcpu) &&
6717             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6718                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6719                 kvm_vcpu_block(vcpu);
6720                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6721
6722                 if (kvm_x86_ops->post_block)
6723                         kvm_x86_ops->post_block(vcpu);
6724
6725                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6726                         return 1;
6727         }
6728
6729         kvm_apic_accept_events(vcpu);
6730         switch(vcpu->arch.mp_state) {
6731         case KVM_MP_STATE_HALTED:
6732                 vcpu->arch.pv.pv_unhalted = false;
6733                 vcpu->arch.mp_state =
6734                         KVM_MP_STATE_RUNNABLE;
6735         case KVM_MP_STATE_RUNNABLE:
6736                 vcpu->arch.apf.halted = false;
6737                 break;
6738         case KVM_MP_STATE_INIT_RECEIVED:
6739                 break;
6740         default:
6741                 return -EINTR;
6742                 break;
6743         }
6744         return 1;
6745 }
6746
6747 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6748 {
6749         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6750                 !vcpu->arch.apf.halted);
6751 }
6752
6753 static int vcpu_run(struct kvm_vcpu *vcpu)
6754 {
6755         int r;
6756         struct kvm *kvm = vcpu->kvm;
6757
6758         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6759
6760         for (;;) {
6761                 if (kvm_vcpu_running(vcpu)) {
6762                         r = vcpu_enter_guest(vcpu);
6763                 } else {
6764                         r = vcpu_block(kvm, vcpu);
6765                 }
6766
6767                 if (r <= 0)
6768                         break;
6769
6770                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6771                 if (kvm_cpu_has_pending_timer(vcpu))
6772                         kvm_inject_pending_timer_irqs(vcpu);
6773
6774                 if (dm_request_for_irq_injection(vcpu) &&
6775                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6776                         r = 0;
6777                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6778                         ++vcpu->stat.request_irq_exits;
6779                         break;
6780                 }
6781
6782                 kvm_check_async_pf_completion(vcpu);
6783
6784                 if (signal_pending(current)) {
6785                         r = -EINTR;
6786                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6787                         ++vcpu->stat.signal_exits;
6788                         break;
6789                 }
6790                 if (need_resched()) {
6791                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6792                         cond_resched();
6793                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6794                 }
6795         }
6796
6797         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6798
6799         return r;
6800 }
6801
6802 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6803 {
6804         int r;
6805         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6806         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6807         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6808         if (r != EMULATE_DONE)
6809                 return 0;
6810         return 1;
6811 }
6812
6813 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6814 {
6815         BUG_ON(!vcpu->arch.pio.count);
6816
6817         return complete_emulated_io(vcpu);
6818 }
6819
6820 /*
6821  * Implements the following, as a state machine:
6822  *
6823  * read:
6824  *   for each fragment
6825  *     for each mmio piece in the fragment
6826  *       write gpa, len
6827  *       exit
6828  *       copy data
6829  *   execute insn
6830  *
6831  * write:
6832  *   for each fragment
6833  *     for each mmio piece in the fragment
6834  *       write gpa, len
6835  *       copy data
6836  *       exit
6837  */
6838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6839 {
6840         struct kvm_run *run = vcpu->run;
6841         struct kvm_mmio_fragment *frag;
6842         unsigned len;
6843
6844         BUG_ON(!vcpu->mmio_needed);
6845
6846         /* Complete previous fragment */
6847         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6848         len = min(8u, frag->len);
6849         if (!vcpu->mmio_is_write)
6850                 memcpy(frag->data, run->mmio.data, len);
6851
6852         if (frag->len <= 8) {
6853                 /* Switch to the next fragment. */
6854                 frag++;
6855                 vcpu->mmio_cur_fragment++;
6856         } else {
6857                 /* Go forward to the next mmio piece. */
6858                 frag->data += len;
6859                 frag->gpa += len;
6860                 frag->len -= len;
6861         }
6862
6863         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6864                 vcpu->mmio_needed = 0;
6865
6866                 /* FIXME: return into emulator if single-stepping.  */
6867                 if (vcpu->mmio_is_write)
6868                         return 1;
6869                 vcpu->mmio_read_completed = 1;
6870                 return complete_emulated_io(vcpu);
6871         }
6872
6873         run->exit_reason = KVM_EXIT_MMIO;
6874         run->mmio.phys_addr = frag->gpa;
6875         if (vcpu->mmio_is_write)
6876                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6877         run->mmio.len = min(8u, frag->len);
6878         run->mmio.is_write = vcpu->mmio_is_write;
6879         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6880         return 0;
6881 }
6882
6883
6884 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6885 {
6886         struct fpu *fpu = &current->thread.fpu;
6887         int r;
6888         sigset_t sigsaved;
6889
6890         fpu__activate_curr(fpu);
6891
6892         if (vcpu->sigset_active)
6893                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6894
6895         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6896                 kvm_vcpu_block(vcpu);
6897                 kvm_apic_accept_events(vcpu);
6898                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6899                 r = -EAGAIN;
6900                 goto out;
6901         }
6902
6903         /* re-sync apic's tpr */
6904         if (!lapic_in_kernel(vcpu)) {
6905                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6906                         r = -EINVAL;
6907                         goto out;
6908                 }
6909         }
6910
6911         if (unlikely(vcpu->arch.complete_userspace_io)) {
6912                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6913                 vcpu->arch.complete_userspace_io = NULL;
6914                 r = cui(vcpu);
6915                 if (r <= 0)
6916                         goto out;
6917         } else
6918                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6919
6920         r = vcpu_run(vcpu);
6921
6922 out:
6923         post_kvm_run_save(vcpu);
6924         if (vcpu->sigset_active)
6925                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6926
6927         return r;
6928 }
6929
6930 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6931 {
6932         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6933                 /*
6934                  * We are here if userspace calls get_regs() in the middle of
6935                  * instruction emulation. Registers state needs to be copied
6936                  * back from emulation context to vcpu. Userspace shouldn't do
6937                  * that usually, but some bad designed PV devices (vmware
6938                  * backdoor interface) need this to work
6939                  */
6940                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6941                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6942         }
6943         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6944         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6945         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6946         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6947         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6948         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6949         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6950         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6951 #ifdef CONFIG_X86_64
6952         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6953         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6954         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6955         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6956         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6957         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6958         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6959         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6960 #endif
6961
6962         regs->rip = kvm_rip_read(vcpu);
6963         regs->rflags = kvm_get_rflags(vcpu);
6964
6965         return 0;
6966 }
6967
6968 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6969 {
6970         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6971         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6972
6973         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6974         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6975         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6976         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6977         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6978         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6979         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6980         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6981 #ifdef CONFIG_X86_64
6982         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6983         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6984         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6985         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6986         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6987         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6988         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6989         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6990 #endif
6991
6992         kvm_rip_write(vcpu, regs->rip);
6993         kvm_set_rflags(vcpu, regs->rflags);
6994
6995         vcpu->arch.exception.pending = false;
6996
6997         kvm_make_request(KVM_REQ_EVENT, vcpu);
6998
6999         return 0;
7000 }
7001
7002 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7003 {
7004         struct kvm_segment cs;
7005
7006         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7007         *db = cs.db;
7008         *l = cs.l;
7009 }
7010 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7011
7012 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7013                                   struct kvm_sregs *sregs)
7014 {
7015         struct desc_ptr dt;
7016
7017         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7018         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7019         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7020         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7021         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7022         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7023
7024         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7025         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7026
7027         kvm_x86_ops->get_idt(vcpu, &dt);
7028         sregs->idt.limit = dt.size;
7029         sregs->idt.base = dt.address;
7030         kvm_x86_ops->get_gdt(vcpu, &dt);
7031         sregs->gdt.limit = dt.size;
7032         sregs->gdt.base = dt.address;
7033
7034         sregs->cr0 = kvm_read_cr0(vcpu);
7035         sregs->cr2 = vcpu->arch.cr2;
7036         sregs->cr3 = kvm_read_cr3(vcpu);
7037         sregs->cr4 = kvm_read_cr4(vcpu);
7038         sregs->cr8 = kvm_get_cr8(vcpu);
7039         sregs->efer = vcpu->arch.efer;
7040         sregs->apic_base = kvm_get_apic_base(vcpu);
7041
7042         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7043
7044         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7045                 set_bit(vcpu->arch.interrupt.nr,
7046                         (unsigned long *)sregs->interrupt_bitmap);
7047
7048         return 0;
7049 }
7050
7051 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7052                                     struct kvm_mp_state *mp_state)
7053 {
7054         kvm_apic_accept_events(vcpu);
7055         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7056                                         vcpu->arch.pv.pv_unhalted)
7057                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7058         else
7059                 mp_state->mp_state = vcpu->arch.mp_state;
7060
7061         return 0;
7062 }
7063
7064 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7065                                     struct kvm_mp_state *mp_state)
7066 {
7067         if (!lapic_in_kernel(vcpu) &&
7068             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7069                 return -EINVAL;
7070
7071         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7072                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7073                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7074         } else
7075                 vcpu->arch.mp_state = mp_state->mp_state;
7076         kvm_make_request(KVM_REQ_EVENT, vcpu);
7077         return 0;
7078 }
7079
7080 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7081                     int reason, bool has_error_code, u32 error_code)
7082 {
7083         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7084         int ret;
7085
7086         init_emulate_ctxt(vcpu);
7087
7088         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7089                                    has_error_code, error_code);
7090
7091         if (ret)
7092                 return EMULATE_FAIL;
7093
7094         kvm_rip_write(vcpu, ctxt->eip);
7095         kvm_set_rflags(vcpu, ctxt->eflags);
7096         kvm_make_request(KVM_REQ_EVENT, vcpu);
7097         return EMULATE_DONE;
7098 }
7099 EXPORT_SYMBOL_GPL(kvm_task_switch);
7100
7101 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7102                                   struct kvm_sregs *sregs)
7103 {
7104         struct msr_data apic_base_msr;
7105         int mmu_reset_needed = 0;
7106         int pending_vec, max_bits, idx;
7107         struct desc_ptr dt;
7108
7109         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7110                 return -EINVAL;
7111
7112         dt.size = sregs->idt.limit;
7113         dt.address = sregs->idt.base;
7114         kvm_x86_ops->set_idt(vcpu, &dt);
7115         dt.size = sregs->gdt.limit;
7116         dt.address = sregs->gdt.base;
7117         kvm_x86_ops->set_gdt(vcpu, &dt);
7118
7119         vcpu->arch.cr2 = sregs->cr2;
7120         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7121         vcpu->arch.cr3 = sregs->cr3;
7122         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7123
7124         kvm_set_cr8(vcpu, sregs->cr8);
7125
7126         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7127         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7128         apic_base_msr.data = sregs->apic_base;
7129         apic_base_msr.host_initiated = true;
7130         kvm_set_apic_base(vcpu, &apic_base_msr);
7131
7132         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7133         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7134         vcpu->arch.cr0 = sregs->cr0;
7135
7136         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7137         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7138         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7139                 kvm_update_cpuid(vcpu);
7140
7141         idx = srcu_read_lock(&vcpu->kvm->srcu);
7142         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7143                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7144                 mmu_reset_needed = 1;
7145         }
7146         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7147
7148         if (mmu_reset_needed)
7149                 kvm_mmu_reset_context(vcpu);
7150
7151         max_bits = KVM_NR_INTERRUPTS;
7152         pending_vec = find_first_bit(
7153                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7154         if (pending_vec < max_bits) {
7155                 kvm_queue_interrupt(vcpu, pending_vec, false);
7156                 pr_debug("Set back pending irq %d\n", pending_vec);
7157         }
7158
7159         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7160         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7161         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7162         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7163         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7164         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7165
7166         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7167         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7168
7169         update_cr8_intercept(vcpu);
7170
7171         /* Older userspace won't unhalt the vcpu on reset. */
7172         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7173             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7174             !is_protmode(vcpu))
7175                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7176
7177         kvm_make_request(KVM_REQ_EVENT, vcpu);
7178
7179         return 0;
7180 }
7181
7182 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7183                                         struct kvm_guest_debug *dbg)
7184 {
7185         unsigned long rflags;
7186         int i, r;
7187
7188         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7189                 r = -EBUSY;
7190                 if (vcpu->arch.exception.pending)
7191                         goto out;
7192                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7193                         kvm_queue_exception(vcpu, DB_VECTOR);
7194                 else
7195                         kvm_queue_exception(vcpu, BP_VECTOR);
7196         }
7197
7198         /*
7199          * Read rflags as long as potentially injected trace flags are still
7200          * filtered out.
7201          */
7202         rflags = kvm_get_rflags(vcpu);
7203
7204         vcpu->guest_debug = dbg->control;
7205         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7206                 vcpu->guest_debug = 0;
7207
7208         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7209                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7210                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7211                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7212         } else {
7213                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7214                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7215         }
7216         kvm_update_dr7(vcpu);
7217
7218         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7219                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7220                         get_segment_base(vcpu, VCPU_SREG_CS);
7221
7222         /*
7223          * Trigger an rflags update that will inject or remove the trace
7224          * flags.
7225          */
7226         kvm_set_rflags(vcpu, rflags);
7227
7228         kvm_x86_ops->update_bp_intercept(vcpu);
7229
7230         r = 0;
7231
7232 out:
7233
7234         return r;
7235 }
7236
7237 /*
7238  * Translate a guest virtual address to a guest physical address.
7239  */
7240 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7241                                     struct kvm_translation *tr)
7242 {
7243         unsigned long vaddr = tr->linear_address;
7244         gpa_t gpa;
7245         int idx;
7246
7247         idx = srcu_read_lock(&vcpu->kvm->srcu);
7248         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7249         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7250         tr->physical_address = gpa;
7251         tr->valid = gpa != UNMAPPED_GVA;
7252         tr->writeable = 1;
7253         tr->usermode = 0;
7254
7255         return 0;
7256 }
7257
7258 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7259 {
7260         struct fxregs_state *fxsave =
7261                         &vcpu->arch.guest_fpu.state.fxsave;
7262
7263         memcpy(fpu->fpr, fxsave->st_space, 128);
7264         fpu->fcw = fxsave->cwd;
7265         fpu->fsw = fxsave->swd;
7266         fpu->ftwx = fxsave->twd;
7267         fpu->last_opcode = fxsave->fop;
7268         fpu->last_ip = fxsave->rip;
7269         fpu->last_dp = fxsave->rdp;
7270         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7271
7272         return 0;
7273 }
7274
7275 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7276 {
7277         struct fxregs_state *fxsave =
7278                         &vcpu->arch.guest_fpu.state.fxsave;
7279
7280         memcpy(fxsave->st_space, fpu->fpr, 128);
7281         fxsave->cwd = fpu->fcw;
7282         fxsave->swd = fpu->fsw;
7283         fxsave->twd = fpu->ftwx;
7284         fxsave->fop = fpu->last_opcode;
7285         fxsave->rip = fpu->last_ip;
7286         fxsave->rdp = fpu->last_dp;
7287         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7288
7289         return 0;
7290 }
7291
7292 static void fx_init(struct kvm_vcpu *vcpu)
7293 {
7294         fpstate_init(&vcpu->arch.guest_fpu.state);
7295         if (cpu_has_xsaves)
7296                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7297                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7298
7299         /*
7300          * Ensure guest xcr0 is valid for loading
7301          */
7302         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7303
7304         vcpu->arch.cr0 |= X86_CR0_ET;
7305 }
7306
7307 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7308 {
7309         if (vcpu->guest_fpu_loaded)
7310                 return;
7311
7312         /*
7313          * Restore all possible states in the guest,
7314          * and assume host would use all available bits.
7315          * Guest xcr0 would be loaded later.
7316          */
7317         kvm_put_guest_xcr0(vcpu);
7318         vcpu->guest_fpu_loaded = 1;
7319         __kernel_fpu_begin();
7320         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7321         trace_kvm_fpu(1);
7322 }
7323
7324 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7325 {
7326         kvm_put_guest_xcr0(vcpu);
7327
7328         if (!vcpu->guest_fpu_loaded) {
7329                 vcpu->fpu_counter = 0;
7330                 return;
7331         }
7332
7333         vcpu->guest_fpu_loaded = 0;
7334         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7335         __kernel_fpu_end();
7336         ++vcpu->stat.fpu_reload;
7337         /*
7338          * If using eager FPU mode, or if the guest is a frequent user
7339          * of the FPU, just leave the FPU active for next time.
7340          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7341          * the FPU in bursts will revert to loading it on demand.
7342          */
7343         if (!use_eager_fpu()) {
7344                 if (++vcpu->fpu_counter < 5)
7345                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7346         }
7347         trace_kvm_fpu(0);
7348 }
7349
7350 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7351 {
7352         kvmclock_reset(vcpu);
7353
7354         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7355         kvm_x86_ops->vcpu_free(vcpu);
7356 }
7357
7358 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7359                                                 unsigned int id)
7360 {
7361         struct kvm_vcpu *vcpu;
7362
7363         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7364                 printk_once(KERN_WARNING
7365                 "kvm: SMP vm created on host with unstable TSC; "
7366                 "guest TSC will not be reliable\n");
7367
7368         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7369
7370         return vcpu;
7371 }
7372
7373 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7374 {
7375         int r;
7376
7377         kvm_vcpu_mtrr_init(vcpu);
7378         r = vcpu_load(vcpu);
7379         if (r)
7380                 return r;
7381         kvm_vcpu_reset(vcpu, false);
7382         kvm_mmu_setup(vcpu);
7383         vcpu_put(vcpu);
7384         return r;
7385 }
7386
7387 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7388 {
7389         struct msr_data msr;
7390         struct kvm *kvm = vcpu->kvm;
7391
7392         if (vcpu_load(vcpu))
7393                 return;
7394         msr.data = 0x0;
7395         msr.index = MSR_IA32_TSC;
7396         msr.host_initiated = true;
7397         kvm_write_tsc(vcpu, &msr);
7398         vcpu_put(vcpu);
7399
7400         if (!kvmclock_periodic_sync)
7401                 return;
7402
7403         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7404                                         KVMCLOCK_SYNC_PERIOD);
7405 }
7406
7407 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7408 {
7409         int r;
7410         vcpu->arch.apf.msr_val = 0;
7411
7412         r = vcpu_load(vcpu);
7413         BUG_ON(r);
7414         kvm_mmu_unload(vcpu);
7415         vcpu_put(vcpu);
7416
7417         kvm_x86_ops->vcpu_free(vcpu);
7418 }
7419
7420 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7421 {
7422         vcpu->arch.hflags = 0;
7423
7424         atomic_set(&vcpu->arch.nmi_queued, 0);
7425         vcpu->arch.nmi_pending = 0;
7426         vcpu->arch.nmi_injected = false;
7427         kvm_clear_interrupt_queue(vcpu);
7428         kvm_clear_exception_queue(vcpu);
7429
7430         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7431         kvm_update_dr0123(vcpu);
7432         vcpu->arch.dr6 = DR6_INIT;
7433         kvm_update_dr6(vcpu);
7434         vcpu->arch.dr7 = DR7_FIXED_1;
7435         kvm_update_dr7(vcpu);
7436
7437         vcpu->arch.cr2 = 0;
7438
7439         kvm_make_request(KVM_REQ_EVENT, vcpu);
7440         vcpu->arch.apf.msr_val = 0;
7441         vcpu->arch.st.msr_val = 0;
7442
7443         kvmclock_reset(vcpu);
7444
7445         kvm_clear_async_pf_completion_queue(vcpu);
7446         kvm_async_pf_hash_reset(vcpu);
7447         vcpu->arch.apf.halted = false;
7448
7449         if (!init_event) {
7450                 kvm_pmu_reset(vcpu);
7451                 vcpu->arch.smbase = 0x30000;
7452         }
7453
7454         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7455         vcpu->arch.regs_avail = ~0;
7456         vcpu->arch.regs_dirty = ~0;
7457
7458         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7459 }
7460
7461 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7462 {
7463         struct kvm_segment cs;
7464
7465         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7466         cs.selector = vector << 8;
7467         cs.base = vector << 12;
7468         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7469         kvm_rip_write(vcpu, 0);
7470 }
7471
7472 int kvm_arch_hardware_enable(void)
7473 {
7474         struct kvm *kvm;
7475         struct kvm_vcpu *vcpu;
7476         int i;
7477         int ret;
7478         u64 local_tsc;
7479         u64 max_tsc = 0;
7480         bool stable, backwards_tsc = false;
7481
7482         kvm_shared_msr_cpu_online();
7483         ret = kvm_x86_ops->hardware_enable();
7484         if (ret != 0)
7485                 return ret;
7486
7487         local_tsc = rdtsc();
7488         stable = !check_tsc_unstable();
7489         list_for_each_entry(kvm, &vm_list, vm_list) {
7490                 kvm_for_each_vcpu(i, vcpu, kvm) {
7491                         if (!stable && vcpu->cpu == smp_processor_id())
7492                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7493                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7494                                 backwards_tsc = true;
7495                                 if (vcpu->arch.last_host_tsc > max_tsc)
7496                                         max_tsc = vcpu->arch.last_host_tsc;
7497                         }
7498                 }
7499         }
7500
7501         /*
7502          * Sometimes, even reliable TSCs go backwards.  This happens on
7503          * platforms that reset TSC during suspend or hibernate actions, but
7504          * maintain synchronization.  We must compensate.  Fortunately, we can
7505          * detect that condition here, which happens early in CPU bringup,
7506          * before any KVM threads can be running.  Unfortunately, we can't
7507          * bring the TSCs fully up to date with real time, as we aren't yet far
7508          * enough into CPU bringup that we know how much real time has actually
7509          * elapsed; our helper function, get_kernel_ns() will be using boot
7510          * variables that haven't been updated yet.
7511          *
7512          * So we simply find the maximum observed TSC above, then record the
7513          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7514          * the adjustment will be applied.  Note that we accumulate
7515          * adjustments, in case multiple suspend cycles happen before some VCPU
7516          * gets a chance to run again.  In the event that no KVM threads get a
7517          * chance to run, we will miss the entire elapsed period, as we'll have
7518          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7519          * loose cycle time.  This isn't too big a deal, since the loss will be
7520          * uniform across all VCPUs (not to mention the scenario is extremely
7521          * unlikely). It is possible that a second hibernate recovery happens
7522          * much faster than a first, causing the observed TSC here to be
7523          * smaller; this would require additional padding adjustment, which is
7524          * why we set last_host_tsc to the local tsc observed here.
7525          *
7526          * N.B. - this code below runs only on platforms with reliable TSC,
7527          * as that is the only way backwards_tsc is set above.  Also note
7528          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7529          * have the same delta_cyc adjustment applied if backwards_tsc
7530          * is detected.  Note further, this adjustment is only done once,
7531          * as we reset last_host_tsc on all VCPUs to stop this from being
7532          * called multiple times (one for each physical CPU bringup).
7533          *
7534          * Platforms with unreliable TSCs don't have to deal with this, they
7535          * will be compensated by the logic in vcpu_load, which sets the TSC to
7536          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7537          * guarantee that they stay in perfect synchronization.
7538          */
7539         if (backwards_tsc) {
7540                 u64 delta_cyc = max_tsc - local_tsc;
7541                 backwards_tsc_observed = true;
7542                 list_for_each_entry(kvm, &vm_list, vm_list) {
7543                         kvm_for_each_vcpu(i, vcpu, kvm) {
7544                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7545                                 vcpu->arch.last_host_tsc = local_tsc;
7546                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7547                         }
7548
7549                         /*
7550                          * We have to disable TSC offset matching.. if you were
7551                          * booting a VM while issuing an S4 host suspend....
7552                          * you may have some problem.  Solving this issue is
7553                          * left as an exercise to the reader.
7554                          */
7555                         kvm->arch.last_tsc_nsec = 0;
7556                         kvm->arch.last_tsc_write = 0;
7557                 }
7558
7559         }
7560         return 0;
7561 }
7562
7563 void kvm_arch_hardware_disable(void)
7564 {
7565         kvm_x86_ops->hardware_disable();
7566         drop_user_return_notifiers();
7567 }
7568
7569 int kvm_arch_hardware_setup(void)
7570 {
7571         int r;
7572
7573         r = kvm_x86_ops->hardware_setup();
7574         if (r != 0)
7575                 return r;
7576
7577         if (kvm_has_tsc_control) {
7578                 /*
7579                  * Make sure the user can only configure tsc_khz values that
7580                  * fit into a signed integer.
7581                  * A min value is not calculated needed because it will always
7582                  * be 1 on all machines.
7583                  */
7584                 u64 max = min(0x7fffffffULL,
7585                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7586                 kvm_max_guest_tsc_khz = max;
7587
7588                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7589         }
7590
7591         kvm_init_msr_list();
7592         return 0;
7593 }
7594
7595 void kvm_arch_hardware_unsetup(void)
7596 {
7597         kvm_x86_ops->hardware_unsetup();
7598 }
7599
7600 void kvm_arch_check_processor_compat(void *rtn)
7601 {
7602         kvm_x86_ops->check_processor_compatibility(rtn);
7603 }
7604
7605 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7606 {
7607         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7608 }
7609 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7610
7611 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7612 {
7613         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7614 }
7615
7616 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7617 {
7618         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7619 }
7620
7621 struct static_key kvm_no_apic_vcpu __read_mostly;
7622 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7623
7624 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7625 {
7626         struct page *page;
7627         struct kvm *kvm;
7628         int r;
7629
7630         BUG_ON(vcpu->kvm == NULL);
7631         kvm = vcpu->kvm;
7632
7633         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7634         vcpu->arch.pv.pv_unhalted = false;
7635         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7636         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7637                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7638         else
7639                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7640
7641         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7642         if (!page) {
7643                 r = -ENOMEM;
7644                 goto fail;
7645         }
7646         vcpu->arch.pio_data = page_address(page);
7647
7648         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7649
7650         r = kvm_mmu_create(vcpu);
7651         if (r < 0)
7652                 goto fail_free_pio_data;
7653
7654         if (irqchip_in_kernel(kvm)) {
7655                 r = kvm_create_lapic(vcpu);
7656                 if (r < 0)
7657                         goto fail_mmu_destroy;
7658         } else
7659                 static_key_slow_inc(&kvm_no_apic_vcpu);
7660
7661         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7662                                        GFP_KERNEL);
7663         if (!vcpu->arch.mce_banks) {
7664                 r = -ENOMEM;
7665                 goto fail_free_lapic;
7666         }
7667         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7668
7669         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7670                 r = -ENOMEM;
7671                 goto fail_free_mce_banks;
7672         }
7673
7674         fx_init(vcpu);
7675
7676         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7677         vcpu->arch.pv_time_enabled = false;
7678
7679         vcpu->arch.guest_supported_xcr0 = 0;
7680         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7681
7682         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7683
7684         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7685
7686         kvm_async_pf_hash_reset(vcpu);
7687         kvm_pmu_init(vcpu);
7688
7689         vcpu->arch.pending_external_vector = -1;
7690
7691         kvm_hv_vcpu_init(vcpu);
7692
7693         return 0;
7694
7695 fail_free_mce_banks:
7696         kfree(vcpu->arch.mce_banks);
7697 fail_free_lapic:
7698         kvm_free_lapic(vcpu);
7699 fail_mmu_destroy:
7700         kvm_mmu_destroy(vcpu);
7701 fail_free_pio_data:
7702         free_page((unsigned long)vcpu->arch.pio_data);
7703 fail:
7704         return r;
7705 }
7706
7707 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7708 {
7709         int idx;
7710
7711         kvm_hv_vcpu_uninit(vcpu);
7712         kvm_pmu_destroy(vcpu);
7713         kfree(vcpu->arch.mce_banks);
7714         kvm_free_lapic(vcpu);
7715         idx = srcu_read_lock(&vcpu->kvm->srcu);
7716         kvm_mmu_destroy(vcpu);
7717         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7718         free_page((unsigned long)vcpu->arch.pio_data);
7719         if (!lapic_in_kernel(vcpu))
7720                 static_key_slow_dec(&kvm_no_apic_vcpu);
7721 }
7722
7723 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7724 {
7725         kvm_x86_ops->sched_in(vcpu, cpu);
7726 }
7727
7728 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7729 {
7730         if (type)
7731                 return -EINVAL;
7732
7733         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7734         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7735         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7736         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7737         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7738
7739         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7740         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7741         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7742         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7743                 &kvm->arch.irq_sources_bitmap);
7744
7745         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7746         mutex_init(&kvm->arch.apic_map_lock);
7747         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7748
7749         pvclock_update_vm_gtod_copy(kvm);
7750
7751         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7752         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7753
7754         kvm_page_track_init(kvm);
7755         kvm_mmu_init_vm(kvm);
7756
7757         return 0;
7758 }
7759
7760 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7761 {
7762         int r;
7763         r = vcpu_load(vcpu);
7764         BUG_ON(r);
7765         kvm_mmu_unload(vcpu);
7766         vcpu_put(vcpu);
7767 }
7768
7769 static void kvm_free_vcpus(struct kvm *kvm)
7770 {
7771         unsigned int i;
7772         struct kvm_vcpu *vcpu;
7773
7774         /*
7775          * Unpin any mmu pages first.
7776          */
7777         kvm_for_each_vcpu(i, vcpu, kvm) {
7778                 kvm_clear_async_pf_completion_queue(vcpu);
7779                 kvm_unload_vcpu_mmu(vcpu);
7780         }
7781         kvm_for_each_vcpu(i, vcpu, kvm)
7782                 kvm_arch_vcpu_free(vcpu);
7783
7784         mutex_lock(&kvm->lock);
7785         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7786                 kvm->vcpus[i] = NULL;
7787
7788         atomic_set(&kvm->online_vcpus, 0);
7789         mutex_unlock(&kvm->lock);
7790 }
7791
7792 void kvm_arch_sync_events(struct kvm *kvm)
7793 {
7794         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7795         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7796         kvm_free_all_assigned_devices(kvm);
7797         kvm_free_pit(kvm);
7798 }
7799
7800 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7801 {
7802         int i, r;
7803         unsigned long hva;
7804         struct kvm_memslots *slots = kvm_memslots(kvm);
7805         struct kvm_memory_slot *slot, old;
7806
7807         /* Called with kvm->slots_lock held.  */
7808         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7809                 return -EINVAL;
7810
7811         slot = id_to_memslot(slots, id);
7812         if (size) {
7813                 if (WARN_ON(slot->npages))
7814                         return -EEXIST;
7815
7816                 /*
7817                  * MAP_SHARED to prevent internal slot pages from being moved
7818                  * by fork()/COW.
7819                  */
7820                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7821                               MAP_SHARED | MAP_ANONYMOUS, 0);
7822                 if (IS_ERR((void *)hva))
7823                         return PTR_ERR((void *)hva);
7824         } else {
7825                 if (!slot->npages)
7826                         return 0;
7827
7828                 hva = 0;
7829         }
7830
7831         old = *slot;
7832         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7833                 struct kvm_userspace_memory_region m;
7834
7835                 m.slot = id | (i << 16);
7836                 m.flags = 0;
7837                 m.guest_phys_addr = gpa;
7838                 m.userspace_addr = hva;
7839                 m.memory_size = size;
7840                 r = __kvm_set_memory_region(kvm, &m);
7841                 if (r < 0)
7842                         return r;
7843         }
7844
7845         if (!size) {
7846                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7847                 WARN_ON(r < 0);
7848         }
7849
7850         return 0;
7851 }
7852 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7853
7854 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7855 {
7856         int r;
7857
7858         mutex_lock(&kvm->slots_lock);
7859         r = __x86_set_memory_region(kvm, id, gpa, size);
7860         mutex_unlock(&kvm->slots_lock);
7861
7862         return r;
7863 }
7864 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7865
7866 void kvm_arch_destroy_vm(struct kvm *kvm)
7867 {
7868         if (current->mm == kvm->mm) {
7869                 /*
7870                  * Free memory regions allocated on behalf of userspace,
7871                  * unless the the memory map has changed due to process exit
7872                  * or fd copying.
7873                  */
7874                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7875                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7876                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7877         }
7878         kvm_iommu_unmap_guest(kvm);
7879         kfree(kvm->arch.vpic);
7880         kfree(kvm->arch.vioapic);
7881         kvm_free_vcpus(kvm);
7882         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7883         kvm_mmu_uninit_vm(kvm);
7884 }
7885
7886 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7887                            struct kvm_memory_slot *dont)
7888 {
7889         int i;
7890
7891         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7892                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7893                         kvfree(free->arch.rmap[i]);
7894                         free->arch.rmap[i] = NULL;
7895                 }
7896                 if (i == 0)
7897                         continue;
7898
7899                 if (!dont || free->arch.lpage_info[i - 1] !=
7900                              dont->arch.lpage_info[i - 1]) {
7901                         kvfree(free->arch.lpage_info[i - 1]);
7902                         free->arch.lpage_info[i - 1] = NULL;
7903                 }
7904         }
7905
7906         kvm_page_track_free_memslot(free, dont);
7907 }
7908
7909 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7910                             unsigned long npages)
7911 {
7912         int i;
7913
7914         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7915                 struct kvm_lpage_info *linfo;
7916                 unsigned long ugfn;
7917                 int lpages;
7918                 int level = i + 1;
7919
7920                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7921                                       slot->base_gfn, level) + 1;
7922
7923                 slot->arch.rmap[i] =
7924                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7925                 if (!slot->arch.rmap[i])
7926                         goto out_free;
7927                 if (i == 0)
7928                         continue;
7929
7930                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7931                 if (!linfo)
7932                         goto out_free;
7933
7934                 slot->arch.lpage_info[i - 1] = linfo;
7935
7936                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7937                         linfo[0].disallow_lpage = 1;
7938                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7939                         linfo[lpages - 1].disallow_lpage = 1;
7940                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7941                 /*
7942                  * If the gfn and userspace address are not aligned wrt each
7943                  * other, or if explicitly asked to, disable large page
7944                  * support for this slot
7945                  */
7946                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7947                     !kvm_largepages_enabled()) {
7948                         unsigned long j;
7949
7950                         for (j = 0; j < lpages; ++j)
7951                                 linfo[j].disallow_lpage = 1;
7952                 }
7953         }
7954
7955         if (kvm_page_track_create_memslot(slot, npages))
7956                 goto out_free;
7957
7958         return 0;
7959
7960 out_free:
7961         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7962                 kvfree(slot->arch.rmap[i]);
7963                 slot->arch.rmap[i] = NULL;
7964                 if (i == 0)
7965                         continue;
7966
7967                 kvfree(slot->arch.lpage_info[i - 1]);
7968                 slot->arch.lpage_info[i - 1] = NULL;
7969         }
7970         return -ENOMEM;
7971 }
7972
7973 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7974 {
7975         /*
7976          * memslots->generation has been incremented.
7977          * mmio generation may have reached its maximum value.
7978          */
7979         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7980 }
7981
7982 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7983                                 struct kvm_memory_slot *memslot,
7984                                 const struct kvm_userspace_memory_region *mem,
7985                                 enum kvm_mr_change change)
7986 {
7987         return 0;
7988 }
7989
7990 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7991                                      struct kvm_memory_slot *new)
7992 {
7993         /* Still write protect RO slot */
7994         if (new->flags & KVM_MEM_READONLY) {
7995                 kvm_mmu_slot_remove_write_access(kvm, new);
7996                 return;
7997         }
7998
7999         /*
8000          * Call kvm_x86_ops dirty logging hooks when they are valid.
8001          *
8002          * kvm_x86_ops->slot_disable_log_dirty is called when:
8003          *
8004          *  - KVM_MR_CREATE with dirty logging is disabled
8005          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8006          *
8007          * The reason is, in case of PML, we need to set D-bit for any slots
8008          * with dirty logging disabled in order to eliminate unnecessary GPA
8009          * logging in PML buffer (and potential PML buffer full VMEXT). This
8010          * guarantees leaving PML enabled during guest's lifetime won't have
8011          * any additonal overhead from PML when guest is running with dirty
8012          * logging disabled for memory slots.
8013          *
8014          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8015          * to dirty logging mode.
8016          *
8017          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8018          *
8019          * In case of write protect:
8020          *
8021          * Write protect all pages for dirty logging.
8022          *
8023          * All the sptes including the large sptes which point to this
8024          * slot are set to readonly. We can not create any new large
8025          * spte on this slot until the end of the logging.
8026          *
8027          * See the comments in fast_page_fault().
8028          */
8029         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8030                 if (kvm_x86_ops->slot_enable_log_dirty)
8031                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8032                 else
8033                         kvm_mmu_slot_remove_write_access(kvm, new);
8034         } else {
8035                 if (kvm_x86_ops->slot_disable_log_dirty)
8036                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8037         }
8038 }
8039
8040 void kvm_arch_commit_memory_region(struct kvm *kvm,
8041                                 const struct kvm_userspace_memory_region *mem,
8042                                 const struct kvm_memory_slot *old,
8043                                 const struct kvm_memory_slot *new,
8044                                 enum kvm_mr_change change)
8045 {
8046         int nr_mmu_pages = 0;
8047
8048         if (!kvm->arch.n_requested_mmu_pages)
8049                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8050
8051         if (nr_mmu_pages)
8052                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8053
8054         /*
8055          * Dirty logging tracks sptes in 4k granularity, meaning that large
8056          * sptes have to be split.  If live migration is successful, the guest
8057          * in the source machine will be destroyed and large sptes will be
8058          * created in the destination. However, if the guest continues to run
8059          * in the source machine (for example if live migration fails), small
8060          * sptes will remain around and cause bad performance.
8061          *
8062          * Scan sptes if dirty logging has been stopped, dropping those
8063          * which can be collapsed into a single large-page spte.  Later
8064          * page faults will create the large-page sptes.
8065          */
8066         if ((change != KVM_MR_DELETE) &&
8067                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8068                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8069                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8070
8071         /*
8072          * Set up write protection and/or dirty logging for the new slot.
8073          *
8074          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8075          * been zapped so no dirty logging staff is needed for old slot. For
8076          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8077          * new and it's also covered when dealing with the new slot.
8078          *
8079          * FIXME: const-ify all uses of struct kvm_memory_slot.
8080          */
8081         if (change != KVM_MR_DELETE)
8082                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8083 }
8084
8085 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8086 {
8087         kvm_mmu_invalidate_zap_all_pages(kvm);
8088 }
8089
8090 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8091                                    struct kvm_memory_slot *slot)
8092 {
8093         kvm_mmu_invalidate_zap_all_pages(kvm);
8094 }
8095
8096 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8097 {
8098         if (!list_empty_careful(&vcpu->async_pf.done))
8099                 return true;
8100
8101         if (kvm_apic_has_events(vcpu))
8102                 return true;
8103
8104         if (vcpu->arch.pv.pv_unhalted)
8105                 return true;
8106
8107         if (atomic_read(&vcpu->arch.nmi_queued))
8108                 return true;
8109
8110         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8111                 return true;
8112
8113         if (kvm_arch_interrupt_allowed(vcpu) &&
8114             kvm_cpu_has_interrupt(vcpu))
8115                 return true;
8116
8117         if (kvm_hv_has_stimer_pending(vcpu))
8118                 return true;
8119
8120         return false;
8121 }
8122
8123 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8124 {
8125         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8126                 kvm_x86_ops->check_nested_events(vcpu, false);
8127
8128         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8129 }
8130
8131 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8132 {
8133         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8134 }
8135
8136 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8137 {
8138         return kvm_x86_ops->interrupt_allowed(vcpu);
8139 }
8140
8141 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8142 {
8143         if (is_64_bit_mode(vcpu))
8144                 return kvm_rip_read(vcpu);
8145         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8146                      kvm_rip_read(vcpu));
8147 }
8148 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8149
8150 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8151 {
8152         return kvm_get_linear_rip(vcpu) == linear_rip;
8153 }
8154 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8155
8156 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8157 {
8158         unsigned long rflags;
8159
8160         rflags = kvm_x86_ops->get_rflags(vcpu);
8161         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8162                 rflags &= ~X86_EFLAGS_TF;
8163         return rflags;
8164 }
8165 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8166
8167 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8168 {
8169         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8170             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8171                 rflags |= X86_EFLAGS_TF;
8172         kvm_x86_ops->set_rflags(vcpu, rflags);
8173 }
8174
8175 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8176 {
8177         __kvm_set_rflags(vcpu, rflags);
8178         kvm_make_request(KVM_REQ_EVENT, vcpu);
8179 }
8180 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8181
8182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8183 {
8184         int r;
8185
8186         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8187               work->wakeup_all)
8188                 return;
8189
8190         r = kvm_mmu_reload(vcpu);
8191         if (unlikely(r))
8192                 return;
8193
8194         if (!vcpu->arch.mmu.direct_map &&
8195               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8196                 return;
8197
8198         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8199 }
8200
8201 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8202 {
8203         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8204 }
8205
8206 static inline u32 kvm_async_pf_next_probe(u32 key)
8207 {
8208         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8209 }
8210
8211 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8212 {
8213         u32 key = kvm_async_pf_hash_fn(gfn);
8214
8215         while (vcpu->arch.apf.gfns[key] != ~0)
8216                 key = kvm_async_pf_next_probe(key);
8217
8218         vcpu->arch.apf.gfns[key] = gfn;
8219 }
8220
8221 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8222 {
8223         int i;
8224         u32 key = kvm_async_pf_hash_fn(gfn);
8225
8226         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8227                      (vcpu->arch.apf.gfns[key] != gfn &&
8228                       vcpu->arch.apf.gfns[key] != ~0); i++)
8229                 key = kvm_async_pf_next_probe(key);
8230
8231         return key;
8232 }
8233
8234 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8235 {
8236         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8237 }
8238
8239 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8240 {
8241         u32 i, j, k;
8242
8243         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8244         while (true) {
8245                 vcpu->arch.apf.gfns[i] = ~0;
8246                 do {
8247                         j = kvm_async_pf_next_probe(j);
8248                         if (vcpu->arch.apf.gfns[j] == ~0)
8249                                 return;
8250                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8251                         /*
8252                          * k lies cyclically in ]i,j]
8253                          * |    i.k.j |
8254                          * |....j i.k.| or  |.k..j i...|
8255                          */
8256                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8257                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8258                 i = j;
8259         }
8260 }
8261
8262 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8263 {
8264
8265         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8266                                       sizeof(val));
8267 }
8268
8269 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8270                                      struct kvm_async_pf *work)
8271 {
8272         struct x86_exception fault;
8273
8274         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8275         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8276
8277         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8278             (vcpu->arch.apf.send_user_only &&
8279              kvm_x86_ops->get_cpl(vcpu) == 0))
8280                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8281         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8282                 fault.vector = PF_VECTOR;
8283                 fault.error_code_valid = true;
8284                 fault.error_code = 0;
8285                 fault.nested_page_fault = false;
8286                 fault.address = work->arch.token;
8287                 kvm_inject_page_fault(vcpu, &fault);
8288         }
8289 }
8290
8291 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8292                                  struct kvm_async_pf *work)
8293 {
8294         struct x86_exception fault;
8295
8296         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8297         if (work->wakeup_all)
8298                 work->arch.token = ~0; /* broadcast wakeup */
8299         else
8300                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8301
8302         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8303             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8304                 fault.vector = PF_VECTOR;
8305                 fault.error_code_valid = true;
8306                 fault.error_code = 0;
8307                 fault.nested_page_fault = false;
8308                 fault.address = work->arch.token;
8309                 kvm_inject_page_fault(vcpu, &fault);
8310         }
8311         vcpu->arch.apf.halted = false;
8312         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8313 }
8314
8315 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8316 {
8317         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8318                 return true;
8319         else
8320                 return !kvm_event_needs_reinjection(vcpu) &&
8321                         kvm_x86_ops->interrupt_allowed(vcpu);
8322 }
8323
8324 void kvm_arch_start_assignment(struct kvm *kvm)
8325 {
8326         atomic_inc(&kvm->arch.assigned_device_count);
8327 }
8328 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8329
8330 void kvm_arch_end_assignment(struct kvm *kvm)
8331 {
8332         atomic_dec(&kvm->arch.assigned_device_count);
8333 }
8334 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8335
8336 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8337 {
8338         return atomic_read(&kvm->arch.assigned_device_count);
8339 }
8340 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8341
8342 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8343 {
8344         atomic_inc(&kvm->arch.noncoherent_dma_count);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8347
8348 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8349 {
8350         atomic_dec(&kvm->arch.noncoherent_dma_count);
8351 }
8352 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8353
8354 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8355 {
8356         return atomic_read(&kvm->arch.noncoherent_dma_count);
8357 }
8358 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8359
8360 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8361                                       struct irq_bypass_producer *prod)
8362 {
8363         struct kvm_kernel_irqfd *irqfd =
8364                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8365
8366         if (kvm_x86_ops->update_pi_irte) {
8367                 irqfd->producer = prod;
8368                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8369                                 prod->irq, irqfd->gsi, 1);
8370         }
8371
8372         return -EINVAL;
8373 }
8374
8375 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8376                                       struct irq_bypass_producer *prod)
8377 {
8378         int ret;
8379         struct kvm_kernel_irqfd *irqfd =
8380                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8381
8382         if (!kvm_x86_ops->update_pi_irte) {
8383                 WARN_ON(irqfd->producer != NULL);
8384                 return;
8385         }
8386
8387         WARN_ON(irqfd->producer != prod);
8388         irqfd->producer = NULL;
8389
8390         /*
8391          * When producer of consumer is unregistered, we change back to
8392          * remapped mode, so we can re-use the current implementation
8393          * when the irq is masked/disabed or the consumer side (KVM
8394          * int this case doesn't want to receive the interrupts.
8395         */
8396         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8397         if (ret)
8398                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8399                        " fails: %d\n", irqfd->consumer.token, ret);
8400 }
8401
8402 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8403                                    uint32_t guest_irq, bool set)
8404 {
8405         if (!kvm_x86_ops->update_pi_irte)
8406                 return -EINVAL;
8407
8408         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8409 }
8410
8411 bool kvm_vector_hashing_enabled(void)
8412 {
8413         return vector_hashing;
8414 }
8415 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8416
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);