ARM: socfpga: Enable OCRAM ECC on startup
[cascardo/linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/memremap.h>
34 #include <linux/nmi.h>
35 #include <linux/gfp.h>
36 #include <linux/kcore.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/e820.h>
46 #include <asm/apic.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49 #include <asm/proto.h>
50 #include <asm/smp.h>
51 #include <asm/sections.h>
52 #include <asm/kdebug.h>
53 #include <asm/numa.h>
54 #include <asm/cacheflush.h>
55 #include <asm/init.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61                            unsigned long addr, unsigned long end)
62 {
63         addr &= PMD_MASK;
64         for (; addr < end; addr += PMD_SIZE) {
65                 pmd_t *pmd = pmd_page + pmd_index(addr);
66
67                 if (!pmd_present(*pmd))
68                         set_pmd(pmd, __pmd(addr | pmd_flag));
69         }
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72                           unsigned long addr, unsigned long end)
73 {
74         unsigned long next;
75
76         for (; addr < end; addr = next) {
77                 pud_t *pud = pud_page + pud_index(addr);
78                 pmd_t *pmd;
79
80                 next = (addr & PUD_MASK) + PUD_SIZE;
81                 if (next > end)
82                         next = end;
83
84                 if (pud_present(*pud)) {
85                         pmd = pmd_offset(pud, 0);
86                         ident_pmd_init(info->pmd_flag, pmd, addr, next);
87                         continue;
88                 }
89                 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90                 if (!pmd)
91                         return -ENOMEM;
92                 ident_pmd_init(info->pmd_flag, pmd, addr, next);
93                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94         }
95
96         return 0;
97 }
98
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100                               unsigned long addr, unsigned long end)
101 {
102         unsigned long next;
103         int result;
104         int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105
106         for (; addr < end; addr = next) {
107                 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108                 pud_t *pud;
109
110                 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111                 if (next > end)
112                         next = end;
113
114                 if (pgd_present(*pgd)) {
115                         pud = pud_offset(pgd, 0);
116                         result = ident_pud_init(info, pud, addr, next);
117                         if (result)
118                                 return result;
119                         continue;
120                 }
121
122                 pud = (pud_t *)info->alloc_pgt_page(info->context);
123                 if (!pud)
124                         return -ENOMEM;
125                 result = ident_pud_init(info, pud, addr, next);
126                 if (result)
127                         return result;
128                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129         }
130
131         return 0;
132 }
133
134 /*
135  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
136  * physical space so we can cache the place of the first one and move
137  * around without checking the pgd every time.
138  */
139
140 pteval_t __supported_pte_mask __read_mostly = ~0;
141 EXPORT_SYMBOL_GPL(__supported_pte_mask);
142
143 int force_personality32;
144
145 /*
146  * noexec32=on|off
147  * Control non executable heap for 32bit processes.
148  * To control the stack too use noexec=off
149  *
150  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
151  * off  PROT_READ implies PROT_EXEC
152  */
153 static int __init nonx32_setup(char *str)
154 {
155         if (!strcmp(str, "on"))
156                 force_personality32 &= ~READ_IMPLIES_EXEC;
157         else if (!strcmp(str, "off"))
158                 force_personality32 |= READ_IMPLIES_EXEC;
159         return 1;
160 }
161 __setup("noexec32=", nonx32_setup);
162
163 /*
164  * When memory was added/removed make sure all the processes MM have
165  * suitable PGD entries in the local PGD level page.
166  */
167 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
168 {
169         unsigned long address;
170
171         for (address = start; address <= end; address += PGDIR_SIZE) {
172                 const pgd_t *pgd_ref = pgd_offset_k(address);
173                 struct page *page;
174
175                 /*
176                  * When it is called after memory hot remove, pgd_none()
177                  * returns true. In this case (removed == 1), we must clear
178                  * the PGD entries in the local PGD level page.
179                  */
180                 if (pgd_none(*pgd_ref) && !removed)
181                         continue;
182
183                 spin_lock(&pgd_lock);
184                 list_for_each_entry(page, &pgd_list, lru) {
185                         pgd_t *pgd;
186                         spinlock_t *pgt_lock;
187
188                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
189                         /* the pgt_lock only for Xen */
190                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
191                         spin_lock(pgt_lock);
192
193                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
194                                 BUG_ON(pgd_page_vaddr(*pgd)
195                                        != pgd_page_vaddr(*pgd_ref));
196
197                         if (removed) {
198                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
199                                         pgd_clear(pgd);
200                         } else {
201                                 if (pgd_none(*pgd))
202                                         set_pgd(pgd, *pgd_ref);
203                         }
204
205                         spin_unlock(pgt_lock);
206                 }
207                 spin_unlock(&pgd_lock);
208         }
209 }
210
211 /*
212  * NOTE: This function is marked __ref because it calls __init function
213  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
214  */
215 static __ref void *spp_getpage(void)
216 {
217         void *ptr;
218
219         if (after_bootmem)
220                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
221         else
222                 ptr = alloc_bootmem_pages(PAGE_SIZE);
223
224         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
225                 panic("set_pte_phys: cannot allocate page data %s\n",
226                         after_bootmem ? "after bootmem" : "");
227         }
228
229         pr_debug("spp_getpage %p\n", ptr);
230
231         return ptr;
232 }
233
234 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
235 {
236         if (pgd_none(*pgd)) {
237                 pud_t *pud = (pud_t *)spp_getpage();
238                 pgd_populate(&init_mm, pgd, pud);
239                 if (pud != pud_offset(pgd, 0))
240                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
241                                pud, pud_offset(pgd, 0));
242         }
243         return pud_offset(pgd, vaddr);
244 }
245
246 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
247 {
248         if (pud_none(*pud)) {
249                 pmd_t *pmd = (pmd_t *) spp_getpage();
250                 pud_populate(&init_mm, pud, pmd);
251                 if (pmd != pmd_offset(pud, 0))
252                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
253                                pmd, pmd_offset(pud, 0));
254         }
255         return pmd_offset(pud, vaddr);
256 }
257
258 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
259 {
260         if (pmd_none(*pmd)) {
261                 pte_t *pte = (pte_t *) spp_getpage();
262                 pmd_populate_kernel(&init_mm, pmd, pte);
263                 if (pte != pte_offset_kernel(pmd, 0))
264                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
265         }
266         return pte_offset_kernel(pmd, vaddr);
267 }
268
269 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
270 {
271         pud_t *pud;
272         pmd_t *pmd;
273         pte_t *pte;
274
275         pud = pud_page + pud_index(vaddr);
276         pmd = fill_pmd(pud, vaddr);
277         pte = fill_pte(pmd, vaddr);
278
279         set_pte(pte, new_pte);
280
281         /*
282          * It's enough to flush this one mapping.
283          * (PGE mappings get flushed as well)
284          */
285         __flush_tlb_one(vaddr);
286 }
287
288 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
289 {
290         pgd_t *pgd;
291         pud_t *pud_page;
292
293         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
294
295         pgd = pgd_offset_k(vaddr);
296         if (pgd_none(*pgd)) {
297                 printk(KERN_ERR
298                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
299                 return;
300         }
301         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
302         set_pte_vaddr_pud(pud_page, vaddr, pteval);
303 }
304
305 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
306 {
307         pgd_t *pgd;
308         pud_t *pud;
309
310         pgd = pgd_offset_k(vaddr);
311         pud = fill_pud(pgd, vaddr);
312         return fill_pmd(pud, vaddr);
313 }
314
315 pte_t * __init populate_extra_pte(unsigned long vaddr)
316 {
317         pmd_t *pmd;
318
319         pmd = populate_extra_pmd(vaddr);
320         return fill_pte(pmd, vaddr);
321 }
322
323 /*
324  * Create large page table mappings for a range of physical addresses.
325  */
326 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
327                                         enum page_cache_mode cache)
328 {
329         pgd_t *pgd;
330         pud_t *pud;
331         pmd_t *pmd;
332         pgprot_t prot;
333
334         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
335                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
336         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
337         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
338                 pgd = pgd_offset_k((unsigned long)__va(phys));
339                 if (pgd_none(*pgd)) {
340                         pud = (pud_t *) spp_getpage();
341                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
342                                                 _PAGE_USER));
343                 }
344                 pud = pud_offset(pgd, (unsigned long)__va(phys));
345                 if (pud_none(*pud)) {
346                         pmd = (pmd_t *) spp_getpage();
347                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
348                                                 _PAGE_USER));
349                 }
350                 pmd = pmd_offset(pud, phys);
351                 BUG_ON(!pmd_none(*pmd));
352                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
353         }
354 }
355
356 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
357 {
358         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
359 }
360
361 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
362 {
363         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
364 }
365
366 /*
367  * The head.S code sets up the kernel high mapping:
368  *
369  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
370  *
371  * phys_base holds the negative offset to the kernel, which is added
372  * to the compile time generated pmds. This results in invalid pmds up
373  * to the point where we hit the physaddr 0 mapping.
374  *
375  * We limit the mappings to the region from _text to _brk_end.  _brk_end
376  * is rounded up to the 2MB boundary. This catches the invalid pmds as
377  * well, as they are located before _text:
378  */
379 void __init cleanup_highmap(void)
380 {
381         unsigned long vaddr = __START_KERNEL_map;
382         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
383         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
384         pmd_t *pmd = level2_kernel_pgt;
385
386         /*
387          * Native path, max_pfn_mapped is not set yet.
388          * Xen has valid max_pfn_mapped set in
389          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
390          */
391         if (max_pfn_mapped)
392                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
393
394         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
395                 if (pmd_none(*pmd))
396                         continue;
397                 if (vaddr < (unsigned long) _text || vaddr > end)
398                         set_pmd(pmd, __pmd(0));
399         }
400 }
401
402 static unsigned long __meminit
403 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
404               pgprot_t prot)
405 {
406         unsigned long pages = 0, next;
407         unsigned long last_map_addr = end;
408         int i;
409
410         pte_t *pte = pte_page + pte_index(addr);
411
412         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
413                 next = (addr & PAGE_MASK) + PAGE_SIZE;
414                 if (addr >= end) {
415                         if (!after_bootmem &&
416                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
417                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
418                                 set_pte(pte, __pte(0));
419                         continue;
420                 }
421
422                 /*
423                  * We will re-use the existing mapping.
424                  * Xen for example has some special requirements, like mapping
425                  * pagetable pages as RO. So assume someone who pre-setup
426                  * these mappings are more intelligent.
427                  */
428                 if (pte_val(*pte)) {
429                         if (!after_bootmem)
430                                 pages++;
431                         continue;
432                 }
433
434                 if (0)
435                         printk("   pte=%p addr=%lx pte=%016lx\n",
436                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
437                 pages++;
438                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
439                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
440         }
441
442         update_page_count(PG_LEVEL_4K, pages);
443
444         return last_map_addr;
445 }
446
447 static unsigned long __meminit
448 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
449               unsigned long page_size_mask, pgprot_t prot)
450 {
451         unsigned long pages = 0, next;
452         unsigned long last_map_addr = end;
453
454         int i = pmd_index(address);
455
456         for (; i < PTRS_PER_PMD; i++, address = next) {
457                 pmd_t *pmd = pmd_page + pmd_index(address);
458                 pte_t *pte;
459                 pgprot_t new_prot = prot;
460
461                 next = (address & PMD_MASK) + PMD_SIZE;
462                 if (address >= end) {
463                         if (!after_bootmem &&
464                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
465                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
466                                 set_pmd(pmd, __pmd(0));
467                         continue;
468                 }
469
470                 if (pmd_val(*pmd)) {
471                         if (!pmd_large(*pmd)) {
472                                 spin_lock(&init_mm.page_table_lock);
473                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
474                                 last_map_addr = phys_pte_init(pte, address,
475                                                                 end, prot);
476                                 spin_unlock(&init_mm.page_table_lock);
477                                 continue;
478                         }
479                         /*
480                          * If we are ok with PG_LEVEL_2M mapping, then we will
481                          * use the existing mapping,
482                          *
483                          * Otherwise, we will split the large page mapping but
484                          * use the same existing protection bits except for
485                          * large page, so that we don't violate Intel's TLB
486                          * Application note (317080) which says, while changing
487                          * the page sizes, new and old translations should
488                          * not differ with respect to page frame and
489                          * attributes.
490                          */
491                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
492                                 if (!after_bootmem)
493                                         pages++;
494                                 last_map_addr = next;
495                                 continue;
496                         }
497                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
498                 }
499
500                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
501                         pages++;
502                         spin_lock(&init_mm.page_table_lock);
503                         set_pte((pte_t *)pmd,
504                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
505                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
506                         spin_unlock(&init_mm.page_table_lock);
507                         last_map_addr = next;
508                         continue;
509                 }
510
511                 pte = alloc_low_page();
512                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
513
514                 spin_lock(&init_mm.page_table_lock);
515                 pmd_populate_kernel(&init_mm, pmd, pte);
516                 spin_unlock(&init_mm.page_table_lock);
517         }
518         update_page_count(PG_LEVEL_2M, pages);
519         return last_map_addr;
520 }
521
522 static unsigned long __meminit
523 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
524                          unsigned long page_size_mask)
525 {
526         unsigned long pages = 0, next;
527         unsigned long last_map_addr = end;
528         int i = pud_index(addr);
529
530         for (; i < PTRS_PER_PUD; i++, addr = next) {
531                 pud_t *pud = pud_page + pud_index(addr);
532                 pmd_t *pmd;
533                 pgprot_t prot = PAGE_KERNEL;
534
535                 next = (addr & PUD_MASK) + PUD_SIZE;
536                 if (addr >= end) {
537                         if (!after_bootmem &&
538                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
539                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
540                                 set_pud(pud, __pud(0));
541                         continue;
542                 }
543
544                 if (pud_val(*pud)) {
545                         if (!pud_large(*pud)) {
546                                 pmd = pmd_offset(pud, 0);
547                                 last_map_addr = phys_pmd_init(pmd, addr, end,
548                                                          page_size_mask, prot);
549                                 __flush_tlb_all();
550                                 continue;
551                         }
552                         /*
553                          * If we are ok with PG_LEVEL_1G mapping, then we will
554                          * use the existing mapping.
555                          *
556                          * Otherwise, we will split the gbpage mapping but use
557                          * the same existing protection  bits except for large
558                          * page, so that we don't violate Intel's TLB
559                          * Application note (317080) which says, while changing
560                          * the page sizes, new and old translations should
561                          * not differ with respect to page frame and
562                          * attributes.
563                          */
564                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
565                                 if (!after_bootmem)
566                                         pages++;
567                                 last_map_addr = next;
568                                 continue;
569                         }
570                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
571                 }
572
573                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
574                         pages++;
575                         spin_lock(&init_mm.page_table_lock);
576                         set_pte((pte_t *)pud,
577                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
578                                         PAGE_KERNEL_LARGE));
579                         spin_unlock(&init_mm.page_table_lock);
580                         last_map_addr = next;
581                         continue;
582                 }
583
584                 pmd = alloc_low_page();
585                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
586                                               prot);
587
588                 spin_lock(&init_mm.page_table_lock);
589                 pud_populate(&init_mm, pud, pmd);
590                 spin_unlock(&init_mm.page_table_lock);
591         }
592         __flush_tlb_all();
593
594         update_page_count(PG_LEVEL_1G, pages);
595
596         return last_map_addr;
597 }
598
599 unsigned long __meminit
600 kernel_physical_mapping_init(unsigned long start,
601                              unsigned long end,
602                              unsigned long page_size_mask)
603 {
604         bool pgd_changed = false;
605         unsigned long next, last_map_addr = end;
606         unsigned long addr;
607
608         start = (unsigned long)__va(start);
609         end = (unsigned long)__va(end);
610         addr = start;
611
612         for (; start < end; start = next) {
613                 pgd_t *pgd = pgd_offset_k(start);
614                 pud_t *pud;
615
616                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
617
618                 if (pgd_val(*pgd)) {
619                         pud = (pud_t *)pgd_page_vaddr(*pgd);
620                         last_map_addr = phys_pud_init(pud, __pa(start),
621                                                  __pa(end), page_size_mask);
622                         continue;
623                 }
624
625                 pud = alloc_low_page();
626                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
627                                                  page_size_mask);
628
629                 spin_lock(&init_mm.page_table_lock);
630                 pgd_populate(&init_mm, pgd, pud);
631                 spin_unlock(&init_mm.page_table_lock);
632                 pgd_changed = true;
633         }
634
635         if (pgd_changed)
636                 sync_global_pgds(addr, end - 1, 0);
637
638         __flush_tlb_all();
639
640         return last_map_addr;
641 }
642
643 #ifndef CONFIG_NUMA
644 void __init initmem_init(void)
645 {
646         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
647 }
648 #endif
649
650 void __init paging_init(void)
651 {
652         sparse_memory_present_with_active_regions(MAX_NUMNODES);
653         sparse_init();
654
655         /*
656          * clear the default setting with node 0
657          * note: don't use nodes_clear here, that is really clearing when
658          *       numa support is not compiled in, and later node_set_state
659          *       will not set it back.
660          */
661         node_clear_state(0, N_MEMORY);
662         if (N_MEMORY != N_NORMAL_MEMORY)
663                 node_clear_state(0, N_NORMAL_MEMORY);
664
665         zone_sizes_init();
666 }
667
668 /*
669  * Memory hotplug specific functions
670  */
671 #ifdef CONFIG_MEMORY_HOTPLUG
672 /*
673  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
674  * updating.
675  */
676 static void  update_end_of_memory_vars(u64 start, u64 size)
677 {
678         unsigned long end_pfn = PFN_UP(start + size);
679
680         if (end_pfn > max_pfn) {
681                 max_pfn = end_pfn;
682                 max_low_pfn = end_pfn;
683                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
684         }
685 }
686
687 /*
688  * Memory is added always to NORMAL zone. This means you will never get
689  * additional DMA/DMA32 memory.
690  */
691 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
692 {
693         struct pglist_data *pgdat = NODE_DATA(nid);
694         struct zone *zone = pgdat->node_zones +
695                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
696         unsigned long start_pfn = start >> PAGE_SHIFT;
697         unsigned long nr_pages = size >> PAGE_SHIFT;
698         int ret;
699
700         init_memory_mapping(start, start + size);
701
702         ret = __add_pages(nid, zone, start_pfn, nr_pages);
703         WARN_ON_ONCE(ret);
704
705         /* update max_pfn, max_low_pfn and high_memory */
706         update_end_of_memory_vars(start, size);
707
708         return ret;
709 }
710 EXPORT_SYMBOL_GPL(arch_add_memory);
711
712 #define PAGE_INUSE 0xFD
713
714 static void __meminit free_pagetable(struct page *page, int order)
715 {
716         unsigned long magic;
717         unsigned int nr_pages = 1 << order;
718         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
719
720         if (altmap) {
721                 vmem_altmap_free(altmap, nr_pages);
722                 return;
723         }
724
725         /* bootmem page has reserved flag */
726         if (PageReserved(page)) {
727                 __ClearPageReserved(page);
728
729                 magic = (unsigned long)page->lru.next;
730                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
731                         while (nr_pages--)
732                                 put_page_bootmem(page++);
733                 } else
734                         while (nr_pages--)
735                                 free_reserved_page(page++);
736         } else
737                 free_pages((unsigned long)page_address(page), order);
738 }
739
740 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
741 {
742         pte_t *pte;
743         int i;
744
745         for (i = 0; i < PTRS_PER_PTE; i++) {
746                 pte = pte_start + i;
747                 if (pte_val(*pte))
748                         return;
749         }
750
751         /* free a pte talbe */
752         free_pagetable(pmd_page(*pmd), 0);
753         spin_lock(&init_mm.page_table_lock);
754         pmd_clear(pmd);
755         spin_unlock(&init_mm.page_table_lock);
756 }
757
758 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
759 {
760         pmd_t *pmd;
761         int i;
762
763         for (i = 0; i < PTRS_PER_PMD; i++) {
764                 pmd = pmd_start + i;
765                 if (pmd_val(*pmd))
766                         return;
767         }
768
769         /* free a pmd talbe */
770         free_pagetable(pud_page(*pud), 0);
771         spin_lock(&init_mm.page_table_lock);
772         pud_clear(pud);
773         spin_unlock(&init_mm.page_table_lock);
774 }
775
776 /* Return true if pgd is changed, otherwise return false. */
777 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
778 {
779         pud_t *pud;
780         int i;
781
782         for (i = 0; i < PTRS_PER_PUD; i++) {
783                 pud = pud_start + i;
784                 if (pud_val(*pud))
785                         return false;
786         }
787
788         /* free a pud table */
789         free_pagetable(pgd_page(*pgd), 0);
790         spin_lock(&init_mm.page_table_lock);
791         pgd_clear(pgd);
792         spin_unlock(&init_mm.page_table_lock);
793
794         return true;
795 }
796
797 static void __meminit
798 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
799                  bool direct)
800 {
801         unsigned long next, pages = 0;
802         pte_t *pte;
803         void *page_addr;
804         phys_addr_t phys_addr;
805
806         pte = pte_start + pte_index(addr);
807         for (; addr < end; addr = next, pte++) {
808                 next = (addr + PAGE_SIZE) & PAGE_MASK;
809                 if (next > end)
810                         next = end;
811
812                 if (!pte_present(*pte))
813                         continue;
814
815                 /*
816                  * We mapped [0,1G) memory as identity mapping when
817                  * initializing, in arch/x86/kernel/head_64.S. These
818                  * pagetables cannot be removed.
819                  */
820                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
821                 if (phys_addr < (phys_addr_t)0x40000000)
822                         return;
823
824                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
825                         /*
826                          * Do not free direct mapping pages since they were
827                          * freed when offlining, or simplely not in use.
828                          */
829                         if (!direct)
830                                 free_pagetable(pte_page(*pte), 0);
831
832                         spin_lock(&init_mm.page_table_lock);
833                         pte_clear(&init_mm, addr, pte);
834                         spin_unlock(&init_mm.page_table_lock);
835
836                         /* For non-direct mapping, pages means nothing. */
837                         pages++;
838                 } else {
839                         /*
840                          * If we are here, we are freeing vmemmap pages since
841                          * direct mapped memory ranges to be freed are aligned.
842                          *
843                          * If we are not removing the whole page, it means
844                          * other page structs in this page are being used and
845                          * we canot remove them. So fill the unused page_structs
846                          * with 0xFD, and remove the page when it is wholly
847                          * filled with 0xFD.
848                          */
849                         memset((void *)addr, PAGE_INUSE, next - addr);
850
851                         page_addr = page_address(pte_page(*pte));
852                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
853                                 free_pagetable(pte_page(*pte), 0);
854
855                                 spin_lock(&init_mm.page_table_lock);
856                                 pte_clear(&init_mm, addr, pte);
857                                 spin_unlock(&init_mm.page_table_lock);
858                         }
859                 }
860         }
861
862         /* Call free_pte_table() in remove_pmd_table(). */
863         flush_tlb_all();
864         if (direct)
865                 update_page_count(PG_LEVEL_4K, -pages);
866 }
867
868 static void __meminit
869 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
870                  bool direct)
871 {
872         unsigned long next, pages = 0;
873         pte_t *pte_base;
874         pmd_t *pmd;
875         void *page_addr;
876
877         pmd = pmd_start + pmd_index(addr);
878         for (; addr < end; addr = next, pmd++) {
879                 next = pmd_addr_end(addr, end);
880
881                 if (!pmd_present(*pmd))
882                         continue;
883
884                 if (pmd_large(*pmd)) {
885                         if (IS_ALIGNED(addr, PMD_SIZE) &&
886                             IS_ALIGNED(next, PMD_SIZE)) {
887                                 if (!direct)
888                                         free_pagetable(pmd_page(*pmd),
889                                                        get_order(PMD_SIZE));
890
891                                 spin_lock(&init_mm.page_table_lock);
892                                 pmd_clear(pmd);
893                                 spin_unlock(&init_mm.page_table_lock);
894                                 pages++;
895                         } else {
896                                 /* If here, we are freeing vmemmap pages. */
897                                 memset((void *)addr, PAGE_INUSE, next - addr);
898
899                                 page_addr = page_address(pmd_page(*pmd));
900                                 if (!memchr_inv(page_addr, PAGE_INUSE,
901                                                 PMD_SIZE)) {
902                                         free_pagetable(pmd_page(*pmd),
903                                                        get_order(PMD_SIZE));
904
905                                         spin_lock(&init_mm.page_table_lock);
906                                         pmd_clear(pmd);
907                                         spin_unlock(&init_mm.page_table_lock);
908                                 }
909                         }
910
911                         continue;
912                 }
913
914                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
915                 remove_pte_table(pte_base, addr, next, direct);
916                 free_pte_table(pte_base, pmd);
917         }
918
919         /* Call free_pmd_table() in remove_pud_table(). */
920         if (direct)
921                 update_page_count(PG_LEVEL_2M, -pages);
922 }
923
924 static void __meminit
925 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
926                  bool direct)
927 {
928         unsigned long next, pages = 0;
929         pmd_t *pmd_base;
930         pud_t *pud;
931         void *page_addr;
932
933         pud = pud_start + pud_index(addr);
934         for (; addr < end; addr = next, pud++) {
935                 next = pud_addr_end(addr, end);
936
937                 if (!pud_present(*pud))
938                         continue;
939
940                 if (pud_large(*pud)) {
941                         if (IS_ALIGNED(addr, PUD_SIZE) &&
942                             IS_ALIGNED(next, PUD_SIZE)) {
943                                 if (!direct)
944                                         free_pagetable(pud_page(*pud),
945                                                        get_order(PUD_SIZE));
946
947                                 spin_lock(&init_mm.page_table_lock);
948                                 pud_clear(pud);
949                                 spin_unlock(&init_mm.page_table_lock);
950                                 pages++;
951                         } else {
952                                 /* If here, we are freeing vmemmap pages. */
953                                 memset((void *)addr, PAGE_INUSE, next - addr);
954
955                                 page_addr = page_address(pud_page(*pud));
956                                 if (!memchr_inv(page_addr, PAGE_INUSE,
957                                                 PUD_SIZE)) {
958                                         free_pagetable(pud_page(*pud),
959                                                        get_order(PUD_SIZE));
960
961                                         spin_lock(&init_mm.page_table_lock);
962                                         pud_clear(pud);
963                                         spin_unlock(&init_mm.page_table_lock);
964                                 }
965                         }
966
967                         continue;
968                 }
969
970                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
971                 remove_pmd_table(pmd_base, addr, next, direct);
972                 free_pmd_table(pmd_base, pud);
973         }
974
975         if (direct)
976                 update_page_count(PG_LEVEL_1G, -pages);
977 }
978
979 /* start and end are both virtual address. */
980 static void __meminit
981 remove_pagetable(unsigned long start, unsigned long end, bool direct)
982 {
983         unsigned long next;
984         unsigned long addr;
985         pgd_t *pgd;
986         pud_t *pud;
987         bool pgd_changed = false;
988
989         for (addr = start; addr < end; addr = next) {
990                 next = pgd_addr_end(addr, end);
991
992                 pgd = pgd_offset_k(addr);
993                 if (!pgd_present(*pgd))
994                         continue;
995
996                 pud = (pud_t *)pgd_page_vaddr(*pgd);
997                 remove_pud_table(pud, addr, next, direct);
998                 if (free_pud_table(pud, pgd))
999                         pgd_changed = true;
1000         }
1001
1002         if (pgd_changed)
1003                 sync_global_pgds(start, end - 1, 1);
1004
1005         flush_tlb_all();
1006 }
1007
1008 void __ref vmemmap_free(unsigned long start, unsigned long end)
1009 {
1010         remove_pagetable(start, end, false);
1011 }
1012
1013 #ifdef CONFIG_MEMORY_HOTREMOVE
1014 static void __meminit
1015 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1016 {
1017         start = (unsigned long)__va(start);
1018         end = (unsigned long)__va(end);
1019
1020         remove_pagetable(start, end, true);
1021 }
1022
1023 int __ref arch_remove_memory(u64 start, u64 size)
1024 {
1025         unsigned long start_pfn = start >> PAGE_SHIFT;
1026         unsigned long nr_pages = size >> PAGE_SHIFT;
1027         struct page *page = pfn_to_page(start_pfn);
1028         struct vmem_altmap *altmap;
1029         struct zone *zone;
1030         int ret;
1031
1032         /* With altmap the first mapped page is offset from @start */
1033         altmap = to_vmem_altmap((unsigned long) page);
1034         if (altmap)
1035                 page += vmem_altmap_offset(altmap);
1036         zone = page_zone(page);
1037         ret = __remove_pages(zone, start_pfn, nr_pages);
1038         WARN_ON_ONCE(ret);
1039         kernel_physical_mapping_remove(start, start + size);
1040
1041         return ret;
1042 }
1043 #endif
1044 #endif /* CONFIG_MEMORY_HOTPLUG */
1045
1046 static struct kcore_list kcore_vsyscall;
1047
1048 static void __init register_page_bootmem_info(void)
1049 {
1050 #ifdef CONFIG_NUMA
1051         int i;
1052
1053         for_each_online_node(i)
1054                 register_page_bootmem_info_node(NODE_DATA(i));
1055 #endif
1056 }
1057
1058 void __init mem_init(void)
1059 {
1060         pci_iommu_alloc();
1061
1062         /* clear_bss() already clear the empty_zero_page */
1063
1064         register_page_bootmem_info();
1065
1066         /* this will put all memory onto the freelists */
1067         free_all_bootmem();
1068         after_bootmem = 1;
1069
1070         /* Register memory areas for /proc/kcore */
1071         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1072                          PAGE_SIZE, KCORE_OTHER);
1073
1074         mem_init_print_info(NULL);
1075 }
1076
1077 #ifdef CONFIG_DEBUG_RODATA
1078 const int rodata_test_data = 0xC3;
1079 EXPORT_SYMBOL_GPL(rodata_test_data);
1080
1081 int kernel_set_to_readonly;
1082
1083 void set_kernel_text_rw(void)
1084 {
1085         unsigned long start = PFN_ALIGN(_text);
1086         unsigned long end = PFN_ALIGN(__stop___ex_table);
1087
1088         if (!kernel_set_to_readonly)
1089                 return;
1090
1091         pr_debug("Set kernel text: %lx - %lx for read write\n",
1092                  start, end);
1093
1094         /*
1095          * Make the kernel identity mapping for text RW. Kernel text
1096          * mapping will always be RO. Refer to the comment in
1097          * static_protections() in pageattr.c
1098          */
1099         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100 }
1101
1102 void set_kernel_text_ro(void)
1103 {
1104         unsigned long start = PFN_ALIGN(_text);
1105         unsigned long end = PFN_ALIGN(__stop___ex_table);
1106
1107         if (!kernel_set_to_readonly)
1108                 return;
1109
1110         pr_debug("Set kernel text: %lx - %lx for read only\n",
1111                  start, end);
1112
1113         /*
1114          * Set the kernel identity mapping for text RO.
1115          */
1116         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117 }
1118
1119 void mark_rodata_ro(void)
1120 {
1121         unsigned long start = PFN_ALIGN(_text);
1122         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126         unsigned long all_end;
1127
1128         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129                (end - start) >> 10);
1130         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131
1132         kernel_set_to_readonly = 1;
1133
1134         /*
1135          * The rodata/data/bss/brk section (but not the kernel text!)
1136          * should also be not-executable.
1137          *
1138          * We align all_end to PMD_SIZE because the existing mapping
1139          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1140          * split the PMD and the reminder between _brk_end and the end
1141          * of the PMD will remain mapped executable.
1142          *
1143          * Any PMD which was setup after the one which covers _brk_end
1144          * has been zapped already via cleanup_highmem().
1145          */
1146         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1147         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1148
1149         rodata_test();
1150
1151 #ifdef CONFIG_CPA_DEBUG
1152         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1153         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1154
1155         printk(KERN_INFO "Testing CPA: again\n");
1156         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1157 #endif
1158
1159         free_init_pages("unused kernel",
1160                         (unsigned long) __va(__pa_symbol(text_end)),
1161                         (unsigned long) __va(__pa_symbol(rodata_start)));
1162         free_init_pages("unused kernel",
1163                         (unsigned long) __va(__pa_symbol(rodata_end)),
1164                         (unsigned long) __va(__pa_symbol(_sdata)));
1165
1166         debug_checkwx();
1167 }
1168
1169 #endif
1170
1171 int kern_addr_valid(unsigned long addr)
1172 {
1173         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1174         pgd_t *pgd;
1175         pud_t *pud;
1176         pmd_t *pmd;
1177         pte_t *pte;
1178
1179         if (above != 0 && above != -1UL)
1180                 return 0;
1181
1182         pgd = pgd_offset_k(addr);
1183         if (pgd_none(*pgd))
1184                 return 0;
1185
1186         pud = pud_offset(pgd, addr);
1187         if (pud_none(*pud))
1188                 return 0;
1189
1190         if (pud_large(*pud))
1191                 return pfn_valid(pud_pfn(*pud));
1192
1193         pmd = pmd_offset(pud, addr);
1194         if (pmd_none(*pmd))
1195                 return 0;
1196
1197         if (pmd_large(*pmd))
1198                 return pfn_valid(pmd_pfn(*pmd));
1199
1200         pte = pte_offset_kernel(pmd, addr);
1201         if (pte_none(*pte))
1202                 return 0;
1203
1204         return pfn_valid(pte_pfn(*pte));
1205 }
1206
1207 static unsigned long probe_memory_block_size(void)
1208 {
1209         /* start from 2g */
1210         unsigned long bz = 1UL<<31;
1211
1212         if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1213                 pr_info("Using 2GB memory block size for large-memory system\n");
1214                 return 2UL * 1024 * 1024 * 1024;
1215         }
1216
1217         /* less than 64g installed */
1218         if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1219                 return MIN_MEMORY_BLOCK_SIZE;
1220
1221         /* get the tail size */
1222         while (bz > MIN_MEMORY_BLOCK_SIZE) {
1223                 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1224                         break;
1225                 bz >>= 1;
1226         }
1227
1228         printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1229
1230         return bz;
1231 }
1232
1233 static unsigned long memory_block_size_probed;
1234 unsigned long memory_block_size_bytes(void)
1235 {
1236         if (!memory_block_size_probed)
1237                 memory_block_size_probed = probe_memory_block_size();
1238
1239         return memory_block_size_probed;
1240 }
1241
1242 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1243 /*
1244  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1245  */
1246 static long __meminitdata addr_start, addr_end;
1247 static void __meminitdata *p_start, *p_end;
1248 static int __meminitdata node_start;
1249
1250 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1251                 unsigned long end, int node, struct vmem_altmap *altmap)
1252 {
1253         unsigned long addr;
1254         unsigned long next;
1255         pgd_t *pgd;
1256         pud_t *pud;
1257         pmd_t *pmd;
1258
1259         for (addr = start; addr < end; addr = next) {
1260                 next = pmd_addr_end(addr, end);
1261
1262                 pgd = vmemmap_pgd_populate(addr, node);
1263                 if (!pgd)
1264                         return -ENOMEM;
1265
1266                 pud = vmemmap_pud_populate(pgd, addr, node);
1267                 if (!pud)
1268                         return -ENOMEM;
1269
1270                 pmd = pmd_offset(pud, addr);
1271                 if (pmd_none(*pmd)) {
1272                         void *p;
1273
1274                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1275                         if (p) {
1276                                 pte_t entry;
1277
1278                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1279                                                 PAGE_KERNEL_LARGE);
1280                                 set_pmd(pmd, __pmd(pte_val(entry)));
1281
1282                                 /* check to see if we have contiguous blocks */
1283                                 if (p_end != p || node_start != node) {
1284                                         if (p_start)
1285                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1286                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1287                                         addr_start = addr;
1288                                         node_start = node;
1289                                         p_start = p;
1290                                 }
1291
1292                                 addr_end = addr + PMD_SIZE;
1293                                 p_end = p + PMD_SIZE;
1294                                 continue;
1295                         } else if (altmap)
1296                                 return -ENOMEM; /* no fallback */
1297                 } else if (pmd_large(*pmd)) {
1298                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1299                         continue;
1300                 }
1301                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1302                 if (vmemmap_populate_basepages(addr, next, node))
1303                         return -ENOMEM;
1304         }
1305         return 0;
1306 }
1307
1308 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1309 {
1310         struct vmem_altmap *altmap = to_vmem_altmap(start);
1311         int err;
1312
1313         if (cpu_has_pse)
1314                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1315         else if (altmap) {
1316                 pr_err_once("%s: no cpu support for altmap allocations\n",
1317                                 __func__);
1318                 err = -ENOMEM;
1319         } else
1320                 err = vmemmap_populate_basepages(start, end, node);
1321         if (!err)
1322                 sync_global_pgds(start, end - 1, 0);
1323         return err;
1324 }
1325
1326 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1327 void register_page_bootmem_memmap(unsigned long section_nr,
1328                                   struct page *start_page, unsigned long size)
1329 {
1330         unsigned long addr = (unsigned long)start_page;
1331         unsigned long end = (unsigned long)(start_page + size);
1332         unsigned long next;
1333         pgd_t *pgd;
1334         pud_t *pud;
1335         pmd_t *pmd;
1336         unsigned int nr_pages;
1337         struct page *page;
1338
1339         for (; addr < end; addr = next) {
1340                 pte_t *pte = NULL;
1341
1342                 pgd = pgd_offset_k(addr);
1343                 if (pgd_none(*pgd)) {
1344                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1345                         continue;
1346                 }
1347                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1348
1349                 pud = pud_offset(pgd, addr);
1350                 if (pud_none(*pud)) {
1351                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1352                         continue;
1353                 }
1354                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1355
1356                 if (!cpu_has_pse) {
1357                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1358                         pmd = pmd_offset(pud, addr);
1359                         if (pmd_none(*pmd))
1360                                 continue;
1361                         get_page_bootmem(section_nr, pmd_page(*pmd),
1362                                          MIX_SECTION_INFO);
1363
1364                         pte = pte_offset_kernel(pmd, addr);
1365                         if (pte_none(*pte))
1366                                 continue;
1367                         get_page_bootmem(section_nr, pte_page(*pte),
1368                                          SECTION_INFO);
1369                 } else {
1370                         next = pmd_addr_end(addr, end);
1371
1372                         pmd = pmd_offset(pud, addr);
1373                         if (pmd_none(*pmd))
1374                                 continue;
1375
1376                         nr_pages = 1 << (get_order(PMD_SIZE));
1377                         page = pmd_page(*pmd);
1378                         while (nr_pages--)
1379                                 get_page_bootmem(section_nr, page++,
1380                                                  SECTION_INFO);
1381                 }
1382         }
1383 }
1384 #endif
1385
1386 void __meminit vmemmap_populate_print_last(void)
1387 {
1388         if (p_start) {
1389                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1390                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1391                 p_start = NULL;
1392                 p_end = NULL;
1393                 node_start = 0;
1394         }
1395 }
1396 #endif