26c93c6e04a015bb199a0ba6a55eef32e9d02f24
[cascardo/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         if (direct_pages_count[level] == 0)
70                 return;
71
72         direct_pages_count[level]--;
73         direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78         seq_printf(m, "DirectMap4k:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81         seq_printf(m, "DirectMap2M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84         seq_printf(m, "DirectMap4M:    %8lu kB\n",
85                         direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87         if (direct_gbpages)
88                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
89                         direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99         return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
105 }
106
107 #endif
108
109 static inline int
110 within(unsigned long addr, unsigned long start, unsigned long end)
111 {
112         return addr >= start && addr < end;
113 }
114
115 /*
116  * Flushing functions
117  */
118
119 /**
120  * clflush_cache_range - flush a cache range with clflush
121  * @vaddr:      virtual start address
122  * @size:       number of bytes to flush
123  *
124  * clflushopt is an unordered instruction which needs fencing with mfence or
125  * sfence to avoid ordering issues.
126  */
127 void clflush_cache_range(void *vaddr, unsigned int size)
128 {
129         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
130         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
131         void *vend = vaddr + size;
132
133         if (p >= vend)
134                 return;
135
136         mb();
137
138         for (; p < vend; p += clflush_size)
139                 clflushopt(p);
140
141         mb();
142 }
143 EXPORT_SYMBOL_GPL(clflush_cache_range);
144
145 static void __cpa_flush_all(void *arg)
146 {
147         unsigned long cache = (unsigned long)arg;
148
149         /*
150          * Flush all to work around Errata in early athlons regarding
151          * large page flushing.
152          */
153         __flush_tlb_all();
154
155         if (cache && boot_cpu_data.x86 >= 4)
156                 wbinvd();
157 }
158
159 static void cpa_flush_all(unsigned long cache)
160 {
161         BUG_ON(irqs_disabled());
162
163         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
164 }
165
166 static void __cpa_flush_range(void *arg)
167 {
168         /*
169          * We could optimize that further and do individual per page
170          * tlb invalidates for a low number of pages. Caveat: we must
171          * flush the high aliases on 64bit as well.
172          */
173         __flush_tlb_all();
174 }
175
176 static void cpa_flush_range(unsigned long start, int numpages, int cache)
177 {
178         unsigned int i, level;
179         unsigned long addr;
180
181         BUG_ON(irqs_disabled());
182         WARN_ON(PAGE_ALIGN(start) != start);
183
184         on_each_cpu(__cpa_flush_range, NULL, 1);
185
186         if (!cache)
187                 return;
188
189         /*
190          * We only need to flush on one CPU,
191          * clflush is a MESI-coherent instruction that
192          * will cause all other CPUs to flush the same
193          * cachelines:
194          */
195         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
196                 pte_t *pte = lookup_address(addr, &level);
197
198                 /*
199                  * Only flush present addresses:
200                  */
201                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
202                         clflush_cache_range((void *) addr, PAGE_SIZE);
203         }
204 }
205
206 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
207                             int in_flags, struct page **pages)
208 {
209         unsigned int i, level;
210         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
211
212         BUG_ON(irqs_disabled());
213
214         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
215
216         if (!cache || do_wbinvd)
217                 return;
218
219         /*
220          * We only need to flush on one CPU,
221          * clflush is a MESI-coherent instruction that
222          * will cause all other CPUs to flush the same
223          * cachelines:
224          */
225         for (i = 0; i < numpages; i++) {
226                 unsigned long addr;
227                 pte_t *pte;
228
229                 if (in_flags & CPA_PAGES_ARRAY)
230                         addr = (unsigned long)page_address(pages[i]);
231                 else
232                         addr = start[i];
233
234                 pte = lookup_address(addr, &level);
235
236                 /*
237                  * Only flush present addresses:
238                  */
239                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
240                         clflush_cache_range((void *)addr, PAGE_SIZE);
241         }
242 }
243
244 /*
245  * Certain areas of memory on x86 require very specific protection flags,
246  * for example the BIOS area or kernel text. Callers don't always get this
247  * right (again, ioremap() on BIOS memory is not uncommon) so this function
248  * checks and fixes these known static required protection bits.
249  */
250 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
251                                    unsigned long pfn)
252 {
253         pgprot_t forbidden = __pgprot(0);
254
255         /*
256          * The BIOS area between 640k and 1Mb needs to be executable for
257          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
258          */
259 #ifdef CONFIG_PCI_BIOS
260         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
261                 pgprot_val(forbidden) |= _PAGE_NX;
262 #endif
263
264         /*
265          * The kernel text needs to be executable for obvious reasons
266          * Does not cover __inittext since that is gone later on. On
267          * 64bit we do not enforce !NX on the low mapping
268          */
269         if (within(address, (unsigned long)_text, (unsigned long)_etext))
270                 pgprot_val(forbidden) |= _PAGE_NX;
271
272         /*
273          * The .rodata section needs to be read-only. Using the pfn
274          * catches all aliases.
275          */
276         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
277                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
278                 pgprot_val(forbidden) |= _PAGE_RW;
279
280 #if defined(CONFIG_X86_64)
281         /*
282          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
283          * kernel text mappings for the large page aligned text, rodata sections
284          * will be always read-only. For the kernel identity mappings covering
285          * the holes caused by this alignment can be anything that user asks.
286          *
287          * This will preserve the large page mappings for kernel text/data
288          * at no extra cost.
289          */
290         if (kernel_set_to_readonly &&
291             within(address, (unsigned long)_text,
292                    (unsigned long)__end_rodata_hpage_align)) {
293                 unsigned int level;
294
295                 /*
296                  * Don't enforce the !RW mapping for the kernel text mapping,
297                  * if the current mapping is already using small page mapping.
298                  * No need to work hard to preserve large page mappings in this
299                  * case.
300                  *
301                  * This also fixes the Linux Xen paravirt guest boot failure
302                  * (because of unexpected read-only mappings for kernel identity
303                  * mappings). In this paravirt guest case, the kernel text
304                  * mapping and the kernel identity mapping share the same
305                  * page-table pages. Thus we can't really use different
306                  * protections for the kernel text and identity mappings. Also,
307                  * these shared mappings are made of small page mappings.
308                  * Thus this don't enforce !RW mapping for small page kernel
309                  * text mapping logic will help Linux Xen parvirt guest boot
310                  * as well.
311                  */
312                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
313                         pgprot_val(forbidden) |= _PAGE_RW;
314         }
315 #endif
316
317         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
318
319         return prot;
320 }
321
322 /*
323  * Lookup the page table entry for a virtual address in a specific pgd.
324  * Return a pointer to the entry and the level of the mapping.
325  */
326 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327                              unsigned int *level)
328 {
329         pud_t *pud;
330         pmd_t *pmd;
331
332         *level = PG_LEVEL_NONE;
333
334         if (pgd_none(*pgd))
335                 return NULL;
336
337         pud = pud_offset(pgd, address);
338         if (pud_none(*pud))
339                 return NULL;
340
341         *level = PG_LEVEL_1G;
342         if (pud_large(*pud) || !pud_present(*pud))
343                 return (pte_t *)pud;
344
345         pmd = pmd_offset(pud, address);
346         if (pmd_none(*pmd))
347                 return NULL;
348
349         *level = PG_LEVEL_2M;
350         if (pmd_large(*pmd) || !pmd_present(*pmd))
351                 return (pte_t *)pmd;
352
353         *level = PG_LEVEL_4K;
354
355         return pte_offset_kernel(pmd, address);
356 }
357
358 /*
359  * Lookup the page table entry for a virtual address. Return a pointer
360  * to the entry and the level of the mapping.
361  *
362  * Note: We return pud and pmd either when the entry is marked large
363  * or when the present bit is not set. Otherwise we would return a
364  * pointer to a nonexisting mapping.
365  */
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
367 {
368         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
369 }
370 EXPORT_SYMBOL_GPL(lookup_address);
371
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373                                   unsigned int *level)
374 {
375         if (cpa->pgd)
376                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377                                                address, level);
378
379         return lookup_address(address, level);
380 }
381
382 /*
383  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
384  * or NULL if not present.
385  */
386 pmd_t *lookup_pmd_address(unsigned long address)
387 {
388         pgd_t *pgd;
389         pud_t *pud;
390
391         pgd = pgd_offset_k(address);
392         if (pgd_none(*pgd))
393                 return NULL;
394
395         pud = pud_offset(pgd, address);
396         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
397                 return NULL;
398
399         return pmd_offset(pud, address);
400 }
401
402 /*
403  * This is necessary because __pa() does not work on some
404  * kinds of memory, like vmalloc() or the alloc_remap()
405  * areas on 32-bit NUMA systems.  The percpu areas can
406  * end up in this kind of memory, for instance.
407  *
408  * This could be optimized, but it is only intended to be
409  * used at inititalization time, and keeping it
410  * unoptimized should increase the testing coverage for
411  * the more obscure platforms.
412  */
413 phys_addr_t slow_virt_to_phys(void *__virt_addr)
414 {
415         unsigned long virt_addr = (unsigned long)__virt_addr;
416         phys_addr_t phys_addr;
417         unsigned long offset;
418         enum pg_level level;
419         pte_t *pte;
420
421         pte = lookup_address(virt_addr, &level);
422         BUG_ON(!pte);
423
424         /*
425          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
426          * before being left-shifted PAGE_SHIFT bits -- this trick is to
427          * make 32-PAE kernel work correctly.
428          */
429         switch (level) {
430         case PG_LEVEL_1G:
431                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
432                 offset = virt_addr & ~PUD_PAGE_MASK;
433                 break;
434         case PG_LEVEL_2M:
435                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
436                 offset = virt_addr & ~PMD_PAGE_MASK;
437                 break;
438         default:
439                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
440                 offset = virt_addr & ~PAGE_MASK;
441         }
442
443         return (phys_addr_t)(phys_addr | offset);
444 }
445 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
446
447 /*
448  * Set the new pmd in all the pgds we know about:
449  */
450 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
451 {
452         /* change init_mm */
453         set_pte_atomic(kpte, pte);
454 #ifdef CONFIG_X86_32
455         if (!SHARED_KERNEL_PMD) {
456                 struct page *page;
457
458                 list_for_each_entry(page, &pgd_list, lru) {
459                         pgd_t *pgd;
460                         pud_t *pud;
461                         pmd_t *pmd;
462
463                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
464                         pud = pud_offset(pgd, address);
465                         pmd = pmd_offset(pud, address);
466                         set_pte_atomic((pte_t *)pmd, pte);
467                 }
468         }
469 #endif
470 }
471
472 static int
473 try_preserve_large_page(pte_t *kpte, unsigned long address,
474                         struct cpa_data *cpa)
475 {
476         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
477         pte_t new_pte, old_pte, *tmp;
478         pgprot_t old_prot, new_prot, req_prot;
479         int i, do_split = 1;
480         enum pg_level level;
481
482         if (cpa->force_split)
483                 return 1;
484
485         spin_lock(&pgd_lock);
486         /*
487          * Check for races, another CPU might have split this page
488          * up already:
489          */
490         tmp = _lookup_address_cpa(cpa, address, &level);
491         if (tmp != kpte)
492                 goto out_unlock;
493
494         switch (level) {
495         case PG_LEVEL_2M:
496                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
497                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
498                 break;
499         case PG_LEVEL_1G:
500                 old_prot = pud_pgprot(*(pud_t *)kpte);
501                 old_pfn = pud_pfn(*(pud_t *)kpte);
502                 break;
503         default:
504                 do_split = -EINVAL;
505                 goto out_unlock;
506         }
507
508         psize = page_level_size(level);
509         pmask = page_level_mask(level);
510
511         /*
512          * Calculate the number of pages, which fit into this large
513          * page starting at address:
514          */
515         nextpage_addr = (address + psize) & pmask;
516         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
517         if (numpages < cpa->numpages)
518                 cpa->numpages = numpages;
519
520         /*
521          * We are safe now. Check whether the new pgprot is the same:
522          * Convert protection attributes to 4k-format, as cpa->mask* are set
523          * up accordingly.
524          */
525         old_pte = *kpte;
526         req_prot = pgprot_large_2_4k(old_prot);
527
528         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
529         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
530
531         /*
532          * req_prot is in format of 4k pages. It must be converted to large
533          * page format: the caching mode includes the PAT bit located at
534          * different bit positions in the two formats.
535          */
536         req_prot = pgprot_4k_2_large(req_prot);
537
538         /*
539          * Set the PSE and GLOBAL flags only if the PRESENT flag is
540          * set otherwise pmd_present/pmd_huge will return true even on
541          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
542          * for the ancient hardware that doesn't support it.
543          */
544         if (pgprot_val(req_prot) & _PAGE_PRESENT)
545                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
546         else
547                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
548
549         req_prot = canon_pgprot(req_prot);
550
551         /*
552          * old_pfn points to the large page base pfn. So we need
553          * to add the offset of the virtual address:
554          */
555         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
556         cpa->pfn = pfn;
557
558         new_prot = static_protections(req_prot, address, pfn);
559
560         /*
561          * We need to check the full range, whether
562          * static_protection() requires a different pgprot for one of
563          * the pages in the range we try to preserve:
564          */
565         addr = address & pmask;
566         pfn = old_pfn;
567         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
568                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
569
570                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
571                         goto out_unlock;
572         }
573
574         /*
575          * If there are no changes, return. maxpages has been updated
576          * above:
577          */
578         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
579                 do_split = 0;
580                 goto out_unlock;
581         }
582
583         /*
584          * We need to change the attributes. Check, whether we can
585          * change the large page in one go. We request a split, when
586          * the address is not aligned and the number of pages is
587          * smaller than the number of pages in the large page. Note
588          * that we limited the number of possible pages already to
589          * the number of pages in the large page.
590          */
591         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
592                 /*
593                  * The address is aligned and the number of pages
594                  * covers the full page.
595                  */
596                 new_pte = pfn_pte(old_pfn, new_prot);
597                 __set_pmd_pte(kpte, address, new_pte);
598                 cpa->flags |= CPA_FLUSHTLB;
599                 do_split = 0;
600         }
601
602 out_unlock:
603         spin_unlock(&pgd_lock);
604
605         return do_split;
606 }
607
608 static int
609 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
610                    struct page *base)
611 {
612         pte_t *pbase = (pte_t *)page_address(base);
613         unsigned long ref_pfn, pfn, pfninc = 1;
614         unsigned int i, level;
615         pte_t *tmp;
616         pgprot_t ref_prot;
617
618         spin_lock(&pgd_lock);
619         /*
620          * Check for races, another CPU might have split this page
621          * up for us already:
622          */
623         tmp = _lookup_address_cpa(cpa, address, &level);
624         if (tmp != kpte) {
625                 spin_unlock(&pgd_lock);
626                 return 1;
627         }
628
629         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
630
631         switch (level) {
632         case PG_LEVEL_2M:
633                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
634                 /* clear PSE and promote PAT bit to correct position */
635                 ref_prot = pgprot_large_2_4k(ref_prot);
636                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
637                 break;
638
639         case PG_LEVEL_1G:
640                 ref_prot = pud_pgprot(*(pud_t *)kpte);
641                 ref_pfn = pud_pfn(*(pud_t *)kpte);
642                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
643
644                 /*
645                  * Clear the PSE flags if the PRESENT flag is not set
646                  * otherwise pmd_present/pmd_huge will return true
647                  * even on a non present pmd.
648                  */
649                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
650                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
651                 break;
652
653         default:
654                 spin_unlock(&pgd_lock);
655                 return 1;
656         }
657
658         /*
659          * Set the GLOBAL flags only if the PRESENT flag is set
660          * otherwise pmd/pte_present will return true even on a non
661          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
662          * for the ancient hardware that doesn't support it.
663          */
664         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
665                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
666         else
667                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
668
669         /*
670          * Get the target pfn from the original entry:
671          */
672         pfn = ref_pfn;
673         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
674                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
675
676         if (virt_addr_valid(address)) {
677                 unsigned long pfn = PFN_DOWN(__pa(address));
678
679                 if (pfn_range_is_mapped(pfn, pfn + 1))
680                         split_page_count(level);
681         }
682
683         /*
684          * Install the new, split up pagetable.
685          *
686          * We use the standard kernel pagetable protections for the new
687          * pagetable protections, the actual ptes set above control the
688          * primary protection behavior:
689          */
690         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
691
692         /*
693          * Intel Atom errata AAH41 workaround.
694          *
695          * The real fix should be in hw or in a microcode update, but
696          * we also probabilistically try to reduce the window of having
697          * a large TLB mixed with 4K TLBs while instruction fetches are
698          * going on.
699          */
700         __flush_tlb_all();
701         spin_unlock(&pgd_lock);
702
703         return 0;
704 }
705
706 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
707                             unsigned long address)
708 {
709         struct page *base;
710
711         if (!debug_pagealloc_enabled())
712                 spin_unlock(&cpa_lock);
713         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
714         if (!debug_pagealloc_enabled())
715                 spin_lock(&cpa_lock);
716         if (!base)
717                 return -ENOMEM;
718
719         if (__split_large_page(cpa, kpte, address, base))
720                 __free_page(base);
721
722         return 0;
723 }
724
725 static bool try_to_free_pte_page(pte_t *pte)
726 {
727         int i;
728
729         for (i = 0; i < PTRS_PER_PTE; i++)
730                 if (!pte_none(pte[i]))
731                         return false;
732
733         free_page((unsigned long)pte);
734         return true;
735 }
736
737 static bool try_to_free_pmd_page(pmd_t *pmd)
738 {
739         int i;
740
741         for (i = 0; i < PTRS_PER_PMD; i++)
742                 if (!pmd_none(pmd[i]))
743                         return false;
744
745         free_page((unsigned long)pmd);
746         return true;
747 }
748
749 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
750 {
751         pte_t *pte = pte_offset_kernel(pmd, start);
752
753         while (start < end) {
754                 set_pte(pte, __pte(0));
755
756                 start += PAGE_SIZE;
757                 pte++;
758         }
759
760         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
761                 pmd_clear(pmd);
762                 return true;
763         }
764         return false;
765 }
766
767 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
768                               unsigned long start, unsigned long end)
769 {
770         if (unmap_pte_range(pmd, start, end))
771                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
772                         pud_clear(pud);
773 }
774
775 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
776 {
777         pmd_t *pmd = pmd_offset(pud, start);
778
779         /*
780          * Not on a 2MB page boundary?
781          */
782         if (start & (PMD_SIZE - 1)) {
783                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
784                 unsigned long pre_end = min_t(unsigned long, end, next_page);
785
786                 __unmap_pmd_range(pud, pmd, start, pre_end);
787
788                 start = pre_end;
789                 pmd++;
790         }
791
792         /*
793          * Try to unmap in 2M chunks.
794          */
795         while (end - start >= PMD_SIZE) {
796                 if (pmd_large(*pmd))
797                         pmd_clear(pmd);
798                 else
799                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
800
801                 start += PMD_SIZE;
802                 pmd++;
803         }
804
805         /*
806          * 4K leftovers?
807          */
808         if (start < end)
809                 return __unmap_pmd_range(pud, pmd, start, end);
810
811         /*
812          * Try again to free the PMD page if haven't succeeded above.
813          */
814         if (!pud_none(*pud))
815                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
816                         pud_clear(pud);
817 }
818
819 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
820 {
821         pud_t *pud = pud_offset(pgd, start);
822
823         /*
824          * Not on a GB page boundary?
825          */
826         if (start & (PUD_SIZE - 1)) {
827                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
828                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
829
830                 unmap_pmd_range(pud, start, pre_end);
831
832                 start = pre_end;
833                 pud++;
834         }
835
836         /*
837          * Try to unmap in 1G chunks?
838          */
839         while (end - start >= PUD_SIZE) {
840
841                 if (pud_large(*pud))
842                         pud_clear(pud);
843                 else
844                         unmap_pmd_range(pud, start, start + PUD_SIZE);
845
846                 start += PUD_SIZE;
847                 pud++;
848         }
849
850         /*
851          * 2M leftovers?
852          */
853         if (start < end)
854                 unmap_pmd_range(pud, start, end);
855
856         /*
857          * No need to try to free the PUD page because we'll free it in
858          * populate_pgd's error path
859          */
860 }
861
862 static int alloc_pte_page(pmd_t *pmd)
863 {
864         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
865         if (!pte)
866                 return -1;
867
868         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
869         return 0;
870 }
871
872 static int alloc_pmd_page(pud_t *pud)
873 {
874         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
875         if (!pmd)
876                 return -1;
877
878         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
879         return 0;
880 }
881
882 static void populate_pte(struct cpa_data *cpa,
883                          unsigned long start, unsigned long end,
884                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
885 {
886         pte_t *pte;
887
888         pte = pte_offset_kernel(pmd, start);
889
890         /*
891          * Set the GLOBAL flags only if the PRESENT flag is
892          * set otherwise pte_present will return true even on
893          * a non present pte. The canon_pgprot will clear
894          * _PAGE_GLOBAL for the ancient hardware that doesn't
895          * support it.
896          */
897         if (pgprot_val(pgprot) & _PAGE_PRESENT)
898                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
899         else
900                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
901
902         pgprot = canon_pgprot(pgprot);
903
904         while (num_pages-- && start < end) {
905                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
906
907                 start    += PAGE_SIZE;
908                 cpa->pfn++;
909                 pte++;
910         }
911 }
912
913 static int populate_pmd(struct cpa_data *cpa,
914                         unsigned long start, unsigned long end,
915                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
916 {
917         unsigned int cur_pages = 0;
918         pmd_t *pmd;
919         pgprot_t pmd_pgprot;
920
921         /*
922          * Not on a 2M boundary?
923          */
924         if (start & (PMD_SIZE - 1)) {
925                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
926                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
927
928                 pre_end   = min_t(unsigned long, pre_end, next_page);
929                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
930                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
931
932                 /*
933                  * Need a PTE page?
934                  */
935                 pmd = pmd_offset(pud, start);
936                 if (pmd_none(*pmd))
937                         if (alloc_pte_page(pmd))
938                                 return -1;
939
940                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
941
942                 start = pre_end;
943         }
944
945         /*
946          * We mapped them all?
947          */
948         if (num_pages == cur_pages)
949                 return cur_pages;
950
951         pmd_pgprot = pgprot_4k_2_large(pgprot);
952
953         while (end - start >= PMD_SIZE) {
954
955                 /*
956                  * We cannot use a 1G page so allocate a PMD page if needed.
957                  */
958                 if (pud_none(*pud))
959                         if (alloc_pmd_page(pud))
960                                 return -1;
961
962                 pmd = pmd_offset(pud, start);
963
964                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
965                                    massage_pgprot(pmd_pgprot)));
966
967                 start     += PMD_SIZE;
968                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
969                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
970         }
971
972         /*
973          * Map trailing 4K pages.
974          */
975         if (start < end) {
976                 pmd = pmd_offset(pud, start);
977                 if (pmd_none(*pmd))
978                         if (alloc_pte_page(pmd))
979                                 return -1;
980
981                 populate_pte(cpa, start, end, num_pages - cur_pages,
982                              pmd, pgprot);
983         }
984         return num_pages;
985 }
986
987 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
988                         pgprot_t pgprot)
989 {
990         pud_t *pud;
991         unsigned long end;
992         int cur_pages = 0;
993         pgprot_t pud_pgprot;
994
995         end = start + (cpa->numpages << PAGE_SHIFT);
996
997         /*
998          * Not on a Gb page boundary? => map everything up to it with
999          * smaller pages.
1000          */
1001         if (start & (PUD_SIZE - 1)) {
1002                 unsigned long pre_end;
1003                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1004
1005                 pre_end   = min_t(unsigned long, end, next_page);
1006                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1007                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1008
1009                 pud = pud_offset(pgd, start);
1010
1011                 /*
1012                  * Need a PMD page?
1013                  */
1014                 if (pud_none(*pud))
1015                         if (alloc_pmd_page(pud))
1016                                 return -1;
1017
1018                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1019                                          pud, pgprot);
1020                 if (cur_pages < 0)
1021                         return cur_pages;
1022
1023                 start = pre_end;
1024         }
1025
1026         /* We mapped them all? */
1027         if (cpa->numpages == cur_pages)
1028                 return cur_pages;
1029
1030         pud = pud_offset(pgd, start);
1031         pud_pgprot = pgprot_4k_2_large(pgprot);
1032
1033         /*
1034          * Map everything starting from the Gb boundary, possibly with 1G pages
1035          */
1036         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1037                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1038                                    massage_pgprot(pud_pgprot)));
1039
1040                 start     += PUD_SIZE;
1041                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1042                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1043                 pud++;
1044         }
1045
1046         /* Map trailing leftover */
1047         if (start < end) {
1048                 int tmp;
1049
1050                 pud = pud_offset(pgd, start);
1051                 if (pud_none(*pud))
1052                         if (alloc_pmd_page(pud))
1053                                 return -1;
1054
1055                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1056                                    pud, pgprot);
1057                 if (tmp < 0)
1058                         return cur_pages;
1059
1060                 cur_pages += tmp;
1061         }
1062         return cur_pages;
1063 }
1064
1065 /*
1066  * Restrictions for kernel page table do not necessarily apply when mapping in
1067  * an alternate PGD.
1068  */
1069 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1070 {
1071         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1072         pud_t *pud = NULL;      /* shut up gcc */
1073         pgd_t *pgd_entry;
1074         int ret;
1075
1076         pgd_entry = cpa->pgd + pgd_index(addr);
1077
1078         /*
1079          * Allocate a PUD page and hand it down for mapping.
1080          */
1081         if (pgd_none(*pgd_entry)) {
1082                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1083                 if (!pud)
1084                         return -1;
1085         }
1086
1087         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1088         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1089
1090         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1091         if (ret < 0) {
1092                 if (pud)
1093                         free_page((unsigned long)pud);
1094                 unmap_pud_range(pgd_entry, addr,
1095                                 addr + (cpa->numpages << PAGE_SHIFT));
1096                 return ret;
1097         }
1098
1099         if (pud)
1100                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1101
1102         cpa->numpages = ret;
1103         return 0;
1104 }
1105
1106 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1107                                int primary)
1108 {
1109         if (cpa->pgd) {
1110                 /*
1111                  * Right now, we only execute this code path when mapping
1112                  * the EFI virtual memory map regions, no other users
1113                  * provide a ->pgd value. This may change in the future.
1114                  */
1115                 return populate_pgd(cpa, vaddr);
1116         }
1117
1118         /*
1119          * Ignore all non primary paths.
1120          */
1121         if (!primary) {
1122                 cpa->numpages = 1;
1123                 return 0;
1124         }
1125
1126         /*
1127          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1128          * to have holes.
1129          * Also set numpages to '1' indicating that we processed cpa req for
1130          * one virtual address page and its pfn. TBD: numpages can be set based
1131          * on the initial value and the level returned by lookup_address().
1132          */
1133         if (within(vaddr, PAGE_OFFSET,
1134                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1135                 cpa->numpages = 1;
1136                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1137                 return 0;
1138         } else {
1139                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1140                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1141                         *cpa->vaddr);
1142
1143                 return -EFAULT;
1144         }
1145 }
1146
1147 static int __change_page_attr(struct cpa_data *cpa, int primary)
1148 {
1149         unsigned long address;
1150         int do_split, err;
1151         unsigned int level;
1152         pte_t *kpte, old_pte;
1153
1154         if (cpa->flags & CPA_PAGES_ARRAY) {
1155                 struct page *page = cpa->pages[cpa->curpage];
1156                 if (unlikely(PageHighMem(page)))
1157                         return 0;
1158                 address = (unsigned long)page_address(page);
1159         } else if (cpa->flags & CPA_ARRAY)
1160                 address = cpa->vaddr[cpa->curpage];
1161         else
1162                 address = *cpa->vaddr;
1163 repeat:
1164         kpte = _lookup_address_cpa(cpa, address, &level);
1165         if (!kpte)
1166                 return __cpa_process_fault(cpa, address, primary);
1167
1168         old_pte = *kpte;
1169         if (pte_none(old_pte))
1170                 return __cpa_process_fault(cpa, address, primary);
1171
1172         if (level == PG_LEVEL_4K) {
1173                 pte_t new_pte;
1174                 pgprot_t new_prot = pte_pgprot(old_pte);
1175                 unsigned long pfn = pte_pfn(old_pte);
1176
1177                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1178                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1179
1180                 new_prot = static_protections(new_prot, address, pfn);
1181
1182                 /*
1183                  * Set the GLOBAL flags only if the PRESENT flag is
1184                  * set otherwise pte_present will return true even on
1185                  * a non present pte. The canon_pgprot will clear
1186                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1187                  * support it.
1188                  */
1189                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1190                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1191                 else
1192                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1193
1194                 /*
1195                  * We need to keep the pfn from the existing PTE,
1196                  * after all we're only going to change it's attributes
1197                  * not the memory it points to
1198                  */
1199                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1200                 cpa->pfn = pfn;
1201                 /*
1202                  * Do we really change anything ?
1203                  */
1204                 if (pte_val(old_pte) != pte_val(new_pte)) {
1205                         set_pte_atomic(kpte, new_pte);
1206                         cpa->flags |= CPA_FLUSHTLB;
1207                 }
1208                 cpa->numpages = 1;
1209                 return 0;
1210         }
1211
1212         /*
1213          * Check, whether we can keep the large page intact
1214          * and just change the pte:
1215          */
1216         do_split = try_preserve_large_page(kpte, address, cpa);
1217         /*
1218          * When the range fits into the existing large page,
1219          * return. cp->numpages and cpa->tlbflush have been updated in
1220          * try_large_page:
1221          */
1222         if (do_split <= 0)
1223                 return do_split;
1224
1225         /*
1226          * We have to split the large page:
1227          */
1228         err = split_large_page(cpa, kpte, address);
1229         if (!err) {
1230                 /*
1231                  * Do a global flush tlb after splitting the large page
1232                  * and before we do the actual change page attribute in the PTE.
1233                  *
1234                  * With out this, we violate the TLB application note, that says
1235                  * "The TLBs may contain both ordinary and large-page
1236                  *  translations for a 4-KByte range of linear addresses. This
1237                  *  may occur if software modifies the paging structures so that
1238                  *  the page size used for the address range changes. If the two
1239                  *  translations differ with respect to page frame or attributes
1240                  *  (e.g., permissions), processor behavior is undefined and may
1241                  *  be implementation-specific."
1242                  *
1243                  * We do this global tlb flush inside the cpa_lock, so that we
1244                  * don't allow any other cpu, with stale tlb entries change the
1245                  * page attribute in parallel, that also falls into the
1246                  * just split large page entry.
1247                  */
1248                 flush_tlb_all();
1249                 goto repeat;
1250         }
1251
1252         return err;
1253 }
1254
1255 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1256
1257 static int cpa_process_alias(struct cpa_data *cpa)
1258 {
1259         struct cpa_data alias_cpa;
1260         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1261         unsigned long vaddr;
1262         int ret;
1263
1264         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1265                 return 0;
1266
1267         /*
1268          * No need to redo, when the primary call touched the direct
1269          * mapping already:
1270          */
1271         if (cpa->flags & CPA_PAGES_ARRAY) {
1272                 struct page *page = cpa->pages[cpa->curpage];
1273                 if (unlikely(PageHighMem(page)))
1274                         return 0;
1275                 vaddr = (unsigned long)page_address(page);
1276         } else if (cpa->flags & CPA_ARRAY)
1277                 vaddr = cpa->vaddr[cpa->curpage];
1278         else
1279                 vaddr = *cpa->vaddr;
1280
1281         if (!(within(vaddr, PAGE_OFFSET,
1282                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1283
1284                 alias_cpa = *cpa;
1285                 alias_cpa.vaddr = &laddr;
1286                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1287
1288                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1289                 if (ret)
1290                         return ret;
1291         }
1292
1293 #ifdef CONFIG_X86_64
1294         /*
1295          * If the primary call didn't touch the high mapping already
1296          * and the physical address is inside the kernel map, we need
1297          * to touch the high mapped kernel as well:
1298          */
1299         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1300             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1301                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1302                                                __START_KERNEL_map - phys_base;
1303                 alias_cpa = *cpa;
1304                 alias_cpa.vaddr = &temp_cpa_vaddr;
1305                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1306
1307                 /*
1308                  * The high mapping range is imprecise, so ignore the
1309                  * return value.
1310                  */
1311                 __change_page_attr_set_clr(&alias_cpa, 0);
1312         }
1313 #endif
1314
1315         return 0;
1316 }
1317
1318 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1319 {
1320         int ret, numpages = cpa->numpages;
1321
1322         while (numpages) {
1323                 /*
1324                  * Store the remaining nr of pages for the large page
1325                  * preservation check.
1326                  */
1327                 cpa->numpages = numpages;
1328                 /* for array changes, we can't use large page */
1329                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1330                         cpa->numpages = 1;
1331
1332                 if (!debug_pagealloc_enabled())
1333                         spin_lock(&cpa_lock);
1334                 ret = __change_page_attr(cpa, checkalias);
1335                 if (!debug_pagealloc_enabled())
1336                         spin_unlock(&cpa_lock);
1337                 if (ret)
1338                         return ret;
1339
1340                 if (checkalias) {
1341                         ret = cpa_process_alias(cpa);
1342                         if (ret)
1343                                 return ret;
1344                 }
1345
1346                 /*
1347                  * Adjust the number of pages with the result of the
1348                  * CPA operation. Either a large page has been
1349                  * preserved or a single page update happened.
1350                  */
1351                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1352                 numpages -= cpa->numpages;
1353                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1354                         cpa->curpage++;
1355                 else
1356                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1357
1358         }
1359         return 0;
1360 }
1361
1362 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1363                                     pgprot_t mask_set, pgprot_t mask_clr,
1364                                     int force_split, int in_flag,
1365                                     struct page **pages)
1366 {
1367         struct cpa_data cpa;
1368         int ret, cache, checkalias;
1369         unsigned long baddr = 0;
1370
1371         memset(&cpa, 0, sizeof(cpa));
1372
1373         /*
1374          * Check, if we are requested to change a not supported
1375          * feature:
1376          */
1377         mask_set = canon_pgprot(mask_set);
1378         mask_clr = canon_pgprot(mask_clr);
1379         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1380                 return 0;
1381
1382         /* Ensure we are PAGE_SIZE aligned */
1383         if (in_flag & CPA_ARRAY) {
1384                 int i;
1385                 for (i = 0; i < numpages; i++) {
1386                         if (addr[i] & ~PAGE_MASK) {
1387                                 addr[i] &= PAGE_MASK;
1388                                 WARN_ON_ONCE(1);
1389                         }
1390                 }
1391         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1392                 /*
1393                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1394                  * No need to cehck in that case
1395                  */
1396                 if (*addr & ~PAGE_MASK) {
1397                         *addr &= PAGE_MASK;
1398                         /*
1399                          * People should not be passing in unaligned addresses:
1400                          */
1401                         WARN_ON_ONCE(1);
1402                 }
1403                 /*
1404                  * Save address for cache flush. *addr is modified in the call
1405                  * to __change_page_attr_set_clr() below.
1406                  */
1407                 baddr = *addr;
1408         }
1409
1410         /* Must avoid aliasing mappings in the highmem code */
1411         kmap_flush_unused();
1412
1413         vm_unmap_aliases();
1414
1415         cpa.vaddr = addr;
1416         cpa.pages = pages;
1417         cpa.numpages = numpages;
1418         cpa.mask_set = mask_set;
1419         cpa.mask_clr = mask_clr;
1420         cpa.flags = 0;
1421         cpa.curpage = 0;
1422         cpa.force_split = force_split;
1423
1424         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1425                 cpa.flags |= in_flag;
1426
1427         /* No alias checking for _NX bit modifications */
1428         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1429
1430         ret = __change_page_attr_set_clr(&cpa, checkalias);
1431
1432         /*
1433          * Check whether we really changed something:
1434          */
1435         if (!(cpa.flags & CPA_FLUSHTLB))
1436                 goto out;
1437
1438         /*
1439          * No need to flush, when we did not set any of the caching
1440          * attributes:
1441          */
1442         cache = !!pgprot2cachemode(mask_set);
1443
1444         /*
1445          * On success we use CLFLUSH, when the CPU supports it to
1446          * avoid the WBINVD. If the CPU does not support it and in the
1447          * error case we fall back to cpa_flush_all (which uses
1448          * WBINVD):
1449          */
1450         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1451                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1452                         cpa_flush_array(addr, numpages, cache,
1453                                         cpa.flags, pages);
1454                 } else
1455                         cpa_flush_range(baddr, numpages, cache);
1456         } else
1457                 cpa_flush_all(cache);
1458
1459 out:
1460         return ret;
1461 }
1462
1463 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1464                                        pgprot_t mask, int array)
1465 {
1466         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1467                 (array ? CPA_ARRAY : 0), NULL);
1468 }
1469
1470 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1471                                          pgprot_t mask, int array)
1472 {
1473         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1474                 (array ? CPA_ARRAY : 0), NULL);
1475 }
1476
1477 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1478                                        pgprot_t mask)
1479 {
1480         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1481                 CPA_PAGES_ARRAY, pages);
1482 }
1483
1484 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1485                                          pgprot_t mask)
1486 {
1487         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1488                 CPA_PAGES_ARRAY, pages);
1489 }
1490
1491 int _set_memory_uc(unsigned long addr, int numpages)
1492 {
1493         /*
1494          * for now UC MINUS. see comments in ioremap_nocache()
1495          * If you really need strong UC use ioremap_uc(), but note
1496          * that you cannot override IO areas with set_memory_*() as
1497          * these helpers cannot work with IO memory.
1498          */
1499         return change_page_attr_set(&addr, numpages,
1500                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1501                                     0);
1502 }
1503
1504 int set_memory_uc(unsigned long addr, int numpages)
1505 {
1506         int ret;
1507
1508         /*
1509          * for now UC MINUS. see comments in ioremap_nocache()
1510          */
1511         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1512                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1513         if (ret)
1514                 goto out_err;
1515
1516         ret = _set_memory_uc(addr, numpages);
1517         if (ret)
1518                 goto out_free;
1519
1520         return 0;
1521
1522 out_free:
1523         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1524 out_err:
1525         return ret;
1526 }
1527 EXPORT_SYMBOL(set_memory_uc);
1528
1529 static int _set_memory_array(unsigned long *addr, int addrinarray,
1530                 enum page_cache_mode new_type)
1531 {
1532         enum page_cache_mode set_type;
1533         int i, j;
1534         int ret;
1535
1536         for (i = 0; i < addrinarray; i++) {
1537                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1538                                         new_type, NULL);
1539                 if (ret)
1540                         goto out_free;
1541         }
1542
1543         /* If WC, set to UC- first and then WC */
1544         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1545                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1546
1547         ret = change_page_attr_set(addr, addrinarray,
1548                                    cachemode2pgprot(set_type), 1);
1549
1550         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1551                 ret = change_page_attr_set_clr(addr, addrinarray,
1552                                                cachemode2pgprot(
1553                                                 _PAGE_CACHE_MODE_WC),
1554                                                __pgprot(_PAGE_CACHE_MASK),
1555                                                0, CPA_ARRAY, NULL);
1556         if (ret)
1557                 goto out_free;
1558
1559         return 0;
1560
1561 out_free:
1562         for (j = 0; j < i; j++)
1563                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1564
1565         return ret;
1566 }
1567
1568 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1569 {
1570         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1571 }
1572 EXPORT_SYMBOL(set_memory_array_uc);
1573
1574 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1575 {
1576         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1577 }
1578 EXPORT_SYMBOL(set_memory_array_wc);
1579
1580 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1581 {
1582         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1583 }
1584 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1585
1586 int _set_memory_wc(unsigned long addr, int numpages)
1587 {
1588         int ret;
1589         unsigned long addr_copy = addr;
1590
1591         ret = change_page_attr_set(&addr, numpages,
1592                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1593                                    0);
1594         if (!ret) {
1595                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1596                                                cachemode2pgprot(
1597                                                 _PAGE_CACHE_MODE_WC),
1598                                                __pgprot(_PAGE_CACHE_MASK),
1599                                                0, 0, NULL);
1600         }
1601         return ret;
1602 }
1603
1604 int set_memory_wc(unsigned long addr, int numpages)
1605 {
1606         int ret;
1607
1608         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1609                 _PAGE_CACHE_MODE_WC, NULL);
1610         if (ret)
1611                 return ret;
1612
1613         ret = _set_memory_wc(addr, numpages);
1614         if (ret)
1615                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1616
1617         return ret;
1618 }
1619 EXPORT_SYMBOL(set_memory_wc);
1620
1621 int _set_memory_wt(unsigned long addr, int numpages)
1622 {
1623         return change_page_attr_set(&addr, numpages,
1624                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1625 }
1626
1627 int set_memory_wt(unsigned long addr, int numpages)
1628 {
1629         int ret;
1630
1631         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1632                               _PAGE_CACHE_MODE_WT, NULL);
1633         if (ret)
1634                 return ret;
1635
1636         ret = _set_memory_wt(addr, numpages);
1637         if (ret)
1638                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1639
1640         return ret;
1641 }
1642 EXPORT_SYMBOL_GPL(set_memory_wt);
1643
1644 int _set_memory_wb(unsigned long addr, int numpages)
1645 {
1646         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1647         return change_page_attr_clear(&addr, numpages,
1648                                       __pgprot(_PAGE_CACHE_MASK), 0);
1649 }
1650
1651 int set_memory_wb(unsigned long addr, int numpages)
1652 {
1653         int ret;
1654
1655         ret = _set_memory_wb(addr, numpages);
1656         if (ret)
1657                 return ret;
1658
1659         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1660         return 0;
1661 }
1662 EXPORT_SYMBOL(set_memory_wb);
1663
1664 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1665 {
1666         int i;
1667         int ret;
1668
1669         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1670         ret = change_page_attr_clear(addr, addrinarray,
1671                                       __pgprot(_PAGE_CACHE_MASK), 1);
1672         if (ret)
1673                 return ret;
1674
1675         for (i = 0; i < addrinarray; i++)
1676                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1677
1678         return 0;
1679 }
1680 EXPORT_SYMBOL(set_memory_array_wb);
1681
1682 int set_memory_x(unsigned long addr, int numpages)
1683 {
1684         if (!(__supported_pte_mask & _PAGE_NX))
1685                 return 0;
1686
1687         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1688 }
1689 EXPORT_SYMBOL(set_memory_x);
1690
1691 int set_memory_nx(unsigned long addr, int numpages)
1692 {
1693         if (!(__supported_pte_mask & _PAGE_NX))
1694                 return 0;
1695
1696         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1697 }
1698 EXPORT_SYMBOL(set_memory_nx);
1699
1700 int set_memory_ro(unsigned long addr, int numpages)
1701 {
1702         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1703 }
1704
1705 int set_memory_rw(unsigned long addr, int numpages)
1706 {
1707         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1708 }
1709
1710 int set_memory_np(unsigned long addr, int numpages)
1711 {
1712         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1713 }
1714
1715 int set_memory_4k(unsigned long addr, int numpages)
1716 {
1717         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1718                                         __pgprot(0), 1, 0, NULL);
1719 }
1720
1721 int set_pages_uc(struct page *page, int numpages)
1722 {
1723         unsigned long addr = (unsigned long)page_address(page);
1724
1725         return set_memory_uc(addr, numpages);
1726 }
1727 EXPORT_SYMBOL(set_pages_uc);
1728
1729 static int _set_pages_array(struct page **pages, int addrinarray,
1730                 enum page_cache_mode new_type)
1731 {
1732         unsigned long start;
1733         unsigned long end;
1734         enum page_cache_mode set_type;
1735         int i;
1736         int free_idx;
1737         int ret;
1738
1739         for (i = 0; i < addrinarray; i++) {
1740                 if (PageHighMem(pages[i]))
1741                         continue;
1742                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1743                 end = start + PAGE_SIZE;
1744                 if (reserve_memtype(start, end, new_type, NULL))
1745                         goto err_out;
1746         }
1747
1748         /* If WC, set to UC- first and then WC */
1749         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1750                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1751
1752         ret = cpa_set_pages_array(pages, addrinarray,
1753                                   cachemode2pgprot(set_type));
1754         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1755                 ret = change_page_attr_set_clr(NULL, addrinarray,
1756                                                cachemode2pgprot(
1757                                                 _PAGE_CACHE_MODE_WC),
1758                                                __pgprot(_PAGE_CACHE_MASK),
1759                                                0, CPA_PAGES_ARRAY, pages);
1760         if (ret)
1761                 goto err_out;
1762         return 0; /* Success */
1763 err_out:
1764         free_idx = i;
1765         for (i = 0; i < free_idx; i++) {
1766                 if (PageHighMem(pages[i]))
1767                         continue;
1768                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1769                 end = start + PAGE_SIZE;
1770                 free_memtype(start, end);
1771         }
1772         return -EINVAL;
1773 }
1774
1775 int set_pages_array_uc(struct page **pages, int addrinarray)
1776 {
1777         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1778 }
1779 EXPORT_SYMBOL(set_pages_array_uc);
1780
1781 int set_pages_array_wc(struct page **pages, int addrinarray)
1782 {
1783         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1784 }
1785 EXPORT_SYMBOL(set_pages_array_wc);
1786
1787 int set_pages_array_wt(struct page **pages, int addrinarray)
1788 {
1789         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1790 }
1791 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1792
1793 int set_pages_wb(struct page *page, int numpages)
1794 {
1795         unsigned long addr = (unsigned long)page_address(page);
1796
1797         return set_memory_wb(addr, numpages);
1798 }
1799 EXPORT_SYMBOL(set_pages_wb);
1800
1801 int set_pages_array_wb(struct page **pages, int addrinarray)
1802 {
1803         int retval;
1804         unsigned long start;
1805         unsigned long end;
1806         int i;
1807
1808         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1809         retval = cpa_clear_pages_array(pages, addrinarray,
1810                         __pgprot(_PAGE_CACHE_MASK));
1811         if (retval)
1812                 return retval;
1813
1814         for (i = 0; i < addrinarray; i++) {
1815                 if (PageHighMem(pages[i]))
1816                         continue;
1817                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1818                 end = start + PAGE_SIZE;
1819                 free_memtype(start, end);
1820         }
1821
1822         return 0;
1823 }
1824 EXPORT_SYMBOL(set_pages_array_wb);
1825
1826 int set_pages_x(struct page *page, int numpages)
1827 {
1828         unsigned long addr = (unsigned long)page_address(page);
1829
1830         return set_memory_x(addr, numpages);
1831 }
1832 EXPORT_SYMBOL(set_pages_x);
1833
1834 int set_pages_nx(struct page *page, int numpages)
1835 {
1836         unsigned long addr = (unsigned long)page_address(page);
1837
1838         return set_memory_nx(addr, numpages);
1839 }
1840 EXPORT_SYMBOL(set_pages_nx);
1841
1842 int set_pages_ro(struct page *page, int numpages)
1843 {
1844         unsigned long addr = (unsigned long)page_address(page);
1845
1846         return set_memory_ro(addr, numpages);
1847 }
1848
1849 int set_pages_rw(struct page *page, int numpages)
1850 {
1851         unsigned long addr = (unsigned long)page_address(page);
1852
1853         return set_memory_rw(addr, numpages);
1854 }
1855
1856 #ifdef CONFIG_DEBUG_PAGEALLOC
1857
1858 static int __set_pages_p(struct page *page, int numpages)
1859 {
1860         unsigned long tempaddr = (unsigned long) page_address(page);
1861         struct cpa_data cpa = { .vaddr = &tempaddr,
1862                                 .pgd = NULL,
1863                                 .numpages = numpages,
1864                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1865                                 .mask_clr = __pgprot(0),
1866                                 .flags = 0};
1867
1868         /*
1869          * No alias checking needed for setting present flag. otherwise,
1870          * we may need to break large pages for 64-bit kernel text
1871          * mappings (this adds to complexity if we want to do this from
1872          * atomic context especially). Let's keep it simple!
1873          */
1874         return __change_page_attr_set_clr(&cpa, 0);
1875 }
1876
1877 static int __set_pages_np(struct page *page, int numpages)
1878 {
1879         unsigned long tempaddr = (unsigned long) page_address(page);
1880         struct cpa_data cpa = { .vaddr = &tempaddr,
1881                                 .pgd = NULL,
1882                                 .numpages = numpages,
1883                                 .mask_set = __pgprot(0),
1884                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1885                                 .flags = 0};
1886
1887         /*
1888          * No alias checking needed for setting not present flag. otherwise,
1889          * we may need to break large pages for 64-bit kernel text
1890          * mappings (this adds to complexity if we want to do this from
1891          * atomic context especially). Let's keep it simple!
1892          */
1893         return __change_page_attr_set_clr(&cpa, 0);
1894 }
1895
1896 void __kernel_map_pages(struct page *page, int numpages, int enable)
1897 {
1898         if (PageHighMem(page))
1899                 return;
1900         if (!enable) {
1901                 debug_check_no_locks_freed(page_address(page),
1902                                            numpages * PAGE_SIZE);
1903         }
1904
1905         /*
1906          * The return value is ignored as the calls cannot fail.
1907          * Large pages for identity mappings are not used at boot time
1908          * and hence no memory allocations during large page split.
1909          */
1910         if (enable)
1911                 __set_pages_p(page, numpages);
1912         else
1913                 __set_pages_np(page, numpages);
1914
1915         /*
1916          * We should perform an IPI and flush all tlbs,
1917          * but that can deadlock->flush only current cpu:
1918          */
1919         __flush_tlb_all();
1920
1921         arch_flush_lazy_mmu_mode();
1922 }
1923
1924 #ifdef CONFIG_HIBERNATION
1925
1926 bool kernel_page_present(struct page *page)
1927 {
1928         unsigned int level;
1929         pte_t *pte;
1930
1931         if (PageHighMem(page))
1932                 return false;
1933
1934         pte = lookup_address((unsigned long)page_address(page), &level);
1935         return (pte_val(*pte) & _PAGE_PRESENT);
1936 }
1937
1938 #endif /* CONFIG_HIBERNATION */
1939
1940 #endif /* CONFIG_DEBUG_PAGEALLOC */
1941
1942 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1943                             unsigned numpages, unsigned long page_flags)
1944 {
1945         int retval = -EINVAL;
1946
1947         struct cpa_data cpa = {
1948                 .vaddr = &address,
1949                 .pfn = pfn,
1950                 .pgd = pgd,
1951                 .numpages = numpages,
1952                 .mask_set = __pgprot(0),
1953                 .mask_clr = __pgprot(0),
1954                 .flags = 0,
1955         };
1956
1957         if (!(__supported_pte_mask & _PAGE_NX))
1958                 goto out;
1959
1960         if (!(page_flags & _PAGE_NX))
1961                 cpa.mask_clr = __pgprot(_PAGE_NX);
1962
1963         if (!(page_flags & _PAGE_RW))
1964                 cpa.mask_clr = __pgprot(_PAGE_RW);
1965
1966         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1967
1968         retval = __change_page_attr_set_clr(&cpa, 0);
1969         __flush_tlb_all();
1970
1971 out:
1972         return retval;
1973 }
1974
1975 /*
1976  * The testcases use internal knowledge of the implementation that shouldn't
1977  * be exposed to the rest of the kernel. Include these directly here.
1978  */
1979 #ifdef CONFIG_CPA_DEBUG
1980 #include "pageattr-test.c"
1981 #endif