de807c9daad1e1b0c9fc4f98bd54f962048750af
[cascardo/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         int             numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa_symbol(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @vaddr:      virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflushopt is an unordered instruction which needs fencing with mfence or
130  * sfence to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflushopt(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflushopt(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263 #ifdef CONFIG_PCI_BIOS
264         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
265                 pgprot_val(forbidden) |= _PAGE_NX;
266 #endif
267
268         /*
269          * The kernel text needs to be executable for obvious reasons
270          * Does not cover __inittext since that is gone later on. On
271          * 64bit we do not enforce !NX on the low mapping
272          */
273         if (within(address, (unsigned long)_text, (unsigned long)_etext))
274                 pgprot_val(forbidden) |= _PAGE_NX;
275
276         /*
277          * The .rodata section needs to be read-only. Using the pfn
278          * catches all aliases.
279          */
280         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
281                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
282                 pgprot_val(forbidden) |= _PAGE_RW;
283
284 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
285         /*
286          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
287          * kernel text mappings for the large page aligned text, rodata sections
288          * will be always read-only. For the kernel identity mappings covering
289          * the holes caused by this alignment can be anything that user asks.
290          *
291          * This will preserve the large page mappings for kernel text/data
292          * at no extra cost.
293          */
294         if (kernel_set_to_readonly &&
295             within(address, (unsigned long)_text,
296                    (unsigned long)__end_rodata_hpage_align)) {
297                 unsigned int level;
298
299                 /*
300                  * Don't enforce the !RW mapping for the kernel text mapping,
301                  * if the current mapping is already using small page mapping.
302                  * No need to work hard to preserve large page mappings in this
303                  * case.
304                  *
305                  * This also fixes the Linux Xen paravirt guest boot failure
306                  * (because of unexpected read-only mappings for kernel identity
307                  * mappings). In this paravirt guest case, the kernel text
308                  * mapping and the kernel identity mapping share the same
309                  * page-table pages. Thus we can't really use different
310                  * protections for the kernel text and identity mappings. Also,
311                  * these shared mappings are made of small page mappings.
312                  * Thus this don't enforce !RW mapping for small page kernel
313                  * text mapping logic will help Linux Xen parvirt guest boot
314                  * as well.
315                  */
316                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
317                         pgprot_val(forbidden) |= _PAGE_RW;
318         }
319 #endif
320
321         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
322
323         return prot;
324 }
325
326 /*
327  * Lookup the page table entry for a virtual address in a specific pgd.
328  * Return a pointer to the entry and the level of the mapping.
329  */
330 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
331                              unsigned int *level)
332 {
333         pud_t *pud;
334         pmd_t *pmd;
335
336         *level = PG_LEVEL_NONE;
337
338         if (pgd_none(*pgd))
339                 return NULL;
340
341         pud = pud_offset(pgd, address);
342         if (pud_none(*pud))
343                 return NULL;
344
345         *level = PG_LEVEL_1G;
346         if (pud_large(*pud) || !pud_present(*pud))
347                 return (pte_t *)pud;
348
349         pmd = pmd_offset(pud, address);
350         if (pmd_none(*pmd))
351                 return NULL;
352
353         *level = PG_LEVEL_2M;
354         if (pmd_large(*pmd) || !pmd_present(*pmd))
355                 return (pte_t *)pmd;
356
357         *level = PG_LEVEL_4K;
358
359         return pte_offset_kernel(pmd, address);
360 }
361
362 /*
363  * Lookup the page table entry for a virtual address. Return a pointer
364  * to the entry and the level of the mapping.
365  *
366  * Note: We return pud and pmd either when the entry is marked large
367  * or when the present bit is not set. Otherwise we would return a
368  * pointer to a nonexisting mapping.
369  */
370 pte_t *lookup_address(unsigned long address, unsigned int *level)
371 {
372         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
373 }
374 EXPORT_SYMBOL_GPL(lookup_address);
375
376 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
377                                   unsigned int *level)
378 {
379         if (cpa->pgd)
380                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
381                                                address, level);
382
383         return lookup_address(address, level);
384 }
385
386 /*
387  * This is necessary because __pa() does not work on some
388  * kinds of memory, like vmalloc() or the alloc_remap()
389  * areas on 32-bit NUMA systems.  The percpu areas can
390  * end up in this kind of memory, for instance.
391  *
392  * This could be optimized, but it is only intended to be
393  * used at inititalization time, and keeping it
394  * unoptimized should increase the testing coverage for
395  * the more obscure platforms.
396  */
397 phys_addr_t slow_virt_to_phys(void *__virt_addr)
398 {
399         unsigned long virt_addr = (unsigned long)__virt_addr;
400         phys_addr_t phys_addr;
401         unsigned long offset;
402         enum pg_level level;
403         unsigned long psize;
404         unsigned long pmask;
405         pte_t *pte;
406
407         pte = lookup_address(virt_addr, &level);
408         BUG_ON(!pte);
409         psize = page_level_size(level);
410         pmask = page_level_mask(level);
411         offset = virt_addr & ~pmask;
412         phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
413         return (phys_addr | offset);
414 }
415 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
416
417 /*
418  * Set the new pmd in all the pgds we know about:
419  */
420 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
421 {
422         /* change init_mm */
423         set_pte_atomic(kpte, pte);
424 #ifdef CONFIG_X86_32
425         if (!SHARED_KERNEL_PMD) {
426                 struct page *page;
427
428                 list_for_each_entry(page, &pgd_list, lru) {
429                         pgd_t *pgd;
430                         pud_t *pud;
431                         pmd_t *pmd;
432
433                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
434                         pud = pud_offset(pgd, address);
435                         pmd = pmd_offset(pud, address);
436                         set_pte_atomic((pte_t *)pmd, pte);
437                 }
438         }
439 #endif
440 }
441
442 static int
443 try_preserve_large_page(pte_t *kpte, unsigned long address,
444                         struct cpa_data *cpa)
445 {
446         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
447         pte_t new_pte, old_pte, *tmp;
448         pgprot_t old_prot, new_prot, req_prot;
449         int i, do_split = 1;
450         enum pg_level level;
451
452         if (cpa->force_split)
453                 return 1;
454
455         spin_lock(&pgd_lock);
456         /*
457          * Check for races, another CPU might have split this page
458          * up already:
459          */
460         tmp = _lookup_address_cpa(cpa, address, &level);
461         if (tmp != kpte)
462                 goto out_unlock;
463
464         switch (level) {
465         case PG_LEVEL_2M:
466 #ifdef CONFIG_X86_64
467         case PG_LEVEL_1G:
468 #endif
469                 psize = page_level_size(level);
470                 pmask = page_level_mask(level);
471                 break;
472         default:
473                 do_split = -EINVAL;
474                 goto out_unlock;
475         }
476
477         /*
478          * Calculate the number of pages, which fit into this large
479          * page starting at address:
480          */
481         nextpage_addr = (address + psize) & pmask;
482         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
483         if (numpages < cpa->numpages)
484                 cpa->numpages = numpages;
485
486         /*
487          * We are safe now. Check whether the new pgprot is the same:
488          */
489         old_pte = *kpte;
490         old_prot = req_prot = pte_pgprot(old_pte);
491
492         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
493         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
494
495         /*
496          * Set the PSE and GLOBAL flags only if the PRESENT flag is
497          * set otherwise pmd_present/pmd_huge will return true even on
498          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
499          * for the ancient hardware that doesn't support it.
500          */
501         if (pgprot_val(req_prot) & _PAGE_PRESENT)
502                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
503         else
504                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
505
506         req_prot = canon_pgprot(req_prot);
507
508         /*
509          * old_pte points to the large page base address. So we need
510          * to add the offset of the virtual address:
511          */
512         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
513         cpa->pfn = pfn;
514
515         new_prot = static_protections(req_prot, address, pfn);
516
517         /*
518          * We need to check the full range, whether
519          * static_protection() requires a different pgprot for one of
520          * the pages in the range we try to preserve:
521          */
522         addr = address & pmask;
523         pfn = pte_pfn(old_pte);
524         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
525                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
526
527                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
528                         goto out_unlock;
529         }
530
531         /*
532          * If there are no changes, return. maxpages has been updated
533          * above:
534          */
535         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
536                 do_split = 0;
537                 goto out_unlock;
538         }
539
540         /*
541          * We need to change the attributes. Check, whether we can
542          * change the large page in one go. We request a split, when
543          * the address is not aligned and the number of pages is
544          * smaller than the number of pages in the large page. Note
545          * that we limited the number of possible pages already to
546          * the number of pages in the large page.
547          */
548         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
549                 /*
550                  * The address is aligned and the number of pages
551                  * covers the full page.
552                  */
553                 new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
554                 __set_pmd_pte(kpte, address, new_pte);
555                 cpa->flags |= CPA_FLUSHTLB;
556                 do_split = 0;
557         }
558
559 out_unlock:
560         spin_unlock(&pgd_lock);
561
562         return do_split;
563 }
564
565 static int
566 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
567                    struct page *base)
568 {
569         pte_t *pbase = (pte_t *)page_address(base);
570         unsigned long pfn, pfninc = 1;
571         unsigned int i, level;
572         pte_t *tmp;
573         pgprot_t ref_prot;
574
575         spin_lock(&pgd_lock);
576         /*
577          * Check for races, another CPU might have split this page
578          * up for us already:
579          */
580         tmp = _lookup_address_cpa(cpa, address, &level);
581         if (tmp != kpte) {
582                 spin_unlock(&pgd_lock);
583                 return 1;
584         }
585
586         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
587         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
588         /*
589          * If we ever want to utilize the PAT bit, we need to
590          * update this function to make sure it's converted from
591          * bit 12 to bit 7 when we cross from the 2MB level to
592          * the 4K level:
593          */
594         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
595
596 #ifdef CONFIG_X86_64
597         if (level == PG_LEVEL_1G) {
598                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
599                 /*
600                  * Set the PSE flags only if the PRESENT flag is set
601                  * otherwise pmd_present/pmd_huge will return true
602                  * even on a non present pmd.
603                  */
604                 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
605                         pgprot_val(ref_prot) |= _PAGE_PSE;
606                 else
607                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
608         }
609 #endif
610
611         /*
612          * Set the GLOBAL flags only if the PRESENT flag is set
613          * otherwise pmd/pte_present will return true even on a non
614          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
615          * for the ancient hardware that doesn't support it.
616          */
617         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
618                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
619         else
620                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
621
622         /*
623          * Get the target pfn from the original entry:
624          */
625         pfn = pte_pfn(*kpte);
626         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
627                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
628
629         if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
630                                 PFN_DOWN(__pa(address)) + 1))
631                 split_page_count(level);
632
633         /*
634          * Install the new, split up pagetable.
635          *
636          * We use the standard kernel pagetable protections for the new
637          * pagetable protections, the actual ptes set above control the
638          * primary protection behavior:
639          */
640         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
641
642         /*
643          * Intel Atom errata AAH41 workaround.
644          *
645          * The real fix should be in hw or in a microcode update, but
646          * we also probabilistically try to reduce the window of having
647          * a large TLB mixed with 4K TLBs while instruction fetches are
648          * going on.
649          */
650         __flush_tlb_all();
651         spin_unlock(&pgd_lock);
652
653         return 0;
654 }
655
656 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
657                             unsigned long address)
658 {
659         struct page *base;
660
661         if (!debug_pagealloc)
662                 spin_unlock(&cpa_lock);
663         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
664         if (!debug_pagealloc)
665                 spin_lock(&cpa_lock);
666         if (!base)
667                 return -ENOMEM;
668
669         if (__split_large_page(cpa, kpte, address, base))
670                 __free_page(base);
671
672         return 0;
673 }
674
675 static bool try_to_free_pte_page(pte_t *pte)
676 {
677         int i;
678
679         for (i = 0; i < PTRS_PER_PTE; i++)
680                 if (!pte_none(pte[i]))
681                         return false;
682
683         free_page((unsigned long)pte);
684         return true;
685 }
686
687 static bool try_to_free_pmd_page(pmd_t *pmd)
688 {
689         int i;
690
691         for (i = 0; i < PTRS_PER_PMD; i++)
692                 if (!pmd_none(pmd[i]))
693                         return false;
694
695         free_page((unsigned long)pmd);
696         return true;
697 }
698
699 static bool try_to_free_pud_page(pud_t *pud)
700 {
701         int i;
702
703         for (i = 0; i < PTRS_PER_PUD; i++)
704                 if (!pud_none(pud[i]))
705                         return false;
706
707         free_page((unsigned long)pud);
708         return true;
709 }
710
711 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
712 {
713         pte_t *pte = pte_offset_kernel(pmd, start);
714
715         while (start < end) {
716                 set_pte(pte, __pte(0));
717
718                 start += PAGE_SIZE;
719                 pte++;
720         }
721
722         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
723                 pmd_clear(pmd);
724                 return true;
725         }
726         return false;
727 }
728
729 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
730                               unsigned long start, unsigned long end)
731 {
732         if (unmap_pte_range(pmd, start, end))
733                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
734                         pud_clear(pud);
735 }
736
737 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
738 {
739         pmd_t *pmd = pmd_offset(pud, start);
740
741         /*
742          * Not on a 2MB page boundary?
743          */
744         if (start & (PMD_SIZE - 1)) {
745                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
746                 unsigned long pre_end = min_t(unsigned long, end, next_page);
747
748                 __unmap_pmd_range(pud, pmd, start, pre_end);
749
750                 start = pre_end;
751                 pmd++;
752         }
753
754         /*
755          * Try to unmap in 2M chunks.
756          */
757         while (end - start >= PMD_SIZE) {
758                 if (pmd_large(*pmd))
759                         pmd_clear(pmd);
760                 else
761                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
762
763                 start += PMD_SIZE;
764                 pmd++;
765         }
766
767         /*
768          * 4K leftovers?
769          */
770         if (start < end)
771                 return __unmap_pmd_range(pud, pmd, start, end);
772
773         /*
774          * Try again to free the PMD page if haven't succeeded above.
775          */
776         if (!pud_none(*pud))
777                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
778                         pud_clear(pud);
779 }
780
781 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
782 {
783         pud_t *pud = pud_offset(pgd, start);
784
785         /*
786          * Not on a GB page boundary?
787          */
788         if (start & (PUD_SIZE - 1)) {
789                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
790                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
791
792                 unmap_pmd_range(pud, start, pre_end);
793
794                 start = pre_end;
795                 pud++;
796         }
797
798         /*
799          * Try to unmap in 1G chunks?
800          */
801         while (end - start >= PUD_SIZE) {
802
803                 if (pud_large(*pud))
804                         pud_clear(pud);
805                 else
806                         unmap_pmd_range(pud, start, start + PUD_SIZE);
807
808                 start += PUD_SIZE;
809                 pud++;
810         }
811
812         /*
813          * 2M leftovers?
814          */
815         if (start < end)
816                 unmap_pmd_range(pud, start, end);
817
818         /*
819          * No need to try to free the PUD page because we'll free it in
820          * populate_pgd's error path
821          */
822 }
823
824 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
825 {
826         pgd_t *pgd_entry = root + pgd_index(addr);
827
828         unmap_pud_range(pgd_entry, addr, end);
829
830         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
831                 pgd_clear(pgd_entry);
832 }
833
834 static int alloc_pte_page(pmd_t *pmd)
835 {
836         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
837         if (!pte)
838                 return -1;
839
840         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
841         return 0;
842 }
843
844 static int alloc_pmd_page(pud_t *pud)
845 {
846         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
847         if (!pmd)
848                 return -1;
849
850         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
851         return 0;
852 }
853
854 static void populate_pte(struct cpa_data *cpa,
855                          unsigned long start, unsigned long end,
856                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
857 {
858         pte_t *pte;
859
860         pte = pte_offset_kernel(pmd, start);
861
862         while (num_pages-- && start < end) {
863
864                 /* deal with the NX bit */
865                 if (!(pgprot_val(pgprot) & _PAGE_NX))
866                         cpa->pfn &= ~_PAGE_NX;
867
868                 set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
869
870                 start    += PAGE_SIZE;
871                 cpa->pfn += PAGE_SIZE;
872                 pte++;
873         }
874 }
875
876 static int populate_pmd(struct cpa_data *cpa,
877                         unsigned long start, unsigned long end,
878                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
879 {
880         unsigned int cur_pages = 0;
881         pmd_t *pmd;
882
883         /*
884          * Not on a 2M boundary?
885          */
886         if (start & (PMD_SIZE - 1)) {
887                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
888                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
889
890                 pre_end   = min_t(unsigned long, pre_end, next_page);
891                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
892                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
893
894                 /*
895                  * Need a PTE page?
896                  */
897                 pmd = pmd_offset(pud, start);
898                 if (pmd_none(*pmd))
899                         if (alloc_pte_page(pmd))
900                                 return -1;
901
902                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
903
904                 start = pre_end;
905         }
906
907         /*
908          * We mapped them all?
909          */
910         if (num_pages == cur_pages)
911                 return cur_pages;
912
913         while (end - start >= PMD_SIZE) {
914
915                 /*
916                  * We cannot use a 1G page so allocate a PMD page if needed.
917                  */
918                 if (pud_none(*pud))
919                         if (alloc_pmd_page(pud))
920                                 return -1;
921
922                 pmd = pmd_offset(pud, start);
923
924                 set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
925
926                 start     += PMD_SIZE;
927                 cpa->pfn  += PMD_SIZE;
928                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
929         }
930
931         /*
932          * Map trailing 4K pages.
933          */
934         if (start < end) {
935                 pmd = pmd_offset(pud, start);
936                 if (pmd_none(*pmd))
937                         if (alloc_pte_page(pmd))
938                                 return -1;
939
940                 populate_pte(cpa, start, end, num_pages - cur_pages,
941                              pmd, pgprot);
942         }
943         return num_pages;
944 }
945
946 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
947                         pgprot_t pgprot)
948 {
949         pud_t *pud;
950         unsigned long end;
951         int cur_pages = 0;
952
953         end = start + (cpa->numpages << PAGE_SHIFT);
954
955         /*
956          * Not on a Gb page boundary? => map everything up to it with
957          * smaller pages.
958          */
959         if (start & (PUD_SIZE - 1)) {
960                 unsigned long pre_end;
961                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
962
963                 pre_end   = min_t(unsigned long, end, next_page);
964                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
965                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
966
967                 pud = pud_offset(pgd, start);
968
969                 /*
970                  * Need a PMD page?
971                  */
972                 if (pud_none(*pud))
973                         if (alloc_pmd_page(pud))
974                                 return -1;
975
976                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
977                                          pud, pgprot);
978                 if (cur_pages < 0)
979                         return cur_pages;
980
981                 start = pre_end;
982         }
983
984         /* We mapped them all? */
985         if (cpa->numpages == cur_pages)
986                 return cur_pages;
987
988         pud = pud_offset(pgd, start);
989
990         /*
991          * Map everything starting from the Gb boundary, possibly with 1G pages
992          */
993         while (end - start >= PUD_SIZE) {
994                 set_pud(pud, __pud(cpa->pfn | _PAGE_PSE | massage_pgprot(pgprot)));
995
996                 start     += PUD_SIZE;
997                 cpa->pfn  += PUD_SIZE;
998                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
999                 pud++;
1000         }
1001
1002         /* Map trailing leftover */
1003         if (start < end) {
1004                 int tmp;
1005
1006                 pud = pud_offset(pgd, start);
1007                 if (pud_none(*pud))
1008                         if (alloc_pmd_page(pud))
1009                                 return -1;
1010
1011                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1012                                    pud, pgprot);
1013                 if (tmp < 0)
1014                         return cur_pages;
1015
1016                 cur_pages += tmp;
1017         }
1018         return cur_pages;
1019 }
1020
1021 /*
1022  * Restrictions for kernel page table do not necessarily apply when mapping in
1023  * an alternate PGD.
1024  */
1025 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1026 {
1027         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1028         pud_t *pud = NULL;      /* shut up gcc */
1029         pgd_t *pgd_entry;
1030         int ret;
1031
1032         pgd_entry = cpa->pgd + pgd_index(addr);
1033
1034         /*
1035          * Allocate a PUD page and hand it down for mapping.
1036          */
1037         if (pgd_none(*pgd_entry)) {
1038                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1039                 if (!pud)
1040                         return -1;
1041
1042                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1043         }
1044
1045         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1046         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1047
1048         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1049         if (ret < 0) {
1050                 unmap_pgd_range(cpa->pgd, addr,
1051                                 addr + (cpa->numpages << PAGE_SHIFT));
1052                 return ret;
1053         }
1054
1055         cpa->numpages = ret;
1056         return 0;
1057 }
1058
1059 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1060                                int primary)
1061 {
1062         if (cpa->pgd)
1063                 return populate_pgd(cpa, vaddr);
1064
1065         /*
1066          * Ignore all non primary paths.
1067          */
1068         if (!primary)
1069                 return 0;
1070
1071         /*
1072          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1073          * to have holes.
1074          * Also set numpages to '1' indicating that we processed cpa req for
1075          * one virtual address page and its pfn. TBD: numpages can be set based
1076          * on the initial value and the level returned by lookup_address().
1077          */
1078         if (within(vaddr, PAGE_OFFSET,
1079                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1080                 cpa->numpages = 1;
1081                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1082                 return 0;
1083         } else {
1084                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1085                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1086                         *cpa->vaddr);
1087
1088                 return -EFAULT;
1089         }
1090 }
1091
1092 static int __change_page_attr(struct cpa_data *cpa, int primary)
1093 {
1094         unsigned long address;
1095         int do_split, err;
1096         unsigned int level;
1097         pte_t *kpte, old_pte;
1098
1099         if (cpa->flags & CPA_PAGES_ARRAY) {
1100                 struct page *page = cpa->pages[cpa->curpage];
1101                 if (unlikely(PageHighMem(page)))
1102                         return 0;
1103                 address = (unsigned long)page_address(page);
1104         } else if (cpa->flags & CPA_ARRAY)
1105                 address = cpa->vaddr[cpa->curpage];
1106         else
1107                 address = *cpa->vaddr;
1108 repeat:
1109         kpte = _lookup_address_cpa(cpa, address, &level);
1110         if (!kpte)
1111                 return __cpa_process_fault(cpa, address, primary);
1112
1113         old_pte = *kpte;
1114         if (!pte_val(old_pte))
1115                 return __cpa_process_fault(cpa, address, primary);
1116
1117         if (level == PG_LEVEL_4K) {
1118                 pte_t new_pte;
1119                 pgprot_t new_prot = pte_pgprot(old_pte);
1120                 unsigned long pfn = pte_pfn(old_pte);
1121
1122                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1123                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1124
1125                 new_prot = static_protections(new_prot, address, pfn);
1126
1127                 /*
1128                  * Set the GLOBAL flags only if the PRESENT flag is
1129                  * set otherwise pte_present will return true even on
1130                  * a non present pte. The canon_pgprot will clear
1131                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1132                  * support it.
1133                  */
1134                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1135                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1136                 else
1137                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1138
1139                 /*
1140                  * We need to keep the pfn from the existing PTE,
1141                  * after all we're only going to change it's attributes
1142                  * not the memory it points to
1143                  */
1144                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1145                 cpa->pfn = pfn;
1146                 /*
1147                  * Do we really change anything ?
1148                  */
1149                 if (pte_val(old_pte) != pte_val(new_pte)) {
1150                         set_pte_atomic(kpte, new_pte);
1151                         cpa->flags |= CPA_FLUSHTLB;
1152                 }
1153                 cpa->numpages = 1;
1154                 return 0;
1155         }
1156
1157         /*
1158          * Check, whether we can keep the large page intact
1159          * and just change the pte:
1160          */
1161         do_split = try_preserve_large_page(kpte, address, cpa);
1162         /*
1163          * When the range fits into the existing large page,
1164          * return. cp->numpages and cpa->tlbflush have been updated in
1165          * try_large_page:
1166          */
1167         if (do_split <= 0)
1168                 return do_split;
1169
1170         /*
1171          * We have to split the large page:
1172          */
1173         err = split_large_page(cpa, kpte, address);
1174         if (!err) {
1175                 /*
1176                  * Do a global flush tlb after splitting the large page
1177                  * and before we do the actual change page attribute in the PTE.
1178                  *
1179                  * With out this, we violate the TLB application note, that says
1180                  * "The TLBs may contain both ordinary and large-page
1181                  *  translations for a 4-KByte range of linear addresses. This
1182                  *  may occur if software modifies the paging structures so that
1183                  *  the page size used for the address range changes. If the two
1184                  *  translations differ with respect to page frame or attributes
1185                  *  (e.g., permissions), processor behavior is undefined and may
1186                  *  be implementation-specific."
1187                  *
1188                  * We do this global tlb flush inside the cpa_lock, so that we
1189                  * don't allow any other cpu, with stale tlb entries change the
1190                  * page attribute in parallel, that also falls into the
1191                  * just split large page entry.
1192                  */
1193                 flush_tlb_all();
1194                 goto repeat;
1195         }
1196
1197         return err;
1198 }
1199
1200 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1201
1202 static int cpa_process_alias(struct cpa_data *cpa)
1203 {
1204         struct cpa_data alias_cpa;
1205         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1206         unsigned long vaddr;
1207         int ret;
1208
1209         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1210                 return 0;
1211
1212         /*
1213          * No need to redo, when the primary call touched the direct
1214          * mapping already:
1215          */
1216         if (cpa->flags & CPA_PAGES_ARRAY) {
1217                 struct page *page = cpa->pages[cpa->curpage];
1218                 if (unlikely(PageHighMem(page)))
1219                         return 0;
1220                 vaddr = (unsigned long)page_address(page);
1221         } else if (cpa->flags & CPA_ARRAY)
1222                 vaddr = cpa->vaddr[cpa->curpage];
1223         else
1224                 vaddr = *cpa->vaddr;
1225
1226         if (!(within(vaddr, PAGE_OFFSET,
1227                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1228
1229                 alias_cpa = *cpa;
1230                 alias_cpa.vaddr = &laddr;
1231                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1232
1233                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1234                 if (ret)
1235                         return ret;
1236         }
1237
1238 #ifdef CONFIG_X86_64
1239         /*
1240          * If the primary call didn't touch the high mapping already
1241          * and the physical address is inside the kernel map, we need
1242          * to touch the high mapped kernel as well:
1243          */
1244         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1245             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1246                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1247                                                __START_KERNEL_map - phys_base;
1248                 alias_cpa = *cpa;
1249                 alias_cpa.vaddr = &temp_cpa_vaddr;
1250                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1251
1252                 /*
1253                  * The high mapping range is imprecise, so ignore the
1254                  * return value.
1255                  */
1256                 __change_page_attr_set_clr(&alias_cpa, 0);
1257         }
1258 #endif
1259
1260         return 0;
1261 }
1262
1263 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1264 {
1265         int ret, numpages = cpa->numpages;
1266
1267         while (numpages) {
1268                 /*
1269                  * Store the remaining nr of pages for the large page
1270                  * preservation check.
1271                  */
1272                 cpa->numpages = numpages;
1273                 /* for array changes, we can't use large page */
1274                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1275                         cpa->numpages = 1;
1276
1277                 if (!debug_pagealloc)
1278                         spin_lock(&cpa_lock);
1279                 ret = __change_page_attr(cpa, checkalias);
1280                 if (!debug_pagealloc)
1281                         spin_unlock(&cpa_lock);
1282                 if (ret)
1283                         return ret;
1284
1285                 if (checkalias) {
1286                         ret = cpa_process_alias(cpa);
1287                         if (ret)
1288                                 return ret;
1289                 }
1290
1291                 /*
1292                  * Adjust the number of pages with the result of the
1293                  * CPA operation. Either a large page has been
1294                  * preserved or a single page update happened.
1295                  */
1296                 BUG_ON(cpa->numpages > numpages);
1297                 numpages -= cpa->numpages;
1298                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1299                         cpa->curpage++;
1300                 else
1301                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1302
1303         }
1304         return 0;
1305 }
1306
1307 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1308                                     pgprot_t mask_set, pgprot_t mask_clr,
1309                                     int force_split, int in_flag,
1310                                     struct page **pages)
1311 {
1312         struct cpa_data cpa;
1313         int ret, cache, checkalias;
1314         unsigned long baddr = 0;
1315
1316         memset(&cpa, 0, sizeof(cpa));
1317
1318         /*
1319          * Check, if we are requested to change a not supported
1320          * feature:
1321          */
1322         mask_set = canon_pgprot(mask_set);
1323         mask_clr = canon_pgprot(mask_clr);
1324         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1325                 return 0;
1326
1327         /* Ensure we are PAGE_SIZE aligned */
1328         if (in_flag & CPA_ARRAY) {
1329                 int i;
1330                 for (i = 0; i < numpages; i++) {
1331                         if (addr[i] & ~PAGE_MASK) {
1332                                 addr[i] &= PAGE_MASK;
1333                                 WARN_ON_ONCE(1);
1334                         }
1335                 }
1336         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1337                 /*
1338                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1339                  * No need to cehck in that case
1340                  */
1341                 if (*addr & ~PAGE_MASK) {
1342                         *addr &= PAGE_MASK;
1343                         /*
1344                          * People should not be passing in unaligned addresses:
1345                          */
1346                         WARN_ON_ONCE(1);
1347                 }
1348                 /*
1349                  * Save address for cache flush. *addr is modified in the call
1350                  * to __change_page_attr_set_clr() below.
1351                  */
1352                 baddr = *addr;
1353         }
1354
1355         /* Must avoid aliasing mappings in the highmem code */
1356         kmap_flush_unused();
1357
1358         vm_unmap_aliases();
1359
1360         cpa.vaddr = addr;
1361         cpa.pages = pages;
1362         cpa.numpages = numpages;
1363         cpa.mask_set = mask_set;
1364         cpa.mask_clr = mask_clr;
1365         cpa.flags = 0;
1366         cpa.curpage = 0;
1367         cpa.force_split = force_split;
1368
1369         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1370                 cpa.flags |= in_flag;
1371
1372         /* No alias checking for _NX bit modifications */
1373         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1374
1375         ret = __change_page_attr_set_clr(&cpa, checkalias);
1376
1377         /*
1378          * Check whether we really changed something:
1379          */
1380         if (!(cpa.flags & CPA_FLUSHTLB))
1381                 goto out;
1382
1383         /*
1384          * No need to flush, when we did not set any of the caching
1385          * attributes:
1386          */
1387         cache = !!pgprot2cachemode(mask_set);
1388
1389         /*
1390          * On success we use CLFLUSH, when the CPU supports it to
1391          * avoid the WBINVD. If the CPU does not support it and in the
1392          * error case we fall back to cpa_flush_all (which uses
1393          * WBINVD):
1394          */
1395         if (!ret && cpu_has_clflush) {
1396                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1397                         cpa_flush_array(addr, numpages, cache,
1398                                         cpa.flags, pages);
1399                 } else
1400                         cpa_flush_range(baddr, numpages, cache);
1401         } else
1402                 cpa_flush_all(cache);
1403
1404 out:
1405         return ret;
1406 }
1407
1408 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1409                                        pgprot_t mask, int array)
1410 {
1411         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1412                 (array ? CPA_ARRAY : 0), NULL);
1413 }
1414
1415 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1416                                          pgprot_t mask, int array)
1417 {
1418         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1419                 (array ? CPA_ARRAY : 0), NULL);
1420 }
1421
1422 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1423                                        pgprot_t mask)
1424 {
1425         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1426                 CPA_PAGES_ARRAY, pages);
1427 }
1428
1429 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1430                                          pgprot_t mask)
1431 {
1432         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1433                 CPA_PAGES_ARRAY, pages);
1434 }
1435
1436 int _set_memory_uc(unsigned long addr, int numpages)
1437 {
1438         /*
1439          * for now UC MINUS. see comments in ioremap_nocache()
1440          */
1441         return change_page_attr_set(&addr, numpages,
1442                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1443                                     0);
1444 }
1445
1446 int set_memory_uc(unsigned long addr, int numpages)
1447 {
1448         int ret;
1449
1450         /*
1451          * for now UC MINUS. see comments in ioremap_nocache()
1452          */
1453         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1454                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1455         if (ret)
1456                 goto out_err;
1457
1458         ret = _set_memory_uc(addr, numpages);
1459         if (ret)
1460                 goto out_free;
1461
1462         return 0;
1463
1464 out_free:
1465         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1466 out_err:
1467         return ret;
1468 }
1469 EXPORT_SYMBOL(set_memory_uc);
1470
1471 static int _set_memory_array(unsigned long *addr, int addrinarray,
1472                 enum page_cache_mode new_type)
1473 {
1474         int i, j;
1475         int ret;
1476
1477         /*
1478          * for now UC MINUS. see comments in ioremap_nocache()
1479          */
1480         for (i = 0; i < addrinarray; i++) {
1481                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1482                                         new_type, NULL);
1483                 if (ret)
1484                         goto out_free;
1485         }
1486
1487         ret = change_page_attr_set(addr, addrinarray,
1488                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1489                                    1);
1490
1491         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1492                 ret = change_page_attr_set_clr(addr, addrinarray,
1493                                                cachemode2pgprot(
1494                                                 _PAGE_CACHE_MODE_WC),
1495                                                __pgprot(_PAGE_CACHE_MASK),
1496                                                0, CPA_ARRAY, NULL);
1497         if (ret)
1498                 goto out_free;
1499
1500         return 0;
1501
1502 out_free:
1503         for (j = 0; j < i; j++)
1504                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1505
1506         return ret;
1507 }
1508
1509 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1510 {
1511         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1512 }
1513 EXPORT_SYMBOL(set_memory_array_uc);
1514
1515 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1516 {
1517         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1518 }
1519 EXPORT_SYMBOL(set_memory_array_wc);
1520
1521 int _set_memory_wc(unsigned long addr, int numpages)
1522 {
1523         int ret;
1524         unsigned long addr_copy = addr;
1525
1526         ret = change_page_attr_set(&addr, numpages,
1527                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1528                                    0);
1529         if (!ret) {
1530                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1531                                                cachemode2pgprot(
1532                                                 _PAGE_CACHE_MODE_WC),
1533                                                __pgprot(_PAGE_CACHE_MASK),
1534                                                0, 0, NULL);
1535         }
1536         return ret;
1537 }
1538
1539 int set_memory_wc(unsigned long addr, int numpages)
1540 {
1541         int ret;
1542
1543         if (!pat_enabled)
1544                 return set_memory_uc(addr, numpages);
1545
1546         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1547                 _PAGE_CACHE_MODE_WC, NULL);
1548         if (ret)
1549                 goto out_err;
1550
1551         ret = _set_memory_wc(addr, numpages);
1552         if (ret)
1553                 goto out_free;
1554
1555         return 0;
1556
1557 out_free:
1558         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1559 out_err:
1560         return ret;
1561 }
1562 EXPORT_SYMBOL(set_memory_wc);
1563
1564 int _set_memory_wb(unsigned long addr, int numpages)
1565 {
1566         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1567         return change_page_attr_clear(&addr, numpages,
1568                                       __pgprot(_PAGE_CACHE_MASK), 0);
1569 }
1570
1571 int set_memory_wb(unsigned long addr, int numpages)
1572 {
1573         int ret;
1574
1575         ret = _set_memory_wb(addr, numpages);
1576         if (ret)
1577                 return ret;
1578
1579         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1580         return 0;
1581 }
1582 EXPORT_SYMBOL(set_memory_wb);
1583
1584 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1585 {
1586         int i;
1587         int ret;
1588
1589         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1590         ret = change_page_attr_clear(addr, addrinarray,
1591                                       __pgprot(_PAGE_CACHE_MASK), 1);
1592         if (ret)
1593                 return ret;
1594
1595         for (i = 0; i < addrinarray; i++)
1596                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1597
1598         return 0;
1599 }
1600 EXPORT_SYMBOL(set_memory_array_wb);
1601
1602 int set_memory_x(unsigned long addr, int numpages)
1603 {
1604         if (!(__supported_pte_mask & _PAGE_NX))
1605                 return 0;
1606
1607         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1608 }
1609 EXPORT_SYMBOL(set_memory_x);
1610
1611 int set_memory_nx(unsigned long addr, int numpages)
1612 {
1613         if (!(__supported_pte_mask & _PAGE_NX))
1614                 return 0;
1615
1616         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1617 }
1618 EXPORT_SYMBOL(set_memory_nx);
1619
1620 int set_memory_ro(unsigned long addr, int numpages)
1621 {
1622         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1623 }
1624 EXPORT_SYMBOL_GPL(set_memory_ro);
1625
1626 int set_memory_rw(unsigned long addr, int numpages)
1627 {
1628         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1629 }
1630 EXPORT_SYMBOL_GPL(set_memory_rw);
1631
1632 int set_memory_np(unsigned long addr, int numpages)
1633 {
1634         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1635 }
1636
1637 int set_memory_4k(unsigned long addr, int numpages)
1638 {
1639         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1640                                         __pgprot(0), 1, 0, NULL);
1641 }
1642
1643 int set_pages_uc(struct page *page, int numpages)
1644 {
1645         unsigned long addr = (unsigned long)page_address(page);
1646
1647         return set_memory_uc(addr, numpages);
1648 }
1649 EXPORT_SYMBOL(set_pages_uc);
1650
1651 static int _set_pages_array(struct page **pages, int addrinarray,
1652                 enum page_cache_mode new_type)
1653 {
1654         unsigned long start;
1655         unsigned long end;
1656         int i;
1657         int free_idx;
1658         int ret;
1659
1660         for (i = 0; i < addrinarray; i++) {
1661                 if (PageHighMem(pages[i]))
1662                         continue;
1663                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1664                 end = start + PAGE_SIZE;
1665                 if (reserve_memtype(start, end, new_type, NULL))
1666                         goto err_out;
1667         }
1668
1669         ret = cpa_set_pages_array(pages, addrinarray,
1670                         cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS));
1671         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1672                 ret = change_page_attr_set_clr(NULL, addrinarray,
1673                                                cachemode2pgprot(
1674                                                 _PAGE_CACHE_MODE_WC),
1675                                                __pgprot(_PAGE_CACHE_MASK),
1676                                                0, CPA_PAGES_ARRAY, pages);
1677         if (ret)
1678                 goto err_out;
1679         return 0; /* Success */
1680 err_out:
1681         free_idx = i;
1682         for (i = 0; i < free_idx; i++) {
1683                 if (PageHighMem(pages[i]))
1684                         continue;
1685                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1686                 end = start + PAGE_SIZE;
1687                 free_memtype(start, end);
1688         }
1689         return -EINVAL;
1690 }
1691
1692 int set_pages_array_uc(struct page **pages, int addrinarray)
1693 {
1694         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1695 }
1696 EXPORT_SYMBOL(set_pages_array_uc);
1697
1698 int set_pages_array_wc(struct page **pages, int addrinarray)
1699 {
1700         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1701 }
1702 EXPORT_SYMBOL(set_pages_array_wc);
1703
1704 int set_pages_wb(struct page *page, int numpages)
1705 {
1706         unsigned long addr = (unsigned long)page_address(page);
1707
1708         return set_memory_wb(addr, numpages);
1709 }
1710 EXPORT_SYMBOL(set_pages_wb);
1711
1712 int set_pages_array_wb(struct page **pages, int addrinarray)
1713 {
1714         int retval;
1715         unsigned long start;
1716         unsigned long end;
1717         int i;
1718
1719         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1720         retval = cpa_clear_pages_array(pages, addrinarray,
1721                         __pgprot(_PAGE_CACHE_MASK));
1722         if (retval)
1723                 return retval;
1724
1725         for (i = 0; i < addrinarray; i++) {
1726                 if (PageHighMem(pages[i]))
1727                         continue;
1728                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1729                 end = start + PAGE_SIZE;
1730                 free_memtype(start, end);
1731         }
1732
1733         return 0;
1734 }
1735 EXPORT_SYMBOL(set_pages_array_wb);
1736
1737 int set_pages_x(struct page *page, int numpages)
1738 {
1739         unsigned long addr = (unsigned long)page_address(page);
1740
1741         return set_memory_x(addr, numpages);
1742 }
1743 EXPORT_SYMBOL(set_pages_x);
1744
1745 int set_pages_nx(struct page *page, int numpages)
1746 {
1747         unsigned long addr = (unsigned long)page_address(page);
1748
1749         return set_memory_nx(addr, numpages);
1750 }
1751 EXPORT_SYMBOL(set_pages_nx);
1752
1753 int set_pages_ro(struct page *page, int numpages)
1754 {
1755         unsigned long addr = (unsigned long)page_address(page);
1756
1757         return set_memory_ro(addr, numpages);
1758 }
1759
1760 int set_pages_rw(struct page *page, int numpages)
1761 {
1762         unsigned long addr = (unsigned long)page_address(page);
1763
1764         return set_memory_rw(addr, numpages);
1765 }
1766
1767 #ifdef CONFIG_DEBUG_PAGEALLOC
1768
1769 static int __set_pages_p(struct page *page, int numpages)
1770 {
1771         unsigned long tempaddr = (unsigned long) page_address(page);
1772         struct cpa_data cpa = { .vaddr = &tempaddr,
1773                                 .pgd = NULL,
1774                                 .numpages = numpages,
1775                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1776                                 .mask_clr = __pgprot(0),
1777                                 .flags = 0};
1778
1779         /*
1780          * No alias checking needed for setting present flag. otherwise,
1781          * we may need to break large pages for 64-bit kernel text
1782          * mappings (this adds to complexity if we want to do this from
1783          * atomic context especially). Let's keep it simple!
1784          */
1785         return __change_page_attr_set_clr(&cpa, 0);
1786 }
1787
1788 static int __set_pages_np(struct page *page, int numpages)
1789 {
1790         unsigned long tempaddr = (unsigned long) page_address(page);
1791         struct cpa_data cpa = { .vaddr = &tempaddr,
1792                                 .pgd = NULL,
1793                                 .numpages = numpages,
1794                                 .mask_set = __pgprot(0),
1795                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1796                                 .flags = 0};
1797
1798         /*
1799          * No alias checking needed for setting not present flag. otherwise,
1800          * we may need to break large pages for 64-bit kernel text
1801          * mappings (this adds to complexity if we want to do this from
1802          * atomic context especially). Let's keep it simple!
1803          */
1804         return __change_page_attr_set_clr(&cpa, 0);
1805 }
1806
1807 void kernel_map_pages(struct page *page, int numpages, int enable)
1808 {
1809         if (PageHighMem(page))
1810                 return;
1811         if (!enable) {
1812                 debug_check_no_locks_freed(page_address(page),
1813                                            numpages * PAGE_SIZE);
1814         }
1815
1816         /*
1817          * The return value is ignored as the calls cannot fail.
1818          * Large pages for identity mappings are not used at boot time
1819          * and hence no memory allocations during large page split.
1820          */
1821         if (enable)
1822                 __set_pages_p(page, numpages);
1823         else
1824                 __set_pages_np(page, numpages);
1825
1826         /*
1827          * We should perform an IPI and flush all tlbs,
1828          * but that can deadlock->flush only current cpu:
1829          */
1830         __flush_tlb_all();
1831
1832         arch_flush_lazy_mmu_mode();
1833 }
1834
1835 #ifdef CONFIG_HIBERNATION
1836
1837 bool kernel_page_present(struct page *page)
1838 {
1839         unsigned int level;
1840         pte_t *pte;
1841
1842         if (PageHighMem(page))
1843                 return false;
1844
1845         pte = lookup_address((unsigned long)page_address(page), &level);
1846         return (pte_val(*pte) & _PAGE_PRESENT);
1847 }
1848
1849 #endif /* CONFIG_HIBERNATION */
1850
1851 #endif /* CONFIG_DEBUG_PAGEALLOC */
1852
1853 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1854                             unsigned numpages, unsigned long page_flags)
1855 {
1856         int retval = -EINVAL;
1857
1858         struct cpa_data cpa = {
1859                 .vaddr = &address,
1860                 .pfn = pfn,
1861                 .pgd = pgd,
1862                 .numpages = numpages,
1863                 .mask_set = __pgprot(0),
1864                 .mask_clr = __pgprot(0),
1865                 .flags = 0,
1866         };
1867
1868         if (!(__supported_pte_mask & _PAGE_NX))
1869                 goto out;
1870
1871         if (!(page_flags & _PAGE_NX))
1872                 cpa.mask_clr = __pgprot(_PAGE_NX);
1873
1874         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1875
1876         retval = __change_page_attr_set_clr(&cpa, 0);
1877         __flush_tlb_all();
1878
1879 out:
1880         return retval;
1881 }
1882
1883 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1884                                unsigned numpages)
1885 {
1886         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1887 }
1888
1889 /*
1890  * The testcases use internal knowledge of the implementation that shouldn't
1891  * be exposed to the rest of the kernel. Include these directly here.
1892  */
1893 #ifdef CONFIG_CPA_DEBUG
1894 #include "pageattr-test.c"
1895 #endif