x86/cpufeature: Remove cpu_has_gbpages
[cascardo/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         if (direct_pages_count[level] == 0)
70                 return;
71
72         direct_pages_count[level]--;
73         direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78         seq_printf(m, "DirectMap4k:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81         seq_printf(m, "DirectMap2M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84         seq_printf(m, "DirectMap4M:    %8lu kB\n",
85                         direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87         if (direct_gbpages)
88                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
89                         direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99         return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
105 }
106
107 #endif
108
109 static inline int
110 within(unsigned long addr, unsigned long start, unsigned long end)
111 {
112         return addr >= start && addr < end;
113 }
114
115 /*
116  * Flushing functions
117  */
118
119 /**
120  * clflush_cache_range - flush a cache range with clflush
121  * @vaddr:      virtual start address
122  * @size:       number of bytes to flush
123  *
124  * clflushopt is an unordered instruction which needs fencing with mfence or
125  * sfence to avoid ordering issues.
126  */
127 void clflush_cache_range(void *vaddr, unsigned int size)
128 {
129         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
130         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
131         void *vend = vaddr + size;
132
133         if (p >= vend)
134                 return;
135
136         mb();
137
138         for (; p < vend; p += clflush_size)
139                 clflushopt(p);
140
141         mb();
142 }
143 EXPORT_SYMBOL_GPL(clflush_cache_range);
144
145 static void __cpa_flush_all(void *arg)
146 {
147         unsigned long cache = (unsigned long)arg;
148
149         /*
150          * Flush all to work around Errata in early athlons regarding
151          * large page flushing.
152          */
153         __flush_tlb_all();
154
155         if (cache && boot_cpu_data.x86 >= 4)
156                 wbinvd();
157 }
158
159 static void cpa_flush_all(unsigned long cache)
160 {
161         BUG_ON(irqs_disabled());
162
163         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
164 }
165
166 static void __cpa_flush_range(void *arg)
167 {
168         /*
169          * We could optimize that further and do individual per page
170          * tlb invalidates for a low number of pages. Caveat: we must
171          * flush the high aliases on 64bit as well.
172          */
173         __flush_tlb_all();
174 }
175
176 static void cpa_flush_range(unsigned long start, int numpages, int cache)
177 {
178         unsigned int i, level;
179         unsigned long addr;
180
181         BUG_ON(irqs_disabled());
182         WARN_ON(PAGE_ALIGN(start) != start);
183
184         on_each_cpu(__cpa_flush_range, NULL, 1);
185
186         if (!cache)
187                 return;
188
189         /*
190          * We only need to flush on one CPU,
191          * clflush is a MESI-coherent instruction that
192          * will cause all other CPUs to flush the same
193          * cachelines:
194          */
195         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
196                 pte_t *pte = lookup_address(addr, &level);
197
198                 /*
199                  * Only flush present addresses:
200                  */
201                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
202                         clflush_cache_range((void *) addr, PAGE_SIZE);
203         }
204 }
205
206 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
207                             int in_flags, struct page **pages)
208 {
209         unsigned int i, level;
210         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
211
212         BUG_ON(irqs_disabled());
213
214         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
215
216         if (!cache || do_wbinvd)
217                 return;
218
219         /*
220          * We only need to flush on one CPU,
221          * clflush is a MESI-coherent instruction that
222          * will cause all other CPUs to flush the same
223          * cachelines:
224          */
225         for (i = 0; i < numpages; i++) {
226                 unsigned long addr;
227                 pte_t *pte;
228
229                 if (in_flags & CPA_PAGES_ARRAY)
230                         addr = (unsigned long)page_address(pages[i]);
231                 else
232                         addr = start[i];
233
234                 pte = lookup_address(addr, &level);
235
236                 /*
237                  * Only flush present addresses:
238                  */
239                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
240                         clflush_cache_range((void *)addr, PAGE_SIZE);
241         }
242 }
243
244 /*
245  * Certain areas of memory on x86 require very specific protection flags,
246  * for example the BIOS area or kernel text. Callers don't always get this
247  * right (again, ioremap() on BIOS memory is not uncommon) so this function
248  * checks and fixes these known static required protection bits.
249  */
250 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
251                                    unsigned long pfn)
252 {
253         pgprot_t forbidden = __pgprot(0);
254
255         /*
256          * The BIOS area between 640k and 1Mb needs to be executable for
257          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
258          */
259 #ifdef CONFIG_PCI_BIOS
260         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
261                 pgprot_val(forbidden) |= _PAGE_NX;
262 #endif
263
264         /*
265          * The kernel text needs to be executable for obvious reasons
266          * Does not cover __inittext since that is gone later on. On
267          * 64bit we do not enforce !NX on the low mapping
268          */
269         if (within(address, (unsigned long)_text, (unsigned long)_etext))
270                 pgprot_val(forbidden) |= _PAGE_NX;
271
272         /*
273          * The .rodata section needs to be read-only. Using the pfn
274          * catches all aliases.
275          */
276         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
277                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
278                 pgprot_val(forbidden) |= _PAGE_RW;
279
280 #if defined(CONFIG_X86_64)
281         /*
282          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
283          * kernel text mappings for the large page aligned text, rodata sections
284          * will be always read-only. For the kernel identity mappings covering
285          * the holes caused by this alignment can be anything that user asks.
286          *
287          * This will preserve the large page mappings for kernel text/data
288          * at no extra cost.
289          */
290         if (kernel_set_to_readonly &&
291             within(address, (unsigned long)_text,
292                    (unsigned long)__end_rodata_hpage_align)) {
293                 unsigned int level;
294
295                 /*
296                  * Don't enforce the !RW mapping for the kernel text mapping,
297                  * if the current mapping is already using small page mapping.
298                  * No need to work hard to preserve large page mappings in this
299                  * case.
300                  *
301                  * This also fixes the Linux Xen paravirt guest boot failure
302                  * (because of unexpected read-only mappings for kernel identity
303                  * mappings). In this paravirt guest case, the kernel text
304                  * mapping and the kernel identity mapping share the same
305                  * page-table pages. Thus we can't really use different
306                  * protections for the kernel text and identity mappings. Also,
307                  * these shared mappings are made of small page mappings.
308                  * Thus this don't enforce !RW mapping for small page kernel
309                  * text mapping logic will help Linux Xen parvirt guest boot
310                  * as well.
311                  */
312                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
313                         pgprot_val(forbidden) |= _PAGE_RW;
314         }
315 #endif
316
317         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
318
319         return prot;
320 }
321
322 /*
323  * Lookup the page table entry for a virtual address in a specific pgd.
324  * Return a pointer to the entry and the level of the mapping.
325  */
326 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327                              unsigned int *level)
328 {
329         pud_t *pud;
330         pmd_t *pmd;
331
332         *level = PG_LEVEL_NONE;
333
334         if (pgd_none(*pgd))
335                 return NULL;
336
337         pud = pud_offset(pgd, address);
338         if (pud_none(*pud))
339                 return NULL;
340
341         *level = PG_LEVEL_1G;
342         if (pud_large(*pud) || !pud_present(*pud))
343                 return (pte_t *)pud;
344
345         pmd = pmd_offset(pud, address);
346         if (pmd_none(*pmd))
347                 return NULL;
348
349         *level = PG_LEVEL_2M;
350         if (pmd_large(*pmd) || !pmd_present(*pmd))
351                 return (pte_t *)pmd;
352
353         *level = PG_LEVEL_4K;
354
355         return pte_offset_kernel(pmd, address);
356 }
357
358 /*
359  * Lookup the page table entry for a virtual address. Return a pointer
360  * to the entry and the level of the mapping.
361  *
362  * Note: We return pud and pmd either when the entry is marked large
363  * or when the present bit is not set. Otherwise we would return a
364  * pointer to a nonexisting mapping.
365  */
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
367 {
368         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
369 }
370 EXPORT_SYMBOL_GPL(lookup_address);
371
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373                                   unsigned int *level)
374 {
375         if (cpa->pgd)
376                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377                                                address, level);
378
379         return lookup_address(address, level);
380 }
381
382 /*
383  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
384  * or NULL if not present.
385  */
386 pmd_t *lookup_pmd_address(unsigned long address)
387 {
388         pgd_t *pgd;
389         pud_t *pud;
390
391         pgd = pgd_offset_k(address);
392         if (pgd_none(*pgd))
393                 return NULL;
394
395         pud = pud_offset(pgd, address);
396         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
397                 return NULL;
398
399         return pmd_offset(pud, address);
400 }
401
402 /*
403  * This is necessary because __pa() does not work on some
404  * kinds of memory, like vmalloc() or the alloc_remap()
405  * areas on 32-bit NUMA systems.  The percpu areas can
406  * end up in this kind of memory, for instance.
407  *
408  * This could be optimized, but it is only intended to be
409  * used at inititalization time, and keeping it
410  * unoptimized should increase the testing coverage for
411  * the more obscure platforms.
412  */
413 phys_addr_t slow_virt_to_phys(void *__virt_addr)
414 {
415         unsigned long virt_addr = (unsigned long)__virt_addr;
416         phys_addr_t phys_addr;
417         unsigned long offset;
418         enum pg_level level;
419         pte_t *pte;
420
421         pte = lookup_address(virt_addr, &level);
422         BUG_ON(!pte);
423
424         /*
425          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
426          * before being left-shifted PAGE_SHIFT bits -- this trick is to
427          * make 32-PAE kernel work correctly.
428          */
429         switch (level) {
430         case PG_LEVEL_1G:
431                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
432                 offset = virt_addr & ~PUD_PAGE_MASK;
433                 break;
434         case PG_LEVEL_2M:
435                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
436                 offset = virt_addr & ~PMD_PAGE_MASK;
437                 break;
438         default:
439                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
440                 offset = virt_addr & ~PAGE_MASK;
441         }
442
443         return (phys_addr_t)(phys_addr | offset);
444 }
445 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
446
447 /*
448  * Set the new pmd in all the pgds we know about:
449  */
450 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
451 {
452         /* change init_mm */
453         set_pte_atomic(kpte, pte);
454 #ifdef CONFIG_X86_32
455         if (!SHARED_KERNEL_PMD) {
456                 struct page *page;
457
458                 list_for_each_entry(page, &pgd_list, lru) {
459                         pgd_t *pgd;
460                         pud_t *pud;
461                         pmd_t *pmd;
462
463                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
464                         pud = pud_offset(pgd, address);
465                         pmd = pmd_offset(pud, address);
466                         set_pte_atomic((pte_t *)pmd, pte);
467                 }
468         }
469 #endif
470 }
471
472 static int
473 try_preserve_large_page(pte_t *kpte, unsigned long address,
474                         struct cpa_data *cpa)
475 {
476         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
477         pte_t new_pte, old_pte, *tmp;
478         pgprot_t old_prot, new_prot, req_prot;
479         int i, do_split = 1;
480         enum pg_level level;
481
482         if (cpa->force_split)
483                 return 1;
484
485         spin_lock(&pgd_lock);
486         /*
487          * Check for races, another CPU might have split this page
488          * up already:
489          */
490         tmp = _lookup_address_cpa(cpa, address, &level);
491         if (tmp != kpte)
492                 goto out_unlock;
493
494         switch (level) {
495         case PG_LEVEL_2M:
496                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
497                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
498                 break;
499         case PG_LEVEL_1G:
500                 old_prot = pud_pgprot(*(pud_t *)kpte);
501                 old_pfn = pud_pfn(*(pud_t *)kpte);
502                 break;
503         default:
504                 do_split = -EINVAL;
505                 goto out_unlock;
506         }
507
508         psize = page_level_size(level);
509         pmask = page_level_mask(level);
510
511         /*
512          * Calculate the number of pages, which fit into this large
513          * page starting at address:
514          */
515         nextpage_addr = (address + psize) & pmask;
516         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
517         if (numpages < cpa->numpages)
518                 cpa->numpages = numpages;
519
520         /*
521          * We are safe now. Check whether the new pgprot is the same:
522          * Convert protection attributes to 4k-format, as cpa->mask* are set
523          * up accordingly.
524          */
525         old_pte = *kpte;
526         req_prot = pgprot_large_2_4k(old_prot);
527
528         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
529         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
530
531         /*
532          * req_prot is in format of 4k pages. It must be converted to large
533          * page format: the caching mode includes the PAT bit located at
534          * different bit positions in the two formats.
535          */
536         req_prot = pgprot_4k_2_large(req_prot);
537
538         /*
539          * Set the PSE and GLOBAL flags only if the PRESENT flag is
540          * set otherwise pmd_present/pmd_huge will return true even on
541          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
542          * for the ancient hardware that doesn't support it.
543          */
544         if (pgprot_val(req_prot) & _PAGE_PRESENT)
545                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
546         else
547                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
548
549         req_prot = canon_pgprot(req_prot);
550
551         /*
552          * old_pfn points to the large page base pfn. So we need
553          * to add the offset of the virtual address:
554          */
555         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
556         cpa->pfn = pfn;
557
558         new_prot = static_protections(req_prot, address, pfn);
559
560         /*
561          * We need to check the full range, whether
562          * static_protection() requires a different pgprot for one of
563          * the pages in the range we try to preserve:
564          */
565         addr = address & pmask;
566         pfn = old_pfn;
567         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
568                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
569
570                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
571                         goto out_unlock;
572         }
573
574         /*
575          * If there are no changes, return. maxpages has been updated
576          * above:
577          */
578         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
579                 do_split = 0;
580                 goto out_unlock;
581         }
582
583         /*
584          * We need to change the attributes. Check, whether we can
585          * change the large page in one go. We request a split, when
586          * the address is not aligned and the number of pages is
587          * smaller than the number of pages in the large page. Note
588          * that we limited the number of possible pages already to
589          * the number of pages in the large page.
590          */
591         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
592                 /*
593                  * The address is aligned and the number of pages
594                  * covers the full page.
595                  */
596                 new_pte = pfn_pte(old_pfn, new_prot);
597                 __set_pmd_pte(kpte, address, new_pte);
598                 cpa->flags |= CPA_FLUSHTLB;
599                 do_split = 0;
600         }
601
602 out_unlock:
603         spin_unlock(&pgd_lock);
604
605         return do_split;
606 }
607
608 static int
609 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
610                    struct page *base)
611 {
612         pte_t *pbase = (pte_t *)page_address(base);
613         unsigned long ref_pfn, pfn, pfninc = 1;
614         unsigned int i, level;
615         pte_t *tmp;
616         pgprot_t ref_prot;
617
618         spin_lock(&pgd_lock);
619         /*
620          * Check for races, another CPU might have split this page
621          * up for us already:
622          */
623         tmp = _lookup_address_cpa(cpa, address, &level);
624         if (tmp != kpte) {
625                 spin_unlock(&pgd_lock);
626                 return 1;
627         }
628
629         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
630
631         switch (level) {
632         case PG_LEVEL_2M:
633                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
634                 /* clear PSE and promote PAT bit to correct position */
635                 ref_prot = pgprot_large_2_4k(ref_prot);
636                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
637                 break;
638
639         case PG_LEVEL_1G:
640                 ref_prot = pud_pgprot(*(pud_t *)kpte);
641                 ref_pfn = pud_pfn(*(pud_t *)kpte);
642                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
643
644                 /*
645                  * Clear the PSE flags if the PRESENT flag is not set
646                  * otherwise pmd_present/pmd_huge will return true
647                  * even on a non present pmd.
648                  */
649                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
650                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
651                 break;
652
653         default:
654                 spin_unlock(&pgd_lock);
655                 return 1;
656         }
657
658         /*
659          * Set the GLOBAL flags only if the PRESENT flag is set
660          * otherwise pmd/pte_present will return true even on a non
661          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
662          * for the ancient hardware that doesn't support it.
663          */
664         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
665                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
666         else
667                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
668
669         /*
670          * Get the target pfn from the original entry:
671          */
672         pfn = ref_pfn;
673         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
674                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
675
676         if (virt_addr_valid(address)) {
677                 unsigned long pfn = PFN_DOWN(__pa(address));
678
679                 if (pfn_range_is_mapped(pfn, pfn + 1))
680                         split_page_count(level);
681         }
682
683         /*
684          * Install the new, split up pagetable.
685          *
686          * We use the standard kernel pagetable protections for the new
687          * pagetable protections, the actual ptes set above control the
688          * primary protection behavior:
689          */
690         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
691
692         /*
693          * Intel Atom errata AAH41 workaround.
694          *
695          * The real fix should be in hw or in a microcode update, but
696          * we also probabilistically try to reduce the window of having
697          * a large TLB mixed with 4K TLBs while instruction fetches are
698          * going on.
699          */
700         __flush_tlb_all();
701         spin_unlock(&pgd_lock);
702
703         return 0;
704 }
705
706 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
707                             unsigned long address)
708 {
709         struct page *base;
710
711         if (!debug_pagealloc_enabled())
712                 spin_unlock(&cpa_lock);
713         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
714         if (!debug_pagealloc_enabled())
715                 spin_lock(&cpa_lock);
716         if (!base)
717                 return -ENOMEM;
718
719         if (__split_large_page(cpa, kpte, address, base))
720                 __free_page(base);
721
722         return 0;
723 }
724
725 static bool try_to_free_pte_page(pte_t *pte)
726 {
727         int i;
728
729         for (i = 0; i < PTRS_PER_PTE; i++)
730                 if (!pte_none(pte[i]))
731                         return false;
732
733         free_page((unsigned long)pte);
734         return true;
735 }
736
737 static bool try_to_free_pmd_page(pmd_t *pmd)
738 {
739         int i;
740
741         for (i = 0; i < PTRS_PER_PMD; i++)
742                 if (!pmd_none(pmd[i]))
743                         return false;
744
745         free_page((unsigned long)pmd);
746         return true;
747 }
748
749 static bool try_to_free_pud_page(pud_t *pud)
750 {
751         int i;
752
753         for (i = 0; i < PTRS_PER_PUD; i++)
754                 if (!pud_none(pud[i]))
755                         return false;
756
757         free_page((unsigned long)pud);
758         return true;
759 }
760
761 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
762 {
763         pte_t *pte = pte_offset_kernel(pmd, start);
764
765         while (start < end) {
766                 set_pte(pte, __pte(0));
767
768                 start += PAGE_SIZE;
769                 pte++;
770         }
771
772         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
773                 pmd_clear(pmd);
774                 return true;
775         }
776         return false;
777 }
778
779 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
780                               unsigned long start, unsigned long end)
781 {
782         if (unmap_pte_range(pmd, start, end))
783                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
784                         pud_clear(pud);
785 }
786
787 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
788 {
789         pmd_t *pmd = pmd_offset(pud, start);
790
791         /*
792          * Not on a 2MB page boundary?
793          */
794         if (start & (PMD_SIZE - 1)) {
795                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
796                 unsigned long pre_end = min_t(unsigned long, end, next_page);
797
798                 __unmap_pmd_range(pud, pmd, start, pre_end);
799
800                 start = pre_end;
801                 pmd++;
802         }
803
804         /*
805          * Try to unmap in 2M chunks.
806          */
807         while (end - start >= PMD_SIZE) {
808                 if (pmd_large(*pmd))
809                         pmd_clear(pmd);
810                 else
811                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
812
813                 start += PMD_SIZE;
814                 pmd++;
815         }
816
817         /*
818          * 4K leftovers?
819          */
820         if (start < end)
821                 return __unmap_pmd_range(pud, pmd, start, end);
822
823         /*
824          * Try again to free the PMD page if haven't succeeded above.
825          */
826         if (!pud_none(*pud))
827                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
828                         pud_clear(pud);
829 }
830
831 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
832 {
833         pud_t *pud = pud_offset(pgd, start);
834
835         /*
836          * Not on a GB page boundary?
837          */
838         if (start & (PUD_SIZE - 1)) {
839                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
840                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
841
842                 unmap_pmd_range(pud, start, pre_end);
843
844                 start = pre_end;
845                 pud++;
846         }
847
848         /*
849          * Try to unmap in 1G chunks?
850          */
851         while (end - start >= PUD_SIZE) {
852
853                 if (pud_large(*pud))
854                         pud_clear(pud);
855                 else
856                         unmap_pmd_range(pud, start, start + PUD_SIZE);
857
858                 start += PUD_SIZE;
859                 pud++;
860         }
861
862         /*
863          * 2M leftovers?
864          */
865         if (start < end)
866                 unmap_pmd_range(pud, start, end);
867
868         /*
869          * No need to try to free the PUD page because we'll free it in
870          * populate_pgd's error path
871          */
872 }
873
874 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
875 {
876         pgd_t *pgd_entry = root + pgd_index(addr);
877
878         unmap_pud_range(pgd_entry, addr, end);
879
880         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
881                 pgd_clear(pgd_entry);
882 }
883
884 static int alloc_pte_page(pmd_t *pmd)
885 {
886         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
887         if (!pte)
888                 return -1;
889
890         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
891         return 0;
892 }
893
894 static int alloc_pmd_page(pud_t *pud)
895 {
896         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
897         if (!pmd)
898                 return -1;
899
900         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
901         return 0;
902 }
903
904 static void populate_pte(struct cpa_data *cpa,
905                          unsigned long start, unsigned long end,
906                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
907 {
908         pte_t *pte;
909
910         pte = pte_offset_kernel(pmd, start);
911
912         /*
913          * Set the GLOBAL flags only if the PRESENT flag is
914          * set otherwise pte_present will return true even on
915          * a non present pte. The canon_pgprot will clear
916          * _PAGE_GLOBAL for the ancient hardware that doesn't
917          * support it.
918          */
919         if (pgprot_val(pgprot) & _PAGE_PRESENT)
920                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
921         else
922                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
923
924         pgprot = canon_pgprot(pgprot);
925
926         while (num_pages-- && start < end) {
927                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
928
929                 start    += PAGE_SIZE;
930                 cpa->pfn++;
931                 pte++;
932         }
933 }
934
935 static int populate_pmd(struct cpa_data *cpa,
936                         unsigned long start, unsigned long end,
937                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
938 {
939         unsigned int cur_pages = 0;
940         pmd_t *pmd;
941         pgprot_t pmd_pgprot;
942
943         /*
944          * Not on a 2M boundary?
945          */
946         if (start & (PMD_SIZE - 1)) {
947                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
948                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
949
950                 pre_end   = min_t(unsigned long, pre_end, next_page);
951                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
952                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
953
954                 /*
955                  * Need a PTE page?
956                  */
957                 pmd = pmd_offset(pud, start);
958                 if (pmd_none(*pmd))
959                         if (alloc_pte_page(pmd))
960                                 return -1;
961
962                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
963
964                 start = pre_end;
965         }
966
967         /*
968          * We mapped them all?
969          */
970         if (num_pages == cur_pages)
971                 return cur_pages;
972
973         pmd_pgprot = pgprot_4k_2_large(pgprot);
974
975         while (end - start >= PMD_SIZE) {
976
977                 /*
978                  * We cannot use a 1G page so allocate a PMD page if needed.
979                  */
980                 if (pud_none(*pud))
981                         if (alloc_pmd_page(pud))
982                                 return -1;
983
984                 pmd = pmd_offset(pud, start);
985
986                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
987                                    massage_pgprot(pmd_pgprot)));
988
989                 start     += PMD_SIZE;
990                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
991                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
992         }
993
994         /*
995          * Map trailing 4K pages.
996          */
997         if (start < end) {
998                 pmd = pmd_offset(pud, start);
999                 if (pmd_none(*pmd))
1000                         if (alloc_pte_page(pmd))
1001                                 return -1;
1002
1003                 populate_pte(cpa, start, end, num_pages - cur_pages,
1004                              pmd, pgprot);
1005         }
1006         return num_pages;
1007 }
1008
1009 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1010                         pgprot_t pgprot)
1011 {
1012         pud_t *pud;
1013         unsigned long end;
1014         int cur_pages = 0;
1015         pgprot_t pud_pgprot;
1016
1017         end = start + (cpa->numpages << PAGE_SHIFT);
1018
1019         /*
1020          * Not on a Gb page boundary? => map everything up to it with
1021          * smaller pages.
1022          */
1023         if (start & (PUD_SIZE - 1)) {
1024                 unsigned long pre_end;
1025                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1026
1027                 pre_end   = min_t(unsigned long, end, next_page);
1028                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1029                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1030
1031                 pud = pud_offset(pgd, start);
1032
1033                 /*
1034                  * Need a PMD page?
1035                  */
1036                 if (pud_none(*pud))
1037                         if (alloc_pmd_page(pud))
1038                                 return -1;
1039
1040                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1041                                          pud, pgprot);
1042                 if (cur_pages < 0)
1043                         return cur_pages;
1044
1045                 start = pre_end;
1046         }
1047
1048         /* We mapped them all? */
1049         if (cpa->numpages == cur_pages)
1050                 return cur_pages;
1051
1052         pud = pud_offset(pgd, start);
1053         pud_pgprot = pgprot_4k_2_large(pgprot);
1054
1055         /*
1056          * Map everything starting from the Gb boundary, possibly with 1G pages
1057          */
1058         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1059                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1060                                    massage_pgprot(pud_pgprot)));
1061
1062                 start     += PUD_SIZE;
1063                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1064                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1065                 pud++;
1066         }
1067
1068         /* Map trailing leftover */
1069         if (start < end) {
1070                 int tmp;
1071
1072                 pud = pud_offset(pgd, start);
1073                 if (pud_none(*pud))
1074                         if (alloc_pmd_page(pud))
1075                                 return -1;
1076
1077                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1078                                    pud, pgprot);
1079                 if (tmp < 0)
1080                         return cur_pages;
1081
1082                 cur_pages += tmp;
1083         }
1084         return cur_pages;
1085 }
1086
1087 /*
1088  * Restrictions for kernel page table do not necessarily apply when mapping in
1089  * an alternate PGD.
1090  */
1091 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1092 {
1093         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1094         pud_t *pud = NULL;      /* shut up gcc */
1095         pgd_t *pgd_entry;
1096         int ret;
1097
1098         pgd_entry = cpa->pgd + pgd_index(addr);
1099
1100         /*
1101          * Allocate a PUD page and hand it down for mapping.
1102          */
1103         if (pgd_none(*pgd_entry)) {
1104                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1105                 if (!pud)
1106                         return -1;
1107
1108                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1109         }
1110
1111         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1112         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1113
1114         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1115         if (ret < 0) {
1116                 unmap_pgd_range(cpa->pgd, addr,
1117                                 addr + (cpa->numpages << PAGE_SHIFT));
1118                 return ret;
1119         }
1120
1121         cpa->numpages = ret;
1122         return 0;
1123 }
1124
1125 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1126                                int primary)
1127 {
1128         if (cpa->pgd)
1129                 return populate_pgd(cpa, vaddr);
1130
1131         /*
1132          * Ignore all non primary paths.
1133          */
1134         if (!primary) {
1135                 cpa->numpages = 1;
1136                 return 0;
1137         }
1138
1139         /*
1140          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1141          * to have holes.
1142          * Also set numpages to '1' indicating that we processed cpa req for
1143          * one virtual address page and its pfn. TBD: numpages can be set based
1144          * on the initial value and the level returned by lookup_address().
1145          */
1146         if (within(vaddr, PAGE_OFFSET,
1147                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1148                 cpa->numpages = 1;
1149                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1150                 return 0;
1151         } else {
1152                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1153                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1154                         *cpa->vaddr);
1155
1156                 return -EFAULT;
1157         }
1158 }
1159
1160 static int __change_page_attr(struct cpa_data *cpa, int primary)
1161 {
1162         unsigned long address;
1163         int do_split, err;
1164         unsigned int level;
1165         pte_t *kpte, old_pte;
1166
1167         if (cpa->flags & CPA_PAGES_ARRAY) {
1168                 struct page *page = cpa->pages[cpa->curpage];
1169                 if (unlikely(PageHighMem(page)))
1170                         return 0;
1171                 address = (unsigned long)page_address(page);
1172         } else if (cpa->flags & CPA_ARRAY)
1173                 address = cpa->vaddr[cpa->curpage];
1174         else
1175                 address = *cpa->vaddr;
1176 repeat:
1177         kpte = _lookup_address_cpa(cpa, address, &level);
1178         if (!kpte)
1179                 return __cpa_process_fault(cpa, address, primary);
1180
1181         old_pte = *kpte;
1182         if (!pte_val(old_pte))
1183                 return __cpa_process_fault(cpa, address, primary);
1184
1185         if (level == PG_LEVEL_4K) {
1186                 pte_t new_pte;
1187                 pgprot_t new_prot = pte_pgprot(old_pte);
1188                 unsigned long pfn = pte_pfn(old_pte);
1189
1190                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1191                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1192
1193                 new_prot = static_protections(new_prot, address, pfn);
1194
1195                 /*
1196                  * Set the GLOBAL flags only if the PRESENT flag is
1197                  * set otherwise pte_present will return true even on
1198                  * a non present pte. The canon_pgprot will clear
1199                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1200                  * support it.
1201                  */
1202                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1203                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1204                 else
1205                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1206
1207                 /*
1208                  * We need to keep the pfn from the existing PTE,
1209                  * after all we're only going to change it's attributes
1210                  * not the memory it points to
1211                  */
1212                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1213                 cpa->pfn = pfn;
1214                 /*
1215                  * Do we really change anything ?
1216                  */
1217                 if (pte_val(old_pte) != pte_val(new_pte)) {
1218                         set_pte_atomic(kpte, new_pte);
1219                         cpa->flags |= CPA_FLUSHTLB;
1220                 }
1221                 cpa->numpages = 1;
1222                 return 0;
1223         }
1224
1225         /*
1226          * Check, whether we can keep the large page intact
1227          * and just change the pte:
1228          */
1229         do_split = try_preserve_large_page(kpte, address, cpa);
1230         /*
1231          * When the range fits into the existing large page,
1232          * return. cp->numpages and cpa->tlbflush have been updated in
1233          * try_large_page:
1234          */
1235         if (do_split <= 0)
1236                 return do_split;
1237
1238         /*
1239          * We have to split the large page:
1240          */
1241         err = split_large_page(cpa, kpte, address);
1242         if (!err) {
1243                 /*
1244                  * Do a global flush tlb after splitting the large page
1245                  * and before we do the actual change page attribute in the PTE.
1246                  *
1247                  * With out this, we violate the TLB application note, that says
1248                  * "The TLBs may contain both ordinary and large-page
1249                  *  translations for a 4-KByte range of linear addresses. This
1250                  *  may occur if software modifies the paging structures so that
1251                  *  the page size used for the address range changes. If the two
1252                  *  translations differ with respect to page frame or attributes
1253                  *  (e.g., permissions), processor behavior is undefined and may
1254                  *  be implementation-specific."
1255                  *
1256                  * We do this global tlb flush inside the cpa_lock, so that we
1257                  * don't allow any other cpu, with stale tlb entries change the
1258                  * page attribute in parallel, that also falls into the
1259                  * just split large page entry.
1260                  */
1261                 flush_tlb_all();
1262                 goto repeat;
1263         }
1264
1265         return err;
1266 }
1267
1268 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1269
1270 static int cpa_process_alias(struct cpa_data *cpa)
1271 {
1272         struct cpa_data alias_cpa;
1273         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1274         unsigned long vaddr;
1275         int ret;
1276
1277         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1278                 return 0;
1279
1280         /*
1281          * No need to redo, when the primary call touched the direct
1282          * mapping already:
1283          */
1284         if (cpa->flags & CPA_PAGES_ARRAY) {
1285                 struct page *page = cpa->pages[cpa->curpage];
1286                 if (unlikely(PageHighMem(page)))
1287                         return 0;
1288                 vaddr = (unsigned long)page_address(page);
1289         } else if (cpa->flags & CPA_ARRAY)
1290                 vaddr = cpa->vaddr[cpa->curpage];
1291         else
1292                 vaddr = *cpa->vaddr;
1293
1294         if (!(within(vaddr, PAGE_OFFSET,
1295                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1296
1297                 alias_cpa = *cpa;
1298                 alias_cpa.vaddr = &laddr;
1299                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1300
1301                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1302                 if (ret)
1303                         return ret;
1304         }
1305
1306 #ifdef CONFIG_X86_64
1307         /*
1308          * If the primary call didn't touch the high mapping already
1309          * and the physical address is inside the kernel map, we need
1310          * to touch the high mapped kernel as well:
1311          */
1312         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1313             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1314                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1315                                                __START_KERNEL_map - phys_base;
1316                 alias_cpa = *cpa;
1317                 alias_cpa.vaddr = &temp_cpa_vaddr;
1318                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1319
1320                 /*
1321                  * The high mapping range is imprecise, so ignore the
1322                  * return value.
1323                  */
1324                 __change_page_attr_set_clr(&alias_cpa, 0);
1325         }
1326 #endif
1327
1328         return 0;
1329 }
1330
1331 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1332 {
1333         int ret, numpages = cpa->numpages;
1334
1335         while (numpages) {
1336                 /*
1337                  * Store the remaining nr of pages for the large page
1338                  * preservation check.
1339                  */
1340                 cpa->numpages = numpages;
1341                 /* for array changes, we can't use large page */
1342                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1343                         cpa->numpages = 1;
1344
1345                 if (!debug_pagealloc_enabled())
1346                         spin_lock(&cpa_lock);
1347                 ret = __change_page_attr(cpa, checkalias);
1348                 if (!debug_pagealloc_enabled())
1349                         spin_unlock(&cpa_lock);
1350                 if (ret)
1351                         return ret;
1352
1353                 if (checkalias) {
1354                         ret = cpa_process_alias(cpa);
1355                         if (ret)
1356                                 return ret;
1357                 }
1358
1359                 /*
1360                  * Adjust the number of pages with the result of the
1361                  * CPA operation. Either a large page has been
1362                  * preserved or a single page update happened.
1363                  */
1364                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1365                 numpages -= cpa->numpages;
1366                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1367                         cpa->curpage++;
1368                 else
1369                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1370
1371         }
1372         return 0;
1373 }
1374
1375 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1376                                     pgprot_t mask_set, pgprot_t mask_clr,
1377                                     int force_split, int in_flag,
1378                                     struct page **pages)
1379 {
1380         struct cpa_data cpa;
1381         int ret, cache, checkalias;
1382         unsigned long baddr = 0;
1383
1384         memset(&cpa, 0, sizeof(cpa));
1385
1386         /*
1387          * Check, if we are requested to change a not supported
1388          * feature:
1389          */
1390         mask_set = canon_pgprot(mask_set);
1391         mask_clr = canon_pgprot(mask_clr);
1392         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1393                 return 0;
1394
1395         /* Ensure we are PAGE_SIZE aligned */
1396         if (in_flag & CPA_ARRAY) {
1397                 int i;
1398                 for (i = 0; i < numpages; i++) {
1399                         if (addr[i] & ~PAGE_MASK) {
1400                                 addr[i] &= PAGE_MASK;
1401                                 WARN_ON_ONCE(1);
1402                         }
1403                 }
1404         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1405                 /*
1406                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1407                  * No need to cehck in that case
1408                  */
1409                 if (*addr & ~PAGE_MASK) {
1410                         *addr &= PAGE_MASK;
1411                         /*
1412                          * People should not be passing in unaligned addresses:
1413                          */
1414                         WARN_ON_ONCE(1);
1415                 }
1416                 /*
1417                  * Save address for cache flush. *addr is modified in the call
1418                  * to __change_page_attr_set_clr() below.
1419                  */
1420                 baddr = *addr;
1421         }
1422
1423         /* Must avoid aliasing mappings in the highmem code */
1424         kmap_flush_unused();
1425
1426         vm_unmap_aliases();
1427
1428         cpa.vaddr = addr;
1429         cpa.pages = pages;
1430         cpa.numpages = numpages;
1431         cpa.mask_set = mask_set;
1432         cpa.mask_clr = mask_clr;
1433         cpa.flags = 0;
1434         cpa.curpage = 0;
1435         cpa.force_split = force_split;
1436
1437         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1438                 cpa.flags |= in_flag;
1439
1440         /* No alias checking for _NX bit modifications */
1441         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1442
1443         ret = __change_page_attr_set_clr(&cpa, checkalias);
1444
1445         /*
1446          * Check whether we really changed something:
1447          */
1448         if (!(cpa.flags & CPA_FLUSHTLB))
1449                 goto out;
1450
1451         /*
1452          * No need to flush, when we did not set any of the caching
1453          * attributes:
1454          */
1455         cache = !!pgprot2cachemode(mask_set);
1456
1457         /*
1458          * On success we use CLFLUSH, when the CPU supports it to
1459          * avoid the WBINVD. If the CPU does not support it and in the
1460          * error case we fall back to cpa_flush_all (which uses
1461          * WBINVD):
1462          */
1463         if (!ret && cpu_has_clflush) {
1464                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1465                         cpa_flush_array(addr, numpages, cache,
1466                                         cpa.flags, pages);
1467                 } else
1468                         cpa_flush_range(baddr, numpages, cache);
1469         } else
1470                 cpa_flush_all(cache);
1471
1472 out:
1473         return ret;
1474 }
1475
1476 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1477                                        pgprot_t mask, int array)
1478 {
1479         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1480                 (array ? CPA_ARRAY : 0), NULL);
1481 }
1482
1483 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1484                                          pgprot_t mask, int array)
1485 {
1486         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1487                 (array ? CPA_ARRAY : 0), NULL);
1488 }
1489
1490 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1491                                        pgprot_t mask)
1492 {
1493         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1494                 CPA_PAGES_ARRAY, pages);
1495 }
1496
1497 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1498                                          pgprot_t mask)
1499 {
1500         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1501                 CPA_PAGES_ARRAY, pages);
1502 }
1503
1504 int _set_memory_uc(unsigned long addr, int numpages)
1505 {
1506         /*
1507          * for now UC MINUS. see comments in ioremap_nocache()
1508          * If you really need strong UC use ioremap_uc(), but note
1509          * that you cannot override IO areas with set_memory_*() as
1510          * these helpers cannot work with IO memory.
1511          */
1512         return change_page_attr_set(&addr, numpages,
1513                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1514                                     0);
1515 }
1516
1517 int set_memory_uc(unsigned long addr, int numpages)
1518 {
1519         int ret;
1520
1521         /*
1522          * for now UC MINUS. see comments in ioremap_nocache()
1523          */
1524         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1525                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1526         if (ret)
1527                 goto out_err;
1528
1529         ret = _set_memory_uc(addr, numpages);
1530         if (ret)
1531                 goto out_free;
1532
1533         return 0;
1534
1535 out_free:
1536         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1537 out_err:
1538         return ret;
1539 }
1540 EXPORT_SYMBOL(set_memory_uc);
1541
1542 static int _set_memory_array(unsigned long *addr, int addrinarray,
1543                 enum page_cache_mode new_type)
1544 {
1545         enum page_cache_mode set_type;
1546         int i, j;
1547         int ret;
1548
1549         for (i = 0; i < addrinarray; i++) {
1550                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1551                                         new_type, NULL);
1552                 if (ret)
1553                         goto out_free;
1554         }
1555
1556         /* If WC, set to UC- first and then WC */
1557         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1558                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1559
1560         ret = change_page_attr_set(addr, addrinarray,
1561                                    cachemode2pgprot(set_type), 1);
1562
1563         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1564                 ret = change_page_attr_set_clr(addr, addrinarray,
1565                                                cachemode2pgprot(
1566                                                 _PAGE_CACHE_MODE_WC),
1567                                                __pgprot(_PAGE_CACHE_MASK),
1568                                                0, CPA_ARRAY, NULL);
1569         if (ret)
1570                 goto out_free;
1571
1572         return 0;
1573
1574 out_free:
1575         for (j = 0; j < i; j++)
1576                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1577
1578         return ret;
1579 }
1580
1581 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1582 {
1583         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1584 }
1585 EXPORT_SYMBOL(set_memory_array_uc);
1586
1587 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1588 {
1589         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1590 }
1591 EXPORT_SYMBOL(set_memory_array_wc);
1592
1593 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1594 {
1595         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1596 }
1597 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1598
1599 int _set_memory_wc(unsigned long addr, int numpages)
1600 {
1601         int ret;
1602         unsigned long addr_copy = addr;
1603
1604         ret = change_page_attr_set(&addr, numpages,
1605                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1606                                    0);
1607         if (!ret) {
1608                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1609                                                cachemode2pgprot(
1610                                                 _PAGE_CACHE_MODE_WC),
1611                                                __pgprot(_PAGE_CACHE_MASK),
1612                                                0, 0, NULL);
1613         }
1614         return ret;
1615 }
1616
1617 int set_memory_wc(unsigned long addr, int numpages)
1618 {
1619         int ret;
1620
1621         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1622                 _PAGE_CACHE_MODE_WC, NULL);
1623         if (ret)
1624                 return ret;
1625
1626         ret = _set_memory_wc(addr, numpages);
1627         if (ret)
1628                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1629
1630         return ret;
1631 }
1632 EXPORT_SYMBOL(set_memory_wc);
1633
1634 int _set_memory_wt(unsigned long addr, int numpages)
1635 {
1636         return change_page_attr_set(&addr, numpages,
1637                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1638 }
1639
1640 int set_memory_wt(unsigned long addr, int numpages)
1641 {
1642         int ret;
1643
1644         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1645                               _PAGE_CACHE_MODE_WT, NULL);
1646         if (ret)
1647                 return ret;
1648
1649         ret = _set_memory_wt(addr, numpages);
1650         if (ret)
1651                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(set_memory_wt);
1656
1657 int _set_memory_wb(unsigned long addr, int numpages)
1658 {
1659         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1660         return change_page_attr_clear(&addr, numpages,
1661                                       __pgprot(_PAGE_CACHE_MASK), 0);
1662 }
1663
1664 int set_memory_wb(unsigned long addr, int numpages)
1665 {
1666         int ret;
1667
1668         ret = _set_memory_wb(addr, numpages);
1669         if (ret)
1670                 return ret;
1671
1672         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1673         return 0;
1674 }
1675 EXPORT_SYMBOL(set_memory_wb);
1676
1677 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1678 {
1679         int i;
1680         int ret;
1681
1682         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1683         ret = change_page_attr_clear(addr, addrinarray,
1684                                       __pgprot(_PAGE_CACHE_MASK), 1);
1685         if (ret)
1686                 return ret;
1687
1688         for (i = 0; i < addrinarray; i++)
1689                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1690
1691         return 0;
1692 }
1693 EXPORT_SYMBOL(set_memory_array_wb);
1694
1695 int set_memory_x(unsigned long addr, int numpages)
1696 {
1697         if (!(__supported_pte_mask & _PAGE_NX))
1698                 return 0;
1699
1700         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1701 }
1702 EXPORT_SYMBOL(set_memory_x);
1703
1704 int set_memory_nx(unsigned long addr, int numpages)
1705 {
1706         if (!(__supported_pte_mask & _PAGE_NX))
1707                 return 0;
1708
1709         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1710 }
1711 EXPORT_SYMBOL(set_memory_nx);
1712
1713 int set_memory_ro(unsigned long addr, int numpages)
1714 {
1715         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1716 }
1717
1718 int set_memory_rw(unsigned long addr, int numpages)
1719 {
1720         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1721 }
1722
1723 int set_memory_np(unsigned long addr, int numpages)
1724 {
1725         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1726 }
1727
1728 int set_memory_4k(unsigned long addr, int numpages)
1729 {
1730         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1731                                         __pgprot(0), 1, 0, NULL);
1732 }
1733
1734 int set_pages_uc(struct page *page, int numpages)
1735 {
1736         unsigned long addr = (unsigned long)page_address(page);
1737
1738         return set_memory_uc(addr, numpages);
1739 }
1740 EXPORT_SYMBOL(set_pages_uc);
1741
1742 static int _set_pages_array(struct page **pages, int addrinarray,
1743                 enum page_cache_mode new_type)
1744 {
1745         unsigned long start;
1746         unsigned long end;
1747         enum page_cache_mode set_type;
1748         int i;
1749         int free_idx;
1750         int ret;
1751
1752         for (i = 0; i < addrinarray; i++) {
1753                 if (PageHighMem(pages[i]))
1754                         continue;
1755                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1756                 end = start + PAGE_SIZE;
1757                 if (reserve_memtype(start, end, new_type, NULL))
1758                         goto err_out;
1759         }
1760
1761         /* If WC, set to UC- first and then WC */
1762         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1763                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1764
1765         ret = cpa_set_pages_array(pages, addrinarray,
1766                                   cachemode2pgprot(set_type));
1767         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1768                 ret = change_page_attr_set_clr(NULL, addrinarray,
1769                                                cachemode2pgprot(
1770                                                 _PAGE_CACHE_MODE_WC),
1771                                                __pgprot(_PAGE_CACHE_MASK),
1772                                                0, CPA_PAGES_ARRAY, pages);
1773         if (ret)
1774                 goto err_out;
1775         return 0; /* Success */
1776 err_out:
1777         free_idx = i;
1778         for (i = 0; i < free_idx; i++) {
1779                 if (PageHighMem(pages[i]))
1780                         continue;
1781                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1782                 end = start + PAGE_SIZE;
1783                 free_memtype(start, end);
1784         }
1785         return -EINVAL;
1786 }
1787
1788 int set_pages_array_uc(struct page **pages, int addrinarray)
1789 {
1790         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1791 }
1792 EXPORT_SYMBOL(set_pages_array_uc);
1793
1794 int set_pages_array_wc(struct page **pages, int addrinarray)
1795 {
1796         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1797 }
1798 EXPORT_SYMBOL(set_pages_array_wc);
1799
1800 int set_pages_array_wt(struct page **pages, int addrinarray)
1801 {
1802         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1803 }
1804 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1805
1806 int set_pages_wb(struct page *page, int numpages)
1807 {
1808         unsigned long addr = (unsigned long)page_address(page);
1809
1810         return set_memory_wb(addr, numpages);
1811 }
1812 EXPORT_SYMBOL(set_pages_wb);
1813
1814 int set_pages_array_wb(struct page **pages, int addrinarray)
1815 {
1816         int retval;
1817         unsigned long start;
1818         unsigned long end;
1819         int i;
1820
1821         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1822         retval = cpa_clear_pages_array(pages, addrinarray,
1823                         __pgprot(_PAGE_CACHE_MASK));
1824         if (retval)
1825                 return retval;
1826
1827         for (i = 0; i < addrinarray; i++) {
1828                 if (PageHighMem(pages[i]))
1829                         continue;
1830                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1831                 end = start + PAGE_SIZE;
1832                 free_memtype(start, end);
1833         }
1834
1835         return 0;
1836 }
1837 EXPORT_SYMBOL(set_pages_array_wb);
1838
1839 int set_pages_x(struct page *page, int numpages)
1840 {
1841         unsigned long addr = (unsigned long)page_address(page);
1842
1843         return set_memory_x(addr, numpages);
1844 }
1845 EXPORT_SYMBOL(set_pages_x);
1846
1847 int set_pages_nx(struct page *page, int numpages)
1848 {
1849         unsigned long addr = (unsigned long)page_address(page);
1850
1851         return set_memory_nx(addr, numpages);
1852 }
1853 EXPORT_SYMBOL(set_pages_nx);
1854
1855 int set_pages_ro(struct page *page, int numpages)
1856 {
1857         unsigned long addr = (unsigned long)page_address(page);
1858
1859         return set_memory_ro(addr, numpages);
1860 }
1861
1862 int set_pages_rw(struct page *page, int numpages)
1863 {
1864         unsigned long addr = (unsigned long)page_address(page);
1865
1866         return set_memory_rw(addr, numpages);
1867 }
1868
1869 #ifdef CONFIG_DEBUG_PAGEALLOC
1870
1871 static int __set_pages_p(struct page *page, int numpages)
1872 {
1873         unsigned long tempaddr = (unsigned long) page_address(page);
1874         struct cpa_data cpa = { .vaddr = &tempaddr,
1875                                 .pgd = NULL,
1876                                 .numpages = numpages,
1877                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1878                                 .mask_clr = __pgprot(0),
1879                                 .flags = 0};
1880
1881         /*
1882          * No alias checking needed for setting present flag. otherwise,
1883          * we may need to break large pages for 64-bit kernel text
1884          * mappings (this adds to complexity if we want to do this from
1885          * atomic context especially). Let's keep it simple!
1886          */
1887         return __change_page_attr_set_clr(&cpa, 0);
1888 }
1889
1890 static int __set_pages_np(struct page *page, int numpages)
1891 {
1892         unsigned long tempaddr = (unsigned long) page_address(page);
1893         struct cpa_data cpa = { .vaddr = &tempaddr,
1894                                 .pgd = NULL,
1895                                 .numpages = numpages,
1896                                 .mask_set = __pgprot(0),
1897                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1898                                 .flags = 0};
1899
1900         /*
1901          * No alias checking needed for setting not present flag. otherwise,
1902          * we may need to break large pages for 64-bit kernel text
1903          * mappings (this adds to complexity if we want to do this from
1904          * atomic context especially). Let's keep it simple!
1905          */
1906         return __change_page_attr_set_clr(&cpa, 0);
1907 }
1908
1909 void __kernel_map_pages(struct page *page, int numpages, int enable)
1910 {
1911         if (PageHighMem(page))
1912                 return;
1913         if (!enable) {
1914                 debug_check_no_locks_freed(page_address(page),
1915                                            numpages * PAGE_SIZE);
1916         }
1917
1918         /*
1919          * The return value is ignored as the calls cannot fail.
1920          * Large pages for identity mappings are not used at boot time
1921          * and hence no memory allocations during large page split.
1922          */
1923         if (enable)
1924                 __set_pages_p(page, numpages);
1925         else
1926                 __set_pages_np(page, numpages);
1927
1928         /*
1929          * We should perform an IPI and flush all tlbs,
1930          * but that can deadlock->flush only current cpu:
1931          */
1932         __flush_tlb_all();
1933
1934         arch_flush_lazy_mmu_mode();
1935 }
1936
1937 #ifdef CONFIG_HIBERNATION
1938
1939 bool kernel_page_present(struct page *page)
1940 {
1941         unsigned int level;
1942         pte_t *pte;
1943
1944         if (PageHighMem(page))
1945                 return false;
1946
1947         pte = lookup_address((unsigned long)page_address(page), &level);
1948         return (pte_val(*pte) & _PAGE_PRESENT);
1949 }
1950
1951 #endif /* CONFIG_HIBERNATION */
1952
1953 #endif /* CONFIG_DEBUG_PAGEALLOC */
1954
1955 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1956                             unsigned numpages, unsigned long page_flags)
1957 {
1958         int retval = -EINVAL;
1959
1960         struct cpa_data cpa = {
1961                 .vaddr = &address,
1962                 .pfn = pfn,
1963                 .pgd = pgd,
1964                 .numpages = numpages,
1965                 .mask_set = __pgprot(0),
1966                 .mask_clr = __pgprot(0),
1967                 .flags = 0,
1968         };
1969
1970         if (!(__supported_pte_mask & _PAGE_NX))
1971                 goto out;
1972
1973         if (!(page_flags & _PAGE_NX))
1974                 cpa.mask_clr = __pgprot(_PAGE_NX);
1975
1976         if (!(page_flags & _PAGE_RW))
1977                 cpa.mask_clr = __pgprot(_PAGE_RW);
1978
1979         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1980
1981         retval = __change_page_attr_set_clr(&cpa, 0);
1982         __flush_tlb_all();
1983
1984 out:
1985         return retval;
1986 }
1987
1988 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1989                                unsigned numpages)
1990 {
1991         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1992 }
1993
1994 /*
1995  * The testcases use internal knowledge of the implementation that shouldn't
1996  * be exposed to the rest of the kernel. Include these directly here.
1997  */
1998 #ifdef CONFIG_CPA_DEBUG
1999 #include "pageattr-test.c"
2000 #endif