x86/PCI: VMD: Synchronize with RCU freeing MSI IRQ descs
[cascardo/linux.git] / arch / x86 / pci / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR      0
31 #define VMD_MEMBAR1     2
32 #define VMD_MEMBAR2     4
33
34 /*
35  * Lock for manipulating VMD IRQ lists.
36  */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41  * @node:       list item for parent traversal.
42  * @rcu:        RCU callback item for freeing.
43  * @irq:        back pointer to parent.
44  * @virq:       the virtual IRQ value provided to the requesting driver.
45  *
46  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
47  * a VMD IRQ using this structure.
48  */
49 struct vmd_irq {
50         struct list_head        node;
51         struct rcu_head         rcu;
52         struct vmd_irq_list     *irq;
53         unsigned int            virq;
54 };
55
56 /**
57  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
58  * @irq_list:   the list of irq's the VMD one demuxes to.
59  * @count:      number of child IRQs assigned to this vector; used to track
60  *              sharing.
61  */
62 struct vmd_irq_list {
63         struct list_head        irq_list;
64         unsigned int            count;
65 };
66
67 struct vmd_dev {
68         struct pci_dev          *dev;
69
70         spinlock_t              cfg_lock;
71         char __iomem            *cfgbar;
72
73         int msix_count;
74         struct vmd_irq_list     *irqs;
75
76         struct pci_sysdata      sysdata;
77         struct resource         resources[3];
78         struct irq_domain       *irq_domain;
79         struct pci_bus          *bus;
80
81 #ifdef CONFIG_X86_DEV_DMA_OPS
82         struct dma_map_ops      dma_ops;
83         struct dma_domain       dma_domain;
84 #endif
85 };
86
87 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
88 {
89         return container_of(bus->sysdata, struct vmd_dev, sysdata);
90 }
91
92 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
93                                            struct vmd_irq_list *irqs)
94 {
95         return irqs - vmd->irqs;
96 }
97
98 /*
99  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
100  * but the MSI entry for the hardware it's driving will be programmed with a
101  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
102  * domain into one of its own, and the VMD driver de-muxes these for the
103  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
104  * and irq_chip to set this up.
105  */
106 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
107 {
108         struct vmd_irq *vmdirq = data->chip_data;
109         struct vmd_irq_list *irq = vmdirq->irq;
110         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
111
112         msg->address_hi = MSI_ADDR_BASE_HI;
113         msg->address_lo = MSI_ADDR_BASE_LO |
114                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
115         msg->data = 0;
116 }
117
118 /*
119  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
120  */
121 static void vmd_irq_enable(struct irq_data *data)
122 {
123         struct vmd_irq *vmdirq = data->chip_data;
124         unsigned long flags;
125
126         raw_spin_lock_irqsave(&list_lock, flags);
127         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
128         raw_spin_unlock_irqrestore(&list_lock, flags);
129
130         data->chip->irq_unmask(data);
131 }
132
133 static void vmd_irq_disable(struct irq_data *data)
134 {
135         struct vmd_irq *vmdirq = data->chip_data;
136         unsigned long flags;
137
138         data->chip->irq_mask(data);
139
140         raw_spin_lock_irqsave(&list_lock, flags);
141         list_del_rcu(&vmdirq->node);
142         INIT_LIST_HEAD_RCU(&vmdirq->node);
143         raw_spin_unlock_irqrestore(&list_lock, flags);
144 }
145
146 /*
147  * XXX: Stubbed until we develop acceptable way to not create conflicts with
148  * other devices sharing the same vector.
149  */
150 static int vmd_irq_set_affinity(struct irq_data *data,
151                                 const struct cpumask *dest, bool force)
152 {
153         return -EINVAL;
154 }
155
156 static struct irq_chip vmd_msi_controller = {
157         .name                   = "VMD-MSI",
158         .irq_enable             = vmd_irq_enable,
159         .irq_disable            = vmd_irq_disable,
160         .irq_compose_msi_msg    = vmd_compose_msi_msg,
161         .irq_set_affinity       = vmd_irq_set_affinity,
162 };
163
164 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
165                                      msi_alloc_info_t *arg)
166 {
167         return 0;
168 }
169
170 /*
171  * XXX: We can be even smarter selecting the best IRQ once we solve the
172  * affinity problem.
173  */
174 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
175 {
176         int i, best = 1;
177         unsigned long flags;
178
179         if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
180                 return &vmd->irqs[0];
181
182         raw_spin_lock_irqsave(&list_lock, flags);
183         for (i = 1; i < vmd->msix_count; i++)
184                 if (vmd->irqs[i].count < vmd->irqs[best].count)
185                         best = i;
186         vmd->irqs[best].count++;
187         raw_spin_unlock_irqrestore(&list_lock, flags);
188
189         return &vmd->irqs[best];
190 }
191
192 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
193                         unsigned int virq, irq_hw_number_t hwirq,
194                         msi_alloc_info_t *arg)
195 {
196         struct msi_desc *desc = arg->desc;
197         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
198         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
199         unsigned int index, vector;
200
201         if (!vmdirq)
202                 return -ENOMEM;
203
204         INIT_LIST_HEAD(&vmdirq->node);
205         vmdirq->irq = vmd_next_irq(vmd, desc);
206         vmdirq->virq = virq;
207         index = index_from_irqs(vmd, vmdirq->irq);
208         vector = pci_irq_vector(vmd->dev, index);
209
210         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
211                             handle_untracked_irq, vmd, NULL);
212         return 0;
213 }
214
215 static void vmd_msi_free(struct irq_domain *domain,
216                         struct msi_domain_info *info, unsigned int virq)
217 {
218         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
219         unsigned long flags;
220
221         synchronize_rcu();
222
223         /* XXX: Potential optimization to rebalance */
224         raw_spin_lock_irqsave(&list_lock, flags);
225         vmdirq->irq->count--;
226         raw_spin_unlock_irqrestore(&list_lock, flags);
227
228         kfree_rcu(vmdirq, rcu);
229 }
230
231 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
232                            int nvec, msi_alloc_info_t *arg)
233 {
234         struct pci_dev *pdev = to_pci_dev(dev);
235         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
236
237         if (nvec > vmd->msix_count)
238                 return vmd->msix_count;
239
240         memset(arg, 0, sizeof(*arg));
241         return 0;
242 }
243
244 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
245 {
246         arg->desc = desc;
247 }
248
249 static struct msi_domain_ops vmd_msi_domain_ops = {
250         .get_hwirq      = vmd_get_hwirq,
251         .msi_init       = vmd_msi_init,
252         .msi_free       = vmd_msi_free,
253         .msi_prepare    = vmd_msi_prepare,
254         .set_desc       = vmd_set_desc,
255 };
256
257 static struct msi_domain_info vmd_msi_domain_info = {
258         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
259                           MSI_FLAG_PCI_MSIX,
260         .ops            = &vmd_msi_domain_ops,
261         .chip           = &vmd_msi_controller,
262 };
263
264 #ifdef CONFIG_X86_DEV_DMA_OPS
265 /*
266  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
267  * VMD domain need to be mapped for the VMD, not the device requiring
268  * the mapping.
269  */
270 static struct device *to_vmd_dev(struct device *dev)
271 {
272         struct pci_dev *pdev = to_pci_dev(dev);
273         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
274
275         return &vmd->dev->dev;
276 }
277
278 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
279 {
280         return get_dma_ops(to_vmd_dev(dev));
281 }
282
283 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
284                        gfp_t flag, unsigned long attrs)
285 {
286         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
287                                        attrs);
288 }
289
290 static void vmd_free(struct device *dev, size_t size, void *vaddr,
291                      dma_addr_t addr, unsigned long attrs)
292 {
293         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
294                                       attrs);
295 }
296
297 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
298                     void *cpu_addr, dma_addr_t addr, size_t size,
299                     unsigned long attrs)
300 {
301         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
302                                       size, attrs);
303 }
304
305 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
306                            void *cpu_addr, dma_addr_t addr, size_t size,
307                            unsigned long attrs)
308 {
309         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
310                                              addr, size, attrs);
311 }
312
313 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
314                                unsigned long offset, size_t size,
315                                enum dma_data_direction dir,
316                                unsigned long attrs)
317 {
318         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
319                                           dir, attrs);
320 }
321
322 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
323                            enum dma_data_direction dir, unsigned long attrs)
324 {
325         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
326 }
327
328 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
329                       enum dma_data_direction dir, unsigned long attrs)
330 {
331         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
332 }
333
334 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
335                          enum dma_data_direction dir, unsigned long attrs)
336 {
337         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
338 }
339
340 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
341                                     size_t size, enum dma_data_direction dir)
342 {
343         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
344 }
345
346 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
347                                        size_t size, enum dma_data_direction dir)
348 {
349         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
350                                                  dir);
351 }
352
353 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
354                                 int nents, enum dma_data_direction dir)
355 {
356         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
357 }
358
359 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
360                                    int nents, enum dma_data_direction dir)
361 {
362         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
363 }
364
365 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
366 {
367         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
368 }
369
370 static int vmd_dma_supported(struct device *dev, u64 mask)
371 {
372         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
373 }
374
375 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
376 static u64 vmd_get_required_mask(struct device *dev)
377 {
378         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
379 }
380 #endif
381
382 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
383 {
384         struct dma_domain *domain = &vmd->dma_domain;
385
386         if (get_dma_ops(&vmd->dev->dev))
387                 del_dma_domain(domain);
388 }
389
390 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
391         do {                                    \
392                 if (source->fn)                 \
393                         dest->fn = vmd_##fn;    \
394         } while (0)
395
396 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
397 {
398         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
399         struct dma_map_ops *dest = &vmd->dma_ops;
400         struct dma_domain *domain = &vmd->dma_domain;
401
402         domain->domain_nr = vmd->sysdata.domain;
403         domain->dma_ops = dest;
404
405         if (!source)
406                 return;
407         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
408         ASSIGN_VMD_DMA_OPS(source, dest, free);
409         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
410         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
411         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
412         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
413         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
414         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
415         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
416         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
417         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
418         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
419         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
420         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
421 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
422         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
423 #endif
424         add_dma_domain(domain);
425 }
426 #undef ASSIGN_VMD_DMA_OPS
427 #else
428 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
429 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
430 #endif
431
432 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
433                                   unsigned int devfn, int reg, int len)
434 {
435         char __iomem *addr = vmd->cfgbar +
436                              (bus->number << 20) + (devfn << 12) + reg;
437
438         if ((addr - vmd->cfgbar) + len >=
439             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
440                 return NULL;
441
442         return addr;
443 }
444
445 /*
446  * CPU may deadlock if config space is not serialized on some versions of this
447  * hardware, so all config space access is done under a spinlock.
448  */
449 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
450                         int len, u32 *value)
451 {
452         struct vmd_dev *vmd = vmd_from_bus(bus);
453         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
454         unsigned long flags;
455         int ret = 0;
456
457         if (!addr)
458                 return -EFAULT;
459
460         spin_lock_irqsave(&vmd->cfg_lock, flags);
461         switch (len) {
462         case 1:
463                 *value = readb(addr);
464                 break;
465         case 2:
466                 *value = readw(addr);
467                 break;
468         case 4:
469                 *value = readl(addr);
470                 break;
471         default:
472                 ret = -EINVAL;
473                 break;
474         }
475         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
476         return ret;
477 }
478
479 /*
480  * VMD h/w converts non-posted config writes to posted memory writes. The
481  * read-back in this function forces the completion so it returns only after
482  * the config space was written, as expected.
483  */
484 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
485                          int len, u32 value)
486 {
487         struct vmd_dev *vmd = vmd_from_bus(bus);
488         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
489         unsigned long flags;
490         int ret = 0;
491
492         if (!addr)
493                 return -EFAULT;
494
495         spin_lock_irqsave(&vmd->cfg_lock, flags);
496         switch (len) {
497         case 1:
498                 writeb(value, addr);
499                 readb(addr);
500                 break;
501         case 2:
502                 writew(value, addr);
503                 readw(addr);
504                 break;
505         case 4:
506                 writel(value, addr);
507                 readl(addr);
508                 break;
509         default:
510                 ret = -EINVAL;
511                 break;
512         }
513         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
514         return ret;
515 }
516
517 static struct pci_ops vmd_ops = {
518         .read           = vmd_pci_read,
519         .write          = vmd_pci_write,
520 };
521
522 static void vmd_attach_resources(struct vmd_dev *vmd)
523 {
524         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
525         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
526 }
527
528 static void vmd_detach_resources(struct vmd_dev *vmd)
529 {
530         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
531         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
532 }
533
534 /*
535  * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
536  */
537 static int vmd_find_free_domain(void)
538 {
539         int domain = 0xffff;
540         struct pci_bus *bus = NULL;
541
542         while ((bus = pci_find_next_bus(bus)) != NULL)
543                 domain = max_t(int, domain, pci_domain_nr(bus));
544         return domain + 1;
545 }
546
547 static int vmd_enable_domain(struct vmd_dev *vmd)
548 {
549         struct pci_sysdata *sd = &vmd->sysdata;
550         struct resource *res;
551         u32 upper_bits;
552         unsigned long flags;
553         LIST_HEAD(resources);
554
555         res = &vmd->dev->resource[VMD_CFGBAR];
556         vmd->resources[0] = (struct resource) {
557                 .name  = "VMD CFGBAR",
558                 .start = 0,
559                 .end   = (resource_size(res) >> 20) - 1,
560                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
561         };
562
563         /*
564          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
565          * put 32-bit resources in the window.
566          *
567          * There's no hardware reason why a 64-bit window *couldn't*
568          * contain a 32-bit resource, but pbus_size_mem() computes the
569          * bridge window size assuming a 64-bit window will contain no
570          * 32-bit resources.  __pci_assign_resource() enforces that
571          * artificial restriction to make sure everything will fit.
572          *
573          * The only way we could use a 64-bit non-prefechable MEMBAR is
574          * if its address is <4GB so that we can convert it to a 32-bit
575          * resource.  To be visible to the host OS, all VMD endpoints must
576          * be initially configured by platform BIOS, which includes setting
577          * up these resources.  We can assume the device is configured
578          * according to the platform needs.
579          */
580         res = &vmd->dev->resource[VMD_MEMBAR1];
581         upper_bits = upper_32_bits(res->end);
582         flags = res->flags & ~IORESOURCE_SIZEALIGN;
583         if (!upper_bits)
584                 flags &= ~IORESOURCE_MEM_64;
585         vmd->resources[1] = (struct resource) {
586                 .name  = "VMD MEMBAR1",
587                 .start = res->start,
588                 .end   = res->end,
589                 .flags = flags,
590                 .parent = res,
591         };
592
593         res = &vmd->dev->resource[VMD_MEMBAR2];
594         upper_bits = upper_32_bits(res->end);
595         flags = res->flags & ~IORESOURCE_SIZEALIGN;
596         if (!upper_bits)
597                 flags &= ~IORESOURCE_MEM_64;
598         vmd->resources[2] = (struct resource) {
599                 .name  = "VMD MEMBAR2",
600                 .start = res->start + 0x2000,
601                 .end   = res->end,
602                 .flags = flags,
603                 .parent = res,
604         };
605
606         sd->domain = vmd_find_free_domain();
607         if (sd->domain < 0)
608                 return sd->domain;
609
610         sd->node = pcibus_to_node(vmd->dev->bus);
611
612         vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
613                                                     x86_vector_domain);
614         if (!vmd->irq_domain)
615                 return -ENODEV;
616
617         pci_add_resource(&resources, &vmd->resources[0]);
618         pci_add_resource(&resources, &vmd->resources[1]);
619         pci_add_resource(&resources, &vmd->resources[2]);
620         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
621                                        &resources);
622         if (!vmd->bus) {
623                 pci_free_resource_list(&resources);
624                 irq_domain_remove(vmd->irq_domain);
625                 return -ENODEV;
626         }
627
628         vmd_attach_resources(vmd);
629         vmd_setup_dma_ops(vmd);
630         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
631         pci_rescan_bus(vmd->bus);
632
633         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
634                                "domain"), "Can't create symlink to domain\n");
635         return 0;
636 }
637
638 static irqreturn_t vmd_irq(int irq, void *data)
639 {
640         struct vmd_irq_list *irqs = data;
641         struct vmd_irq *vmdirq;
642
643         rcu_read_lock();
644         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
645                 generic_handle_irq(vmdirq->virq);
646         rcu_read_unlock();
647
648         return IRQ_HANDLED;
649 }
650
651 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
652 {
653         struct vmd_dev *vmd;
654         int i, err;
655
656         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
657                 return -ENOMEM;
658
659         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
660         if (!vmd)
661                 return -ENOMEM;
662
663         vmd->dev = dev;
664         err = pcim_enable_device(dev);
665         if (err < 0)
666                 return err;
667
668         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
669         if (!vmd->cfgbar)
670                 return -ENOMEM;
671
672         pci_set_master(dev);
673         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
674             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
675                 return -ENODEV;
676
677         vmd->msix_count = pci_msix_vec_count(dev);
678         if (vmd->msix_count < 0)
679                 return -ENODEV;
680
681         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
682                                         PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
683         if (vmd->msix_count < 0)
684                 return vmd->msix_count;
685
686         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
687                                  GFP_KERNEL);
688         if (!vmd->irqs)
689                 return -ENOMEM;
690
691         for (i = 0; i < vmd->msix_count; i++) {
692                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
693                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
694                                        vmd_irq, 0, "vmd", &vmd->irqs[i]);
695                 if (err)
696                         return err;
697         }
698
699         spin_lock_init(&vmd->cfg_lock);
700         pci_set_drvdata(dev, vmd);
701         err = vmd_enable_domain(vmd);
702         if (err)
703                 return err;
704
705         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
706                  vmd->sysdata.domain);
707         return 0;
708 }
709
710 static void vmd_remove(struct pci_dev *dev)
711 {
712         struct vmd_dev *vmd = pci_get_drvdata(dev);
713
714         vmd_detach_resources(vmd);
715         pci_set_drvdata(dev, NULL);
716         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
717         pci_stop_root_bus(vmd->bus);
718         pci_remove_root_bus(vmd->bus);
719         vmd_teardown_dma_ops(vmd);
720         irq_domain_remove(vmd->irq_domain);
721 }
722
723 #ifdef CONFIG_PM
724 static int vmd_suspend(struct device *dev)
725 {
726         struct pci_dev *pdev = to_pci_dev(dev);
727
728         pci_save_state(pdev);
729         return 0;
730 }
731
732 static int vmd_resume(struct device *dev)
733 {
734         struct pci_dev *pdev = to_pci_dev(dev);
735
736         pci_restore_state(pdev);
737         return 0;
738 }
739 #endif
740 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
741
742 static const struct pci_device_id vmd_ids[] = {
743         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
744         {0,}
745 };
746 MODULE_DEVICE_TABLE(pci, vmd_ids);
747
748 static struct pci_driver vmd_drv = {
749         .name           = "vmd",
750         .id_table       = vmd_ids,
751         .probe          = vmd_probe,
752         .remove         = vmd_remove,
753         .driver         = {
754                 .pm     = &vmd_dev_pm_ops,
755         },
756 };
757 module_pci_driver(vmd_drv);
758
759 MODULE_AUTHOR("Intel Corporation");
760 MODULE_LICENSE("GPL v2");
761 MODULE_VERSION("0.6");