Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[cascardo/linux.git] / arch / x86 / pci / vmd.c
1 /*
2  * Volume Management Device driver
3  * Copyright (c) 2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/msi.h>
21 #include <linux/pci.h>
22 #include <linux/rculist.h>
23 #include <linux/rcupdate.h>
24
25 #include <asm/irqdomain.h>
26 #include <asm/device.h>
27 #include <asm/msi.h>
28 #include <asm/msidef.h>
29
30 #define VMD_CFGBAR      0
31 #define VMD_MEMBAR1     2
32 #define VMD_MEMBAR2     4
33
34 /*
35  * Lock for manipulating VMD IRQ lists.
36  */
37 static DEFINE_RAW_SPINLOCK(list_lock);
38
39 /**
40  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
41  * @node:       list item for parent traversal.
42  * @rcu:        RCU callback item for freeing.
43  * @irq:        back pointer to parent.
44  * @virq:       the virtual IRQ value provided to the requesting driver.
45  *
46  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
47  * a VMD IRQ using this structure.
48  */
49 struct vmd_irq {
50         struct list_head        node;
51         struct rcu_head         rcu;
52         struct vmd_irq_list     *irq;
53         unsigned int            virq;
54 };
55
56 /**
57  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
58  * @irq_list:   the list of irq's the VMD one demuxes to.
59  * @vmd_vector: the h/w IRQ assigned to the VMD.
60  * @index:      index into the VMD MSI-X table; used for message routing.
61  * @count:      number of child IRQs assigned to this vector; used to track
62  *              sharing.
63  */
64 struct vmd_irq_list {
65         struct list_head        irq_list;
66         struct vmd_dev          *vmd;
67         unsigned int            vmd_vector;
68         unsigned int            index;
69         unsigned int            count;
70 };
71
72 struct vmd_dev {
73         struct pci_dev          *dev;
74
75         spinlock_t              cfg_lock;
76         char __iomem            *cfgbar;
77
78         int msix_count;
79         struct msix_entry       *msix_entries;
80         struct vmd_irq_list     *irqs;
81
82         struct pci_sysdata      sysdata;
83         struct resource         resources[3];
84         struct irq_domain       *irq_domain;
85         struct pci_bus          *bus;
86
87 #ifdef CONFIG_X86_DEV_DMA_OPS
88         struct dma_map_ops      dma_ops;
89         struct dma_domain       dma_domain;
90 #endif
91 };
92
93 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
94 {
95         return container_of(bus->sysdata, struct vmd_dev, sysdata);
96 }
97
98 /*
99  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
100  * but the MSI entry for the hardware it's driving will be programmed with a
101  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
102  * domain into one of its own, and the VMD driver de-muxes these for the
103  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
104  * and irq_chip to set this up.
105  */
106 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
107 {
108         struct vmd_irq *vmdirq = data->chip_data;
109         struct vmd_irq_list *irq = vmdirq->irq;
110
111         msg->address_hi = MSI_ADDR_BASE_HI;
112         msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_DEST_ID(irq->index);
113         msg->data = 0;
114 }
115
116 /*
117  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
118  */
119 static void vmd_irq_enable(struct irq_data *data)
120 {
121         struct vmd_irq *vmdirq = data->chip_data;
122         unsigned long flags;
123
124         raw_spin_lock_irqsave(&list_lock, flags);
125         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
126         raw_spin_unlock_irqrestore(&list_lock, flags);
127
128         data->chip->irq_unmask(data);
129 }
130
131 static void vmd_irq_disable(struct irq_data *data)
132 {
133         struct vmd_irq *vmdirq = data->chip_data;
134         unsigned long flags;
135
136         data->chip->irq_mask(data);
137
138         raw_spin_lock_irqsave(&list_lock, flags);
139         list_del_rcu(&vmdirq->node);
140         INIT_LIST_HEAD_RCU(&vmdirq->node);
141         raw_spin_unlock_irqrestore(&list_lock, flags);
142 }
143
144 /*
145  * XXX: Stubbed until we develop acceptable way to not create conflicts with
146  * other devices sharing the same vector.
147  */
148 static int vmd_irq_set_affinity(struct irq_data *data,
149                                 const struct cpumask *dest, bool force)
150 {
151         return -EINVAL;
152 }
153
154 static struct irq_chip vmd_msi_controller = {
155         .name                   = "VMD-MSI",
156         .irq_enable             = vmd_irq_enable,
157         .irq_disable            = vmd_irq_disable,
158         .irq_compose_msi_msg    = vmd_compose_msi_msg,
159         .irq_set_affinity       = vmd_irq_set_affinity,
160 };
161
162 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
163                                      msi_alloc_info_t *arg)
164 {
165         return 0;
166 }
167
168 /*
169  * XXX: We can be even smarter selecting the best IRQ once we solve the
170  * affinity problem.
171  */
172 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
173 {
174         int i, best = 1;
175         unsigned long flags;
176
177         if (!desc->msi_attrib.is_msix || vmd->msix_count == 1)
178                 return &vmd->irqs[0];
179
180         raw_spin_lock_irqsave(&list_lock, flags);
181         for (i = 1; i < vmd->msix_count; i++)
182                 if (vmd->irqs[i].count < vmd->irqs[best].count)
183                         best = i;
184         vmd->irqs[best].count++;
185         raw_spin_unlock_irqrestore(&list_lock, flags);
186
187         return &vmd->irqs[best];
188 }
189
190 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
191                         unsigned int virq, irq_hw_number_t hwirq,
192                         msi_alloc_info_t *arg)
193 {
194         struct msi_desc *desc = arg->desc;
195         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
196         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
197
198         if (!vmdirq)
199                 return -ENOMEM;
200
201         INIT_LIST_HEAD(&vmdirq->node);
202         vmdirq->irq = vmd_next_irq(vmd, desc);
203         vmdirq->virq = virq;
204
205         irq_domain_set_info(domain, virq, vmdirq->irq->vmd_vector, info->chip,
206                             vmdirq, handle_untracked_irq, vmd, NULL);
207         return 0;
208 }
209
210 static void vmd_msi_free(struct irq_domain *domain,
211                         struct msi_domain_info *info, unsigned int virq)
212 {
213         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
214         unsigned long flags;
215
216         /* XXX: Potential optimization to rebalance */
217         raw_spin_lock_irqsave(&list_lock, flags);
218         vmdirq->irq->count--;
219         raw_spin_unlock_irqrestore(&list_lock, flags);
220
221         kfree_rcu(vmdirq, rcu);
222 }
223
224 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
225                            int nvec, msi_alloc_info_t *arg)
226 {
227         struct pci_dev *pdev = to_pci_dev(dev);
228         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
229
230         if (nvec > vmd->msix_count)
231                 return vmd->msix_count;
232
233         memset(arg, 0, sizeof(*arg));
234         return 0;
235 }
236
237 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
238 {
239         arg->desc = desc;
240 }
241
242 static struct msi_domain_ops vmd_msi_domain_ops = {
243         .get_hwirq      = vmd_get_hwirq,
244         .msi_init       = vmd_msi_init,
245         .msi_free       = vmd_msi_free,
246         .msi_prepare    = vmd_msi_prepare,
247         .set_desc       = vmd_set_desc,
248 };
249
250 static struct msi_domain_info vmd_msi_domain_info = {
251         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
252                           MSI_FLAG_PCI_MSIX,
253         .ops            = &vmd_msi_domain_ops,
254         .chip           = &vmd_msi_controller,
255 };
256
257 #ifdef CONFIG_X86_DEV_DMA_OPS
258 /*
259  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
260  * VMD domain need to be mapped for the VMD, not the device requiring
261  * the mapping.
262  */
263 static struct device *to_vmd_dev(struct device *dev)
264 {
265         struct pci_dev *pdev = to_pci_dev(dev);
266         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
267
268         return &vmd->dev->dev;
269 }
270
271 static struct dma_map_ops *vmd_dma_ops(struct device *dev)
272 {
273         return get_dma_ops(to_vmd_dev(dev));
274 }
275
276 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
277                        gfp_t flag, unsigned long attrs)
278 {
279         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
280                                        attrs);
281 }
282
283 static void vmd_free(struct device *dev, size_t size, void *vaddr,
284                      dma_addr_t addr, unsigned long attrs)
285 {
286         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
287                                       attrs);
288 }
289
290 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
291                     void *cpu_addr, dma_addr_t addr, size_t size,
292                     unsigned long attrs)
293 {
294         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
295                                       size, attrs);
296 }
297
298 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
299                            void *cpu_addr, dma_addr_t addr, size_t size,
300                            unsigned long attrs)
301 {
302         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
303                                              addr, size, attrs);
304 }
305
306 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
307                                unsigned long offset, size_t size,
308                                enum dma_data_direction dir,
309                                unsigned long attrs)
310 {
311         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
312                                           dir, attrs);
313 }
314
315 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
316                            enum dma_data_direction dir, unsigned long attrs)
317 {
318         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
319 }
320
321 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
322                       enum dma_data_direction dir, unsigned long attrs)
323 {
324         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
325 }
326
327 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
328                          enum dma_data_direction dir, unsigned long attrs)
329 {
330         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
331 }
332
333 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
334                                     size_t size, enum dma_data_direction dir)
335 {
336         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
337 }
338
339 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
340                                        size_t size, enum dma_data_direction dir)
341 {
342         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
343                                                  dir);
344 }
345
346 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
347                                 int nents, enum dma_data_direction dir)
348 {
349         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
350 }
351
352 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
353                                    int nents, enum dma_data_direction dir)
354 {
355         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
356 }
357
358 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
359 {
360         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
361 }
362
363 static int vmd_dma_supported(struct device *dev, u64 mask)
364 {
365         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
366 }
367
368 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
369 static u64 vmd_get_required_mask(struct device *dev)
370 {
371         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
372 }
373 #endif
374
375 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
376 {
377         struct dma_domain *domain = &vmd->dma_domain;
378
379         if (get_dma_ops(&vmd->dev->dev))
380                 del_dma_domain(domain);
381 }
382
383 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
384         do {                                    \
385                 if (source->fn)                 \
386                         dest->fn = vmd_##fn;    \
387         } while (0)
388
389 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
390 {
391         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
392         struct dma_map_ops *dest = &vmd->dma_ops;
393         struct dma_domain *domain = &vmd->dma_domain;
394
395         domain->domain_nr = vmd->sysdata.domain;
396         domain->dma_ops = dest;
397
398         if (!source)
399                 return;
400         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
401         ASSIGN_VMD_DMA_OPS(source, dest, free);
402         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
403         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
404         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
405         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
406         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
407         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
408         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
409         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
410         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
411         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
412         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
413         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
414 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
415         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
416 #endif
417         add_dma_domain(domain);
418 }
419 #undef ASSIGN_VMD_DMA_OPS
420 #else
421 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
422 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
423 #endif
424
425 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
426                                   unsigned int devfn, int reg, int len)
427 {
428         char __iomem *addr = vmd->cfgbar +
429                              (bus->number << 20) + (devfn << 12) + reg;
430
431         if ((addr - vmd->cfgbar) + len >=
432             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
433                 return NULL;
434
435         return addr;
436 }
437
438 /*
439  * CPU may deadlock if config space is not serialized on some versions of this
440  * hardware, so all config space access is done under a spinlock.
441  */
442 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
443                         int len, u32 *value)
444 {
445         struct vmd_dev *vmd = vmd_from_bus(bus);
446         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
447         unsigned long flags;
448         int ret = 0;
449
450         if (!addr)
451                 return -EFAULT;
452
453         spin_lock_irqsave(&vmd->cfg_lock, flags);
454         switch (len) {
455         case 1:
456                 *value = readb(addr);
457                 break;
458         case 2:
459                 *value = readw(addr);
460                 break;
461         case 4:
462                 *value = readl(addr);
463                 break;
464         default:
465                 ret = -EINVAL;
466                 break;
467         }
468         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
469         return ret;
470 }
471
472 /*
473  * VMD h/w converts non-posted config writes to posted memory writes. The
474  * read-back in this function forces the completion so it returns only after
475  * the config space was written, as expected.
476  */
477 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
478                          int len, u32 value)
479 {
480         struct vmd_dev *vmd = vmd_from_bus(bus);
481         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
482         unsigned long flags;
483         int ret = 0;
484
485         if (!addr)
486                 return -EFAULT;
487
488         spin_lock_irqsave(&vmd->cfg_lock, flags);
489         switch (len) {
490         case 1:
491                 writeb(value, addr);
492                 readb(addr);
493                 break;
494         case 2:
495                 writew(value, addr);
496                 readw(addr);
497                 break;
498         case 4:
499                 writel(value, addr);
500                 readl(addr);
501                 break;
502         default:
503                 ret = -EINVAL;
504                 break;
505         }
506         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
507         return ret;
508 }
509
510 static struct pci_ops vmd_ops = {
511         .read           = vmd_pci_read,
512         .write          = vmd_pci_write,
513 };
514
515 static void vmd_attach_resources(struct vmd_dev *vmd)
516 {
517         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
518         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
519 }
520
521 static void vmd_detach_resources(struct vmd_dev *vmd)
522 {
523         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
524         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
525 }
526
527 /*
528  * VMD domains start at 0x1000 to not clash with ACPI _SEG domains.
529  */
530 static int vmd_find_free_domain(void)
531 {
532         int domain = 0xffff;
533         struct pci_bus *bus = NULL;
534
535         while ((bus = pci_find_next_bus(bus)) != NULL)
536                 domain = max_t(int, domain, pci_domain_nr(bus));
537         return domain + 1;
538 }
539
540 static int vmd_enable_domain(struct vmd_dev *vmd)
541 {
542         struct pci_sysdata *sd = &vmd->sysdata;
543         struct resource *res;
544         u32 upper_bits;
545         unsigned long flags;
546         LIST_HEAD(resources);
547
548         res = &vmd->dev->resource[VMD_CFGBAR];
549         vmd->resources[0] = (struct resource) {
550                 .name  = "VMD CFGBAR",
551                 .start = 0,
552                 .end   = (resource_size(res) >> 20) - 1,
553                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
554         };
555
556         /*
557          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
558          * put 32-bit resources in the window.
559          *
560          * There's no hardware reason why a 64-bit window *couldn't*
561          * contain a 32-bit resource, but pbus_size_mem() computes the
562          * bridge window size assuming a 64-bit window will contain no
563          * 32-bit resources.  __pci_assign_resource() enforces that
564          * artificial restriction to make sure everything will fit.
565          *
566          * The only way we could use a 64-bit non-prefechable MEMBAR is
567          * if its address is <4GB so that we can convert it to a 32-bit
568          * resource.  To be visible to the host OS, all VMD endpoints must
569          * be initially configured by platform BIOS, which includes setting
570          * up these resources.  We can assume the device is configured
571          * according to the platform needs.
572          */
573         res = &vmd->dev->resource[VMD_MEMBAR1];
574         upper_bits = upper_32_bits(res->end);
575         flags = res->flags & ~IORESOURCE_SIZEALIGN;
576         if (!upper_bits)
577                 flags &= ~IORESOURCE_MEM_64;
578         vmd->resources[1] = (struct resource) {
579                 .name  = "VMD MEMBAR1",
580                 .start = res->start,
581                 .end   = res->end,
582                 .flags = flags,
583                 .parent = res,
584         };
585
586         res = &vmd->dev->resource[VMD_MEMBAR2];
587         upper_bits = upper_32_bits(res->end);
588         flags = res->flags & ~IORESOURCE_SIZEALIGN;
589         if (!upper_bits)
590                 flags &= ~IORESOURCE_MEM_64;
591         vmd->resources[2] = (struct resource) {
592                 .name  = "VMD MEMBAR2",
593                 .start = res->start + 0x2000,
594                 .end   = res->end,
595                 .flags = flags,
596                 .parent = res,
597         };
598
599         sd->domain = vmd_find_free_domain();
600         if (sd->domain < 0)
601                 return sd->domain;
602
603         sd->node = pcibus_to_node(vmd->dev->bus);
604
605         vmd->irq_domain = pci_msi_create_irq_domain(NULL, &vmd_msi_domain_info,
606                                                     x86_vector_domain);
607         if (!vmd->irq_domain)
608                 return -ENODEV;
609
610         pci_add_resource(&resources, &vmd->resources[0]);
611         pci_add_resource(&resources, &vmd->resources[1]);
612         pci_add_resource(&resources, &vmd->resources[2]);
613         vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
614                                        &resources);
615         if (!vmd->bus) {
616                 pci_free_resource_list(&resources);
617                 irq_domain_remove(vmd->irq_domain);
618                 return -ENODEV;
619         }
620
621         vmd_attach_resources(vmd);
622         vmd_setup_dma_ops(vmd);
623         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
624         pci_rescan_bus(vmd->bus);
625
626         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
627                                "domain"), "Can't create symlink to domain\n");
628         return 0;
629 }
630
631 static irqreturn_t vmd_irq(int irq, void *data)
632 {
633         struct vmd_irq_list *irqs = data;
634         struct vmd_irq *vmdirq;
635
636         rcu_read_lock();
637         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
638                 generic_handle_irq(vmdirq->virq);
639         rcu_read_unlock();
640
641         return IRQ_HANDLED;
642 }
643
644 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
645 {
646         struct vmd_dev *vmd;
647         int i, err;
648
649         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
650                 return -ENOMEM;
651
652         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
653         if (!vmd)
654                 return -ENOMEM;
655
656         vmd->dev = dev;
657         err = pcim_enable_device(dev);
658         if (err < 0)
659                 return err;
660
661         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
662         if (!vmd->cfgbar)
663                 return -ENOMEM;
664
665         pci_set_master(dev);
666         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
667             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
668                 return -ENODEV;
669
670         vmd->msix_count = pci_msix_vec_count(dev);
671         if (vmd->msix_count < 0)
672                 return -ENODEV;
673
674         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
675                                  GFP_KERNEL);
676         if (!vmd->irqs)
677                 return -ENOMEM;
678
679         vmd->msix_entries = devm_kcalloc(&dev->dev, vmd->msix_count,
680                                          sizeof(*vmd->msix_entries),
681                                          GFP_KERNEL);
682         if (!vmd->msix_entries)
683                 return -ENOMEM;
684         for (i = 0; i < vmd->msix_count; i++)
685                 vmd->msix_entries[i].entry = i;
686
687         vmd->msix_count = pci_enable_msix_range(vmd->dev, vmd->msix_entries, 1,
688                                                 vmd->msix_count);
689         if (vmd->msix_count < 0)
690                 return vmd->msix_count;
691
692         for (i = 0; i < vmd->msix_count; i++) {
693                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
694                 vmd->irqs[i].vmd_vector = vmd->msix_entries[i].vector;
695                 vmd->irqs[i].index = i;
696
697                 err = devm_request_irq(&dev->dev, vmd->irqs[i].vmd_vector,
698                                        vmd_irq, 0, "vmd", &vmd->irqs[i]);
699                 if (err)
700                         return err;
701         }
702
703         spin_lock_init(&vmd->cfg_lock);
704         pci_set_drvdata(dev, vmd);
705         err = vmd_enable_domain(vmd);
706         if (err)
707                 return err;
708
709         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
710                  vmd->sysdata.domain);
711         return 0;
712 }
713
714 static void vmd_remove(struct pci_dev *dev)
715 {
716         struct vmd_dev *vmd = pci_get_drvdata(dev);
717
718         vmd_detach_resources(vmd);
719         pci_set_drvdata(dev, NULL);
720         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
721         pci_stop_root_bus(vmd->bus);
722         pci_remove_root_bus(vmd->bus);
723         vmd_teardown_dma_ops(vmd);
724         irq_domain_remove(vmd->irq_domain);
725 }
726
727 #ifdef CONFIG_PM
728 static int vmd_suspend(struct device *dev)
729 {
730         struct pci_dev *pdev = to_pci_dev(dev);
731
732         pci_save_state(pdev);
733         return 0;
734 }
735
736 static int vmd_resume(struct device *dev)
737 {
738         struct pci_dev *pdev = to_pci_dev(dev);
739
740         pci_restore_state(pdev);
741         return 0;
742 }
743 #endif
744 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
745
746 static const struct pci_device_id vmd_ids[] = {
747         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
748         {0,}
749 };
750 MODULE_DEVICE_TABLE(pci, vmd_ids);
751
752 static struct pci_driver vmd_drv = {
753         .name           = "vmd",
754         .id_table       = vmd_ids,
755         .probe          = vmd_probe,
756         .remove         = vmd_remove,
757         .driver         = {
758                 .pm     = &vmd_dev_pm_ops,
759         },
760 };
761 module_pci_driver(vmd_drv);
762
763 MODULE_AUTHOR("Intel Corporation");
764 MODULE_LICENSE("GPL v2");
765 MODULE_VERSION("0.6");