rtc: ac100: Add clk output support
[cascardo/linux.git] / arch / x86 / platform / efi / quirks.c
1 #define pr_fmt(fmt) "efi: " fmt
2
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 #include <asm/efi.h>
15 #include <asm/uv/uv.h>
16
17 #define EFI_MIN_RESERVE 5120
18
19 #define EFI_DUMMY_GUID \
20         EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
21
22 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
23
24 static bool efi_no_storage_paranoia;
25
26 /*
27  * Some firmware implementations refuse to boot if there's insufficient
28  * space in the variable store. The implementation of garbage collection
29  * in some FW versions causes stale (deleted) variables to take up space
30  * longer than intended and space is only freed once the store becomes
31  * almost completely full.
32  *
33  * Enabling this option disables the space checks in
34  * efi_query_variable_store() and forces garbage collection.
35  *
36  * Only enable this option if deleting EFI variables does not free up
37  * space in your variable store, e.g. if despite deleting variables
38  * you're unable to create new ones.
39  */
40 static int __init setup_storage_paranoia(char *arg)
41 {
42         efi_no_storage_paranoia = true;
43         return 0;
44 }
45 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
46
47 /*
48  * Deleting the dummy variable which kicks off garbage collection
49 */
50 void efi_delete_dummy_variable(void)
51 {
52         efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
53                          EFI_VARIABLE_NON_VOLATILE |
54                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
55                          EFI_VARIABLE_RUNTIME_ACCESS,
56                          0, NULL);
57 }
58
59 /*
60  * In the nonblocking case we do not attempt to perform garbage
61  * collection if we do not have enough free space. Rather, we do the
62  * bare minimum check and give up immediately if the available space
63  * is below EFI_MIN_RESERVE.
64  *
65  * This function is intended to be small and simple because it is
66  * invoked from crash handler paths.
67  */
68 static efi_status_t
69 query_variable_store_nonblocking(u32 attributes, unsigned long size)
70 {
71         efi_status_t status;
72         u64 storage_size, remaining_size, max_size;
73
74         status = efi.query_variable_info_nonblocking(attributes, &storage_size,
75                                                      &remaining_size,
76                                                      &max_size);
77         if (status != EFI_SUCCESS)
78                 return status;
79
80         if (remaining_size - size < EFI_MIN_RESERVE)
81                 return EFI_OUT_OF_RESOURCES;
82
83         return EFI_SUCCESS;
84 }
85
86 /*
87  * Some firmware implementations refuse to boot if there's insufficient space
88  * in the variable store. Ensure that we never use more than a safe limit.
89  *
90  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
91  * store.
92  */
93 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
94                                       bool nonblocking)
95 {
96         efi_status_t status;
97         u64 storage_size, remaining_size, max_size;
98
99         if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
100                 return 0;
101
102         if (nonblocking)
103                 return query_variable_store_nonblocking(attributes, size);
104
105         status = efi.query_variable_info(attributes, &storage_size,
106                                          &remaining_size, &max_size);
107         if (status != EFI_SUCCESS)
108                 return status;
109
110         /*
111          * We account for that by refusing the write if permitting it would
112          * reduce the available space to under 5KB. This figure was provided by
113          * Samsung, so should be safe.
114          */
115         if ((remaining_size - size < EFI_MIN_RESERVE) &&
116                 !efi_no_storage_paranoia) {
117
118                 /*
119                  * Triggering garbage collection may require that the firmware
120                  * generate a real EFI_OUT_OF_RESOURCES error. We can force
121                  * that by attempting to use more space than is available.
122                  */
123                 unsigned long dummy_size = remaining_size + 1024;
124                 void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
125
126                 if (!dummy)
127                         return EFI_OUT_OF_RESOURCES;
128
129                 status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
130                                           EFI_VARIABLE_NON_VOLATILE |
131                                           EFI_VARIABLE_BOOTSERVICE_ACCESS |
132                                           EFI_VARIABLE_RUNTIME_ACCESS,
133                                           dummy_size, dummy);
134
135                 if (status == EFI_SUCCESS) {
136                         /*
137                          * This should have failed, so if it didn't make sure
138                          * that we delete it...
139                          */
140                         efi_delete_dummy_variable();
141                 }
142
143                 kfree(dummy);
144
145                 /*
146                  * The runtime code may now have triggered a garbage collection
147                  * run, so check the variable info again
148                  */
149                 status = efi.query_variable_info(attributes, &storage_size,
150                                                  &remaining_size, &max_size);
151
152                 if (status != EFI_SUCCESS)
153                         return status;
154
155                 /*
156                  * There still isn't enough room, so return an error
157                  */
158                 if (remaining_size - size < EFI_MIN_RESERVE)
159                         return EFI_OUT_OF_RESOURCES;
160         }
161
162         return EFI_SUCCESS;
163 }
164 EXPORT_SYMBOL_GPL(efi_query_variable_store);
165
166 /*
167  * Helper function for efi_reserve_boot_services() to figure out if we
168  * can free regions in efi_free_boot_services().
169  *
170  * Use this function to ensure we do not free regions owned by somebody
171  * else. We must only reserve (and then free) regions:
172  *
173  * - Not within any part of the kernel
174  * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
175  */
176 static bool can_free_region(u64 start, u64 size)
177 {
178         if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
179                 return false;
180
181         if (!e820_all_mapped(start, start+size, E820_RAM))
182                 return false;
183
184         return true;
185 }
186
187 /*
188  * The UEFI specification makes it clear that the operating system is free to do
189  * whatever it wants with boot services code after ExitBootServices() has been
190  * called. Ignoring this recommendation a significant bunch of EFI implementations 
191  * continue calling into boot services code (SetVirtualAddressMap). In order to 
192  * work around such buggy implementations we reserve boot services region during 
193  * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it
194 * is discarded.
195 */
196 void __init efi_reserve_boot_services(void)
197 {
198         efi_memory_desc_t *md;
199
200         for_each_efi_memory_desc(md) {
201                 u64 start = md->phys_addr;
202                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
203                 bool already_reserved;
204
205                 if (md->type != EFI_BOOT_SERVICES_CODE &&
206                     md->type != EFI_BOOT_SERVICES_DATA)
207                         continue;
208
209                 already_reserved = memblock_is_region_reserved(start, size);
210
211                 /*
212                  * Because the following memblock_reserve() is paired
213                  * with free_bootmem_late() for this region in
214                  * efi_free_boot_services(), we must be extremely
215                  * careful not to reserve, and subsequently free,
216                  * critical regions of memory (like the kernel image) or
217                  * those regions that somebody else has already
218                  * reserved.
219                  *
220                  * A good example of a critical region that must not be
221                  * freed is page zero (first 4Kb of memory), which may
222                  * contain boot services code/data but is marked
223                  * E820_RESERVED by trim_bios_range().
224                  */
225                 if (!already_reserved) {
226                         memblock_reserve(start, size);
227
228                         /*
229                          * If we are the first to reserve the region, no
230                          * one else cares about it. We own it and can
231                          * free it later.
232                          */
233                         if (can_free_region(start, size))
234                                 continue;
235                 }
236
237                 /*
238                  * We don't own the region. We must not free it.
239                  *
240                  * Setting this bit for a boot services region really
241                  * doesn't make sense as far as the firmware is
242                  * concerned, but it does provide us with a way to tag
243                  * those regions that must not be paired with
244                  * free_bootmem_late().
245                  */
246                 md->attribute |= EFI_MEMORY_RUNTIME;
247         }
248 }
249
250 void __init efi_free_boot_services(void)
251 {
252         efi_memory_desc_t *md;
253
254         for_each_efi_memory_desc(md) {
255                 unsigned long long start = md->phys_addr;
256                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
257
258                 if (md->type != EFI_BOOT_SERVICES_CODE &&
259                     md->type != EFI_BOOT_SERVICES_DATA)
260                         continue;
261
262                 /* Do not free, someone else owns it: */
263                 if (md->attribute & EFI_MEMORY_RUNTIME)
264                         continue;
265
266                 free_bootmem_late(start, size);
267         }
268
269         efi_unmap_memmap();
270 }
271
272 /*
273  * A number of config table entries get remapped to virtual addresses
274  * after entering EFI virtual mode. However, the kexec kernel requires
275  * their physical addresses therefore we pass them via setup_data and
276  * correct those entries to their respective physical addresses here.
277  *
278  * Currently only handles smbios which is necessary for some firmware
279  * implementation.
280  */
281 int __init efi_reuse_config(u64 tables, int nr_tables)
282 {
283         int i, sz, ret = 0;
284         void *p, *tablep;
285         struct efi_setup_data *data;
286
287         if (!efi_setup)
288                 return 0;
289
290         if (!efi_enabled(EFI_64BIT))
291                 return 0;
292
293         data = early_memremap(efi_setup, sizeof(*data));
294         if (!data) {
295                 ret = -ENOMEM;
296                 goto out;
297         }
298
299         if (!data->smbios)
300                 goto out_memremap;
301
302         sz = sizeof(efi_config_table_64_t);
303
304         p = tablep = early_memremap(tables, nr_tables * sz);
305         if (!p) {
306                 pr_err("Could not map Configuration table!\n");
307                 ret = -ENOMEM;
308                 goto out_memremap;
309         }
310
311         for (i = 0; i < efi.systab->nr_tables; i++) {
312                 efi_guid_t guid;
313
314                 guid = ((efi_config_table_64_t *)p)->guid;
315
316                 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
317                         ((efi_config_table_64_t *)p)->table = data->smbios;
318                 p += sz;
319         }
320         early_memunmap(tablep, nr_tables * sz);
321
322 out_memremap:
323         early_memunmap(data, sizeof(*data));
324 out:
325         return ret;
326 }
327
328 static const struct dmi_system_id sgi_uv1_dmi[] = {
329         { NULL, "SGI UV1",
330                 {       DMI_MATCH(DMI_PRODUCT_NAME,     "Stoutland Platform"),
331                         DMI_MATCH(DMI_PRODUCT_VERSION,  "1.0"),
332                         DMI_MATCH(DMI_BIOS_VENDOR,      "SGI.COM"),
333                 }
334         },
335         { } /* NULL entry stops DMI scanning */
336 };
337
338 void __init efi_apply_memmap_quirks(void)
339 {
340         /*
341          * Once setup is done earlier, unmap the EFI memory map on mismatched
342          * firmware/kernel architectures since there is no support for runtime
343          * services.
344          */
345         if (!efi_runtime_supported()) {
346                 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
347                 efi_unmap_memmap();
348         }
349
350         /* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
351         if (dmi_check_system(sgi_uv1_dmi))
352                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
353 }
354
355 /*
356  * For most modern platforms the preferred method of powering off is via
357  * ACPI. However, there are some that are known to require the use of
358  * EFI runtime services and for which ACPI does not work at all.
359  *
360  * Using EFI is a last resort, to be used only if no other option
361  * exists.
362  */
363 bool efi_reboot_required(void)
364 {
365         if (!acpi_gbl_reduced_hardware)
366                 return false;
367
368         efi_reboot_quirk_mode = EFI_RESET_WARM;
369         return true;
370 }
371
372 bool efi_poweroff_required(void)
373 {
374         return acpi_gbl_reduced_hardware || acpi_no_s5;
375 }