Merge branch 'linux-3.18' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[cascardo/linux.git] / block / bio.c
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>            /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS         4
40
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48         BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63         struct kmem_cache *slab;
64         unsigned int slab_ref;
65         unsigned int slab_size;
66         char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74         unsigned int sz = sizeof(struct bio) + extra_size;
75         struct kmem_cache *slab = NULL;
76         struct bio_slab *bslab, *new_bio_slabs;
77         unsigned int new_bio_slab_max;
78         unsigned int i, entry = -1;
79
80         mutex_lock(&bio_slab_lock);
81
82         i = 0;
83         while (i < bio_slab_nr) {
84                 bslab = &bio_slabs[i];
85
86                 if (!bslab->slab && entry == -1)
87                         entry = i;
88                 else if (bslab->slab_size == sz) {
89                         slab = bslab->slab;
90                         bslab->slab_ref++;
91                         break;
92                 }
93                 i++;
94         }
95
96         if (slab)
97                 goto out_unlock;
98
99         if (bio_slab_nr == bio_slab_max && entry == -1) {
100                 new_bio_slab_max = bio_slab_max << 1;
101                 new_bio_slabs = krealloc(bio_slabs,
102                                          new_bio_slab_max * sizeof(struct bio_slab),
103                                          GFP_KERNEL);
104                 if (!new_bio_slabs)
105                         goto out_unlock;
106                 bio_slab_max = new_bio_slab_max;
107                 bio_slabs = new_bio_slabs;
108         }
109         if (entry == -1)
110                 entry = bio_slab_nr++;
111
112         bslab = &bio_slabs[entry];
113
114         snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115         slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116                                  SLAB_HWCACHE_ALIGN, NULL);
117         if (!slab)
118                 goto out_unlock;
119
120         bslab->slab = slab;
121         bslab->slab_ref = 1;
122         bslab->slab_size = sz;
123 out_unlock:
124         mutex_unlock(&bio_slab_lock);
125         return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130         struct bio_slab *bslab = NULL;
131         unsigned int i;
132
133         mutex_lock(&bio_slab_lock);
134
135         for (i = 0; i < bio_slab_nr; i++) {
136                 if (bs->bio_slab == bio_slabs[i].slab) {
137                         bslab = &bio_slabs[i];
138                         break;
139                 }
140         }
141
142         if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143                 goto out;
144
145         WARN_ON(!bslab->slab_ref);
146
147         if (--bslab->slab_ref)
148                 goto out;
149
150         kmem_cache_destroy(bslab->slab);
151         bslab->slab = NULL;
152
153 out:
154         mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159         return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164         BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165
166         if (idx == BIOVEC_MAX_IDX)
167                 mempool_free(bv, pool);
168         else {
169                 struct biovec_slab *bvs = bvec_slabs + idx;
170
171                 kmem_cache_free(bvs->slab, bv);
172         }
173 }
174
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
176                            mempool_t *pool)
177 {
178         struct bio_vec *bvl;
179
180         /*
181          * see comment near bvec_array define!
182          */
183         switch (nr) {
184         case 1:
185                 *idx = 0;
186                 break;
187         case 2 ... 4:
188                 *idx = 1;
189                 break;
190         case 5 ... 16:
191                 *idx = 2;
192                 break;
193         case 17 ... 64:
194                 *idx = 3;
195                 break;
196         case 65 ... 128:
197                 *idx = 4;
198                 break;
199         case 129 ... BIO_MAX_PAGES:
200                 *idx = 5;
201                 break;
202         default:
203                 return NULL;
204         }
205
206         /*
207          * idx now points to the pool we want to allocate from. only the
208          * 1-vec entry pool is mempool backed.
209          */
210         if (*idx == BIOVEC_MAX_IDX) {
211 fallback:
212                 bvl = mempool_alloc(pool, gfp_mask);
213         } else {
214                 struct biovec_slab *bvs = bvec_slabs + *idx;
215                 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
216
217                 /*
218                  * Make this allocation restricted and don't dump info on
219                  * allocation failures, since we'll fallback to the mempool
220                  * in case of failure.
221                  */
222                 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
223
224                 /*
225                  * Try a slab allocation. If this fails and __GFP_WAIT
226                  * is set, retry with the 1-entry mempool
227                  */
228                 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229                 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230                         *idx = BIOVEC_MAX_IDX;
231                         goto fallback;
232                 }
233         }
234
235         return bvl;
236 }
237
238 static void __bio_free(struct bio *bio)
239 {
240         bio_disassociate_task(bio);
241
242         if (bio_integrity(bio))
243                 bio_integrity_free(bio);
244 }
245
246 static void bio_free(struct bio *bio)
247 {
248         struct bio_set *bs = bio->bi_pool;
249         void *p;
250
251         __bio_free(bio);
252
253         if (bs) {
254                 if (bio_flagged(bio, BIO_OWNS_VEC))
255                         bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
256
257                 /*
258                  * If we have front padding, adjust the bio pointer before freeing
259                  */
260                 p = bio;
261                 p -= bs->front_pad;
262
263                 mempool_free(p, bs->bio_pool);
264         } else {
265                 /* Bio was allocated by bio_kmalloc() */
266                 kfree(bio);
267         }
268 }
269
270 void bio_init(struct bio *bio)
271 {
272         memset(bio, 0, sizeof(*bio));
273         bio->bi_flags = 1 << BIO_UPTODATE;
274         atomic_set(&bio->bi_remaining, 1);
275         atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278
279 /**
280  * bio_reset - reinitialize a bio
281  * @bio:        bio to reset
282  *
283  * Description:
284  *   After calling bio_reset(), @bio will be in the same state as a freshly
285  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
286  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
287  *   comment in struct bio.
288  */
289 void bio_reset(struct bio *bio)
290 {
291         unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
293         __bio_free(bio);
294
295         memset(bio, 0, BIO_RESET_BYTES);
296         bio->bi_flags = flags|(1 << BIO_UPTODATE);
297         atomic_set(&bio->bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_chain_endio(struct bio *bio, int error)
302 {
303         bio_endio(bio->bi_private, error);
304         bio_put(bio);
305 }
306
307 /**
308  * bio_chain - chain bio completions
309  * @bio: the target bio
310  * @parent: the @bio's parent bio
311  *
312  * The caller won't have a bi_end_io called when @bio completes - instead,
313  * @parent's bi_end_io won't be called until both @parent and @bio have
314  * completed; the chained bio will also be freed when it completes.
315  *
316  * The caller must not set bi_private or bi_end_io in @bio.
317  */
318 void bio_chain(struct bio *bio, struct bio *parent)
319 {
320         BUG_ON(bio->bi_private || bio->bi_end_io);
321
322         bio->bi_private = parent;
323         bio->bi_end_io  = bio_chain_endio;
324         atomic_inc(&parent->bi_remaining);
325 }
326 EXPORT_SYMBOL(bio_chain);
327
328 static void bio_alloc_rescue(struct work_struct *work)
329 {
330         struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
331         struct bio *bio;
332
333         while (1) {
334                 spin_lock(&bs->rescue_lock);
335                 bio = bio_list_pop(&bs->rescue_list);
336                 spin_unlock(&bs->rescue_lock);
337
338                 if (!bio)
339                         break;
340
341                 generic_make_request(bio);
342         }
343 }
344
345 static void punt_bios_to_rescuer(struct bio_set *bs)
346 {
347         struct bio_list punt, nopunt;
348         struct bio *bio;
349
350         /*
351          * In order to guarantee forward progress we must punt only bios that
352          * were allocated from this bio_set; otherwise, if there was a bio on
353          * there for a stacking driver higher up in the stack, processing it
354          * could require allocating bios from this bio_set, and doing that from
355          * our own rescuer would be bad.
356          *
357          * Since bio lists are singly linked, pop them all instead of trying to
358          * remove from the middle of the list:
359          */
360
361         bio_list_init(&punt);
362         bio_list_init(&nopunt);
363
364         while ((bio = bio_list_pop(current->bio_list)))
365                 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
366
367         *current->bio_list = nopunt;
368
369         spin_lock(&bs->rescue_lock);
370         bio_list_merge(&bs->rescue_list, &punt);
371         spin_unlock(&bs->rescue_lock);
372
373         queue_work(bs->rescue_workqueue, &bs->rescue_work);
374 }
375
376 /**
377  * bio_alloc_bioset - allocate a bio for I/O
378  * @gfp_mask:   the GFP_ mask given to the slab allocator
379  * @nr_iovecs:  number of iovecs to pre-allocate
380  * @bs:         the bio_set to allocate from.
381  *
382  * Description:
383  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
384  *   backed by the @bs's mempool.
385  *
386  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
387  *   able to allocate a bio. This is due to the mempool guarantees. To make this
388  *   work, callers must never allocate more than 1 bio at a time from this pool.
389  *   Callers that need to allocate more than 1 bio must always submit the
390  *   previously allocated bio for IO before attempting to allocate a new one.
391  *   Failure to do so can cause deadlocks under memory pressure.
392  *
393  *   Note that when running under generic_make_request() (i.e. any block
394  *   driver), bios are not submitted until after you return - see the code in
395  *   generic_make_request() that converts recursion into iteration, to prevent
396  *   stack overflows.
397  *
398  *   This would normally mean allocating multiple bios under
399  *   generic_make_request() would be susceptible to deadlocks, but we have
400  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
401  *   thread.
402  *
403  *   However, we do not guarantee forward progress for allocations from other
404  *   mempools. Doing multiple allocations from the same mempool under
405  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
406  *   for per bio allocations.
407  *
408  *   RETURNS:
409  *   Pointer to new bio on success, NULL on failure.
410  */
411 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
412 {
413         gfp_t saved_gfp = gfp_mask;
414         unsigned front_pad;
415         unsigned inline_vecs;
416         unsigned long idx = BIO_POOL_NONE;
417         struct bio_vec *bvl = NULL;
418         struct bio *bio;
419         void *p;
420
421         if (!bs) {
422                 if (nr_iovecs > UIO_MAXIOV)
423                         return NULL;
424
425                 p = kmalloc(sizeof(struct bio) +
426                             nr_iovecs * sizeof(struct bio_vec),
427                             gfp_mask);
428                 front_pad = 0;
429                 inline_vecs = nr_iovecs;
430         } else {
431                 /* should not use nobvec bioset for nr_iovecs > 0 */
432                 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
433                         return NULL;
434                 /*
435                  * generic_make_request() converts recursion to iteration; this
436                  * means if we're running beneath it, any bios we allocate and
437                  * submit will not be submitted (and thus freed) until after we
438                  * return.
439                  *
440                  * This exposes us to a potential deadlock if we allocate
441                  * multiple bios from the same bio_set() while running
442                  * underneath generic_make_request(). If we were to allocate
443                  * multiple bios (say a stacking block driver that was splitting
444                  * bios), we would deadlock if we exhausted the mempool's
445                  * reserve.
446                  *
447                  * We solve this, and guarantee forward progress, with a rescuer
448                  * workqueue per bio_set. If we go to allocate and there are
449                  * bios on current->bio_list, we first try the allocation
450                  * without __GFP_WAIT; if that fails, we punt those bios we
451                  * would be blocking to the rescuer workqueue before we retry
452                  * with the original gfp_flags.
453                  */
454
455                 if (current->bio_list && !bio_list_empty(current->bio_list))
456                         gfp_mask &= ~__GFP_WAIT;
457
458                 p = mempool_alloc(bs->bio_pool, gfp_mask);
459                 if (!p && gfp_mask != saved_gfp) {
460                         punt_bios_to_rescuer(bs);
461                         gfp_mask = saved_gfp;
462                         p = mempool_alloc(bs->bio_pool, gfp_mask);
463                 }
464
465                 front_pad = bs->front_pad;
466                 inline_vecs = BIO_INLINE_VECS;
467         }
468
469         if (unlikely(!p))
470                 return NULL;
471
472         bio = p + front_pad;
473         bio_init(bio);
474
475         if (nr_iovecs > inline_vecs) {
476                 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
477                 if (!bvl && gfp_mask != saved_gfp) {
478                         punt_bios_to_rescuer(bs);
479                         gfp_mask = saved_gfp;
480                         bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
481                 }
482
483                 if (unlikely(!bvl))
484                         goto err_free;
485
486                 bio->bi_flags |= 1 << BIO_OWNS_VEC;
487         } else if (nr_iovecs) {
488                 bvl = bio->bi_inline_vecs;
489         }
490
491         bio->bi_pool = bs;
492         bio->bi_flags |= idx << BIO_POOL_OFFSET;
493         bio->bi_max_vecs = nr_iovecs;
494         bio->bi_io_vec = bvl;
495         return bio;
496
497 err_free:
498         mempool_free(p, bs->bio_pool);
499         return NULL;
500 }
501 EXPORT_SYMBOL(bio_alloc_bioset);
502
503 void zero_fill_bio(struct bio *bio)
504 {
505         unsigned long flags;
506         struct bio_vec bv;
507         struct bvec_iter iter;
508
509         bio_for_each_segment(bv, bio, iter) {
510                 char *data = bvec_kmap_irq(&bv, &flags);
511                 memset(data, 0, bv.bv_len);
512                 flush_dcache_page(bv.bv_page);
513                 bvec_kunmap_irq(data, &flags);
514         }
515 }
516 EXPORT_SYMBOL(zero_fill_bio);
517
518 /**
519  * bio_put - release a reference to a bio
520  * @bio:   bio to release reference to
521  *
522  * Description:
523  *   Put a reference to a &struct bio, either one you have gotten with
524  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
525  **/
526 void bio_put(struct bio *bio)
527 {
528         BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
529
530         /*
531          * last put frees it
532          */
533         if (atomic_dec_and_test(&bio->bi_cnt))
534                 bio_free(bio);
535 }
536 EXPORT_SYMBOL(bio_put);
537
538 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
539 {
540         if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
541                 blk_recount_segments(q, bio);
542
543         return bio->bi_phys_segments;
544 }
545 EXPORT_SYMBOL(bio_phys_segments);
546
547 /**
548  *      __bio_clone_fast - clone a bio that shares the original bio's biovec
549  *      @bio: destination bio
550  *      @bio_src: bio to clone
551  *
552  *      Clone a &bio. Caller will own the returned bio, but not
553  *      the actual data it points to. Reference count of returned
554  *      bio will be one.
555  *
556  *      Caller must ensure that @bio_src is not freed before @bio.
557  */
558 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
559 {
560         BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
561
562         /*
563          * most users will be overriding ->bi_bdev with a new target,
564          * so we don't set nor calculate new physical/hw segment counts here
565          */
566         bio->bi_bdev = bio_src->bi_bdev;
567         bio->bi_flags |= 1 << BIO_CLONED;
568         bio->bi_rw = bio_src->bi_rw;
569         bio->bi_iter = bio_src->bi_iter;
570         bio->bi_io_vec = bio_src->bi_io_vec;
571 }
572 EXPORT_SYMBOL(__bio_clone_fast);
573
574 /**
575  *      bio_clone_fast - clone a bio that shares the original bio's biovec
576  *      @bio: bio to clone
577  *      @gfp_mask: allocation priority
578  *      @bs: bio_set to allocate from
579  *
580  *      Like __bio_clone_fast, only also allocates the returned bio
581  */
582 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
583 {
584         struct bio *b;
585
586         b = bio_alloc_bioset(gfp_mask, 0, bs);
587         if (!b)
588                 return NULL;
589
590         __bio_clone_fast(b, bio);
591
592         if (bio_integrity(bio)) {
593                 int ret;
594
595                 ret = bio_integrity_clone(b, bio, gfp_mask);
596
597                 if (ret < 0) {
598                         bio_put(b);
599                         return NULL;
600                 }
601         }
602
603         return b;
604 }
605 EXPORT_SYMBOL(bio_clone_fast);
606
607 /**
608  *      bio_clone_bioset - clone a bio
609  *      @bio_src: bio to clone
610  *      @gfp_mask: allocation priority
611  *      @bs: bio_set to allocate from
612  *
613  *      Clone bio. Caller will own the returned bio, but not the actual data it
614  *      points to. Reference count of returned bio will be one.
615  */
616 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
617                              struct bio_set *bs)
618 {
619         struct bvec_iter iter;
620         struct bio_vec bv;
621         struct bio *bio;
622
623         /*
624          * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
625          * bio_src->bi_io_vec to bio->bi_io_vec.
626          *
627          * We can't do that anymore, because:
628          *
629          *  - The point of cloning the biovec is to produce a bio with a biovec
630          *    the caller can modify: bi_idx and bi_bvec_done should be 0.
631          *
632          *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
633          *    we tried to clone the whole thing bio_alloc_bioset() would fail.
634          *    But the clone should succeed as long as the number of biovecs we
635          *    actually need to allocate is fewer than BIO_MAX_PAGES.
636          *
637          *  - Lastly, bi_vcnt should not be looked at or relied upon by code
638          *    that does not own the bio - reason being drivers don't use it for
639          *    iterating over the biovec anymore, so expecting it to be kept up
640          *    to date (i.e. for clones that share the parent biovec) is just
641          *    asking for trouble and would force extra work on
642          *    __bio_clone_fast() anyways.
643          */
644
645         bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
646         if (!bio)
647                 return NULL;
648
649         bio->bi_bdev            = bio_src->bi_bdev;
650         bio->bi_rw              = bio_src->bi_rw;
651         bio->bi_iter.bi_sector  = bio_src->bi_iter.bi_sector;
652         bio->bi_iter.bi_size    = bio_src->bi_iter.bi_size;
653
654         if (bio->bi_rw & REQ_DISCARD)
655                 goto integrity_clone;
656
657         if (bio->bi_rw & REQ_WRITE_SAME) {
658                 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
659                 goto integrity_clone;
660         }
661
662         bio_for_each_segment(bv, bio_src, iter)
663                 bio->bi_io_vec[bio->bi_vcnt++] = bv;
664
665 integrity_clone:
666         if (bio_integrity(bio_src)) {
667                 int ret;
668
669                 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
670                 if (ret < 0) {
671                         bio_put(bio);
672                         return NULL;
673                 }
674         }
675
676         return bio;
677 }
678 EXPORT_SYMBOL(bio_clone_bioset);
679
680 /**
681  *      bio_get_nr_vecs         - return approx number of vecs
682  *      @bdev:  I/O target
683  *
684  *      Return the approximate number of pages we can send to this target.
685  *      There's no guarantee that you will be able to fit this number of pages
686  *      into a bio, it does not account for dynamic restrictions that vary
687  *      on offset.
688  */
689 int bio_get_nr_vecs(struct block_device *bdev)
690 {
691         struct request_queue *q = bdev_get_queue(bdev);
692         int nr_pages;
693
694         nr_pages = min_t(unsigned,
695                      queue_max_segments(q),
696                      queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
697
698         return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
699
700 }
701 EXPORT_SYMBOL(bio_get_nr_vecs);
702
703 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
704                           *page, unsigned int len, unsigned int offset,
705                           unsigned int max_sectors)
706 {
707         int retried_segments = 0;
708         struct bio_vec *bvec;
709
710         /*
711          * cloned bio must not modify vec list
712          */
713         if (unlikely(bio_flagged(bio, BIO_CLONED)))
714                 return 0;
715
716         if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
717                 return 0;
718
719         /*
720          * For filesystems with a blocksize smaller than the pagesize
721          * we will often be called with the same page as last time and
722          * a consecutive offset.  Optimize this special case.
723          */
724         if (bio->bi_vcnt > 0) {
725                 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
726
727                 if (page == prev->bv_page &&
728                     offset == prev->bv_offset + prev->bv_len) {
729                         unsigned int prev_bv_len = prev->bv_len;
730                         prev->bv_len += len;
731
732                         if (q->merge_bvec_fn) {
733                                 struct bvec_merge_data bvm = {
734                                         /* prev_bvec is already charged in
735                                            bi_size, discharge it in order to
736                                            simulate merging updated prev_bvec
737                                            as new bvec. */
738                                         .bi_bdev = bio->bi_bdev,
739                                         .bi_sector = bio->bi_iter.bi_sector,
740                                         .bi_size = bio->bi_iter.bi_size -
741                                                 prev_bv_len,
742                                         .bi_rw = bio->bi_rw,
743                                 };
744
745                                 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
746                                         prev->bv_len -= len;
747                                         return 0;
748                                 }
749                         }
750
751                         goto done;
752                 }
753
754                 /*
755                  * If the queue doesn't support SG gaps and adding this
756                  * offset would create a gap, disallow it.
757                  */
758                 if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
759                     bvec_gap_to_prev(prev, offset))
760                         return 0;
761         }
762
763         if (bio->bi_vcnt >= bio->bi_max_vecs)
764                 return 0;
765
766         /*
767          * we might lose a segment or two here, but rather that than
768          * make this too complex.
769          */
770
771         while (bio->bi_phys_segments >= queue_max_segments(q)) {
772
773                 if (retried_segments)
774                         return 0;
775
776                 retried_segments = 1;
777                 blk_recount_segments(q, bio);
778         }
779
780         /*
781          * setup the new entry, we might clear it again later if we
782          * cannot add the page
783          */
784         bvec = &bio->bi_io_vec[bio->bi_vcnt];
785         bvec->bv_page = page;
786         bvec->bv_len = len;
787         bvec->bv_offset = offset;
788
789         /*
790          * if queue has other restrictions (eg varying max sector size
791          * depending on offset), it can specify a merge_bvec_fn in the
792          * queue to get further control
793          */
794         if (q->merge_bvec_fn) {
795                 struct bvec_merge_data bvm = {
796                         .bi_bdev = bio->bi_bdev,
797                         .bi_sector = bio->bi_iter.bi_sector,
798                         .bi_size = bio->bi_iter.bi_size,
799                         .bi_rw = bio->bi_rw,
800                 };
801
802                 /*
803                  * merge_bvec_fn() returns number of bytes it can accept
804                  * at this offset
805                  */
806                 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
807                         bvec->bv_page = NULL;
808                         bvec->bv_len = 0;
809                         bvec->bv_offset = 0;
810                         return 0;
811                 }
812         }
813
814         /* If we may be able to merge these biovecs, force a recount */
815         if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
816                 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
817
818         bio->bi_vcnt++;
819         bio->bi_phys_segments++;
820  done:
821         bio->bi_iter.bi_size += len;
822         return len;
823 }
824
825 /**
826  *      bio_add_pc_page -       attempt to add page to bio
827  *      @q: the target queue
828  *      @bio: destination bio
829  *      @page: page to add
830  *      @len: vec entry length
831  *      @offset: vec entry offset
832  *
833  *      Attempt to add a page to the bio_vec maplist. This can fail for a
834  *      number of reasons, such as the bio being full or target block device
835  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
836  *      so it is always possible to add a single page to an empty bio.
837  *
838  *      This should only be used by REQ_PC bios.
839  */
840 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
841                     unsigned int len, unsigned int offset)
842 {
843         return __bio_add_page(q, bio, page, len, offset,
844                               queue_max_hw_sectors(q));
845 }
846 EXPORT_SYMBOL(bio_add_pc_page);
847
848 /**
849  *      bio_add_page    -       attempt to add page to bio
850  *      @bio: destination bio
851  *      @page: page to add
852  *      @len: vec entry length
853  *      @offset: vec entry offset
854  *
855  *      Attempt to add a page to the bio_vec maplist. This can fail for a
856  *      number of reasons, such as the bio being full or target block device
857  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
858  *      so it is always possible to add a single page to an empty bio.
859  */
860 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
861                  unsigned int offset)
862 {
863         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
864         unsigned int max_sectors;
865
866         max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
867         if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
868                 max_sectors = len >> 9;
869
870         return __bio_add_page(q, bio, page, len, offset, max_sectors);
871 }
872 EXPORT_SYMBOL(bio_add_page);
873
874 struct submit_bio_ret {
875         struct completion event;
876         int error;
877 };
878
879 static void submit_bio_wait_endio(struct bio *bio, int error)
880 {
881         struct submit_bio_ret *ret = bio->bi_private;
882
883         ret->error = error;
884         complete(&ret->event);
885 }
886
887 /**
888  * submit_bio_wait - submit a bio, and wait until it completes
889  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
890  * @bio: The &struct bio which describes the I/O
891  *
892  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
893  * bio_endio() on failure.
894  */
895 int submit_bio_wait(int rw, struct bio *bio)
896 {
897         struct submit_bio_ret ret;
898
899         rw |= REQ_SYNC;
900         init_completion(&ret.event);
901         bio->bi_private = &ret;
902         bio->bi_end_io = submit_bio_wait_endio;
903         submit_bio(rw, bio);
904         wait_for_completion(&ret.event);
905
906         return ret.error;
907 }
908 EXPORT_SYMBOL(submit_bio_wait);
909
910 /**
911  * bio_advance - increment/complete a bio by some number of bytes
912  * @bio:        bio to advance
913  * @bytes:      number of bytes to complete
914  *
915  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
916  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
917  * be updated on the last bvec as well.
918  *
919  * @bio will then represent the remaining, uncompleted portion of the io.
920  */
921 void bio_advance(struct bio *bio, unsigned bytes)
922 {
923         if (bio_integrity(bio))
924                 bio_integrity_advance(bio, bytes);
925
926         bio_advance_iter(bio, &bio->bi_iter, bytes);
927 }
928 EXPORT_SYMBOL(bio_advance);
929
930 /**
931  * bio_alloc_pages - allocates a single page for each bvec in a bio
932  * @bio: bio to allocate pages for
933  * @gfp_mask: flags for allocation
934  *
935  * Allocates pages up to @bio->bi_vcnt.
936  *
937  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
938  * freed.
939  */
940 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
941 {
942         int i;
943         struct bio_vec *bv;
944
945         bio_for_each_segment_all(bv, bio, i) {
946                 bv->bv_page = alloc_page(gfp_mask);
947                 if (!bv->bv_page) {
948                         while (--bv >= bio->bi_io_vec)
949                                 __free_page(bv->bv_page);
950                         return -ENOMEM;
951                 }
952         }
953
954         return 0;
955 }
956 EXPORT_SYMBOL(bio_alloc_pages);
957
958 /**
959  * bio_copy_data - copy contents of data buffers from one chain of bios to
960  * another
961  * @src: source bio list
962  * @dst: destination bio list
963  *
964  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
965  * @src and @dst as linked lists of bios.
966  *
967  * Stops when it reaches the end of either @src or @dst - that is, copies
968  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
969  */
970 void bio_copy_data(struct bio *dst, struct bio *src)
971 {
972         struct bvec_iter src_iter, dst_iter;
973         struct bio_vec src_bv, dst_bv;
974         void *src_p, *dst_p;
975         unsigned bytes;
976
977         src_iter = src->bi_iter;
978         dst_iter = dst->bi_iter;
979
980         while (1) {
981                 if (!src_iter.bi_size) {
982                         src = src->bi_next;
983                         if (!src)
984                                 break;
985
986                         src_iter = src->bi_iter;
987                 }
988
989                 if (!dst_iter.bi_size) {
990                         dst = dst->bi_next;
991                         if (!dst)
992                                 break;
993
994                         dst_iter = dst->bi_iter;
995                 }
996
997                 src_bv = bio_iter_iovec(src, src_iter);
998                 dst_bv = bio_iter_iovec(dst, dst_iter);
999
1000                 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1001
1002                 src_p = kmap_atomic(src_bv.bv_page);
1003                 dst_p = kmap_atomic(dst_bv.bv_page);
1004
1005                 memcpy(dst_p + dst_bv.bv_offset,
1006                        src_p + src_bv.bv_offset,
1007                        bytes);
1008
1009                 kunmap_atomic(dst_p);
1010                 kunmap_atomic(src_p);
1011
1012                 bio_advance_iter(src, &src_iter, bytes);
1013                 bio_advance_iter(dst, &dst_iter, bytes);
1014         }
1015 }
1016 EXPORT_SYMBOL(bio_copy_data);
1017
1018 struct bio_map_data {
1019         int nr_sgvecs;
1020         int is_our_pages;
1021         struct sg_iovec sgvecs[];
1022 };
1023
1024 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1025                              const struct sg_iovec *iov, int iov_count,
1026                              int is_our_pages)
1027 {
1028         memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1029         bmd->nr_sgvecs = iov_count;
1030         bmd->is_our_pages = is_our_pages;
1031         bio->bi_private = bmd;
1032 }
1033
1034 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1035                                                gfp_t gfp_mask)
1036 {
1037         if (iov_count > UIO_MAXIOV)
1038                 return NULL;
1039
1040         return kmalloc(sizeof(struct bio_map_data) +
1041                        sizeof(struct sg_iovec) * iov_count, gfp_mask);
1042 }
1043
1044 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1045                           int to_user, int from_user, int do_free_page)
1046 {
1047         int ret = 0, i;
1048         struct bio_vec *bvec;
1049         int iov_idx = 0;
1050         unsigned int iov_off = 0;
1051
1052         bio_for_each_segment_all(bvec, bio, i) {
1053                 char *bv_addr = page_address(bvec->bv_page);
1054                 unsigned int bv_len = bvec->bv_len;
1055
1056                 while (bv_len && iov_idx < iov_count) {
1057                         unsigned int bytes;
1058                         char __user *iov_addr;
1059
1060                         bytes = min_t(unsigned int,
1061                                       iov[iov_idx].iov_len - iov_off, bv_len);
1062                         iov_addr = iov[iov_idx].iov_base + iov_off;
1063
1064                         if (!ret) {
1065                                 if (to_user)
1066                                         ret = copy_to_user(iov_addr, bv_addr,
1067                                                            bytes);
1068
1069                                 if (from_user)
1070                                         ret = copy_from_user(bv_addr, iov_addr,
1071                                                              bytes);
1072
1073                                 if (ret)
1074                                         ret = -EFAULT;
1075                         }
1076
1077                         bv_len -= bytes;
1078                         bv_addr += bytes;
1079                         iov_addr += bytes;
1080                         iov_off += bytes;
1081
1082                         if (iov[iov_idx].iov_len == iov_off) {
1083                                 iov_idx++;
1084                                 iov_off = 0;
1085                         }
1086                 }
1087
1088                 if (do_free_page)
1089                         __free_page(bvec->bv_page);
1090         }
1091
1092         return ret;
1093 }
1094
1095 /**
1096  *      bio_uncopy_user -       finish previously mapped bio
1097  *      @bio: bio being terminated
1098  *
1099  *      Free pages allocated from bio_copy_user() and write back data
1100  *      to user space in case of a read.
1101  */
1102 int bio_uncopy_user(struct bio *bio)
1103 {
1104         struct bio_map_data *bmd = bio->bi_private;
1105         struct bio_vec *bvec;
1106         int ret = 0, i;
1107
1108         if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1109                 /*
1110                  * if we're in a workqueue, the request is orphaned, so
1111                  * don't copy into a random user address space, just free.
1112                  */
1113                 if (current->mm)
1114                         ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1115                                              bio_data_dir(bio) == READ,
1116                                              0, bmd->is_our_pages);
1117                 else if (bmd->is_our_pages)
1118                         bio_for_each_segment_all(bvec, bio, i)
1119                                 __free_page(bvec->bv_page);
1120         }
1121         kfree(bmd);
1122         bio_put(bio);
1123         return ret;
1124 }
1125 EXPORT_SYMBOL(bio_uncopy_user);
1126
1127 /**
1128  *      bio_copy_user_iov       -       copy user data to bio
1129  *      @q: destination block queue
1130  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
1131  *      @iov:   the iovec.
1132  *      @iov_count: number of elements in the iovec
1133  *      @write_to_vm: bool indicating writing to pages or not
1134  *      @gfp_mask: memory allocation flags
1135  *
1136  *      Prepares and returns a bio for indirect user io, bouncing data
1137  *      to/from kernel pages as necessary. Must be paired with
1138  *      call bio_uncopy_user() on io completion.
1139  */
1140 struct bio *bio_copy_user_iov(struct request_queue *q,
1141                               struct rq_map_data *map_data,
1142                               const struct sg_iovec *iov, int iov_count,
1143                               int write_to_vm, gfp_t gfp_mask)
1144 {
1145         struct bio_map_data *bmd;
1146         struct bio_vec *bvec;
1147         struct page *page;
1148         struct bio *bio;
1149         int i, ret;
1150         int nr_pages = 0;
1151         unsigned int len = 0;
1152         unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1153
1154         for (i = 0; i < iov_count; i++) {
1155                 unsigned long uaddr;
1156                 unsigned long end;
1157                 unsigned long start;
1158
1159                 uaddr = (unsigned long)iov[i].iov_base;
1160                 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1161                 start = uaddr >> PAGE_SHIFT;
1162
1163                 /*
1164                  * Overflow, abort
1165                  */
1166                 if (end < start)
1167                         return ERR_PTR(-EINVAL);
1168
1169                 nr_pages += end - start;
1170                 len += iov[i].iov_len;
1171         }
1172
1173         if (offset)
1174                 nr_pages++;
1175
1176         bmd = bio_alloc_map_data(iov_count, gfp_mask);
1177         if (!bmd)
1178                 return ERR_PTR(-ENOMEM);
1179
1180         ret = -ENOMEM;
1181         bio = bio_kmalloc(gfp_mask, nr_pages);
1182         if (!bio)
1183                 goto out_bmd;
1184
1185         if (!write_to_vm)
1186                 bio->bi_rw |= REQ_WRITE;
1187
1188         ret = 0;
1189
1190         if (map_data) {
1191                 nr_pages = 1 << map_data->page_order;
1192                 i = map_data->offset / PAGE_SIZE;
1193         }
1194         while (len) {
1195                 unsigned int bytes = PAGE_SIZE;
1196
1197                 bytes -= offset;
1198
1199                 if (bytes > len)
1200                         bytes = len;
1201
1202                 if (map_data) {
1203                         if (i == map_data->nr_entries * nr_pages) {
1204                                 ret = -ENOMEM;
1205                                 break;
1206                         }
1207
1208                         page = map_data->pages[i / nr_pages];
1209                         page += (i % nr_pages);
1210
1211                         i++;
1212                 } else {
1213                         page = alloc_page(q->bounce_gfp | gfp_mask);
1214                         if (!page) {
1215                                 ret = -ENOMEM;
1216                                 break;
1217                         }
1218                 }
1219
1220                 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1221                         break;
1222
1223                 len -= bytes;
1224                 offset = 0;
1225         }
1226
1227         if (ret)
1228                 goto cleanup;
1229
1230         /*
1231          * success
1232          */
1233         if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1234             (map_data && map_data->from_user)) {
1235                 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1236                 if (ret)
1237                         goto cleanup;
1238         }
1239
1240         bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1241         return bio;
1242 cleanup:
1243         if (!map_data)
1244                 bio_for_each_segment_all(bvec, bio, i)
1245                         __free_page(bvec->bv_page);
1246
1247         bio_put(bio);
1248 out_bmd:
1249         kfree(bmd);
1250         return ERR_PTR(ret);
1251 }
1252
1253 /**
1254  *      bio_copy_user   -       copy user data to bio
1255  *      @q: destination block queue
1256  *      @map_data: pointer to the rq_map_data holding pages (if necessary)
1257  *      @uaddr: start of user address
1258  *      @len: length in bytes
1259  *      @write_to_vm: bool indicating writing to pages or not
1260  *      @gfp_mask: memory allocation flags
1261  *
1262  *      Prepares and returns a bio for indirect user io, bouncing data
1263  *      to/from kernel pages as necessary. Must be paired with
1264  *      call bio_uncopy_user() on io completion.
1265  */
1266 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1267                           unsigned long uaddr, unsigned int len,
1268                           int write_to_vm, gfp_t gfp_mask)
1269 {
1270         struct sg_iovec iov;
1271
1272         iov.iov_base = (void __user *)uaddr;
1273         iov.iov_len = len;
1274
1275         return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1276 }
1277 EXPORT_SYMBOL(bio_copy_user);
1278
1279 static struct bio *__bio_map_user_iov(struct request_queue *q,
1280                                       struct block_device *bdev,
1281                                       const struct sg_iovec *iov, int iov_count,
1282                                       int write_to_vm, gfp_t gfp_mask)
1283 {
1284         int i, j;
1285         int nr_pages = 0;
1286         struct page **pages;
1287         struct bio *bio;
1288         int cur_page = 0;
1289         int ret, offset;
1290
1291         for (i = 0; i < iov_count; i++) {
1292                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1293                 unsigned long len = iov[i].iov_len;
1294                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295                 unsigned long start = uaddr >> PAGE_SHIFT;
1296
1297                 /*
1298                  * Overflow, abort
1299                  */
1300                 if (end < start)
1301                         return ERR_PTR(-EINVAL);
1302
1303                 nr_pages += end - start;
1304                 /*
1305                  * buffer must be aligned to at least hardsector size for now
1306                  */
1307                 if (uaddr & queue_dma_alignment(q))
1308                         return ERR_PTR(-EINVAL);
1309         }
1310
1311         if (!nr_pages)
1312                 return ERR_PTR(-EINVAL);
1313
1314         bio = bio_kmalloc(gfp_mask, nr_pages);
1315         if (!bio)
1316                 return ERR_PTR(-ENOMEM);
1317
1318         ret = -ENOMEM;
1319         pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1320         if (!pages)
1321                 goto out;
1322
1323         for (i = 0; i < iov_count; i++) {
1324                 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1325                 unsigned long len = iov[i].iov_len;
1326                 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1327                 unsigned long start = uaddr >> PAGE_SHIFT;
1328                 const int local_nr_pages = end - start;
1329                 const int page_limit = cur_page + local_nr_pages;
1330
1331                 ret = get_user_pages_fast(uaddr, local_nr_pages,
1332                                 write_to_vm, &pages[cur_page]);
1333                 if (ret < local_nr_pages) {
1334                         ret = -EFAULT;
1335                         goto out_unmap;
1336                 }
1337
1338                 offset = uaddr & ~PAGE_MASK;
1339                 for (j = cur_page; j < page_limit; j++) {
1340                         unsigned int bytes = PAGE_SIZE - offset;
1341
1342                         if (len <= 0)
1343                                 break;
1344                         
1345                         if (bytes > len)
1346                                 bytes = len;
1347
1348                         /*
1349                          * sorry...
1350                          */
1351                         if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1352                                             bytes)
1353                                 break;
1354
1355                         len -= bytes;
1356                         offset = 0;
1357                 }
1358
1359                 cur_page = j;
1360                 /*
1361                  * release the pages we didn't map into the bio, if any
1362                  */
1363                 while (j < page_limit)
1364                         page_cache_release(pages[j++]);
1365         }
1366
1367         kfree(pages);
1368
1369         /*
1370          * set data direction, and check if mapped pages need bouncing
1371          */
1372         if (!write_to_vm)
1373                 bio->bi_rw |= REQ_WRITE;
1374
1375         bio->bi_bdev = bdev;
1376         bio->bi_flags |= (1 << BIO_USER_MAPPED);
1377         return bio;
1378
1379  out_unmap:
1380         for (i = 0; i < nr_pages; i++) {
1381                 if(!pages[i])
1382                         break;
1383                 page_cache_release(pages[i]);
1384         }
1385  out:
1386         kfree(pages);
1387         bio_put(bio);
1388         return ERR_PTR(ret);
1389 }
1390
1391 /**
1392  *      bio_map_user    -       map user address into bio
1393  *      @q: the struct request_queue for the bio
1394  *      @bdev: destination block device
1395  *      @uaddr: start of user address
1396  *      @len: length in bytes
1397  *      @write_to_vm: bool indicating writing to pages or not
1398  *      @gfp_mask: memory allocation flags
1399  *
1400  *      Map the user space address into a bio suitable for io to a block
1401  *      device. Returns an error pointer in case of error.
1402  */
1403 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1404                          unsigned long uaddr, unsigned int len, int write_to_vm,
1405                          gfp_t gfp_mask)
1406 {
1407         struct sg_iovec iov;
1408
1409         iov.iov_base = (void __user *)uaddr;
1410         iov.iov_len = len;
1411
1412         return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1413 }
1414 EXPORT_SYMBOL(bio_map_user);
1415
1416 /**
1417  *      bio_map_user_iov - map user sg_iovec table into bio
1418  *      @q: the struct request_queue for the bio
1419  *      @bdev: destination block device
1420  *      @iov:   the iovec.
1421  *      @iov_count: number of elements in the iovec
1422  *      @write_to_vm: bool indicating writing to pages or not
1423  *      @gfp_mask: memory allocation flags
1424  *
1425  *      Map the user space address into a bio suitable for io to a block
1426  *      device. Returns an error pointer in case of error.
1427  */
1428 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1429                              const struct sg_iovec *iov, int iov_count,
1430                              int write_to_vm, gfp_t gfp_mask)
1431 {
1432         struct bio *bio;
1433
1434         bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1435                                  gfp_mask);
1436         if (IS_ERR(bio))
1437                 return bio;
1438
1439         /*
1440          * subtle -- if __bio_map_user() ended up bouncing a bio,
1441          * it would normally disappear when its bi_end_io is run.
1442          * however, we need it for the unmap, so grab an extra
1443          * reference to it
1444          */
1445         bio_get(bio);
1446
1447         return bio;
1448 }
1449
1450 static void __bio_unmap_user(struct bio *bio)
1451 {
1452         struct bio_vec *bvec;
1453         int i;
1454
1455         /*
1456          * make sure we dirty pages we wrote to
1457          */
1458         bio_for_each_segment_all(bvec, bio, i) {
1459                 if (bio_data_dir(bio) == READ)
1460                         set_page_dirty_lock(bvec->bv_page);
1461
1462                 page_cache_release(bvec->bv_page);
1463         }
1464
1465         bio_put(bio);
1466 }
1467
1468 /**
1469  *      bio_unmap_user  -       unmap a bio
1470  *      @bio:           the bio being unmapped
1471  *
1472  *      Unmap a bio previously mapped by bio_map_user(). Must be called with
1473  *      a process context.
1474  *
1475  *      bio_unmap_user() may sleep.
1476  */
1477 void bio_unmap_user(struct bio *bio)
1478 {
1479         __bio_unmap_user(bio);
1480         bio_put(bio);
1481 }
1482 EXPORT_SYMBOL(bio_unmap_user);
1483
1484 static void bio_map_kern_endio(struct bio *bio, int err)
1485 {
1486         bio_put(bio);
1487 }
1488
1489 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1490                                   unsigned int len, gfp_t gfp_mask)
1491 {
1492         unsigned long kaddr = (unsigned long)data;
1493         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494         unsigned long start = kaddr >> PAGE_SHIFT;
1495         const int nr_pages = end - start;
1496         int offset, i;
1497         struct bio *bio;
1498
1499         bio = bio_kmalloc(gfp_mask, nr_pages);
1500         if (!bio)
1501                 return ERR_PTR(-ENOMEM);
1502
1503         offset = offset_in_page(kaddr);
1504         for (i = 0; i < nr_pages; i++) {
1505                 unsigned int bytes = PAGE_SIZE - offset;
1506
1507                 if (len <= 0)
1508                         break;
1509
1510                 if (bytes > len)
1511                         bytes = len;
1512
1513                 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1514                                     offset) < bytes)
1515                         break;
1516
1517                 data += bytes;
1518                 len -= bytes;
1519                 offset = 0;
1520         }
1521
1522         bio->bi_end_io = bio_map_kern_endio;
1523         return bio;
1524 }
1525
1526 /**
1527  *      bio_map_kern    -       map kernel address into bio
1528  *      @q: the struct request_queue for the bio
1529  *      @data: pointer to buffer to map
1530  *      @len: length in bytes
1531  *      @gfp_mask: allocation flags for bio allocation
1532  *
1533  *      Map the kernel address into a bio suitable for io to a block
1534  *      device. Returns an error pointer in case of error.
1535  */
1536 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1537                          gfp_t gfp_mask)
1538 {
1539         struct bio *bio;
1540
1541         bio = __bio_map_kern(q, data, len, gfp_mask);
1542         if (IS_ERR(bio))
1543                 return bio;
1544
1545         if (bio->bi_iter.bi_size == len)
1546                 return bio;
1547
1548         /*
1549          * Don't support partial mappings.
1550          */
1551         bio_put(bio);
1552         return ERR_PTR(-EINVAL);
1553 }
1554 EXPORT_SYMBOL(bio_map_kern);
1555
1556 static void bio_copy_kern_endio(struct bio *bio, int err)
1557 {
1558         struct bio_vec *bvec;
1559         const int read = bio_data_dir(bio) == READ;
1560         struct bio_map_data *bmd = bio->bi_private;
1561         int i;
1562         char *p = bmd->sgvecs[0].iov_base;
1563
1564         bio_for_each_segment_all(bvec, bio, i) {
1565                 char *addr = page_address(bvec->bv_page);
1566
1567                 if (read)
1568                         memcpy(p, addr, bvec->bv_len);
1569
1570                 __free_page(bvec->bv_page);
1571                 p += bvec->bv_len;
1572         }
1573
1574         kfree(bmd);
1575         bio_put(bio);
1576 }
1577
1578 /**
1579  *      bio_copy_kern   -       copy kernel address into bio
1580  *      @q: the struct request_queue for the bio
1581  *      @data: pointer to buffer to copy
1582  *      @len: length in bytes
1583  *      @gfp_mask: allocation flags for bio and page allocation
1584  *      @reading: data direction is READ
1585  *
1586  *      copy the kernel address into a bio suitable for io to a block
1587  *      device. Returns an error pointer in case of error.
1588  */
1589 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1590                           gfp_t gfp_mask, int reading)
1591 {
1592         struct bio *bio;
1593         struct bio_vec *bvec;
1594         int i;
1595
1596         bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1597         if (IS_ERR(bio))
1598                 return bio;
1599
1600         if (!reading) {
1601                 void *p = data;
1602
1603                 bio_for_each_segment_all(bvec, bio, i) {
1604                         char *addr = page_address(bvec->bv_page);
1605
1606                         memcpy(addr, p, bvec->bv_len);
1607                         p += bvec->bv_len;
1608                 }
1609         }
1610
1611         bio->bi_end_io = bio_copy_kern_endio;
1612
1613         return bio;
1614 }
1615 EXPORT_SYMBOL(bio_copy_kern);
1616
1617 /*
1618  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1619  * for performing direct-IO in BIOs.
1620  *
1621  * The problem is that we cannot run set_page_dirty() from interrupt context
1622  * because the required locks are not interrupt-safe.  So what we can do is to
1623  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1624  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1625  * in process context.
1626  *
1627  * We special-case compound pages here: normally this means reads into hugetlb
1628  * pages.  The logic in here doesn't really work right for compound pages
1629  * because the VM does not uniformly chase down the head page in all cases.
1630  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1631  * handle them at all.  So we skip compound pages here at an early stage.
1632  *
1633  * Note that this code is very hard to test under normal circumstances because
1634  * direct-io pins the pages with get_user_pages().  This makes
1635  * is_page_cache_freeable return false, and the VM will not clean the pages.
1636  * But other code (eg, flusher threads) could clean the pages if they are mapped
1637  * pagecache.
1638  *
1639  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1640  * deferred bio dirtying paths.
1641  */
1642
1643 /*
1644  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1645  */
1646 void bio_set_pages_dirty(struct bio *bio)
1647 {
1648         struct bio_vec *bvec;
1649         int i;
1650
1651         bio_for_each_segment_all(bvec, bio, i) {
1652                 struct page *page = bvec->bv_page;
1653
1654                 if (page && !PageCompound(page))
1655                         set_page_dirty_lock(page);
1656         }
1657 }
1658
1659 static void bio_release_pages(struct bio *bio)
1660 {
1661         struct bio_vec *bvec;
1662         int i;
1663
1664         bio_for_each_segment_all(bvec, bio, i) {
1665                 struct page *page = bvec->bv_page;
1666
1667                 if (page)
1668                         put_page(page);
1669         }
1670 }
1671
1672 /*
1673  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1674  * If they are, then fine.  If, however, some pages are clean then they must
1675  * have been written out during the direct-IO read.  So we take another ref on
1676  * the BIO and the offending pages and re-dirty the pages in process context.
1677  *
1678  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1679  * here on.  It will run one page_cache_release() against each page and will
1680  * run one bio_put() against the BIO.
1681  */
1682
1683 static void bio_dirty_fn(struct work_struct *work);
1684
1685 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1686 static DEFINE_SPINLOCK(bio_dirty_lock);
1687 static struct bio *bio_dirty_list;
1688
1689 /*
1690  * This runs in process context
1691  */
1692 static void bio_dirty_fn(struct work_struct *work)
1693 {
1694         unsigned long flags;
1695         struct bio *bio;
1696
1697         spin_lock_irqsave(&bio_dirty_lock, flags);
1698         bio = bio_dirty_list;
1699         bio_dirty_list = NULL;
1700         spin_unlock_irqrestore(&bio_dirty_lock, flags);
1701
1702         while (bio) {
1703                 struct bio *next = bio->bi_private;
1704
1705                 bio_set_pages_dirty(bio);
1706                 bio_release_pages(bio);
1707                 bio_put(bio);
1708                 bio = next;
1709         }
1710 }
1711
1712 void bio_check_pages_dirty(struct bio *bio)
1713 {
1714         struct bio_vec *bvec;
1715         int nr_clean_pages = 0;
1716         int i;
1717
1718         bio_for_each_segment_all(bvec, bio, i) {
1719                 struct page *page = bvec->bv_page;
1720
1721                 if (PageDirty(page) || PageCompound(page)) {
1722                         page_cache_release(page);
1723                         bvec->bv_page = NULL;
1724                 } else {
1725                         nr_clean_pages++;
1726                 }
1727         }
1728
1729         if (nr_clean_pages) {
1730                 unsigned long flags;
1731
1732                 spin_lock_irqsave(&bio_dirty_lock, flags);
1733                 bio->bi_private = bio_dirty_list;
1734                 bio_dirty_list = bio;
1735                 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1736                 schedule_work(&bio_dirty_work);
1737         } else {
1738                 bio_put(bio);
1739         }
1740 }
1741
1742 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1743 void bio_flush_dcache_pages(struct bio *bi)
1744 {
1745         struct bio_vec bvec;
1746         struct bvec_iter iter;
1747
1748         bio_for_each_segment(bvec, bi, iter)
1749                 flush_dcache_page(bvec.bv_page);
1750 }
1751 EXPORT_SYMBOL(bio_flush_dcache_pages);
1752 #endif
1753
1754 /**
1755  * bio_endio - end I/O on a bio
1756  * @bio:        bio
1757  * @error:      error, if any
1758  *
1759  * Description:
1760  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1761  *   preferred way to end I/O on a bio, it takes care of clearing
1762  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1763  *   established -Exxxx (-EIO, for instance) error values in case
1764  *   something went wrong. No one should call bi_end_io() directly on a
1765  *   bio unless they own it and thus know that it has an end_io
1766  *   function.
1767  **/
1768 void bio_endio(struct bio *bio, int error)
1769 {
1770         while (bio) {
1771                 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1772
1773                 if (error)
1774                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
1775                 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1776                         error = -EIO;
1777
1778                 if (!atomic_dec_and_test(&bio->bi_remaining))
1779                         return;
1780
1781                 /*
1782                  * Need to have a real endio function for chained bios,
1783                  * otherwise various corner cases will break (like stacking
1784                  * block devices that save/restore bi_end_io) - however, we want
1785                  * to avoid unbounded recursion and blowing the stack. Tail call
1786                  * optimization would handle this, but compiling with frame
1787                  * pointers also disables gcc's sibling call optimization.
1788                  */
1789                 if (bio->bi_end_io == bio_chain_endio) {
1790                         struct bio *parent = bio->bi_private;
1791                         bio_put(bio);
1792                         bio = parent;
1793                 } else {
1794                         if (bio->bi_end_io)
1795                                 bio->bi_end_io(bio, error);
1796                         bio = NULL;
1797                 }
1798         }
1799 }
1800 EXPORT_SYMBOL(bio_endio);
1801
1802 /**
1803  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1804  * @bio:        bio
1805  * @error:      error, if any
1806  *
1807  * For code that has saved and restored bi_end_io; thing hard before using this
1808  * function, probably you should've cloned the entire bio.
1809  **/
1810 void bio_endio_nodec(struct bio *bio, int error)
1811 {
1812         atomic_inc(&bio->bi_remaining);
1813         bio_endio(bio, error);
1814 }
1815 EXPORT_SYMBOL(bio_endio_nodec);
1816
1817 /**
1818  * bio_split - split a bio
1819  * @bio:        bio to split
1820  * @sectors:    number of sectors to split from the front of @bio
1821  * @gfp:        gfp mask
1822  * @bs:         bio set to allocate from
1823  *
1824  * Allocates and returns a new bio which represents @sectors from the start of
1825  * @bio, and updates @bio to represent the remaining sectors.
1826  *
1827  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1828  * responsibility to ensure that @bio is not freed before the split.
1829  */
1830 struct bio *bio_split(struct bio *bio, int sectors,
1831                       gfp_t gfp, struct bio_set *bs)
1832 {
1833         struct bio *split = NULL;
1834
1835         BUG_ON(sectors <= 0);
1836         BUG_ON(sectors >= bio_sectors(bio));
1837
1838         split = bio_clone_fast(bio, gfp, bs);
1839         if (!split)
1840                 return NULL;
1841
1842         split->bi_iter.bi_size = sectors << 9;
1843
1844         if (bio_integrity(split))
1845                 bio_integrity_trim(split, 0, sectors);
1846
1847         bio_advance(bio, split->bi_iter.bi_size);
1848
1849         return split;
1850 }
1851 EXPORT_SYMBOL(bio_split);
1852
1853 /**
1854  * bio_trim - trim a bio
1855  * @bio:        bio to trim
1856  * @offset:     number of sectors to trim from the front of @bio
1857  * @size:       size we want to trim @bio to, in sectors
1858  */
1859 void bio_trim(struct bio *bio, int offset, int size)
1860 {
1861         /* 'bio' is a cloned bio which we need to trim to match
1862          * the given offset and size.
1863          */
1864
1865         size <<= 9;
1866         if (offset == 0 && size == bio->bi_iter.bi_size)
1867                 return;
1868
1869         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1870
1871         bio_advance(bio, offset << 9);
1872
1873         bio->bi_iter.bi_size = size;
1874 }
1875 EXPORT_SYMBOL_GPL(bio_trim);
1876
1877 /*
1878  * create memory pools for biovec's in a bio_set.
1879  * use the global biovec slabs created for general use.
1880  */
1881 mempool_t *biovec_create_pool(int pool_entries)
1882 {
1883         struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1884
1885         return mempool_create_slab_pool(pool_entries, bp->slab);
1886 }
1887
1888 void bioset_free(struct bio_set *bs)
1889 {
1890         if (bs->rescue_workqueue)
1891                 destroy_workqueue(bs->rescue_workqueue);
1892
1893         if (bs->bio_pool)
1894                 mempool_destroy(bs->bio_pool);
1895
1896         if (bs->bvec_pool)
1897                 mempool_destroy(bs->bvec_pool);
1898
1899         bioset_integrity_free(bs);
1900         bio_put_slab(bs);
1901
1902         kfree(bs);
1903 }
1904 EXPORT_SYMBOL(bioset_free);
1905
1906 static struct bio_set *__bioset_create(unsigned int pool_size,
1907                                        unsigned int front_pad,
1908                                        bool create_bvec_pool)
1909 {
1910         unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1911         struct bio_set *bs;
1912
1913         bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1914         if (!bs)
1915                 return NULL;
1916
1917         bs->front_pad = front_pad;
1918
1919         spin_lock_init(&bs->rescue_lock);
1920         bio_list_init(&bs->rescue_list);
1921         INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1922
1923         bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1924         if (!bs->bio_slab) {
1925                 kfree(bs);
1926                 return NULL;
1927         }
1928
1929         bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1930         if (!bs->bio_pool)
1931                 goto bad;
1932
1933         if (create_bvec_pool) {
1934                 bs->bvec_pool = biovec_create_pool(pool_size);
1935                 if (!bs->bvec_pool)
1936                         goto bad;
1937         }
1938
1939         bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1940         if (!bs->rescue_workqueue)
1941                 goto bad;
1942
1943         return bs;
1944 bad:
1945         bioset_free(bs);
1946         return NULL;
1947 }
1948
1949 /**
1950  * bioset_create  - Create a bio_set
1951  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1952  * @front_pad:  Number of bytes to allocate in front of the returned bio
1953  *
1954  * Description:
1955  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1956  *    to ask for a number of bytes to be allocated in front of the bio.
1957  *    Front pad allocation is useful for embedding the bio inside
1958  *    another structure, to avoid allocating extra data to go with the bio.
1959  *    Note that the bio must be embedded at the END of that structure always,
1960  *    or things will break badly.
1961  */
1962 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1963 {
1964         return __bioset_create(pool_size, front_pad, true);
1965 }
1966 EXPORT_SYMBOL(bioset_create);
1967
1968 /**
1969  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1970  * @pool_size:  Number of bio to cache in the mempool
1971  * @front_pad:  Number of bytes to allocate in front of the returned bio
1972  *
1973  * Description:
1974  *    Same functionality as bioset_create() except that mempool is not
1975  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1976  */
1977 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1978 {
1979         return __bioset_create(pool_size, front_pad, false);
1980 }
1981 EXPORT_SYMBOL(bioset_create_nobvec);
1982
1983 #ifdef CONFIG_BLK_CGROUP
1984 /**
1985  * bio_associate_current - associate a bio with %current
1986  * @bio: target bio
1987  *
1988  * Associate @bio with %current if it hasn't been associated yet.  Block
1989  * layer will treat @bio as if it were issued by %current no matter which
1990  * task actually issues it.
1991  *
1992  * This function takes an extra reference of @task's io_context and blkcg
1993  * which will be put when @bio is released.  The caller must own @bio,
1994  * ensure %current->io_context exists, and is responsible for synchronizing
1995  * calls to this function.
1996  */
1997 int bio_associate_current(struct bio *bio)
1998 {
1999         struct io_context *ioc;
2000         struct cgroup_subsys_state *css;
2001
2002         if (bio->bi_ioc)
2003                 return -EBUSY;
2004
2005         ioc = current->io_context;
2006         if (!ioc)
2007                 return -ENOENT;
2008
2009         /* acquire active ref on @ioc and associate */
2010         get_io_context_active(ioc);
2011         bio->bi_ioc = ioc;
2012
2013         /* associate blkcg if exists */
2014         rcu_read_lock();
2015         css = task_css(current, blkio_cgrp_id);
2016         if (css && css_tryget_online(css))
2017                 bio->bi_css = css;
2018         rcu_read_unlock();
2019
2020         return 0;
2021 }
2022
2023 /**
2024  * bio_disassociate_task - undo bio_associate_current()
2025  * @bio: target bio
2026  */
2027 void bio_disassociate_task(struct bio *bio)
2028 {
2029         if (bio->bi_ioc) {
2030                 put_io_context(bio->bi_ioc);
2031                 bio->bi_ioc = NULL;
2032         }
2033         if (bio->bi_css) {
2034                 css_put(bio->bi_css);
2035                 bio->bi_css = NULL;
2036         }
2037 }
2038
2039 #endif /* CONFIG_BLK_CGROUP */
2040
2041 static void __init biovec_init_slabs(void)
2042 {
2043         int i;
2044
2045         for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2046                 int size;
2047                 struct biovec_slab *bvs = bvec_slabs + i;
2048
2049                 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2050                         bvs->slab = NULL;
2051                         continue;
2052                 }
2053
2054                 size = bvs->nr_vecs * sizeof(struct bio_vec);
2055                 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2056                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2057         }
2058 }
2059
2060 static int __init init_bio(void)
2061 {
2062         bio_slab_max = 2;
2063         bio_slab_nr = 0;
2064         bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2065         if (!bio_slabs)
2066                 panic("bio: can't allocate bios\n");
2067
2068         bio_integrity_init();
2069         biovec_init_slabs();
2070
2071         fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2072         if (!fs_bio_set)
2073                 panic("bio: can't allocate bios\n");
2074
2075         if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2076                 panic("bio: can't create integrity pool\n");
2077
2078         return 0;
2079 }
2080 subsys_initcall(init_bio);