dc5f47f6093166f09d9c875aae79db2031e41acf
[cascardo/linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42         return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44
45 /*
46  * Mark this ctx as having pending work in this hardware queue
47  */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49                                      struct blk_mq_ctx *ctx)
50 {
51         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56                                       struct blk_mq_ctx *ctx)
57 {
58         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63         int freeze_depth;
64
65         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66         if (freeze_depth == 1) {
67                 percpu_ref_kill(&q->q_usage_counter);
68                 blk_mq_run_hw_queues(q, false);
69         }
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77
78 /*
79  * Guarantee no request is in use, so we can change any data structure of
80  * the queue afterward.
81  */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84         /*
85          * In the !blk_mq case we are only calling this to kill the
86          * q_usage_counter, otherwise this increases the freeze depth
87          * and waits for it to return to zero.  For this reason there is
88          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89          * exported to drivers as the only user for unfreeze is blk_mq.
90          */
91         blk_mq_freeze_queue_start(q);
92         blk_mq_freeze_queue_wait(q);
93 }
94
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97         /*
98          * ...just an alias to keep freeze and unfreeze actions balanced
99          * in the blk_mq_* namespace
100          */
101         blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107         int freeze_depth;
108
109         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110         WARN_ON_ONCE(freeze_depth < 0);
111         if (!freeze_depth) {
112                 percpu_ref_reinit(&q->q_usage_counter);
113                 wake_up_all(&q->mq_freeze_wq);
114         }
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120         struct blk_mq_hw_ctx *hctx;
121         unsigned int i;
122
123         queue_for_each_hw_ctx(q, hctx, i)
124                 if (blk_mq_hw_queue_mapped(hctx))
125                         blk_mq_tag_wakeup_all(hctx->tags, true);
126
127         /*
128          * If we are called because the queue has now been marked as
129          * dying, we need to ensure that processes currently waiting on
130          * the queue are notified as well.
131          */
132         wake_up_all(&q->mq_freeze_wq);
133 }
134
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137         return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142                                struct request *rq, int op,
143                                unsigned int op_flags)
144 {
145         if (blk_queue_io_stat(q))
146                 op_flags |= REQ_IO_STAT;
147
148         INIT_LIST_HEAD(&rq->queuelist);
149         /* csd/requeue_work/fifo_time is initialized before use */
150         rq->q = q;
151         rq->mq_ctx = ctx;
152         req_set_op_attrs(rq, op, op_flags);
153         /* do not touch atomic flags, it needs atomic ops against the timer */
154         rq->cpu = -1;
155         INIT_HLIST_NODE(&rq->hash);
156         RB_CLEAR_NODE(&rq->rb_node);
157         rq->rq_disk = NULL;
158         rq->part = NULL;
159         rq->start_time = jiffies;
160 #ifdef CONFIG_BLK_CGROUP
161         rq->rl = NULL;
162         set_start_time_ns(rq);
163         rq->io_start_time_ns = 0;
164 #endif
165         rq->nr_phys_segments = 0;
166 #if defined(CONFIG_BLK_DEV_INTEGRITY)
167         rq->nr_integrity_segments = 0;
168 #endif
169         rq->special = NULL;
170         /* tag was already set */
171         rq->errors = 0;
172
173         rq->cmd = rq->__cmd;
174
175         rq->extra_len = 0;
176         rq->sense_len = 0;
177         rq->resid_len = 0;
178         rq->sense = NULL;
179
180         INIT_LIST_HEAD(&rq->timeout_list);
181         rq->timeout = 0;
182
183         rq->end_io = NULL;
184         rq->end_io_data = NULL;
185         rq->next_rq = NULL;
186
187         ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
188 }
189
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
192 {
193         struct request *rq;
194         unsigned int tag;
195
196         tag = blk_mq_get_tag(data);
197         if (tag != BLK_MQ_TAG_FAIL) {
198                 rq = data->hctx->tags->rqs[tag];
199
200                 if (blk_mq_tag_busy(data->hctx)) {
201                         rq->cmd_flags = REQ_MQ_INFLIGHT;
202                         atomic_inc(&data->hctx->nr_active);
203                 }
204
205                 rq->tag = tag;
206                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
207                 return rq;
208         }
209
210         return NULL;
211 }
212
213 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
214                 unsigned int flags)
215 {
216         struct blk_mq_ctx *ctx;
217         struct blk_mq_hw_ctx *hctx;
218         struct request *rq;
219         struct blk_mq_alloc_data alloc_data;
220         int ret;
221
222         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
223         if (ret)
224                 return ERR_PTR(ret);
225
226         ctx = blk_mq_get_ctx(q);
227         hctx = q->mq_ops->map_queue(q, ctx->cpu);
228         blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
229         rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
230         blk_mq_put_ctx(ctx);
231
232         if (!rq) {
233                 blk_queue_exit(q);
234                 return ERR_PTR(-EWOULDBLOCK);
235         }
236
237         rq->__data_len = 0;
238         rq->__sector = (sector_t) -1;
239         rq->bio = rq->biotail = NULL;
240         return rq;
241 }
242 EXPORT_SYMBOL(blk_mq_alloc_request);
243
244 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
245                 unsigned int flags, unsigned int hctx_idx)
246 {
247         struct blk_mq_hw_ctx *hctx;
248         struct blk_mq_ctx *ctx;
249         struct request *rq;
250         struct blk_mq_alloc_data alloc_data;
251         int ret;
252
253         /*
254          * If the tag allocator sleeps we could get an allocation for a
255          * different hardware context.  No need to complicate the low level
256          * allocator for this for the rare use case of a command tied to
257          * a specific queue.
258          */
259         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
260                 return ERR_PTR(-EINVAL);
261
262         if (hctx_idx >= q->nr_hw_queues)
263                 return ERR_PTR(-EIO);
264
265         ret = blk_queue_enter(q, true);
266         if (ret)
267                 return ERR_PTR(ret);
268
269         /*
270          * Check if the hardware context is actually mapped to anything.
271          * If not tell the caller that it should skip this queue.
272          */
273         hctx = q->queue_hw_ctx[hctx_idx];
274         if (!blk_mq_hw_queue_mapped(hctx)) {
275                 ret = -EXDEV;
276                 goto out_queue_exit;
277         }
278         ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
279
280         blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
281         rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
282         if (!rq) {
283                 ret = -EWOULDBLOCK;
284                 goto out_queue_exit;
285         }
286
287         return rq;
288
289 out_queue_exit:
290         blk_queue_exit(q);
291         return ERR_PTR(ret);
292 }
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
294
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296                                   struct blk_mq_ctx *ctx, struct request *rq)
297 {
298         const int tag = rq->tag;
299         struct request_queue *q = rq->q;
300
301         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302                 atomic_dec(&hctx->nr_active);
303         rq->cmd_flags = 0;
304
305         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
306         blk_mq_put_tag(hctx, ctx, tag);
307         blk_queue_exit(q);
308 }
309
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
311 {
312         struct blk_mq_ctx *ctx = rq->mq_ctx;
313
314         ctx->rq_completed[rq_is_sync(rq)]++;
315         __blk_mq_free_request(hctx, ctx, rq);
316
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
319
320 void blk_mq_free_request(struct request *rq)
321 {
322         struct blk_mq_hw_ctx *hctx;
323         struct request_queue *q = rq->q;
324
325         hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
326         blk_mq_free_hctx_request(hctx, rq);
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_free_request);
329
330 inline void __blk_mq_end_request(struct request *rq, int error)
331 {
332         blk_account_io_done(rq);
333
334         if (rq->end_io) {
335                 rq->end_io(rq, error);
336         } else {
337                 if (unlikely(blk_bidi_rq(rq)))
338                         blk_mq_free_request(rq->next_rq);
339                 blk_mq_free_request(rq);
340         }
341 }
342 EXPORT_SYMBOL(__blk_mq_end_request);
343
344 void blk_mq_end_request(struct request *rq, int error)
345 {
346         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
347                 BUG();
348         __blk_mq_end_request(rq, error);
349 }
350 EXPORT_SYMBOL(blk_mq_end_request);
351
352 static void __blk_mq_complete_request_remote(void *data)
353 {
354         struct request *rq = data;
355
356         rq->q->softirq_done_fn(rq);
357 }
358
359 static void blk_mq_ipi_complete_request(struct request *rq)
360 {
361         struct blk_mq_ctx *ctx = rq->mq_ctx;
362         bool shared = false;
363         int cpu;
364
365         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
366                 rq->q->softirq_done_fn(rq);
367                 return;
368         }
369
370         cpu = get_cpu();
371         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
372                 shared = cpus_share_cache(cpu, ctx->cpu);
373
374         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
375                 rq->csd.func = __blk_mq_complete_request_remote;
376                 rq->csd.info = rq;
377                 rq->csd.flags = 0;
378                 smp_call_function_single_async(ctx->cpu, &rq->csd);
379         } else {
380                 rq->q->softirq_done_fn(rq);
381         }
382         put_cpu();
383 }
384
385 static void __blk_mq_complete_request(struct request *rq)
386 {
387         struct request_queue *q = rq->q;
388
389         if (!q->softirq_done_fn)
390                 blk_mq_end_request(rq, rq->errors);
391         else
392                 blk_mq_ipi_complete_request(rq);
393 }
394
395 /**
396  * blk_mq_complete_request - end I/O on a request
397  * @rq:         the request being processed
398  *
399  * Description:
400  *      Ends all I/O on a request. It does not handle partial completions.
401  *      The actual completion happens out-of-order, through a IPI handler.
402  **/
403 void blk_mq_complete_request(struct request *rq, int error)
404 {
405         struct request_queue *q = rq->q;
406
407         if (unlikely(blk_should_fake_timeout(q)))
408                 return;
409         if (!blk_mark_rq_complete(rq)) {
410                 rq->errors = error;
411                 __blk_mq_complete_request(rq);
412         }
413 }
414 EXPORT_SYMBOL(blk_mq_complete_request);
415
416 int blk_mq_request_started(struct request *rq)
417 {
418         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
419 }
420 EXPORT_SYMBOL_GPL(blk_mq_request_started);
421
422 void blk_mq_start_request(struct request *rq)
423 {
424         struct request_queue *q = rq->q;
425
426         trace_block_rq_issue(q, rq);
427
428         rq->resid_len = blk_rq_bytes(rq);
429         if (unlikely(blk_bidi_rq(rq)))
430                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
431
432         blk_add_timer(rq);
433
434         /*
435          * Ensure that ->deadline is visible before set the started
436          * flag and clear the completed flag.
437          */
438         smp_mb__before_atomic();
439
440         /*
441          * Mark us as started and clear complete. Complete might have been
442          * set if requeue raced with timeout, which then marked it as
443          * complete. So be sure to clear complete again when we start
444          * the request, otherwise we'll ignore the completion event.
445          */
446         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
447                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
448         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
449                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
450
451         if (q->dma_drain_size && blk_rq_bytes(rq)) {
452                 /*
453                  * Make sure space for the drain appears.  We know we can do
454                  * this because max_hw_segments has been adjusted to be one
455                  * fewer than the device can handle.
456                  */
457                 rq->nr_phys_segments++;
458         }
459 }
460 EXPORT_SYMBOL(blk_mq_start_request);
461
462 static void __blk_mq_requeue_request(struct request *rq)
463 {
464         struct request_queue *q = rq->q;
465
466         trace_block_rq_requeue(q, rq);
467
468         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
469                 if (q->dma_drain_size && blk_rq_bytes(rq))
470                         rq->nr_phys_segments--;
471         }
472 }
473
474 void blk_mq_requeue_request(struct request *rq)
475 {
476         __blk_mq_requeue_request(rq);
477
478         BUG_ON(blk_queued_rq(rq));
479         blk_mq_add_to_requeue_list(rq, true);
480 }
481 EXPORT_SYMBOL(blk_mq_requeue_request);
482
483 static void blk_mq_requeue_work(struct work_struct *work)
484 {
485         struct request_queue *q =
486                 container_of(work, struct request_queue, requeue_work.work);
487         LIST_HEAD(rq_list);
488         struct request *rq, *next;
489         unsigned long flags;
490
491         spin_lock_irqsave(&q->requeue_lock, flags);
492         list_splice_init(&q->requeue_list, &rq_list);
493         spin_unlock_irqrestore(&q->requeue_lock, flags);
494
495         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
496                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
497                         continue;
498
499                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
500                 list_del_init(&rq->queuelist);
501                 blk_mq_insert_request(rq, true, false, false);
502         }
503
504         while (!list_empty(&rq_list)) {
505                 rq = list_entry(rq_list.next, struct request, queuelist);
506                 list_del_init(&rq->queuelist);
507                 blk_mq_insert_request(rq, false, false, false);
508         }
509
510         /*
511          * Use the start variant of queue running here, so that running
512          * the requeue work will kick stopped queues.
513          */
514         blk_mq_start_hw_queues(q);
515 }
516
517 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
518 {
519         struct request_queue *q = rq->q;
520         unsigned long flags;
521
522         /*
523          * We abuse this flag that is otherwise used by the I/O scheduler to
524          * request head insertation from the workqueue.
525          */
526         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
527
528         spin_lock_irqsave(&q->requeue_lock, flags);
529         if (at_head) {
530                 rq->cmd_flags |= REQ_SOFTBARRIER;
531                 list_add(&rq->queuelist, &q->requeue_list);
532         } else {
533                 list_add_tail(&rq->queuelist, &q->requeue_list);
534         }
535         spin_unlock_irqrestore(&q->requeue_lock, flags);
536 }
537 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
538
539 void blk_mq_cancel_requeue_work(struct request_queue *q)
540 {
541         cancel_delayed_work_sync(&q->requeue_work);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
544
545 void blk_mq_kick_requeue_list(struct request_queue *q)
546 {
547         kblockd_schedule_delayed_work(&q->requeue_work, 0);
548 }
549 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
550
551 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
552                                     unsigned long msecs)
553 {
554         kblockd_schedule_delayed_work(&q->requeue_work,
555                                       msecs_to_jiffies(msecs));
556 }
557 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
558
559 void blk_mq_abort_requeue_list(struct request_queue *q)
560 {
561         unsigned long flags;
562         LIST_HEAD(rq_list);
563
564         spin_lock_irqsave(&q->requeue_lock, flags);
565         list_splice_init(&q->requeue_list, &rq_list);
566         spin_unlock_irqrestore(&q->requeue_lock, flags);
567
568         while (!list_empty(&rq_list)) {
569                 struct request *rq;
570
571                 rq = list_first_entry(&rq_list, struct request, queuelist);
572                 list_del_init(&rq->queuelist);
573                 rq->errors = -EIO;
574                 blk_mq_end_request(rq, rq->errors);
575         }
576 }
577 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
578
579 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
580 {
581         if (tag < tags->nr_tags) {
582                 prefetch(tags->rqs[tag]);
583                 return tags->rqs[tag];
584         }
585
586         return NULL;
587 }
588 EXPORT_SYMBOL(blk_mq_tag_to_rq);
589
590 struct blk_mq_timeout_data {
591         unsigned long next;
592         unsigned int next_set;
593 };
594
595 void blk_mq_rq_timed_out(struct request *req, bool reserved)
596 {
597         struct blk_mq_ops *ops = req->q->mq_ops;
598         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
599
600         /*
601          * We know that complete is set at this point. If STARTED isn't set
602          * anymore, then the request isn't active and the "timeout" should
603          * just be ignored. This can happen due to the bitflag ordering.
604          * Timeout first checks if STARTED is set, and if it is, assumes
605          * the request is active. But if we race with completion, then
606          * we both flags will get cleared. So check here again, and ignore
607          * a timeout event with a request that isn't active.
608          */
609         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
610                 return;
611
612         if (ops->timeout)
613                 ret = ops->timeout(req, reserved);
614
615         switch (ret) {
616         case BLK_EH_HANDLED:
617                 __blk_mq_complete_request(req);
618                 break;
619         case BLK_EH_RESET_TIMER:
620                 blk_add_timer(req);
621                 blk_clear_rq_complete(req);
622                 break;
623         case BLK_EH_NOT_HANDLED:
624                 break;
625         default:
626                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
627                 break;
628         }
629 }
630
631 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
632                 struct request *rq, void *priv, bool reserved)
633 {
634         struct blk_mq_timeout_data *data = priv;
635
636         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
637                 /*
638                  * If a request wasn't started before the queue was
639                  * marked dying, kill it here or it'll go unnoticed.
640                  */
641                 if (unlikely(blk_queue_dying(rq->q))) {
642                         rq->errors = -EIO;
643                         blk_mq_end_request(rq, rq->errors);
644                 }
645                 return;
646         }
647
648         if (time_after_eq(jiffies, rq->deadline)) {
649                 if (!blk_mark_rq_complete(rq))
650                         blk_mq_rq_timed_out(rq, reserved);
651         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
652                 data->next = rq->deadline;
653                 data->next_set = 1;
654         }
655 }
656
657 static void blk_mq_timeout_work(struct work_struct *work)
658 {
659         struct request_queue *q =
660                 container_of(work, struct request_queue, timeout_work);
661         struct blk_mq_timeout_data data = {
662                 .next           = 0,
663                 .next_set       = 0,
664         };
665         int i;
666
667         /* A deadlock might occur if a request is stuck requiring a
668          * timeout at the same time a queue freeze is waiting
669          * completion, since the timeout code would not be able to
670          * acquire the queue reference here.
671          *
672          * That's why we don't use blk_queue_enter here; instead, we use
673          * percpu_ref_tryget directly, because we need to be able to
674          * obtain a reference even in the short window between the queue
675          * starting to freeze, by dropping the first reference in
676          * blk_mq_freeze_queue_start, and the moment the last request is
677          * consumed, marked by the instant q_usage_counter reaches
678          * zero.
679          */
680         if (!percpu_ref_tryget(&q->q_usage_counter))
681                 return;
682
683         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
684
685         if (data.next_set) {
686                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
687                 mod_timer(&q->timeout, data.next);
688         } else {
689                 struct blk_mq_hw_ctx *hctx;
690
691                 queue_for_each_hw_ctx(q, hctx, i) {
692                         /* the hctx may be unmapped, so check it here */
693                         if (blk_mq_hw_queue_mapped(hctx))
694                                 blk_mq_tag_idle(hctx);
695                 }
696         }
697         blk_queue_exit(q);
698 }
699
700 /*
701  * Reverse check our software queue for entries that we could potentially
702  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
703  * too much time checking for merges.
704  */
705 static bool blk_mq_attempt_merge(struct request_queue *q,
706                                  struct blk_mq_ctx *ctx, struct bio *bio)
707 {
708         struct request *rq;
709         int checked = 8;
710
711         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
712                 int el_ret;
713
714                 if (!checked--)
715                         break;
716
717                 if (!blk_rq_merge_ok(rq, bio))
718                         continue;
719
720                 el_ret = blk_try_merge(rq, bio);
721                 if (el_ret == ELEVATOR_BACK_MERGE) {
722                         if (bio_attempt_back_merge(q, rq, bio)) {
723                                 ctx->rq_merged++;
724                                 return true;
725                         }
726                         break;
727                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
728                         if (bio_attempt_front_merge(q, rq, bio)) {
729                                 ctx->rq_merged++;
730                                 return true;
731                         }
732                         break;
733                 }
734         }
735
736         return false;
737 }
738
739 struct flush_busy_ctx_data {
740         struct blk_mq_hw_ctx *hctx;
741         struct list_head *list;
742 };
743
744 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
745 {
746         struct flush_busy_ctx_data *flush_data = data;
747         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
748         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
749
750         sbitmap_clear_bit(sb, bitnr);
751         spin_lock(&ctx->lock);
752         list_splice_tail_init(&ctx->rq_list, flush_data->list);
753         spin_unlock(&ctx->lock);
754         return true;
755 }
756
757 /*
758  * Process software queues that have been marked busy, splicing them
759  * to the for-dispatch
760  */
761 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
762 {
763         struct flush_busy_ctx_data data = {
764                 .hctx = hctx,
765                 .list = list,
766         };
767
768         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
769 }
770
771 static inline unsigned int queued_to_index(unsigned int queued)
772 {
773         if (!queued)
774                 return 0;
775
776         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
777 }
778
779 /*
780  * Run this hardware queue, pulling any software queues mapped to it in.
781  * Note that this function currently has various problems around ordering
782  * of IO. In particular, we'd like FIFO behaviour on handling existing
783  * items on the hctx->dispatch list. Ignore that for now.
784  */
785 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
786 {
787         struct request_queue *q = hctx->queue;
788         struct request *rq;
789         LIST_HEAD(rq_list);
790         LIST_HEAD(driver_list);
791         struct list_head *dptr;
792         int queued;
793
794         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
795                 return;
796
797         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
798                 cpu_online(hctx->next_cpu));
799
800         hctx->run++;
801
802         /*
803          * Touch any software queue that has pending entries.
804          */
805         flush_busy_ctxs(hctx, &rq_list);
806
807         /*
808          * If we have previous entries on our dispatch list, grab them
809          * and stuff them at the front for more fair dispatch.
810          */
811         if (!list_empty_careful(&hctx->dispatch)) {
812                 spin_lock(&hctx->lock);
813                 if (!list_empty(&hctx->dispatch))
814                         list_splice_init(&hctx->dispatch, &rq_list);
815                 spin_unlock(&hctx->lock);
816         }
817
818         /*
819          * Start off with dptr being NULL, so we start the first request
820          * immediately, even if we have more pending.
821          */
822         dptr = NULL;
823
824         /*
825          * Now process all the entries, sending them to the driver.
826          */
827         queued = 0;
828         while (!list_empty(&rq_list)) {
829                 struct blk_mq_queue_data bd;
830                 int ret;
831
832                 rq = list_first_entry(&rq_list, struct request, queuelist);
833                 list_del_init(&rq->queuelist);
834
835                 bd.rq = rq;
836                 bd.list = dptr;
837                 bd.last = list_empty(&rq_list);
838
839                 ret = q->mq_ops->queue_rq(hctx, &bd);
840                 switch (ret) {
841                 case BLK_MQ_RQ_QUEUE_OK:
842                         queued++;
843                         break;
844                 case BLK_MQ_RQ_QUEUE_BUSY:
845                         list_add(&rq->queuelist, &rq_list);
846                         __blk_mq_requeue_request(rq);
847                         break;
848                 default:
849                         pr_err("blk-mq: bad return on queue: %d\n", ret);
850                 case BLK_MQ_RQ_QUEUE_ERROR:
851                         rq->errors = -EIO;
852                         blk_mq_end_request(rq, rq->errors);
853                         break;
854                 }
855
856                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
857                         break;
858
859                 /*
860                  * We've done the first request. If we have more than 1
861                  * left in the list, set dptr to defer issue.
862                  */
863                 if (!dptr && rq_list.next != rq_list.prev)
864                         dptr = &driver_list;
865         }
866
867         hctx->dispatched[queued_to_index(queued)]++;
868
869         /*
870          * Any items that need requeuing? Stuff them into hctx->dispatch,
871          * that is where we will continue on next queue run.
872          */
873         if (!list_empty(&rq_list)) {
874                 spin_lock(&hctx->lock);
875                 list_splice(&rq_list, &hctx->dispatch);
876                 spin_unlock(&hctx->lock);
877                 /*
878                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
879                  * it's possible the queue is stopped and restarted again
880                  * before this. Queue restart will dispatch requests. And since
881                  * requests in rq_list aren't added into hctx->dispatch yet,
882                  * the requests in rq_list might get lost.
883                  *
884                  * blk_mq_run_hw_queue() already checks the STOPPED bit
885                  **/
886                 blk_mq_run_hw_queue(hctx, true);
887         }
888 }
889
890 /*
891  * It'd be great if the workqueue API had a way to pass
892  * in a mask and had some smarts for more clever placement.
893  * For now we just round-robin here, switching for every
894  * BLK_MQ_CPU_WORK_BATCH queued items.
895  */
896 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
897 {
898         if (hctx->queue->nr_hw_queues == 1)
899                 return WORK_CPU_UNBOUND;
900
901         if (--hctx->next_cpu_batch <= 0) {
902                 int cpu = hctx->next_cpu, next_cpu;
903
904                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
905                 if (next_cpu >= nr_cpu_ids)
906                         next_cpu = cpumask_first(hctx->cpumask);
907
908                 hctx->next_cpu = next_cpu;
909                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
910
911                 return cpu;
912         }
913
914         return hctx->next_cpu;
915 }
916
917 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
918 {
919         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
920             !blk_mq_hw_queue_mapped(hctx)))
921                 return;
922
923         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
924                 int cpu = get_cpu();
925                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
926                         __blk_mq_run_hw_queue(hctx);
927                         put_cpu();
928                         return;
929                 }
930
931                 put_cpu();
932         }
933
934         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
935 }
936
937 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
938 {
939         struct blk_mq_hw_ctx *hctx;
940         int i;
941
942         queue_for_each_hw_ctx(q, hctx, i) {
943                 if ((!blk_mq_hctx_has_pending(hctx) &&
944                     list_empty_careful(&hctx->dispatch)) ||
945                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
946                         continue;
947
948                 blk_mq_run_hw_queue(hctx, async);
949         }
950 }
951 EXPORT_SYMBOL(blk_mq_run_hw_queues);
952
953 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
954 {
955         cancel_work(&hctx->run_work);
956         cancel_delayed_work(&hctx->delay_work);
957         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
958 }
959 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
960
961 void blk_mq_stop_hw_queues(struct request_queue *q)
962 {
963         struct blk_mq_hw_ctx *hctx;
964         int i;
965
966         queue_for_each_hw_ctx(q, hctx, i)
967                 blk_mq_stop_hw_queue(hctx);
968 }
969 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
970
971 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
972 {
973         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
974
975         blk_mq_run_hw_queue(hctx, false);
976 }
977 EXPORT_SYMBOL(blk_mq_start_hw_queue);
978
979 void blk_mq_start_hw_queues(struct request_queue *q)
980 {
981         struct blk_mq_hw_ctx *hctx;
982         int i;
983
984         queue_for_each_hw_ctx(q, hctx, i)
985                 blk_mq_start_hw_queue(hctx);
986 }
987 EXPORT_SYMBOL(blk_mq_start_hw_queues);
988
989 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
990 {
991         struct blk_mq_hw_ctx *hctx;
992         int i;
993
994         queue_for_each_hw_ctx(q, hctx, i) {
995                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
996                         continue;
997
998                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
999                 blk_mq_run_hw_queue(hctx, async);
1000         }
1001 }
1002 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1003
1004 static void blk_mq_run_work_fn(struct work_struct *work)
1005 {
1006         struct blk_mq_hw_ctx *hctx;
1007
1008         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1009
1010         __blk_mq_run_hw_queue(hctx);
1011 }
1012
1013 static void blk_mq_delay_work_fn(struct work_struct *work)
1014 {
1015         struct blk_mq_hw_ctx *hctx;
1016
1017         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1018
1019         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1020                 __blk_mq_run_hw_queue(hctx);
1021 }
1022
1023 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1024 {
1025         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1026                 return;
1027
1028         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1029                         &hctx->delay_work, msecs_to_jiffies(msecs));
1030 }
1031 EXPORT_SYMBOL(blk_mq_delay_queue);
1032
1033 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1034                                             struct request *rq,
1035                                             bool at_head)
1036 {
1037         struct blk_mq_ctx *ctx = rq->mq_ctx;
1038
1039         trace_block_rq_insert(hctx->queue, rq);
1040
1041         if (at_head)
1042                 list_add(&rq->queuelist, &ctx->rq_list);
1043         else
1044                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1045 }
1046
1047 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1048                                     struct request *rq, bool at_head)
1049 {
1050         struct blk_mq_ctx *ctx = rq->mq_ctx;
1051
1052         __blk_mq_insert_req_list(hctx, rq, at_head);
1053         blk_mq_hctx_mark_pending(hctx, ctx);
1054 }
1055
1056 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1057                            bool async)
1058 {
1059         struct blk_mq_ctx *ctx = rq->mq_ctx;
1060         struct request_queue *q = rq->q;
1061         struct blk_mq_hw_ctx *hctx;
1062
1063         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1064
1065         spin_lock(&ctx->lock);
1066         __blk_mq_insert_request(hctx, rq, at_head);
1067         spin_unlock(&ctx->lock);
1068
1069         if (run_queue)
1070                 blk_mq_run_hw_queue(hctx, async);
1071 }
1072
1073 static void blk_mq_insert_requests(struct request_queue *q,
1074                                      struct blk_mq_ctx *ctx,
1075                                      struct list_head *list,
1076                                      int depth,
1077                                      bool from_schedule)
1078
1079 {
1080         struct blk_mq_hw_ctx *hctx;
1081
1082         trace_block_unplug(q, depth, !from_schedule);
1083
1084         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1085
1086         /*
1087          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1088          * offline now
1089          */
1090         spin_lock(&ctx->lock);
1091         while (!list_empty(list)) {
1092                 struct request *rq;
1093
1094                 rq = list_first_entry(list, struct request, queuelist);
1095                 BUG_ON(rq->mq_ctx != ctx);
1096                 list_del_init(&rq->queuelist);
1097                 __blk_mq_insert_req_list(hctx, rq, false);
1098         }
1099         blk_mq_hctx_mark_pending(hctx, ctx);
1100         spin_unlock(&ctx->lock);
1101
1102         blk_mq_run_hw_queue(hctx, from_schedule);
1103 }
1104
1105 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1106 {
1107         struct request *rqa = container_of(a, struct request, queuelist);
1108         struct request *rqb = container_of(b, struct request, queuelist);
1109
1110         return !(rqa->mq_ctx < rqb->mq_ctx ||
1111                  (rqa->mq_ctx == rqb->mq_ctx &&
1112                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1113 }
1114
1115 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1116 {
1117         struct blk_mq_ctx *this_ctx;
1118         struct request_queue *this_q;
1119         struct request *rq;
1120         LIST_HEAD(list);
1121         LIST_HEAD(ctx_list);
1122         unsigned int depth;
1123
1124         list_splice_init(&plug->mq_list, &list);
1125
1126         list_sort(NULL, &list, plug_ctx_cmp);
1127
1128         this_q = NULL;
1129         this_ctx = NULL;
1130         depth = 0;
1131
1132         while (!list_empty(&list)) {
1133                 rq = list_entry_rq(list.next);
1134                 list_del_init(&rq->queuelist);
1135                 BUG_ON(!rq->q);
1136                 if (rq->mq_ctx != this_ctx) {
1137                         if (this_ctx) {
1138                                 blk_mq_insert_requests(this_q, this_ctx,
1139                                                         &ctx_list, depth,
1140                                                         from_schedule);
1141                         }
1142
1143                         this_ctx = rq->mq_ctx;
1144                         this_q = rq->q;
1145                         depth = 0;
1146                 }
1147
1148                 depth++;
1149                 list_add_tail(&rq->queuelist, &ctx_list);
1150         }
1151
1152         /*
1153          * If 'this_ctx' is set, we know we have entries to complete
1154          * on 'ctx_list'. Do those.
1155          */
1156         if (this_ctx) {
1157                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1158                                        from_schedule);
1159         }
1160 }
1161
1162 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1163 {
1164         init_request_from_bio(rq, bio);
1165
1166         blk_account_io_start(rq, 1);
1167 }
1168
1169 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1170 {
1171         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1172                 !blk_queue_nomerges(hctx->queue);
1173 }
1174
1175 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1176                                          struct blk_mq_ctx *ctx,
1177                                          struct request *rq, struct bio *bio)
1178 {
1179         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1180                 blk_mq_bio_to_request(rq, bio);
1181                 spin_lock(&ctx->lock);
1182 insert_rq:
1183                 __blk_mq_insert_request(hctx, rq, false);
1184                 spin_unlock(&ctx->lock);
1185                 return false;
1186         } else {
1187                 struct request_queue *q = hctx->queue;
1188
1189                 spin_lock(&ctx->lock);
1190                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1191                         blk_mq_bio_to_request(rq, bio);
1192                         goto insert_rq;
1193                 }
1194
1195                 spin_unlock(&ctx->lock);
1196                 __blk_mq_free_request(hctx, ctx, rq);
1197                 return true;
1198         }
1199 }
1200
1201 struct blk_map_ctx {
1202         struct blk_mq_hw_ctx *hctx;
1203         struct blk_mq_ctx *ctx;
1204 };
1205
1206 static struct request *blk_mq_map_request(struct request_queue *q,
1207                                           struct bio *bio,
1208                                           struct blk_map_ctx *data)
1209 {
1210         struct blk_mq_hw_ctx *hctx;
1211         struct blk_mq_ctx *ctx;
1212         struct request *rq;
1213         int op = bio_data_dir(bio);
1214         int op_flags = 0;
1215         struct blk_mq_alloc_data alloc_data;
1216
1217         blk_queue_enter_live(q);
1218         ctx = blk_mq_get_ctx(q);
1219         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1220
1221         if (rw_is_sync(bio_op(bio), bio->bi_opf))
1222                 op_flags |= REQ_SYNC;
1223
1224         trace_block_getrq(q, bio, op);
1225         blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1226         rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1227
1228         hctx->queued++;
1229         data->hctx = hctx;
1230         data->ctx = ctx;
1231         return rq;
1232 }
1233
1234 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1235 {
1236         int ret;
1237         struct request_queue *q = rq->q;
1238         struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1239                         rq->mq_ctx->cpu);
1240         struct blk_mq_queue_data bd = {
1241                 .rq = rq,
1242                 .list = NULL,
1243                 .last = 1
1244         };
1245         blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1246
1247         /*
1248          * For OK queue, we are done. For error, kill it. Any other
1249          * error (busy), just add it to our list as we previously
1250          * would have done
1251          */
1252         ret = q->mq_ops->queue_rq(hctx, &bd);
1253         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1254                 *cookie = new_cookie;
1255                 return 0;
1256         }
1257
1258         __blk_mq_requeue_request(rq);
1259
1260         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1261                 *cookie = BLK_QC_T_NONE;
1262                 rq->errors = -EIO;
1263                 blk_mq_end_request(rq, rq->errors);
1264                 return 0;
1265         }
1266
1267         return -1;
1268 }
1269
1270 /*
1271  * Multiple hardware queue variant. This will not use per-process plugs,
1272  * but will attempt to bypass the hctx queueing if we can go straight to
1273  * hardware for SYNC IO.
1274  */
1275 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1276 {
1277         const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1278         const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1279         struct blk_map_ctx data;
1280         struct request *rq;
1281         unsigned int request_count = 0;
1282         struct blk_plug *plug;
1283         struct request *same_queue_rq = NULL;
1284         blk_qc_t cookie;
1285
1286         blk_queue_bounce(q, &bio);
1287
1288         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1289                 bio_io_error(bio);
1290                 return BLK_QC_T_NONE;
1291         }
1292
1293         blk_queue_split(q, &bio, q->bio_split);
1294
1295         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1296             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1297                 return BLK_QC_T_NONE;
1298
1299         rq = blk_mq_map_request(q, bio, &data);
1300         if (unlikely(!rq))
1301                 return BLK_QC_T_NONE;
1302
1303         cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1304
1305         if (unlikely(is_flush_fua)) {
1306                 blk_mq_bio_to_request(rq, bio);
1307                 blk_insert_flush(rq);
1308                 goto run_queue;
1309         }
1310
1311         plug = current->plug;
1312         /*
1313          * If the driver supports defer issued based on 'last', then
1314          * queue it up like normal since we can potentially save some
1315          * CPU this way.
1316          */
1317         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1318             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1319                 struct request *old_rq = NULL;
1320
1321                 blk_mq_bio_to_request(rq, bio);
1322
1323                 /*
1324                  * We do limited pluging. If the bio can be merged, do that.
1325                  * Otherwise the existing request in the plug list will be
1326                  * issued. So the plug list will have one request at most
1327                  */
1328                 if (plug) {
1329                         /*
1330                          * The plug list might get flushed before this. If that
1331                          * happens, same_queue_rq is invalid and plug list is
1332                          * empty
1333                          */
1334                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1335                                 old_rq = same_queue_rq;
1336                                 list_del_init(&old_rq->queuelist);
1337                         }
1338                         list_add_tail(&rq->queuelist, &plug->mq_list);
1339                 } else /* is_sync */
1340                         old_rq = rq;
1341                 blk_mq_put_ctx(data.ctx);
1342                 if (!old_rq)
1343                         goto done;
1344                 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1345                         goto done;
1346                 blk_mq_insert_request(old_rq, false, true, true);
1347                 goto done;
1348         }
1349
1350         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1351                 /*
1352                  * For a SYNC request, send it to the hardware immediately. For
1353                  * an ASYNC request, just ensure that we run it later on. The
1354                  * latter allows for merging opportunities and more efficient
1355                  * dispatching.
1356                  */
1357 run_queue:
1358                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1359         }
1360         blk_mq_put_ctx(data.ctx);
1361 done:
1362         return cookie;
1363 }
1364
1365 /*
1366  * Single hardware queue variant. This will attempt to use any per-process
1367  * plug for merging and IO deferral.
1368  */
1369 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1370 {
1371         const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1372         const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1373         struct blk_plug *plug;
1374         unsigned int request_count = 0;
1375         struct blk_map_ctx data;
1376         struct request *rq;
1377         blk_qc_t cookie;
1378
1379         blk_queue_bounce(q, &bio);
1380
1381         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1382                 bio_io_error(bio);
1383                 return BLK_QC_T_NONE;
1384         }
1385
1386         blk_queue_split(q, &bio, q->bio_split);
1387
1388         if (!is_flush_fua && !blk_queue_nomerges(q)) {
1389                 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1390                         return BLK_QC_T_NONE;
1391         } else
1392                 request_count = blk_plug_queued_count(q);
1393
1394         rq = blk_mq_map_request(q, bio, &data);
1395         if (unlikely(!rq))
1396                 return BLK_QC_T_NONE;
1397
1398         cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1399
1400         if (unlikely(is_flush_fua)) {
1401                 blk_mq_bio_to_request(rq, bio);
1402                 blk_insert_flush(rq);
1403                 goto run_queue;
1404         }
1405
1406         /*
1407          * A task plug currently exists. Since this is completely lockless,
1408          * utilize that to temporarily store requests until the task is
1409          * either done or scheduled away.
1410          */
1411         plug = current->plug;
1412         if (plug) {
1413                 blk_mq_bio_to_request(rq, bio);
1414                 if (!request_count)
1415                         trace_block_plug(q);
1416
1417                 blk_mq_put_ctx(data.ctx);
1418
1419                 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1420                         blk_flush_plug_list(plug, false);
1421                         trace_block_plug(q);
1422                 }
1423
1424                 list_add_tail(&rq->queuelist, &plug->mq_list);
1425                 return cookie;
1426         }
1427
1428         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1429                 /*
1430                  * For a SYNC request, send it to the hardware immediately. For
1431                  * an ASYNC request, just ensure that we run it later on. The
1432                  * latter allows for merging opportunities and more efficient
1433                  * dispatching.
1434                  */
1435 run_queue:
1436                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1437         }
1438
1439         blk_mq_put_ctx(data.ctx);
1440         return cookie;
1441 }
1442
1443 /*
1444  * Default mapping to a software queue, since we use one per CPU.
1445  */
1446 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1447 {
1448         return q->queue_hw_ctx[q->mq_map[cpu]];
1449 }
1450 EXPORT_SYMBOL(blk_mq_map_queue);
1451
1452 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1453                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1454 {
1455         struct page *page;
1456
1457         if (tags->rqs && set->ops->exit_request) {
1458                 int i;
1459
1460                 for (i = 0; i < tags->nr_tags; i++) {
1461                         if (!tags->rqs[i])
1462                                 continue;
1463                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1464                                                 hctx_idx, i);
1465                         tags->rqs[i] = NULL;
1466                 }
1467         }
1468
1469         while (!list_empty(&tags->page_list)) {
1470                 page = list_first_entry(&tags->page_list, struct page, lru);
1471                 list_del_init(&page->lru);
1472                 /*
1473                  * Remove kmemleak object previously allocated in
1474                  * blk_mq_init_rq_map().
1475                  */
1476                 kmemleak_free(page_address(page));
1477                 __free_pages(page, page->private);
1478         }
1479
1480         kfree(tags->rqs);
1481
1482         blk_mq_free_tags(tags);
1483 }
1484
1485 static size_t order_to_size(unsigned int order)
1486 {
1487         return (size_t)PAGE_SIZE << order;
1488 }
1489
1490 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1491                 unsigned int hctx_idx)
1492 {
1493         struct blk_mq_tags *tags;
1494         unsigned int i, j, entries_per_page, max_order = 4;
1495         size_t rq_size, left;
1496
1497         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1498                                 set->numa_node,
1499                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1500         if (!tags)
1501                 return NULL;
1502
1503         INIT_LIST_HEAD(&tags->page_list);
1504
1505         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1506                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1507                                  set->numa_node);
1508         if (!tags->rqs) {
1509                 blk_mq_free_tags(tags);
1510                 return NULL;
1511         }
1512
1513         /*
1514          * rq_size is the size of the request plus driver payload, rounded
1515          * to the cacheline size
1516          */
1517         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1518                                 cache_line_size());
1519         left = rq_size * set->queue_depth;
1520
1521         for (i = 0; i < set->queue_depth; ) {
1522                 int this_order = max_order;
1523                 struct page *page;
1524                 int to_do;
1525                 void *p;
1526
1527                 while (this_order && left < order_to_size(this_order - 1))
1528                         this_order--;
1529
1530                 do {
1531                         page = alloc_pages_node(set->numa_node,
1532                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1533                                 this_order);
1534                         if (page)
1535                                 break;
1536                         if (!this_order--)
1537                                 break;
1538                         if (order_to_size(this_order) < rq_size)
1539                                 break;
1540                 } while (1);
1541
1542                 if (!page)
1543                         goto fail;
1544
1545                 page->private = this_order;
1546                 list_add_tail(&page->lru, &tags->page_list);
1547
1548                 p = page_address(page);
1549                 /*
1550                  * Allow kmemleak to scan these pages as they contain pointers
1551                  * to additional allocations like via ops->init_request().
1552                  */
1553                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1554                 entries_per_page = order_to_size(this_order) / rq_size;
1555                 to_do = min(entries_per_page, set->queue_depth - i);
1556                 left -= to_do * rq_size;
1557                 for (j = 0; j < to_do; j++) {
1558                         tags->rqs[i] = p;
1559                         if (set->ops->init_request) {
1560                                 if (set->ops->init_request(set->driver_data,
1561                                                 tags->rqs[i], hctx_idx, i,
1562                                                 set->numa_node)) {
1563                                         tags->rqs[i] = NULL;
1564                                         goto fail;
1565                                 }
1566                         }
1567
1568                         p += rq_size;
1569                         i++;
1570                 }
1571         }
1572         return tags;
1573
1574 fail:
1575         blk_mq_free_rq_map(set, tags, hctx_idx);
1576         return NULL;
1577 }
1578
1579 /*
1580  * 'cpu' is going away. splice any existing rq_list entries from this
1581  * software queue to the hw queue dispatch list, and ensure that it
1582  * gets run.
1583  */
1584 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1585 {
1586         struct blk_mq_ctx *ctx;
1587         LIST_HEAD(tmp);
1588
1589         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1590
1591         spin_lock(&ctx->lock);
1592         if (!list_empty(&ctx->rq_list)) {
1593                 list_splice_init(&ctx->rq_list, &tmp);
1594                 blk_mq_hctx_clear_pending(hctx, ctx);
1595         }
1596         spin_unlock(&ctx->lock);
1597
1598         if (list_empty(&tmp))
1599                 return NOTIFY_OK;
1600
1601         spin_lock(&hctx->lock);
1602         list_splice_tail_init(&tmp, &hctx->dispatch);
1603         spin_unlock(&hctx->lock);
1604
1605         blk_mq_run_hw_queue(hctx, true);
1606         return NOTIFY_OK;
1607 }
1608
1609 static int blk_mq_hctx_notify(void *data, unsigned long action,
1610                               unsigned int cpu)
1611 {
1612         struct blk_mq_hw_ctx *hctx = data;
1613
1614         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1615                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1616
1617         /*
1618          * In case of CPU online, tags may be reallocated
1619          * in blk_mq_map_swqueue() after mapping is updated.
1620          */
1621
1622         return NOTIFY_OK;
1623 }
1624
1625 /* hctx->ctxs will be freed in queue's release handler */
1626 static void blk_mq_exit_hctx(struct request_queue *q,
1627                 struct blk_mq_tag_set *set,
1628                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1629 {
1630         unsigned flush_start_tag = set->queue_depth;
1631
1632         blk_mq_tag_idle(hctx);
1633
1634         if (set->ops->exit_request)
1635                 set->ops->exit_request(set->driver_data,
1636                                        hctx->fq->flush_rq, hctx_idx,
1637                                        flush_start_tag + hctx_idx);
1638
1639         if (set->ops->exit_hctx)
1640                 set->ops->exit_hctx(hctx, hctx_idx);
1641
1642         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1643         blk_free_flush_queue(hctx->fq);
1644         sbitmap_free(&hctx->ctx_map);
1645 }
1646
1647 static void blk_mq_exit_hw_queues(struct request_queue *q,
1648                 struct blk_mq_tag_set *set, int nr_queue)
1649 {
1650         struct blk_mq_hw_ctx *hctx;
1651         unsigned int i;
1652
1653         queue_for_each_hw_ctx(q, hctx, i) {
1654                 if (i == nr_queue)
1655                         break;
1656                 blk_mq_exit_hctx(q, set, hctx, i);
1657         }
1658 }
1659
1660 static void blk_mq_free_hw_queues(struct request_queue *q,
1661                 struct blk_mq_tag_set *set)
1662 {
1663         struct blk_mq_hw_ctx *hctx;
1664         unsigned int i;
1665
1666         queue_for_each_hw_ctx(q, hctx, i)
1667                 free_cpumask_var(hctx->cpumask);
1668 }
1669
1670 static int blk_mq_init_hctx(struct request_queue *q,
1671                 struct blk_mq_tag_set *set,
1672                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1673 {
1674         int node;
1675         unsigned flush_start_tag = set->queue_depth;
1676
1677         node = hctx->numa_node;
1678         if (node == NUMA_NO_NODE)
1679                 node = hctx->numa_node = set->numa_node;
1680
1681         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1682         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1683         spin_lock_init(&hctx->lock);
1684         INIT_LIST_HEAD(&hctx->dispatch);
1685         hctx->queue = q;
1686         hctx->queue_num = hctx_idx;
1687         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1688
1689         blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1690                                         blk_mq_hctx_notify, hctx);
1691         blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1692
1693         hctx->tags = set->tags[hctx_idx];
1694
1695         /*
1696          * Allocate space for all possible cpus to avoid allocation at
1697          * runtime
1698          */
1699         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1700                                         GFP_KERNEL, node);
1701         if (!hctx->ctxs)
1702                 goto unregister_cpu_notifier;
1703
1704         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1705                               node))
1706                 goto free_ctxs;
1707
1708         hctx->nr_ctx = 0;
1709
1710         if (set->ops->init_hctx &&
1711             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1712                 goto free_bitmap;
1713
1714         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1715         if (!hctx->fq)
1716                 goto exit_hctx;
1717
1718         if (set->ops->init_request &&
1719             set->ops->init_request(set->driver_data,
1720                                    hctx->fq->flush_rq, hctx_idx,
1721                                    flush_start_tag + hctx_idx, node))
1722                 goto free_fq;
1723
1724         return 0;
1725
1726  free_fq:
1727         kfree(hctx->fq);
1728  exit_hctx:
1729         if (set->ops->exit_hctx)
1730                 set->ops->exit_hctx(hctx, hctx_idx);
1731  free_bitmap:
1732         sbitmap_free(&hctx->ctx_map);
1733  free_ctxs:
1734         kfree(hctx->ctxs);
1735  unregister_cpu_notifier:
1736         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1737
1738         return -1;
1739 }
1740
1741 static void blk_mq_init_cpu_queues(struct request_queue *q,
1742                                    unsigned int nr_hw_queues)
1743 {
1744         unsigned int i;
1745
1746         for_each_possible_cpu(i) {
1747                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1748                 struct blk_mq_hw_ctx *hctx;
1749
1750                 memset(__ctx, 0, sizeof(*__ctx));
1751                 __ctx->cpu = i;
1752                 spin_lock_init(&__ctx->lock);
1753                 INIT_LIST_HEAD(&__ctx->rq_list);
1754                 __ctx->queue = q;
1755
1756                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1757                 if (!cpu_online(i))
1758                         continue;
1759
1760                 hctx = q->mq_ops->map_queue(q, i);
1761
1762                 /*
1763                  * Set local node, IFF we have more than one hw queue. If
1764                  * not, we remain on the home node of the device
1765                  */
1766                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1767                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1768         }
1769 }
1770
1771 static void blk_mq_map_swqueue(struct request_queue *q,
1772                                const struct cpumask *online_mask)
1773 {
1774         unsigned int i;
1775         struct blk_mq_hw_ctx *hctx;
1776         struct blk_mq_ctx *ctx;
1777         struct blk_mq_tag_set *set = q->tag_set;
1778
1779         /*
1780          * Avoid others reading imcomplete hctx->cpumask through sysfs
1781          */
1782         mutex_lock(&q->sysfs_lock);
1783
1784         queue_for_each_hw_ctx(q, hctx, i) {
1785                 cpumask_clear(hctx->cpumask);
1786                 hctx->nr_ctx = 0;
1787         }
1788
1789         /*
1790          * Map software to hardware queues
1791          */
1792         for_each_possible_cpu(i) {
1793                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1794                 if (!cpumask_test_cpu(i, online_mask))
1795                         continue;
1796
1797                 ctx = per_cpu_ptr(q->queue_ctx, i);
1798                 hctx = q->mq_ops->map_queue(q, i);
1799
1800                 cpumask_set_cpu(i, hctx->cpumask);
1801                 ctx->index_hw = hctx->nr_ctx;
1802                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1803         }
1804
1805         mutex_unlock(&q->sysfs_lock);
1806
1807         queue_for_each_hw_ctx(q, hctx, i) {
1808                 /*
1809                  * If no software queues are mapped to this hardware queue,
1810                  * disable it and free the request entries.
1811                  */
1812                 if (!hctx->nr_ctx) {
1813                         if (set->tags[i]) {
1814                                 blk_mq_free_rq_map(set, set->tags[i], i);
1815                                 set->tags[i] = NULL;
1816                         }
1817                         hctx->tags = NULL;
1818                         continue;
1819                 }
1820
1821                 /* unmapped hw queue can be remapped after CPU topo changed */
1822                 if (!set->tags[i])
1823                         set->tags[i] = blk_mq_init_rq_map(set, i);
1824                 hctx->tags = set->tags[i];
1825                 WARN_ON(!hctx->tags);
1826
1827                 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1828                 /*
1829                  * Set the map size to the number of mapped software queues.
1830                  * This is more accurate and more efficient than looping
1831                  * over all possibly mapped software queues.
1832                  */
1833                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1834
1835                 /*
1836                  * Initialize batch roundrobin counts
1837                  */
1838                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1839                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1840         }
1841 }
1842
1843 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1844 {
1845         struct blk_mq_hw_ctx *hctx;
1846         int i;
1847
1848         queue_for_each_hw_ctx(q, hctx, i) {
1849                 if (shared)
1850                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
1851                 else
1852                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1853         }
1854 }
1855
1856 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1857 {
1858         struct request_queue *q;
1859
1860         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1861                 blk_mq_freeze_queue(q);
1862                 queue_set_hctx_shared(q, shared);
1863                 blk_mq_unfreeze_queue(q);
1864         }
1865 }
1866
1867 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1868 {
1869         struct blk_mq_tag_set *set = q->tag_set;
1870
1871         mutex_lock(&set->tag_list_lock);
1872         list_del_init(&q->tag_set_list);
1873         if (list_is_singular(&set->tag_list)) {
1874                 /* just transitioned to unshared */
1875                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1876                 /* update existing queue */
1877                 blk_mq_update_tag_set_depth(set, false);
1878         }
1879         mutex_unlock(&set->tag_list_lock);
1880 }
1881
1882 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1883                                      struct request_queue *q)
1884 {
1885         q->tag_set = set;
1886
1887         mutex_lock(&set->tag_list_lock);
1888
1889         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1890         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1891                 set->flags |= BLK_MQ_F_TAG_SHARED;
1892                 /* update existing queue */
1893                 blk_mq_update_tag_set_depth(set, true);
1894         }
1895         if (set->flags & BLK_MQ_F_TAG_SHARED)
1896                 queue_set_hctx_shared(q, true);
1897         list_add_tail(&q->tag_set_list, &set->tag_list);
1898
1899         mutex_unlock(&set->tag_list_lock);
1900 }
1901
1902 /*
1903  * It is the actual release handler for mq, but we do it from
1904  * request queue's release handler for avoiding use-after-free
1905  * and headache because q->mq_kobj shouldn't have been introduced,
1906  * but we can't group ctx/kctx kobj without it.
1907  */
1908 void blk_mq_release(struct request_queue *q)
1909 {
1910         struct blk_mq_hw_ctx *hctx;
1911         unsigned int i;
1912
1913         /* hctx kobj stays in hctx */
1914         queue_for_each_hw_ctx(q, hctx, i) {
1915                 if (!hctx)
1916                         continue;
1917                 kfree(hctx->ctxs);
1918                 kfree(hctx);
1919         }
1920
1921         kfree(q->mq_map);
1922         q->mq_map = NULL;
1923
1924         kfree(q->queue_hw_ctx);
1925
1926         /* ctx kobj stays in queue_ctx */
1927         free_percpu(q->queue_ctx);
1928 }
1929
1930 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1931 {
1932         struct request_queue *uninit_q, *q;
1933
1934         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1935         if (!uninit_q)
1936                 return ERR_PTR(-ENOMEM);
1937
1938         q = blk_mq_init_allocated_queue(set, uninit_q);
1939         if (IS_ERR(q))
1940                 blk_cleanup_queue(uninit_q);
1941
1942         return q;
1943 }
1944 EXPORT_SYMBOL(blk_mq_init_queue);
1945
1946 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1947                                                 struct request_queue *q)
1948 {
1949         int i, j;
1950         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1951
1952         blk_mq_sysfs_unregister(q);
1953         for (i = 0; i < set->nr_hw_queues; i++) {
1954                 int node;
1955
1956                 if (hctxs[i])
1957                         continue;
1958
1959                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1960                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1961                                         GFP_KERNEL, node);
1962                 if (!hctxs[i])
1963                         break;
1964
1965                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1966                                                 node)) {
1967                         kfree(hctxs[i]);
1968                         hctxs[i] = NULL;
1969                         break;
1970                 }
1971
1972                 atomic_set(&hctxs[i]->nr_active, 0);
1973                 hctxs[i]->numa_node = node;
1974                 hctxs[i]->queue_num = i;
1975
1976                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1977                         free_cpumask_var(hctxs[i]->cpumask);
1978                         kfree(hctxs[i]);
1979                         hctxs[i] = NULL;
1980                         break;
1981                 }
1982                 blk_mq_hctx_kobj_init(hctxs[i]);
1983         }
1984         for (j = i; j < q->nr_hw_queues; j++) {
1985                 struct blk_mq_hw_ctx *hctx = hctxs[j];
1986
1987                 if (hctx) {
1988                         if (hctx->tags) {
1989                                 blk_mq_free_rq_map(set, hctx->tags, j);
1990                                 set->tags[j] = NULL;
1991                         }
1992                         blk_mq_exit_hctx(q, set, hctx, j);
1993                         free_cpumask_var(hctx->cpumask);
1994                         kobject_put(&hctx->kobj);
1995                         kfree(hctx->ctxs);
1996                         kfree(hctx);
1997                         hctxs[j] = NULL;
1998
1999                 }
2000         }
2001         q->nr_hw_queues = i;
2002         blk_mq_sysfs_register(q);
2003 }
2004
2005 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2006                                                   struct request_queue *q)
2007 {
2008         /* mark the queue as mq asap */
2009         q->mq_ops = set->ops;
2010
2011         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2012         if (!q->queue_ctx)
2013                 goto err_exit;
2014
2015         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2016                                                 GFP_KERNEL, set->numa_node);
2017         if (!q->queue_hw_ctx)
2018                 goto err_percpu;
2019
2020         q->mq_map = blk_mq_make_queue_map(set);
2021         if (!q->mq_map)
2022                 goto err_map;
2023
2024         blk_mq_realloc_hw_ctxs(set, q);
2025         if (!q->nr_hw_queues)
2026                 goto err_hctxs;
2027
2028         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2029         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2030
2031         q->nr_queues = nr_cpu_ids;
2032
2033         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2034
2035         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2036                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2037
2038         q->sg_reserved_size = INT_MAX;
2039
2040         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2041         INIT_LIST_HEAD(&q->requeue_list);
2042         spin_lock_init(&q->requeue_lock);
2043
2044         if (q->nr_hw_queues > 1)
2045                 blk_queue_make_request(q, blk_mq_make_request);
2046         else
2047                 blk_queue_make_request(q, blk_sq_make_request);
2048
2049         /*
2050          * Do this after blk_queue_make_request() overrides it...
2051          */
2052         q->nr_requests = set->queue_depth;
2053
2054         if (set->ops->complete)
2055                 blk_queue_softirq_done(q, set->ops->complete);
2056
2057         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2058
2059         get_online_cpus();
2060         mutex_lock(&all_q_mutex);
2061
2062         list_add_tail(&q->all_q_node, &all_q_list);
2063         blk_mq_add_queue_tag_set(set, q);
2064         blk_mq_map_swqueue(q, cpu_online_mask);
2065
2066         mutex_unlock(&all_q_mutex);
2067         put_online_cpus();
2068
2069         return q;
2070
2071 err_hctxs:
2072         kfree(q->mq_map);
2073 err_map:
2074         kfree(q->queue_hw_ctx);
2075 err_percpu:
2076         free_percpu(q->queue_ctx);
2077 err_exit:
2078         q->mq_ops = NULL;
2079         return ERR_PTR(-ENOMEM);
2080 }
2081 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2082
2083 void blk_mq_free_queue(struct request_queue *q)
2084 {
2085         struct blk_mq_tag_set   *set = q->tag_set;
2086
2087         mutex_lock(&all_q_mutex);
2088         list_del_init(&q->all_q_node);
2089         mutex_unlock(&all_q_mutex);
2090
2091         blk_mq_del_queue_tag_set(q);
2092
2093         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2094         blk_mq_free_hw_queues(q, set);
2095 }
2096
2097 /* Basically redo blk_mq_init_queue with queue frozen */
2098 static void blk_mq_queue_reinit(struct request_queue *q,
2099                                 const struct cpumask *online_mask)
2100 {
2101         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2102
2103         blk_mq_sysfs_unregister(q);
2104
2105         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2106
2107         /*
2108          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2109          * we should change hctx numa_node according to new topology (this
2110          * involves free and re-allocate memory, worthy doing?)
2111          */
2112
2113         blk_mq_map_swqueue(q, online_mask);
2114
2115         blk_mq_sysfs_register(q);
2116 }
2117
2118 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2119                                       unsigned long action, void *hcpu)
2120 {
2121         struct request_queue *q;
2122         int cpu = (unsigned long)hcpu;
2123         /*
2124          * New online cpumask which is going to be set in this hotplug event.
2125          * Declare this cpumasks as global as cpu-hotplug operation is invoked
2126          * one-by-one and dynamically allocating this could result in a failure.
2127          */
2128         static struct cpumask online_new;
2129
2130         /*
2131          * Before hotadded cpu starts handling requests, new mappings must
2132          * be established.  Otherwise, these requests in hw queue might
2133          * never be dispatched.
2134          *
2135          * For example, there is a single hw queue (hctx) and two CPU queues
2136          * (ctx0 for CPU0, and ctx1 for CPU1).
2137          *
2138          * Now CPU1 is just onlined and a request is inserted into
2139          * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2140          * still zero.
2141          *
2142          * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2143          * set in pending bitmap and tries to retrieve requests in
2144          * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2145          * so the request in ctx1->rq_list is ignored.
2146          */
2147         switch (action & ~CPU_TASKS_FROZEN) {
2148         case CPU_DEAD:
2149         case CPU_UP_CANCELED:
2150                 cpumask_copy(&online_new, cpu_online_mask);
2151                 break;
2152         case CPU_UP_PREPARE:
2153                 cpumask_copy(&online_new, cpu_online_mask);
2154                 cpumask_set_cpu(cpu, &online_new);
2155                 break;
2156         default:
2157                 return NOTIFY_OK;
2158         }
2159
2160         mutex_lock(&all_q_mutex);
2161
2162         /*
2163          * We need to freeze and reinit all existing queues.  Freezing
2164          * involves synchronous wait for an RCU grace period and doing it
2165          * one by one may take a long time.  Start freezing all queues in
2166          * one swoop and then wait for the completions so that freezing can
2167          * take place in parallel.
2168          */
2169         list_for_each_entry(q, &all_q_list, all_q_node)
2170                 blk_mq_freeze_queue_start(q);
2171         list_for_each_entry(q, &all_q_list, all_q_node) {
2172                 blk_mq_freeze_queue_wait(q);
2173
2174                 /*
2175                  * timeout handler can't touch hw queue during the
2176                  * reinitialization
2177                  */
2178                 del_timer_sync(&q->timeout);
2179         }
2180
2181         list_for_each_entry(q, &all_q_list, all_q_node)
2182                 blk_mq_queue_reinit(q, &online_new);
2183
2184         list_for_each_entry(q, &all_q_list, all_q_node)
2185                 blk_mq_unfreeze_queue(q);
2186
2187         mutex_unlock(&all_q_mutex);
2188         return NOTIFY_OK;
2189 }
2190
2191 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2192 {
2193         int i;
2194
2195         for (i = 0; i < set->nr_hw_queues; i++) {
2196                 set->tags[i] = blk_mq_init_rq_map(set, i);
2197                 if (!set->tags[i])
2198                         goto out_unwind;
2199         }
2200
2201         return 0;
2202
2203 out_unwind:
2204         while (--i >= 0)
2205                 blk_mq_free_rq_map(set, set->tags[i], i);
2206
2207         return -ENOMEM;
2208 }
2209
2210 /*
2211  * Allocate the request maps associated with this tag_set. Note that this
2212  * may reduce the depth asked for, if memory is tight. set->queue_depth
2213  * will be updated to reflect the allocated depth.
2214  */
2215 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2216 {
2217         unsigned int depth;
2218         int err;
2219
2220         depth = set->queue_depth;
2221         do {
2222                 err = __blk_mq_alloc_rq_maps(set);
2223                 if (!err)
2224                         break;
2225
2226                 set->queue_depth >>= 1;
2227                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2228                         err = -ENOMEM;
2229                         break;
2230                 }
2231         } while (set->queue_depth);
2232
2233         if (!set->queue_depth || err) {
2234                 pr_err("blk-mq: failed to allocate request map\n");
2235                 return -ENOMEM;
2236         }
2237
2238         if (depth != set->queue_depth)
2239                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2240                                                 depth, set->queue_depth);
2241
2242         return 0;
2243 }
2244
2245 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2246 {
2247         return tags->cpumask;
2248 }
2249 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2250
2251 /*
2252  * Alloc a tag set to be associated with one or more request queues.
2253  * May fail with EINVAL for various error conditions. May adjust the
2254  * requested depth down, if if it too large. In that case, the set
2255  * value will be stored in set->queue_depth.
2256  */
2257 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2258 {
2259         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2260
2261         if (!set->nr_hw_queues)
2262                 return -EINVAL;
2263         if (!set->queue_depth)
2264                 return -EINVAL;
2265         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2266                 return -EINVAL;
2267
2268         if (!set->ops->queue_rq || !set->ops->map_queue)
2269                 return -EINVAL;
2270
2271         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2272                 pr_info("blk-mq: reduced tag depth to %u\n",
2273                         BLK_MQ_MAX_DEPTH);
2274                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2275         }
2276
2277         /*
2278          * If a crashdump is active, then we are potentially in a very
2279          * memory constrained environment. Limit us to 1 queue and
2280          * 64 tags to prevent using too much memory.
2281          */
2282         if (is_kdump_kernel()) {
2283                 set->nr_hw_queues = 1;
2284                 set->queue_depth = min(64U, set->queue_depth);
2285         }
2286         /*
2287          * There is no use for more h/w queues than cpus.
2288          */
2289         if (set->nr_hw_queues > nr_cpu_ids)
2290                 set->nr_hw_queues = nr_cpu_ids;
2291
2292         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2293                                  GFP_KERNEL, set->numa_node);
2294         if (!set->tags)
2295                 return -ENOMEM;
2296
2297         if (blk_mq_alloc_rq_maps(set))
2298                 goto enomem;
2299
2300         mutex_init(&set->tag_list_lock);
2301         INIT_LIST_HEAD(&set->tag_list);
2302
2303         return 0;
2304 enomem:
2305         kfree(set->tags);
2306         set->tags = NULL;
2307         return -ENOMEM;
2308 }
2309 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2310
2311 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2312 {
2313         int i;
2314
2315         for (i = 0; i < nr_cpu_ids; i++) {
2316                 if (set->tags[i])
2317                         blk_mq_free_rq_map(set, set->tags[i], i);
2318         }
2319
2320         kfree(set->tags);
2321         set->tags = NULL;
2322 }
2323 EXPORT_SYMBOL(blk_mq_free_tag_set);
2324
2325 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2326 {
2327         struct blk_mq_tag_set *set = q->tag_set;
2328         struct blk_mq_hw_ctx *hctx;
2329         int i, ret;
2330
2331         if (!set || nr > set->queue_depth)
2332                 return -EINVAL;
2333
2334         ret = 0;
2335         queue_for_each_hw_ctx(q, hctx, i) {
2336                 if (!hctx->tags)
2337                         continue;
2338                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2339                 if (ret)
2340                         break;
2341         }
2342
2343         if (!ret)
2344                 q->nr_requests = nr;
2345
2346         return ret;
2347 }
2348
2349 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2350 {
2351         struct request_queue *q;
2352
2353         if (nr_hw_queues > nr_cpu_ids)
2354                 nr_hw_queues = nr_cpu_ids;
2355         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2356                 return;
2357
2358         list_for_each_entry(q, &set->tag_list, tag_set_list)
2359                 blk_mq_freeze_queue(q);
2360
2361         set->nr_hw_queues = nr_hw_queues;
2362         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2363                 blk_mq_realloc_hw_ctxs(set, q);
2364
2365                 if (q->nr_hw_queues > 1)
2366                         blk_queue_make_request(q, blk_mq_make_request);
2367                 else
2368                         blk_queue_make_request(q, blk_sq_make_request);
2369
2370                 blk_mq_queue_reinit(q, cpu_online_mask);
2371         }
2372
2373         list_for_each_entry(q, &set->tag_list, tag_set_list)
2374                 blk_mq_unfreeze_queue(q);
2375 }
2376 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2377
2378 void blk_mq_disable_hotplug(void)
2379 {
2380         mutex_lock(&all_q_mutex);
2381 }
2382
2383 void blk_mq_enable_hotplug(void)
2384 {
2385         mutex_unlock(&all_q_mutex);
2386 }
2387
2388 static int __init blk_mq_init(void)
2389 {
2390         blk_mq_cpu_init();
2391
2392         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2393
2394         return 0;
2395 }
2396 subsys_initcall(blk_mq_init);