Merge tag 'iwlwifi-next-for-kalle-2016-03-09_2' of https://git.kernel.org/pub/scm...
[cascardo/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5         tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16         tristate "Cryptographic API"
17         help
18           This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25         bool "FIPS 200 compliance"
26         depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27         depends on MODULE_SIG
28         help
29           This options enables the fips boot option which is
30           required if you want to system to operate in a FIPS 200
31           certification.  You should say no unless you know what
32           this is.
33
34 config CRYPTO_ALGAPI
35         tristate
36         select CRYPTO_ALGAPI2
37         help
38           This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41         tristate
42
43 config CRYPTO_AEAD
44         tristate
45         select CRYPTO_AEAD2
46         select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49         tristate
50         select CRYPTO_ALGAPI2
51         select CRYPTO_NULL2
52         select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55         tristate
56         select CRYPTO_BLKCIPHER2
57         select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60         tristate
61         select CRYPTO_ALGAPI2
62         select CRYPTO_RNG2
63         select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66         tristate
67         select CRYPTO_HASH2
68         select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71         tristate
72         select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75         tristate
76         select CRYPTO_RNG2
77         select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80         tristate
81         select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84         tristate
85         select CRYPTO_DRBG_MENU
86
87 config CRYPTO_PCOMP
88         tristate
89         select CRYPTO_PCOMP2
90         select CRYPTO_ALGAPI
91
92 config CRYPTO_PCOMP2
93         tristate
94         select CRYPTO_ALGAPI2
95
96 config CRYPTO_AKCIPHER2
97         tristate
98         select CRYPTO_ALGAPI2
99
100 config CRYPTO_AKCIPHER
101         tristate
102         select CRYPTO_AKCIPHER2
103         select CRYPTO_ALGAPI
104
105 config CRYPTO_RSA
106         tristate "RSA algorithm"
107         select CRYPTO_AKCIPHER
108         select MPILIB
109         select ASN1
110         help
111           Generic implementation of the RSA public key algorithm.
112
113 config CRYPTO_MANAGER
114         tristate "Cryptographic algorithm manager"
115         select CRYPTO_MANAGER2
116         help
117           Create default cryptographic template instantiations such as
118           cbc(aes).
119
120 config CRYPTO_MANAGER2
121         def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
122         select CRYPTO_AEAD2
123         select CRYPTO_HASH2
124         select CRYPTO_BLKCIPHER2
125         select CRYPTO_PCOMP2
126         select CRYPTO_AKCIPHER2
127
128 config CRYPTO_USER
129         tristate "Userspace cryptographic algorithm configuration"
130         depends on NET
131         select CRYPTO_MANAGER
132         help
133           Userspace configuration for cryptographic instantiations such as
134           cbc(aes).
135
136 config CRYPTO_MANAGER_DISABLE_TESTS
137         bool "Disable run-time self tests"
138         default y
139         depends on CRYPTO_MANAGER2
140         help
141           Disable run-time self tests that normally take place at
142           algorithm registration.
143
144 config CRYPTO_GF128MUL
145         tristate "GF(2^128) multiplication functions"
146         help
147           Efficient table driven implementation of multiplications in the
148           field GF(2^128).  This is needed by some cypher modes. This
149           option will be selected automatically if you select such a
150           cipher mode.  Only select this option by hand if you expect to load
151           an external module that requires these functions.
152
153 config CRYPTO_NULL
154         tristate "Null algorithms"
155         select CRYPTO_NULL2
156         help
157           These are 'Null' algorithms, used by IPsec, which do nothing.
158
159 config CRYPTO_NULL2
160         tristate
161         select CRYPTO_ALGAPI2
162         select CRYPTO_BLKCIPHER2
163         select CRYPTO_HASH2
164
165 config CRYPTO_PCRYPT
166         tristate "Parallel crypto engine"
167         depends on SMP
168         select PADATA
169         select CRYPTO_MANAGER
170         select CRYPTO_AEAD
171         help
172           This converts an arbitrary crypto algorithm into a parallel
173           algorithm that executes in kernel threads.
174
175 config CRYPTO_WORKQUEUE
176        tristate
177
178 config CRYPTO_CRYPTD
179         tristate "Software async crypto daemon"
180         select CRYPTO_BLKCIPHER
181         select CRYPTO_HASH
182         select CRYPTO_MANAGER
183         select CRYPTO_WORKQUEUE
184         help
185           This is a generic software asynchronous crypto daemon that
186           converts an arbitrary synchronous software crypto algorithm
187           into an asynchronous algorithm that executes in a kernel thread.
188
189 config CRYPTO_MCRYPTD
190         tristate "Software async multi-buffer crypto daemon"
191         select CRYPTO_BLKCIPHER
192         select CRYPTO_HASH
193         select CRYPTO_MANAGER
194         select CRYPTO_WORKQUEUE
195         help
196           This is a generic software asynchronous crypto daemon that
197           provides the kernel thread to assist multi-buffer crypto
198           algorithms for submitting jobs and flushing jobs in multi-buffer
199           crypto algorithms.  Multi-buffer crypto algorithms are executed
200           in the context of this kernel thread and drivers can post
201           their crypto request asynchronously to be processed by this daemon.
202
203 config CRYPTO_AUTHENC
204         tristate "Authenc support"
205         select CRYPTO_AEAD
206         select CRYPTO_BLKCIPHER
207         select CRYPTO_MANAGER
208         select CRYPTO_HASH
209         select CRYPTO_NULL
210         help
211           Authenc: Combined mode wrapper for IPsec.
212           This is required for IPSec.
213
214 config CRYPTO_TEST
215         tristate "Testing module"
216         depends on m
217         select CRYPTO_MANAGER
218         help
219           Quick & dirty crypto test module.
220
221 config CRYPTO_ABLK_HELPER
222         tristate
223         select CRYPTO_CRYPTD
224
225 config CRYPTO_GLUE_HELPER_X86
226         tristate
227         depends on X86
228         select CRYPTO_ALGAPI
229
230 comment "Authenticated Encryption with Associated Data"
231
232 config CRYPTO_CCM
233         tristate "CCM support"
234         select CRYPTO_CTR
235         select CRYPTO_AEAD
236         help
237           Support for Counter with CBC MAC. Required for IPsec.
238
239 config CRYPTO_GCM
240         tristate "GCM/GMAC support"
241         select CRYPTO_CTR
242         select CRYPTO_AEAD
243         select CRYPTO_GHASH
244         select CRYPTO_NULL
245         help
246           Support for Galois/Counter Mode (GCM) and Galois Message
247           Authentication Code (GMAC). Required for IPSec.
248
249 config CRYPTO_CHACHA20POLY1305
250         tristate "ChaCha20-Poly1305 AEAD support"
251         select CRYPTO_CHACHA20
252         select CRYPTO_POLY1305
253         select CRYPTO_AEAD
254         help
255           ChaCha20-Poly1305 AEAD support, RFC7539.
256
257           Support for the AEAD wrapper using the ChaCha20 stream cipher combined
258           with the Poly1305 authenticator. It is defined in RFC7539 for use in
259           IETF protocols.
260
261 config CRYPTO_SEQIV
262         tristate "Sequence Number IV Generator"
263         select CRYPTO_AEAD
264         select CRYPTO_BLKCIPHER
265         select CRYPTO_NULL
266         select CRYPTO_RNG_DEFAULT
267         help
268           This IV generator generates an IV based on a sequence number by
269           xoring it with a salt.  This algorithm is mainly useful for CTR
270
271 config CRYPTO_ECHAINIV
272         tristate "Encrypted Chain IV Generator"
273         select CRYPTO_AEAD
274         select CRYPTO_NULL
275         select CRYPTO_RNG_DEFAULT
276         default m
277         help
278           This IV generator generates an IV based on the encryption of
279           a sequence number xored with a salt.  This is the default
280           algorithm for CBC.
281
282 comment "Block modes"
283
284 config CRYPTO_CBC
285         tristate "CBC support"
286         select CRYPTO_BLKCIPHER
287         select CRYPTO_MANAGER
288         help
289           CBC: Cipher Block Chaining mode
290           This block cipher algorithm is required for IPSec.
291
292 config CRYPTO_CTR
293         tristate "CTR support"
294         select CRYPTO_BLKCIPHER
295         select CRYPTO_SEQIV
296         select CRYPTO_MANAGER
297         help
298           CTR: Counter mode
299           This block cipher algorithm is required for IPSec.
300
301 config CRYPTO_CTS
302         tristate "CTS support"
303         select CRYPTO_BLKCIPHER
304         help
305           CTS: Cipher Text Stealing
306           This is the Cipher Text Stealing mode as described by
307           Section 8 of rfc2040 and referenced by rfc3962.
308           (rfc3962 includes errata information in its Appendix A)
309           This mode is required for Kerberos gss mechanism support
310           for AES encryption.
311
312 config CRYPTO_ECB
313         tristate "ECB support"
314         select CRYPTO_BLKCIPHER
315         select CRYPTO_MANAGER
316         help
317           ECB: Electronic CodeBook mode
318           This is the simplest block cipher algorithm.  It simply encrypts
319           the input block by block.
320
321 config CRYPTO_LRW
322         tristate "LRW support"
323         select CRYPTO_BLKCIPHER
324         select CRYPTO_MANAGER
325         select CRYPTO_GF128MUL
326         help
327           LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
328           narrow block cipher mode for dm-crypt.  Use it with cipher
329           specification string aes-lrw-benbi, the key must be 256, 320 or 384.
330           The first 128, 192 or 256 bits in the key are used for AES and the
331           rest is used to tie each cipher block to its logical position.
332
333 config CRYPTO_PCBC
334         tristate "PCBC support"
335         select CRYPTO_BLKCIPHER
336         select CRYPTO_MANAGER
337         help
338           PCBC: Propagating Cipher Block Chaining mode
339           This block cipher algorithm is required for RxRPC.
340
341 config CRYPTO_XTS
342         tristate "XTS support"
343         select CRYPTO_BLKCIPHER
344         select CRYPTO_MANAGER
345         select CRYPTO_GF128MUL
346         help
347           XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
348           key size 256, 384 or 512 bits. This implementation currently
349           can't handle a sectorsize which is not a multiple of 16 bytes.
350
351 config CRYPTO_KEYWRAP
352         tristate "Key wrapping support"
353         select CRYPTO_BLKCIPHER
354         help
355           Support for key wrapping (NIST SP800-38F / RFC3394) without
356           padding.
357
358 comment "Hash modes"
359
360 config CRYPTO_CMAC
361         tristate "CMAC support"
362         select CRYPTO_HASH
363         select CRYPTO_MANAGER
364         help
365           Cipher-based Message Authentication Code (CMAC) specified by
366           The National Institute of Standards and Technology (NIST).
367
368           https://tools.ietf.org/html/rfc4493
369           http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
370
371 config CRYPTO_HMAC
372         tristate "HMAC support"
373         select CRYPTO_HASH
374         select CRYPTO_MANAGER
375         help
376           HMAC: Keyed-Hashing for Message Authentication (RFC2104).
377           This is required for IPSec.
378
379 config CRYPTO_XCBC
380         tristate "XCBC support"
381         select CRYPTO_HASH
382         select CRYPTO_MANAGER
383         help
384           XCBC: Keyed-Hashing with encryption algorithm
385                 http://www.ietf.org/rfc/rfc3566.txt
386                 http://csrc.nist.gov/encryption/modes/proposedmodes/
387                  xcbc-mac/xcbc-mac-spec.pdf
388
389 config CRYPTO_VMAC
390         tristate "VMAC support"
391         select CRYPTO_HASH
392         select CRYPTO_MANAGER
393         help
394           VMAC is a message authentication algorithm designed for
395           very high speed on 64-bit architectures.
396
397           See also:
398           <http://fastcrypto.org/vmac>
399
400 comment "Digest"
401
402 config CRYPTO_CRC32C
403         tristate "CRC32c CRC algorithm"
404         select CRYPTO_HASH
405         select CRC32
406         help
407           Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
408           by iSCSI for header and data digests and by others.
409           See Castagnoli93.  Module will be crc32c.
410
411 config CRYPTO_CRC32C_INTEL
412         tristate "CRC32c INTEL hardware acceleration"
413         depends on X86
414         select CRYPTO_HASH
415         help
416           In Intel processor with SSE4.2 supported, the processor will
417           support CRC32C implementation using hardware accelerated CRC32
418           instruction. This option will create 'crc32c-intel' module,
419           which will enable any routine to use the CRC32 instruction to
420           gain performance compared with software implementation.
421           Module will be crc32c-intel.
422
423 config CRYPTO_CRC32C_SPARC64
424         tristate "CRC32c CRC algorithm (SPARC64)"
425         depends on SPARC64
426         select CRYPTO_HASH
427         select CRC32
428         help
429           CRC32c CRC algorithm implemented using sparc64 crypto instructions,
430           when available.
431
432 config CRYPTO_CRC32
433         tristate "CRC32 CRC algorithm"
434         select CRYPTO_HASH
435         select CRC32
436         help
437           CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
438           Shash crypto api wrappers to crc32_le function.
439
440 config CRYPTO_CRC32_PCLMUL
441         tristate "CRC32 PCLMULQDQ hardware acceleration"
442         depends on X86
443         select CRYPTO_HASH
444         select CRC32
445         help
446           From Intel Westmere and AMD Bulldozer processor with SSE4.2
447           and PCLMULQDQ supported, the processor will support
448           CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
449           instruction. This option will create 'crc32-plcmul' module,
450           which will enable any routine to use the CRC-32-IEEE 802.3 checksum
451           and gain better performance as compared with the table implementation.
452
453 config CRYPTO_CRCT10DIF
454         tristate "CRCT10DIF algorithm"
455         select CRYPTO_HASH
456         help
457           CRC T10 Data Integrity Field computation is being cast as
458           a crypto transform.  This allows for faster crc t10 diff
459           transforms to be used if they are available.
460
461 config CRYPTO_CRCT10DIF_PCLMUL
462         tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
463         depends on X86 && 64BIT && CRC_T10DIF
464         select CRYPTO_HASH
465         help
466           For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
467           CRC T10 DIF PCLMULQDQ computation can be hardware
468           accelerated PCLMULQDQ instruction. This option will create
469           'crct10dif-plcmul' module, which is faster when computing the
470           crct10dif checksum as compared with the generic table implementation.
471
472 config CRYPTO_GHASH
473         tristate "GHASH digest algorithm"
474         select CRYPTO_GF128MUL
475         select CRYPTO_HASH
476         help
477           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
478
479 config CRYPTO_POLY1305
480         tristate "Poly1305 authenticator algorithm"
481         select CRYPTO_HASH
482         help
483           Poly1305 authenticator algorithm, RFC7539.
484
485           Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
486           It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
487           in IETF protocols. This is the portable C implementation of Poly1305.
488
489 config CRYPTO_POLY1305_X86_64
490         tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
491         depends on X86 && 64BIT
492         select CRYPTO_POLY1305
493         help
494           Poly1305 authenticator algorithm, RFC7539.
495
496           Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
497           It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
498           in IETF protocols. This is the x86_64 assembler implementation using SIMD
499           instructions.
500
501 config CRYPTO_MD4
502         tristate "MD4 digest algorithm"
503         select CRYPTO_HASH
504         help
505           MD4 message digest algorithm (RFC1320).
506
507 config CRYPTO_MD5
508         tristate "MD5 digest algorithm"
509         select CRYPTO_HASH
510         help
511           MD5 message digest algorithm (RFC1321).
512
513 config CRYPTO_MD5_OCTEON
514         tristate "MD5 digest algorithm (OCTEON)"
515         depends on CPU_CAVIUM_OCTEON
516         select CRYPTO_MD5
517         select CRYPTO_HASH
518         help
519           MD5 message digest algorithm (RFC1321) implemented
520           using OCTEON crypto instructions, when available.
521
522 config CRYPTO_MD5_PPC
523         tristate "MD5 digest algorithm (PPC)"
524         depends on PPC
525         select CRYPTO_HASH
526         help
527           MD5 message digest algorithm (RFC1321) implemented
528           in PPC assembler.
529
530 config CRYPTO_MD5_SPARC64
531         tristate "MD5 digest algorithm (SPARC64)"
532         depends on SPARC64
533         select CRYPTO_MD5
534         select CRYPTO_HASH
535         help
536           MD5 message digest algorithm (RFC1321) implemented
537           using sparc64 crypto instructions, when available.
538
539 config CRYPTO_MICHAEL_MIC
540         tristate "Michael MIC keyed digest algorithm"
541         select CRYPTO_HASH
542         help
543           Michael MIC is used for message integrity protection in TKIP
544           (IEEE 802.11i). This algorithm is required for TKIP, but it
545           should not be used for other purposes because of the weakness
546           of the algorithm.
547
548 config CRYPTO_RMD128
549         tristate "RIPEMD-128 digest algorithm"
550         select CRYPTO_HASH
551         help
552           RIPEMD-128 (ISO/IEC 10118-3:2004).
553
554           RIPEMD-128 is a 128-bit cryptographic hash function. It should only
555           be used as a secure replacement for RIPEMD. For other use cases,
556           RIPEMD-160 should be used.
557
558           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
559           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
560
561 config CRYPTO_RMD160
562         tristate "RIPEMD-160 digest algorithm"
563         select CRYPTO_HASH
564         help
565           RIPEMD-160 (ISO/IEC 10118-3:2004).
566
567           RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
568           to be used as a secure replacement for the 128-bit hash functions
569           MD4, MD5 and it's predecessor RIPEMD
570           (not to be confused with RIPEMD-128).
571
572           It's speed is comparable to SHA1 and there are no known attacks
573           against RIPEMD-160.
574
575           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
576           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
577
578 config CRYPTO_RMD256
579         tristate "RIPEMD-256 digest algorithm"
580         select CRYPTO_HASH
581         help
582           RIPEMD-256 is an optional extension of RIPEMD-128 with a
583           256 bit hash. It is intended for applications that require
584           longer hash-results, without needing a larger security level
585           (than RIPEMD-128).
586
587           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
588           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
589
590 config CRYPTO_RMD320
591         tristate "RIPEMD-320 digest algorithm"
592         select CRYPTO_HASH
593         help
594           RIPEMD-320 is an optional extension of RIPEMD-160 with a
595           320 bit hash. It is intended for applications that require
596           longer hash-results, without needing a larger security level
597           (than RIPEMD-160).
598
599           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
600           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
601
602 config CRYPTO_SHA1
603         tristate "SHA1 digest algorithm"
604         select CRYPTO_HASH
605         help
606           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
607
608 config CRYPTO_SHA1_SSSE3
609         tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
610         depends on X86 && 64BIT
611         select CRYPTO_SHA1
612         select CRYPTO_HASH
613         help
614           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
615           using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
616           Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
617           when available.
618
619 config CRYPTO_SHA256_SSSE3
620         tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
621         depends on X86 && 64BIT
622         select CRYPTO_SHA256
623         select CRYPTO_HASH
624         help
625           SHA-256 secure hash standard (DFIPS 180-2) implemented
626           using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
627           Extensions version 1 (AVX1), or Advanced Vector Extensions
628           version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
629           Instructions) when available.
630
631 config CRYPTO_SHA512_SSSE3
632         tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
633         depends on X86 && 64BIT
634         select CRYPTO_SHA512
635         select CRYPTO_HASH
636         help
637           SHA-512 secure hash standard (DFIPS 180-2) implemented
638           using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
639           Extensions version 1 (AVX1), or Advanced Vector Extensions
640           version 2 (AVX2) instructions, when available.
641
642 config CRYPTO_SHA1_OCTEON
643         tristate "SHA1 digest algorithm (OCTEON)"
644         depends on CPU_CAVIUM_OCTEON
645         select CRYPTO_SHA1
646         select CRYPTO_HASH
647         help
648           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
649           using OCTEON crypto instructions, when available.
650
651 config CRYPTO_SHA1_SPARC64
652         tristate "SHA1 digest algorithm (SPARC64)"
653         depends on SPARC64
654         select CRYPTO_SHA1
655         select CRYPTO_HASH
656         help
657           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
658           using sparc64 crypto instructions, when available.
659
660 config CRYPTO_SHA1_PPC
661         tristate "SHA1 digest algorithm (powerpc)"
662         depends on PPC
663         help
664           This is the powerpc hardware accelerated implementation of the
665           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
666
667 config CRYPTO_SHA1_PPC_SPE
668         tristate "SHA1 digest algorithm (PPC SPE)"
669         depends on PPC && SPE
670         help
671           SHA-1 secure hash standard (DFIPS 180-4) implemented
672           using powerpc SPE SIMD instruction set.
673
674 config CRYPTO_SHA1_MB
675         tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
676         depends on X86 && 64BIT
677         select CRYPTO_SHA1
678         select CRYPTO_HASH
679         select CRYPTO_MCRYPTD
680         help
681           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
682           using multi-buffer technique.  This algorithm computes on
683           multiple data lanes concurrently with SIMD instructions for
684           better throughput.  It should not be enabled by default but
685           used when there is significant amount of work to keep the keep
686           the data lanes filled to get performance benefit.  If the data
687           lanes remain unfilled, a flush operation will be initiated to
688           process the crypto jobs, adding a slight latency.
689
690 config CRYPTO_SHA256
691         tristate "SHA224 and SHA256 digest algorithm"
692         select CRYPTO_HASH
693         help
694           SHA256 secure hash standard (DFIPS 180-2).
695
696           This version of SHA implements a 256 bit hash with 128 bits of
697           security against collision attacks.
698
699           This code also includes SHA-224, a 224 bit hash with 112 bits
700           of security against collision attacks.
701
702 config CRYPTO_SHA256_PPC_SPE
703         tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
704         depends on PPC && SPE
705         select CRYPTO_SHA256
706         select CRYPTO_HASH
707         help
708           SHA224 and SHA256 secure hash standard (DFIPS 180-2)
709           implemented using powerpc SPE SIMD instruction set.
710
711 config CRYPTO_SHA256_OCTEON
712         tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
713         depends on CPU_CAVIUM_OCTEON
714         select CRYPTO_SHA256
715         select CRYPTO_HASH
716         help
717           SHA-256 secure hash standard (DFIPS 180-2) implemented
718           using OCTEON crypto instructions, when available.
719
720 config CRYPTO_SHA256_SPARC64
721         tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
722         depends on SPARC64
723         select CRYPTO_SHA256
724         select CRYPTO_HASH
725         help
726           SHA-256 secure hash standard (DFIPS 180-2) implemented
727           using sparc64 crypto instructions, when available.
728
729 config CRYPTO_SHA512
730         tristate "SHA384 and SHA512 digest algorithms"
731         select CRYPTO_HASH
732         help
733           SHA512 secure hash standard (DFIPS 180-2).
734
735           This version of SHA implements a 512 bit hash with 256 bits of
736           security against collision attacks.
737
738           This code also includes SHA-384, a 384 bit hash with 192 bits
739           of security against collision attacks.
740
741 config CRYPTO_SHA512_OCTEON
742         tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
743         depends on CPU_CAVIUM_OCTEON
744         select CRYPTO_SHA512
745         select CRYPTO_HASH
746         help
747           SHA-512 secure hash standard (DFIPS 180-2) implemented
748           using OCTEON crypto instructions, when available.
749
750 config CRYPTO_SHA512_SPARC64
751         tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
752         depends on SPARC64
753         select CRYPTO_SHA512
754         select CRYPTO_HASH
755         help
756           SHA-512 secure hash standard (DFIPS 180-2) implemented
757           using sparc64 crypto instructions, when available.
758
759 config CRYPTO_TGR192
760         tristate "Tiger digest algorithms"
761         select CRYPTO_HASH
762         help
763           Tiger hash algorithm 192, 160 and 128-bit hashes
764
765           Tiger is a hash function optimized for 64-bit processors while
766           still having decent performance on 32-bit processors.
767           Tiger was developed by Ross Anderson and Eli Biham.
768
769           See also:
770           <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
771
772 config CRYPTO_WP512
773         tristate "Whirlpool digest algorithms"
774         select CRYPTO_HASH
775         help
776           Whirlpool hash algorithm 512, 384 and 256-bit hashes
777
778           Whirlpool-512 is part of the NESSIE cryptographic primitives.
779           Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
780
781           See also:
782           <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
783
784 config CRYPTO_GHASH_CLMUL_NI_INTEL
785         tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
786         depends on X86 && 64BIT
787         select CRYPTO_CRYPTD
788         help
789           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
790           The implementation is accelerated by CLMUL-NI of Intel.
791
792 comment "Ciphers"
793
794 config CRYPTO_AES
795         tristate "AES cipher algorithms"
796         select CRYPTO_ALGAPI
797         help
798           AES cipher algorithms (FIPS-197). AES uses the Rijndael
799           algorithm.
800
801           Rijndael appears to be consistently a very good performer in
802           both hardware and software across a wide range of computing
803           environments regardless of its use in feedback or non-feedback
804           modes. Its key setup time is excellent, and its key agility is
805           good. Rijndael's very low memory requirements make it very well
806           suited for restricted-space environments, in which it also
807           demonstrates excellent performance. Rijndael's operations are
808           among the easiest to defend against power and timing attacks.
809
810           The AES specifies three key sizes: 128, 192 and 256 bits
811
812           See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
813
814 config CRYPTO_AES_586
815         tristate "AES cipher algorithms (i586)"
816         depends on (X86 || UML_X86) && !64BIT
817         select CRYPTO_ALGAPI
818         select CRYPTO_AES
819         help
820           AES cipher algorithms (FIPS-197). AES uses the Rijndael
821           algorithm.
822
823           Rijndael appears to be consistently a very good performer in
824           both hardware and software across a wide range of computing
825           environments regardless of its use in feedback or non-feedback
826           modes. Its key setup time is excellent, and its key agility is
827           good. Rijndael's very low memory requirements make it very well
828           suited for restricted-space environments, in which it also
829           demonstrates excellent performance. Rijndael's operations are
830           among the easiest to defend against power and timing attacks.
831
832           The AES specifies three key sizes: 128, 192 and 256 bits
833
834           See <http://csrc.nist.gov/encryption/aes/> for more information.
835
836 config CRYPTO_AES_X86_64
837         tristate "AES cipher algorithms (x86_64)"
838         depends on (X86 || UML_X86) && 64BIT
839         select CRYPTO_ALGAPI
840         select CRYPTO_AES
841         help
842           AES cipher algorithms (FIPS-197). AES uses the Rijndael
843           algorithm.
844
845           Rijndael appears to be consistently a very good performer in
846           both hardware and software across a wide range of computing
847           environments regardless of its use in feedback or non-feedback
848           modes. Its key setup time is excellent, and its key agility is
849           good. Rijndael's very low memory requirements make it very well
850           suited for restricted-space environments, in which it also
851           demonstrates excellent performance. Rijndael's operations are
852           among the easiest to defend against power and timing attacks.
853
854           The AES specifies three key sizes: 128, 192 and 256 bits
855
856           See <http://csrc.nist.gov/encryption/aes/> for more information.
857
858 config CRYPTO_AES_NI_INTEL
859         tristate "AES cipher algorithms (AES-NI)"
860         depends on X86
861         select CRYPTO_AES_X86_64 if 64BIT
862         select CRYPTO_AES_586 if !64BIT
863         select CRYPTO_CRYPTD
864         select CRYPTO_ABLK_HELPER
865         select CRYPTO_ALGAPI
866         select CRYPTO_GLUE_HELPER_X86 if 64BIT
867         select CRYPTO_LRW
868         select CRYPTO_XTS
869         help
870           Use Intel AES-NI instructions for AES algorithm.
871
872           AES cipher algorithms (FIPS-197). AES uses the Rijndael
873           algorithm.
874
875           Rijndael appears to be consistently a very good performer in
876           both hardware and software across a wide range of computing
877           environments regardless of its use in feedback or non-feedback
878           modes. Its key setup time is excellent, and its key agility is
879           good. Rijndael's very low memory requirements make it very well
880           suited for restricted-space environments, in which it also
881           demonstrates excellent performance. Rijndael's operations are
882           among the easiest to defend against power and timing attacks.
883
884           The AES specifies three key sizes: 128, 192 and 256 bits
885
886           See <http://csrc.nist.gov/encryption/aes/> for more information.
887
888           In addition to AES cipher algorithm support, the acceleration
889           for some popular block cipher mode is supported too, including
890           ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
891           acceleration for CTR.
892
893 config CRYPTO_AES_SPARC64
894         tristate "AES cipher algorithms (SPARC64)"
895         depends on SPARC64
896         select CRYPTO_CRYPTD
897         select CRYPTO_ALGAPI
898         help
899           Use SPARC64 crypto opcodes for AES algorithm.
900
901           AES cipher algorithms (FIPS-197). AES uses the Rijndael
902           algorithm.
903
904           Rijndael appears to be consistently a very good performer in
905           both hardware and software across a wide range of computing
906           environments regardless of its use in feedback or non-feedback
907           modes. Its key setup time is excellent, and its key agility is
908           good. Rijndael's very low memory requirements make it very well
909           suited for restricted-space environments, in which it also
910           demonstrates excellent performance. Rijndael's operations are
911           among the easiest to defend against power and timing attacks.
912
913           The AES specifies three key sizes: 128, 192 and 256 bits
914
915           See <http://csrc.nist.gov/encryption/aes/> for more information.
916
917           In addition to AES cipher algorithm support, the acceleration
918           for some popular block cipher mode is supported too, including
919           ECB and CBC.
920
921 config CRYPTO_AES_PPC_SPE
922         tristate "AES cipher algorithms (PPC SPE)"
923         depends on PPC && SPE
924         help
925           AES cipher algorithms (FIPS-197). Additionally the acceleration
926           for popular block cipher modes ECB, CBC, CTR and XTS is supported.
927           This module should only be used for low power (router) devices
928           without hardware AES acceleration (e.g. caam crypto). It reduces the
929           size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
930           timining attacks. Nevertheless it might be not as secure as other
931           architecture specific assembler implementations that work on 1KB
932           tables or 256 bytes S-boxes.
933
934 config CRYPTO_ANUBIS
935         tristate "Anubis cipher algorithm"
936         select CRYPTO_ALGAPI
937         help
938           Anubis cipher algorithm.
939
940           Anubis is a variable key length cipher which can use keys from
941           128 bits to 320 bits in length.  It was evaluated as a entrant
942           in the NESSIE competition.
943
944           See also:
945           <https://www.cosic.esat.kuleuven.be/nessie/reports/>
946           <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
947
948 config CRYPTO_ARC4
949         tristate "ARC4 cipher algorithm"
950         select CRYPTO_BLKCIPHER
951         help
952           ARC4 cipher algorithm.
953
954           ARC4 is a stream cipher using keys ranging from 8 bits to 2048
955           bits in length.  This algorithm is required for driver-based
956           WEP, but it should not be for other purposes because of the
957           weakness of the algorithm.
958
959 config CRYPTO_BLOWFISH
960         tristate "Blowfish cipher algorithm"
961         select CRYPTO_ALGAPI
962         select CRYPTO_BLOWFISH_COMMON
963         help
964           Blowfish cipher algorithm, by Bruce Schneier.
965
966           This is a variable key length cipher which can use keys from 32
967           bits to 448 bits in length.  It's fast, simple and specifically
968           designed for use on "large microprocessors".
969
970           See also:
971           <http://www.schneier.com/blowfish.html>
972
973 config CRYPTO_BLOWFISH_COMMON
974         tristate
975         help
976           Common parts of the Blowfish cipher algorithm shared by the
977           generic c and the assembler implementations.
978
979           See also:
980           <http://www.schneier.com/blowfish.html>
981
982 config CRYPTO_BLOWFISH_X86_64
983         tristate "Blowfish cipher algorithm (x86_64)"
984         depends on X86 && 64BIT
985         select CRYPTO_ALGAPI
986         select CRYPTO_BLOWFISH_COMMON
987         help
988           Blowfish cipher algorithm (x86_64), by Bruce Schneier.
989
990           This is a variable key length cipher which can use keys from 32
991           bits to 448 bits in length.  It's fast, simple and specifically
992           designed for use on "large microprocessors".
993
994           See also:
995           <http://www.schneier.com/blowfish.html>
996
997 config CRYPTO_CAMELLIA
998         tristate "Camellia cipher algorithms"
999         depends on CRYPTO
1000         select CRYPTO_ALGAPI
1001         help
1002           Camellia cipher algorithms module.
1003
1004           Camellia is a symmetric key block cipher developed jointly
1005           at NTT and Mitsubishi Electric Corporation.
1006
1007           The Camellia specifies three key sizes: 128, 192 and 256 bits.
1008
1009           See also:
1010           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1011
1012 config CRYPTO_CAMELLIA_X86_64
1013         tristate "Camellia cipher algorithm (x86_64)"
1014         depends on X86 && 64BIT
1015         depends on CRYPTO
1016         select CRYPTO_ALGAPI
1017         select CRYPTO_GLUE_HELPER_X86
1018         select CRYPTO_LRW
1019         select CRYPTO_XTS
1020         help
1021           Camellia cipher algorithm module (x86_64).
1022
1023           Camellia is a symmetric key block cipher developed jointly
1024           at NTT and Mitsubishi Electric Corporation.
1025
1026           The Camellia specifies three key sizes: 128, 192 and 256 bits.
1027
1028           See also:
1029           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1030
1031 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1032         tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1033         depends on X86 && 64BIT
1034         depends on CRYPTO
1035         select CRYPTO_ALGAPI
1036         select CRYPTO_CRYPTD
1037         select CRYPTO_ABLK_HELPER
1038         select CRYPTO_GLUE_HELPER_X86
1039         select CRYPTO_CAMELLIA_X86_64
1040         select CRYPTO_LRW
1041         select CRYPTO_XTS
1042         help
1043           Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1044
1045           Camellia is a symmetric key block cipher developed jointly
1046           at NTT and Mitsubishi Electric Corporation.
1047
1048           The Camellia specifies three key sizes: 128, 192 and 256 bits.
1049
1050           See also:
1051           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1052
1053 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1054         tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1055         depends on X86 && 64BIT
1056         depends on CRYPTO
1057         select CRYPTO_ALGAPI
1058         select CRYPTO_CRYPTD
1059         select CRYPTO_ABLK_HELPER
1060         select CRYPTO_GLUE_HELPER_X86
1061         select CRYPTO_CAMELLIA_X86_64
1062         select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1063         select CRYPTO_LRW
1064         select CRYPTO_XTS
1065         help
1066           Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1067
1068           Camellia is a symmetric key block cipher developed jointly
1069           at NTT and Mitsubishi Electric Corporation.
1070
1071           The Camellia specifies three key sizes: 128, 192 and 256 bits.
1072
1073           See also:
1074           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1075
1076 config CRYPTO_CAMELLIA_SPARC64
1077         tristate "Camellia cipher algorithm (SPARC64)"
1078         depends on SPARC64
1079         depends on CRYPTO
1080         select CRYPTO_ALGAPI
1081         help
1082           Camellia cipher algorithm module (SPARC64).
1083
1084           Camellia is a symmetric key block cipher developed jointly
1085           at NTT and Mitsubishi Electric Corporation.
1086
1087           The Camellia specifies three key sizes: 128, 192 and 256 bits.
1088
1089           See also:
1090           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1091
1092 config CRYPTO_CAST_COMMON
1093         tristate
1094         help
1095           Common parts of the CAST cipher algorithms shared by the
1096           generic c and the assembler implementations.
1097
1098 config CRYPTO_CAST5
1099         tristate "CAST5 (CAST-128) cipher algorithm"
1100         select CRYPTO_ALGAPI
1101         select CRYPTO_CAST_COMMON
1102         help
1103           The CAST5 encryption algorithm (synonymous with CAST-128) is
1104           described in RFC2144.
1105
1106 config CRYPTO_CAST5_AVX_X86_64
1107         tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1108         depends on X86 && 64BIT
1109         select CRYPTO_ALGAPI
1110         select CRYPTO_CRYPTD
1111         select CRYPTO_ABLK_HELPER
1112         select CRYPTO_CAST_COMMON
1113         select CRYPTO_CAST5
1114         help
1115           The CAST5 encryption algorithm (synonymous with CAST-128) is
1116           described in RFC2144.
1117
1118           This module provides the Cast5 cipher algorithm that processes
1119           sixteen blocks parallel using the AVX instruction set.
1120
1121 config CRYPTO_CAST6
1122         tristate "CAST6 (CAST-256) cipher algorithm"
1123         select CRYPTO_ALGAPI
1124         select CRYPTO_CAST_COMMON
1125         help
1126           The CAST6 encryption algorithm (synonymous with CAST-256) is
1127           described in RFC2612.
1128
1129 config CRYPTO_CAST6_AVX_X86_64
1130         tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1131         depends on X86 && 64BIT
1132         select CRYPTO_ALGAPI
1133         select CRYPTO_CRYPTD
1134         select CRYPTO_ABLK_HELPER
1135         select CRYPTO_GLUE_HELPER_X86
1136         select CRYPTO_CAST_COMMON
1137         select CRYPTO_CAST6
1138         select CRYPTO_LRW
1139         select CRYPTO_XTS
1140         help
1141           The CAST6 encryption algorithm (synonymous with CAST-256) is
1142           described in RFC2612.
1143
1144           This module provides the Cast6 cipher algorithm that processes
1145           eight blocks parallel using the AVX instruction set.
1146
1147 config CRYPTO_DES
1148         tristate "DES and Triple DES EDE cipher algorithms"
1149         select CRYPTO_ALGAPI
1150         help
1151           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1152
1153 config CRYPTO_DES_SPARC64
1154         tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1155         depends on SPARC64
1156         select CRYPTO_ALGAPI
1157         select CRYPTO_DES
1158         help
1159           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1160           optimized using SPARC64 crypto opcodes.
1161
1162 config CRYPTO_DES3_EDE_X86_64
1163         tristate "Triple DES EDE cipher algorithm (x86-64)"
1164         depends on X86 && 64BIT
1165         select CRYPTO_ALGAPI
1166         select CRYPTO_DES
1167         help
1168           Triple DES EDE (FIPS 46-3) algorithm.
1169
1170           This module provides implementation of the Triple DES EDE cipher
1171           algorithm that is optimized for x86-64 processors. Two versions of
1172           algorithm are provided; regular processing one input block and
1173           one that processes three blocks parallel.
1174
1175 config CRYPTO_FCRYPT
1176         tristate "FCrypt cipher algorithm"
1177         select CRYPTO_ALGAPI
1178         select CRYPTO_BLKCIPHER
1179         help
1180           FCrypt algorithm used by RxRPC.
1181
1182 config CRYPTO_KHAZAD
1183         tristate "Khazad cipher algorithm"
1184         select CRYPTO_ALGAPI
1185         help
1186           Khazad cipher algorithm.
1187
1188           Khazad was a finalist in the initial NESSIE competition.  It is
1189           an algorithm optimized for 64-bit processors with good performance
1190           on 32-bit processors.  Khazad uses an 128 bit key size.
1191
1192           See also:
1193           <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1194
1195 config CRYPTO_SALSA20
1196         tristate "Salsa20 stream cipher algorithm"
1197         select CRYPTO_BLKCIPHER
1198         help
1199           Salsa20 stream cipher algorithm.
1200
1201           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1202           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1203
1204           The Salsa20 stream cipher algorithm is designed by Daniel J.
1205           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1206
1207 config CRYPTO_SALSA20_586
1208         tristate "Salsa20 stream cipher algorithm (i586)"
1209         depends on (X86 || UML_X86) && !64BIT
1210         select CRYPTO_BLKCIPHER
1211         help
1212           Salsa20 stream cipher algorithm.
1213
1214           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1215           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1216
1217           The Salsa20 stream cipher algorithm is designed by Daniel J.
1218           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1219
1220 config CRYPTO_SALSA20_X86_64
1221         tristate "Salsa20 stream cipher algorithm (x86_64)"
1222         depends on (X86 || UML_X86) && 64BIT
1223         select CRYPTO_BLKCIPHER
1224         help
1225           Salsa20 stream cipher algorithm.
1226
1227           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1228           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1229
1230           The Salsa20 stream cipher algorithm is designed by Daniel J.
1231           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1232
1233 config CRYPTO_CHACHA20
1234         tristate "ChaCha20 cipher algorithm"
1235         select CRYPTO_BLKCIPHER
1236         help
1237           ChaCha20 cipher algorithm, RFC7539.
1238
1239           ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1240           Bernstein and further specified in RFC7539 for use in IETF protocols.
1241           This is the portable C implementation of ChaCha20.
1242
1243           See also:
1244           <http://cr.yp.to/chacha/chacha-20080128.pdf>
1245
1246 config CRYPTO_CHACHA20_X86_64
1247         tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1248         depends on X86 && 64BIT
1249         select CRYPTO_BLKCIPHER
1250         select CRYPTO_CHACHA20
1251         help
1252           ChaCha20 cipher algorithm, RFC7539.
1253
1254           ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1255           Bernstein and further specified in RFC7539 for use in IETF protocols.
1256           This is the x86_64 assembler implementation using SIMD instructions.
1257
1258           See also:
1259           <http://cr.yp.to/chacha/chacha-20080128.pdf>
1260
1261 config CRYPTO_SEED
1262         tristate "SEED cipher algorithm"
1263         select CRYPTO_ALGAPI
1264         help
1265           SEED cipher algorithm (RFC4269).
1266
1267           SEED is a 128-bit symmetric key block cipher that has been
1268           developed by KISA (Korea Information Security Agency) as a
1269           national standard encryption algorithm of the Republic of Korea.
1270           It is a 16 round block cipher with the key size of 128 bit.
1271
1272           See also:
1273           <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1274
1275 config CRYPTO_SERPENT
1276         tristate "Serpent cipher algorithm"
1277         select CRYPTO_ALGAPI
1278         help
1279           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1280
1281           Keys are allowed to be from 0 to 256 bits in length, in steps
1282           of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1283           variant of Serpent for compatibility with old kerneli.org code.
1284
1285           See also:
1286           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1287
1288 config CRYPTO_SERPENT_SSE2_X86_64
1289         tristate "Serpent cipher algorithm (x86_64/SSE2)"
1290         depends on X86 && 64BIT
1291         select CRYPTO_ALGAPI
1292         select CRYPTO_CRYPTD
1293         select CRYPTO_ABLK_HELPER
1294         select CRYPTO_GLUE_HELPER_X86
1295         select CRYPTO_SERPENT
1296         select CRYPTO_LRW
1297         select CRYPTO_XTS
1298         help
1299           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1300
1301           Keys are allowed to be from 0 to 256 bits in length, in steps
1302           of 8 bits.
1303
1304           This module provides Serpent cipher algorithm that processes eight
1305           blocks parallel using SSE2 instruction set.
1306
1307           See also:
1308           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1309
1310 config CRYPTO_SERPENT_SSE2_586
1311         tristate "Serpent cipher algorithm (i586/SSE2)"
1312         depends on X86 && !64BIT
1313         select CRYPTO_ALGAPI
1314         select CRYPTO_CRYPTD
1315         select CRYPTO_ABLK_HELPER
1316         select CRYPTO_GLUE_HELPER_X86
1317         select CRYPTO_SERPENT
1318         select CRYPTO_LRW
1319         select CRYPTO_XTS
1320         help
1321           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1322
1323           Keys are allowed to be from 0 to 256 bits in length, in steps
1324           of 8 bits.
1325
1326           This module provides Serpent cipher algorithm that processes four
1327           blocks parallel using SSE2 instruction set.
1328
1329           See also:
1330           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1331
1332 config CRYPTO_SERPENT_AVX_X86_64
1333         tristate "Serpent cipher algorithm (x86_64/AVX)"
1334         depends on X86 && 64BIT
1335         select CRYPTO_ALGAPI
1336         select CRYPTO_CRYPTD
1337         select CRYPTO_ABLK_HELPER
1338         select CRYPTO_GLUE_HELPER_X86
1339         select CRYPTO_SERPENT
1340         select CRYPTO_LRW
1341         select CRYPTO_XTS
1342         help
1343           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1344
1345           Keys are allowed to be from 0 to 256 bits in length, in steps
1346           of 8 bits.
1347
1348           This module provides the Serpent cipher algorithm that processes
1349           eight blocks parallel using the AVX instruction set.
1350
1351           See also:
1352           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1353
1354 config CRYPTO_SERPENT_AVX2_X86_64
1355         tristate "Serpent cipher algorithm (x86_64/AVX2)"
1356         depends on X86 && 64BIT
1357         select CRYPTO_ALGAPI
1358         select CRYPTO_CRYPTD
1359         select CRYPTO_ABLK_HELPER
1360         select CRYPTO_GLUE_HELPER_X86
1361         select CRYPTO_SERPENT
1362         select CRYPTO_SERPENT_AVX_X86_64
1363         select CRYPTO_LRW
1364         select CRYPTO_XTS
1365         help
1366           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1367
1368           Keys are allowed to be from 0 to 256 bits in length, in steps
1369           of 8 bits.
1370
1371           This module provides Serpent cipher algorithm that processes 16
1372           blocks parallel using AVX2 instruction set.
1373
1374           See also:
1375           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1376
1377 config CRYPTO_TEA
1378         tristate "TEA, XTEA and XETA cipher algorithms"
1379         select CRYPTO_ALGAPI
1380         help
1381           TEA cipher algorithm.
1382
1383           Tiny Encryption Algorithm is a simple cipher that uses
1384           many rounds for security.  It is very fast and uses
1385           little memory.
1386
1387           Xtendend Tiny Encryption Algorithm is a modification to
1388           the TEA algorithm to address a potential key weakness
1389           in the TEA algorithm.
1390
1391           Xtendend Encryption Tiny Algorithm is a mis-implementation
1392           of the XTEA algorithm for compatibility purposes.
1393
1394 config CRYPTO_TWOFISH
1395         tristate "Twofish cipher algorithm"
1396         select CRYPTO_ALGAPI
1397         select CRYPTO_TWOFISH_COMMON
1398         help
1399           Twofish cipher algorithm.
1400
1401           Twofish was submitted as an AES (Advanced Encryption Standard)
1402           candidate cipher by researchers at CounterPane Systems.  It is a
1403           16 round block cipher supporting key sizes of 128, 192, and 256
1404           bits.
1405
1406           See also:
1407           <http://www.schneier.com/twofish.html>
1408
1409 config CRYPTO_TWOFISH_COMMON
1410         tristate
1411         help
1412           Common parts of the Twofish cipher algorithm shared by the
1413           generic c and the assembler implementations.
1414
1415 config CRYPTO_TWOFISH_586
1416         tristate "Twofish cipher algorithms (i586)"
1417         depends on (X86 || UML_X86) && !64BIT
1418         select CRYPTO_ALGAPI
1419         select CRYPTO_TWOFISH_COMMON
1420         help
1421           Twofish cipher algorithm.
1422
1423           Twofish was submitted as an AES (Advanced Encryption Standard)
1424           candidate cipher by researchers at CounterPane Systems.  It is a
1425           16 round block cipher supporting key sizes of 128, 192, and 256
1426           bits.
1427
1428           See also:
1429           <http://www.schneier.com/twofish.html>
1430
1431 config CRYPTO_TWOFISH_X86_64
1432         tristate "Twofish cipher algorithm (x86_64)"
1433         depends on (X86 || UML_X86) && 64BIT
1434         select CRYPTO_ALGAPI
1435         select CRYPTO_TWOFISH_COMMON
1436         help
1437           Twofish cipher algorithm (x86_64).
1438
1439           Twofish was submitted as an AES (Advanced Encryption Standard)
1440           candidate cipher by researchers at CounterPane Systems.  It is a
1441           16 round block cipher supporting key sizes of 128, 192, and 256
1442           bits.
1443
1444           See also:
1445           <http://www.schneier.com/twofish.html>
1446
1447 config CRYPTO_TWOFISH_X86_64_3WAY
1448         tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1449         depends on X86 && 64BIT
1450         select CRYPTO_ALGAPI
1451         select CRYPTO_TWOFISH_COMMON
1452         select CRYPTO_TWOFISH_X86_64
1453         select CRYPTO_GLUE_HELPER_X86
1454         select CRYPTO_LRW
1455         select CRYPTO_XTS
1456         help
1457           Twofish cipher algorithm (x86_64, 3-way parallel).
1458
1459           Twofish was submitted as an AES (Advanced Encryption Standard)
1460           candidate cipher by researchers at CounterPane Systems.  It is a
1461           16 round block cipher supporting key sizes of 128, 192, and 256
1462           bits.
1463
1464           This module provides Twofish cipher algorithm that processes three
1465           blocks parallel, utilizing resources of out-of-order CPUs better.
1466
1467           See also:
1468           <http://www.schneier.com/twofish.html>
1469
1470 config CRYPTO_TWOFISH_AVX_X86_64
1471         tristate "Twofish cipher algorithm (x86_64/AVX)"
1472         depends on X86 && 64BIT
1473         select CRYPTO_ALGAPI
1474         select CRYPTO_CRYPTD
1475         select CRYPTO_ABLK_HELPER
1476         select CRYPTO_GLUE_HELPER_X86
1477         select CRYPTO_TWOFISH_COMMON
1478         select CRYPTO_TWOFISH_X86_64
1479         select CRYPTO_TWOFISH_X86_64_3WAY
1480         select CRYPTO_LRW
1481         select CRYPTO_XTS
1482         help
1483           Twofish cipher algorithm (x86_64/AVX).
1484
1485           Twofish was submitted as an AES (Advanced Encryption Standard)
1486           candidate cipher by researchers at CounterPane Systems.  It is a
1487           16 round block cipher supporting key sizes of 128, 192, and 256
1488           bits.
1489
1490           This module provides the Twofish cipher algorithm that processes
1491           eight blocks parallel using the AVX Instruction Set.
1492
1493           See also:
1494           <http://www.schneier.com/twofish.html>
1495
1496 comment "Compression"
1497
1498 config CRYPTO_DEFLATE
1499         tristate "Deflate compression algorithm"
1500         select CRYPTO_ALGAPI
1501         select ZLIB_INFLATE
1502         select ZLIB_DEFLATE
1503         help
1504           This is the Deflate algorithm (RFC1951), specified for use in
1505           IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1506
1507           You will most probably want this if using IPSec.
1508
1509 config CRYPTO_ZLIB
1510         tristate "Zlib compression algorithm"
1511         select CRYPTO_PCOMP
1512         select ZLIB_INFLATE
1513         select ZLIB_DEFLATE
1514         select NLATTR
1515         help
1516           This is the zlib algorithm.
1517
1518 config CRYPTO_LZO
1519         tristate "LZO compression algorithm"
1520         select CRYPTO_ALGAPI
1521         select LZO_COMPRESS
1522         select LZO_DECOMPRESS
1523         help
1524           This is the LZO algorithm.
1525
1526 config CRYPTO_842
1527         tristate "842 compression algorithm"
1528         select CRYPTO_ALGAPI
1529         select 842_COMPRESS
1530         select 842_DECOMPRESS
1531         help
1532           This is the 842 algorithm.
1533
1534 config CRYPTO_LZ4
1535         tristate "LZ4 compression algorithm"
1536         select CRYPTO_ALGAPI
1537         select LZ4_COMPRESS
1538         select LZ4_DECOMPRESS
1539         help
1540           This is the LZ4 algorithm.
1541
1542 config CRYPTO_LZ4HC
1543         tristate "LZ4HC compression algorithm"
1544         select CRYPTO_ALGAPI
1545         select LZ4HC_COMPRESS
1546         select LZ4_DECOMPRESS
1547         help
1548           This is the LZ4 high compression mode algorithm.
1549
1550 comment "Random Number Generation"
1551
1552 config CRYPTO_ANSI_CPRNG
1553         tristate "Pseudo Random Number Generation for Cryptographic modules"
1554         select CRYPTO_AES
1555         select CRYPTO_RNG
1556         help
1557           This option enables the generic pseudo random number generator
1558           for cryptographic modules.  Uses the Algorithm specified in
1559           ANSI X9.31 A.2.4. Note that this option must be enabled if
1560           CRYPTO_FIPS is selected
1561
1562 menuconfig CRYPTO_DRBG_MENU
1563         tristate "NIST SP800-90A DRBG"
1564         help
1565           NIST SP800-90A compliant DRBG. In the following submenu, one or
1566           more of the DRBG types must be selected.
1567
1568 if CRYPTO_DRBG_MENU
1569
1570 config CRYPTO_DRBG_HMAC
1571         bool
1572         default y
1573         select CRYPTO_HMAC
1574         select CRYPTO_SHA256
1575
1576 config CRYPTO_DRBG_HASH
1577         bool "Enable Hash DRBG"
1578         select CRYPTO_SHA256
1579         help
1580           Enable the Hash DRBG variant as defined in NIST SP800-90A.
1581
1582 config CRYPTO_DRBG_CTR
1583         bool "Enable CTR DRBG"
1584         select CRYPTO_AES
1585         help
1586           Enable the CTR DRBG variant as defined in NIST SP800-90A.
1587
1588 config CRYPTO_DRBG
1589         tristate
1590         default CRYPTO_DRBG_MENU
1591         select CRYPTO_RNG
1592         select CRYPTO_JITTERENTROPY
1593
1594 endif   # if CRYPTO_DRBG_MENU
1595
1596 config CRYPTO_JITTERENTROPY
1597         tristate "Jitterentropy Non-Deterministic Random Number Generator"
1598         help
1599           The Jitterentropy RNG is a noise that is intended
1600           to provide seed to another RNG. The RNG does not
1601           perform any cryptographic whitening of the generated
1602           random numbers. This Jitterentropy RNG registers with
1603           the kernel crypto API and can be used by any caller.
1604
1605 config CRYPTO_USER_API
1606         tristate
1607
1608 config CRYPTO_USER_API_HASH
1609         tristate "User-space interface for hash algorithms"
1610         depends on NET
1611         select CRYPTO_HASH
1612         select CRYPTO_USER_API
1613         help
1614           This option enables the user-spaces interface for hash
1615           algorithms.
1616
1617 config CRYPTO_USER_API_SKCIPHER
1618         tristate "User-space interface for symmetric key cipher algorithms"
1619         depends on NET
1620         select CRYPTO_BLKCIPHER
1621         select CRYPTO_USER_API
1622         help
1623           This option enables the user-spaces interface for symmetric
1624           key cipher algorithms.
1625
1626 config CRYPTO_USER_API_RNG
1627         tristate "User-space interface for random number generator algorithms"
1628         depends on NET
1629         select CRYPTO_RNG
1630         select CRYPTO_USER_API
1631         help
1632           This option enables the user-spaces interface for random
1633           number generator algorithms.
1634
1635 config CRYPTO_USER_API_AEAD
1636         tristate "User-space interface for AEAD cipher algorithms"
1637         depends on NET
1638         select CRYPTO_AEAD
1639         select CRYPTO_USER_API
1640         help
1641           This option enables the user-spaces interface for AEAD
1642           cipher algorithms.
1643
1644 config CRYPTO_HASH_INFO
1645         bool
1646
1647 source "drivers/crypto/Kconfig"
1648 source crypto/asymmetric_keys/Kconfig
1649 source certs/Kconfig
1650
1651 endif   # if CRYPTO