crypto: echainiv - Add encrypted chain IV generator
[cascardo/linux.git] / crypto / echainiv.c
1 /*
2  * echainiv: Encrypted Chain IV Generator
3  *
4  * This generator generates an IV based on a sequence number by xoring it
5  * with a salt and then encrypting it with the same key as used to encrypt
6  * the plain text.  This algorithm requires that the block size be equal
7  * to the IV size.  It is mainly useful for CBC.
8  *
9  * This generator can only be used by algorithms where authentication
10  * is performed after encryption (i.e., authenc).
11  *
12  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option)
17  * any later version.
18  *
19  */
20
21 #include <crypto/internal/aead.h>
22 #include <crypto/null.h>
23 #include <crypto/rng.h>
24 #include <crypto/scatterwalk.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/percpu.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33
34 #define MAX_IV_SIZE 16
35
36 struct echainiv_request_ctx {
37         struct scatterlist src[2];
38         struct scatterlist dst[2];
39         struct scatterlist ivbuf[2];
40         struct scatterlist *ivsg;
41         struct aead_givcrypt_request subreq;
42 };
43
44 struct echainiv_ctx {
45         struct crypto_aead *child;
46         spinlock_t lock;
47         struct crypto_blkcipher *null;
48         u8 salt[] __attribute__ ((aligned(__alignof__(u32))));
49 };
50
51 static DEFINE_PER_CPU(u32 [MAX_IV_SIZE / sizeof(u32)], echainiv_iv);
52
53 static int echainiv_setkey(struct crypto_aead *tfm,
54                               const u8 *key, unsigned int keylen)
55 {
56         struct echainiv_ctx *ctx = crypto_aead_ctx(tfm);
57
58         return crypto_aead_setkey(ctx->child, key, keylen);
59 }
60
61 static int echainiv_setauthsize(struct crypto_aead *tfm,
62                                   unsigned int authsize)
63 {
64         struct echainiv_ctx *ctx = crypto_aead_ctx(tfm);
65
66         return crypto_aead_setauthsize(ctx->child, authsize);
67 }
68
69 /* We don't care if we get preempted and read/write IVs from the next CPU. */
70 void echainiv_read_iv(u8 *dst, unsigned size)
71 {
72         u32 *a = (u32 *)dst;
73         u32 __percpu *b = echainiv_iv;
74
75         for (; size >= 4; size -= 4) {
76                 *a++ = this_cpu_read(*b);
77                 b++;
78         }
79 }
80
81 void echainiv_write_iv(const u8 *src, unsigned size)
82 {
83         const u32 *a = (const u32 *)src;
84         u32 __percpu *b = echainiv_iv;
85
86         for (; size >= 4; size -= 4) {
87                 this_cpu_write(*b, *a);
88                 a++;
89                 b++;
90         }
91 }
92
93 static void echainiv_encrypt_compat_complete2(struct aead_request *req,
94                                                  int err)
95 {
96         struct echainiv_request_ctx *rctx = aead_request_ctx(req);
97         struct aead_givcrypt_request *subreq = &rctx->subreq;
98         struct crypto_aead *geniv;
99
100         if (err == -EINPROGRESS)
101                 return;
102
103         if (err)
104                 goto out;
105
106         geniv = crypto_aead_reqtfm(req);
107         scatterwalk_map_and_copy(subreq->giv, rctx->ivsg, 0,
108                                  crypto_aead_ivsize(geniv), 1);
109
110 out:
111         kzfree(subreq->giv);
112 }
113
114 static void echainiv_encrypt_compat_complete(
115         struct crypto_async_request *base, int err)
116 {
117         struct aead_request *req = base->data;
118
119         echainiv_encrypt_compat_complete2(req, err);
120         aead_request_complete(req, err);
121 }
122
123 static void echainiv_encrypt_complete2(struct aead_request *req, int err)
124 {
125         struct aead_request *subreq = aead_request_ctx(req);
126         struct crypto_aead *geniv;
127         unsigned int ivsize;
128
129         if (err == -EINPROGRESS)
130                 return;
131
132         if (err)
133                 goto out;
134
135         geniv = crypto_aead_reqtfm(req);
136         ivsize = crypto_aead_ivsize(geniv);
137
138         echainiv_write_iv(subreq->iv, ivsize);
139
140         if (req->iv != subreq->iv)
141                 memcpy(req->iv, subreq->iv, ivsize);
142
143 out:
144         if (req->iv != subreq->iv)
145                 kzfree(subreq->iv);
146 }
147
148 static void echainiv_encrypt_complete(struct crypto_async_request *base,
149                                          int err)
150 {
151         struct aead_request *req = base->data;
152
153         echainiv_encrypt_complete2(req, err);
154         aead_request_complete(req, err);
155 }
156
157 static int echainiv_encrypt_compat(struct aead_request *req)
158 {
159         struct crypto_aead *geniv = crypto_aead_reqtfm(req);
160         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
161         struct echainiv_request_ctx *rctx = aead_request_ctx(req);
162         struct aead_givcrypt_request *subreq = &rctx->subreq;
163         unsigned int ivsize = crypto_aead_ivsize(geniv);
164         crypto_completion_t compl;
165         void *data;
166         u8 *info;
167         __be64 seq;
168         int err;
169
170         compl = req->base.complete;
171         data = req->base.data;
172
173         rctx->ivsg = scatterwalk_ffwd(rctx->ivbuf, req->dst, req->assoclen);
174         info = PageHighMem(sg_page(rctx->ivsg)) ? NULL : sg_virt(rctx->ivsg);
175
176         if (!info) {
177                 info = kmalloc(ivsize, req->base.flags &
178                                        CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
179                                                                   GFP_ATOMIC);
180                 if (!info)
181                         return -ENOMEM;
182
183                 compl = echainiv_encrypt_compat_complete;
184                 data = req;
185         }
186
187         memcpy(&seq, req->iv + ivsize - sizeof(seq), sizeof(seq));
188
189         aead_givcrypt_set_tfm(subreq, ctx->child);
190         aead_givcrypt_set_callback(subreq, req->base.flags,
191                                    req->base.complete, req->base.data);
192         aead_givcrypt_set_crypt(subreq,
193                                 scatterwalk_ffwd(rctx->src, req->src,
194                                                  req->assoclen + ivsize),
195                                 scatterwalk_ffwd(rctx->dst, rctx->ivsg,
196                                                  ivsize),
197                                 req->cryptlen - ivsize, req->iv);
198         aead_givcrypt_set_assoc(subreq, req->src, req->assoclen);
199         aead_givcrypt_set_giv(subreq, info, be64_to_cpu(seq));
200
201         err = crypto_aead_givencrypt(subreq);
202         if (unlikely(PageHighMem(sg_page(rctx->ivsg))))
203                 echainiv_encrypt_compat_complete2(req, err);
204         return err;
205 }
206
207 static int echainiv_encrypt(struct aead_request *req)
208 {
209         struct crypto_aead *geniv = crypto_aead_reqtfm(req);
210         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
211         struct aead_request *subreq = aead_request_ctx(req);
212         crypto_completion_t compl;
213         void *data;
214         u8 *info;
215         unsigned int ivsize;
216         int err;
217
218         aead_request_set_tfm(subreq, ctx->child);
219
220         compl = echainiv_encrypt_complete;
221         data = req;
222         info = req->iv;
223
224         ivsize = crypto_aead_ivsize(geniv);
225
226         if (req->src != req->dst) {
227                 struct scatterlist src[2];
228                 struct scatterlist dst[2];
229                 struct blkcipher_desc desc = {
230                         .tfm = ctx->null,
231                 };
232
233                 err = crypto_blkcipher_encrypt(
234                         &desc,
235                         scatterwalk_ffwd(dst, req->dst,
236                                          req->assoclen + ivsize),
237                         scatterwalk_ffwd(src, req->src,
238                                          req->assoclen + ivsize),
239                         req->cryptlen - ivsize);
240                 if (err)
241                         return err;
242         }
243
244         if (unlikely(!IS_ALIGNED((unsigned long)info,
245                                  crypto_aead_alignmask(geniv) + 1))) {
246                 info = kmalloc(ivsize, req->base.flags &
247                                        CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
248                                                                   GFP_ATOMIC);
249                 if (!info)
250                         return -ENOMEM;
251
252                 memcpy(info, req->iv, ivsize);
253         }
254
255         aead_request_set_callback(subreq, req->base.flags, compl, data);
256         aead_request_set_crypt(subreq, req->dst, req->dst,
257                                req->cryptlen - ivsize, info);
258         aead_request_set_ad(subreq, req->assoclen + ivsize, 0);
259
260         crypto_xor(info, ctx->salt, ivsize);
261         scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1);
262         echainiv_read_iv(info, ivsize);
263
264         err = crypto_aead_encrypt(subreq);
265         echainiv_encrypt_complete2(req, err);
266         return err;
267 }
268
269 static int echainiv_decrypt_compat(struct aead_request *req)
270 {
271         struct crypto_aead *geniv = crypto_aead_reqtfm(req);
272         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
273         struct aead_request *subreq = aead_request_ctx(req);
274         crypto_completion_t compl;
275         void *data;
276         unsigned int ivsize;
277
278         aead_request_set_tfm(subreq, ctx->child);
279
280         compl = req->base.complete;
281         data = req->base.data;
282
283         ivsize = crypto_aead_ivsize(geniv);
284
285         aead_request_set_callback(subreq, req->base.flags, compl, data);
286         aead_request_set_crypt(subreq, req->src, req->dst,
287                                req->cryptlen - ivsize, req->iv);
288         aead_request_set_ad(subreq, req->assoclen, ivsize);
289
290         scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
291
292         return crypto_aead_decrypt(subreq);
293 }
294
295 static int echainiv_decrypt(struct aead_request *req)
296 {
297         struct crypto_aead *geniv = crypto_aead_reqtfm(req);
298         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
299         struct aead_request *subreq = aead_request_ctx(req);
300         crypto_completion_t compl;
301         void *data;
302         unsigned int ivsize;
303
304         aead_request_set_tfm(subreq, ctx->child);
305
306         compl = req->base.complete;
307         data = req->base.data;
308
309         ivsize = crypto_aead_ivsize(geniv);
310
311         aead_request_set_callback(subreq, req->base.flags, compl, data);
312         aead_request_set_crypt(subreq, req->src, req->dst,
313                                req->cryptlen - ivsize, req->iv);
314         aead_request_set_ad(subreq, req->assoclen + ivsize, 0);
315
316         scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
317         if (req->src != req->dst)
318                 scatterwalk_map_and_copy(req->iv, req->dst,
319                                          req->assoclen, ivsize, 1);
320
321         return crypto_aead_decrypt(subreq);
322 }
323
324 static int echainiv_encrypt_compat_first(struct aead_request *req)
325 {
326         struct crypto_aead *geniv = crypto_aead_reqtfm(req);
327         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
328         int err = 0;
329
330         spin_lock_bh(&ctx->lock);
331         if (geniv->encrypt != echainiv_encrypt_compat_first)
332                 goto unlock;
333
334         geniv->encrypt = echainiv_encrypt_compat;
335         err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
336                                    crypto_aead_ivsize(geniv));
337
338 unlock:
339         spin_unlock_bh(&ctx->lock);
340
341         if (err)
342                 return err;
343
344         return echainiv_encrypt_compat(req);
345 }
346
347 static int echainiv_encrypt_first(struct aead_request *req)
348 {
349         struct crypto_aead *geniv = crypto_aead_reqtfm(req);
350         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
351         int err = 0;
352
353         spin_lock_bh(&ctx->lock);
354         if (geniv->encrypt != echainiv_encrypt_first)
355                 goto unlock;
356
357         geniv->encrypt = echainiv_encrypt;
358         err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
359                                    crypto_aead_ivsize(geniv));
360
361 unlock:
362         spin_unlock_bh(&ctx->lock);
363
364         if (err)
365                 return err;
366
367         return echainiv_encrypt(req);
368 }
369
370 static int echainiv_compat_init(struct crypto_tfm *tfm)
371 {
372         struct crypto_aead *geniv = __crypto_aead_cast(tfm);
373         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
374         int err;
375
376         spin_lock_init(&ctx->lock);
377
378         crypto_aead_set_reqsize(geniv, sizeof(struct echainiv_request_ctx));
379
380         err = aead_geniv_init(tfm);
381
382         ctx->child = geniv->child;
383         geniv->child = geniv;
384
385         return err;
386 }
387
388 static int echainiv_init(struct crypto_tfm *tfm)
389 {
390         struct crypto_aead *geniv = __crypto_aead_cast(tfm);
391         struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
392         int err;
393
394         spin_lock_init(&ctx->lock);
395
396         crypto_aead_set_reqsize(geniv, sizeof(struct aead_request));
397
398         ctx->null = crypto_get_default_null_skcipher();
399         err = PTR_ERR(ctx->null);
400         if (IS_ERR(ctx->null))
401                 goto out;
402
403         err = aead_geniv_init(tfm);
404         if (err)
405                 goto drop_null;
406
407         ctx->child = geniv->child;
408         geniv->child = geniv;
409
410 out:
411         return err;
412
413 drop_null:
414         crypto_put_default_null_skcipher();
415         goto out;
416 }
417
418 static void echainiv_compat_exit(struct crypto_tfm *tfm)
419 {
420         struct echainiv_ctx *ctx = crypto_tfm_ctx(tfm);
421
422         crypto_free_aead(ctx->child);
423 }
424
425 static void echainiv_exit(struct crypto_tfm *tfm)
426 {
427         struct echainiv_ctx *ctx = crypto_tfm_ctx(tfm);
428
429         crypto_free_aead(ctx->child);
430         crypto_put_default_null_skcipher();
431 }
432
433 static struct crypto_template echainiv_tmpl;
434
435 static struct crypto_instance *echainiv_aead_alloc(struct rtattr **tb)
436 {
437         struct aead_instance *inst;
438         struct crypto_aead_spawn *spawn;
439         struct aead_alg *alg;
440
441         inst = aead_geniv_alloc(&echainiv_tmpl, tb, 0, 0);
442
443         if (IS_ERR(inst))
444                 goto out;
445
446         if (inst->alg.ivsize < sizeof(u64) ||
447             inst->alg.ivsize & (sizeof(u32) - 1) ||
448             inst->alg.ivsize > MAX_IV_SIZE) {
449                 aead_geniv_free(inst);
450                 inst = ERR_PTR(-EINVAL);
451                 goto out;
452         }
453
454         spawn = aead_instance_ctx(inst);
455         alg = crypto_spawn_aead_alg(spawn);
456
457         inst->alg.setkey = echainiv_setkey;
458         inst->alg.setauthsize = echainiv_setauthsize;
459         inst->alg.encrypt = echainiv_encrypt_first;
460         inst->alg.decrypt = echainiv_decrypt;
461
462         inst->alg.base.cra_init = echainiv_init;
463         inst->alg.base.cra_exit = echainiv_exit;
464
465         inst->alg.base.cra_alignmask |= __alignof__(u32) - 1;
466         inst->alg.base.cra_ctxsize = sizeof(struct echainiv_ctx);
467         inst->alg.base.cra_ctxsize += inst->alg.base.cra_aead.ivsize;
468
469         if (alg->base.cra_aead.encrypt) {
470                 inst->alg.encrypt = echainiv_encrypt_compat_first;
471                 inst->alg.decrypt = echainiv_decrypt_compat;
472
473                 inst->alg.base.cra_init = echainiv_compat_init;
474                 inst->alg.base.cra_exit = echainiv_compat_exit;
475         }
476
477 out:
478         return aead_crypto_instance(inst);
479 }
480
481 static struct crypto_instance *echainiv_alloc(struct rtattr **tb)
482 {
483         struct crypto_instance *inst;
484         int err;
485
486         err = crypto_get_default_rng();
487         if (err)
488                 return ERR_PTR(err);
489
490         inst = echainiv_aead_alloc(tb);
491
492         if (IS_ERR(inst))
493                 goto put_rng;
494
495 out:
496         return inst;
497
498 put_rng:
499         crypto_put_default_rng();
500         goto out;
501 }
502
503 static void echainiv_free(struct crypto_instance *inst)
504 {
505         aead_geniv_free(aead_instance(inst));
506         crypto_put_default_rng();
507 }
508
509 static struct crypto_template echainiv_tmpl = {
510         .name = "echainiv",
511         .alloc = echainiv_alloc,
512         .free = echainiv_free,
513         .module = THIS_MODULE,
514 };
515
516 static int __init echainiv_module_init(void)
517 {
518         return crypto_register_template(&echainiv_tmpl);
519 }
520
521 static void __exit echainiv_module_exit(void)
522 {
523         crypto_unregister_template(&echainiv_tmpl);
524 }
525
526 module_init(echainiv_module_init);
527 module_exit(echainiv_module_exit);
528
529 MODULE_LICENSE("GPL");
530 MODULE_DESCRIPTION("Encrypted Chain IV Generator");
531 MODULE_ALIAS_CRYPTO("echainiv");