Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50
51 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
52 module_param(max_cstate, uint, 0000);
53 static unsigned int nocst __read_mostly;
54 module_param(nocst, uint, 0000);
55 static int bm_check_disable __read_mostly;
56 module_param(bm_check_disable, uint, 0000);
57
58 static unsigned int latency_factor __read_mostly = 2;
59 module_param(latency_factor, uint, 0644);
60
61 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
62
63 struct cpuidle_driver acpi_idle_driver = {
64         .name =         "acpi_idle",
65         .owner =        THIS_MODULE,
66 };
67
68 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
69 static
70 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
71
72 static int disabled_by_idle_boot_param(void)
73 {
74         return boot_option_idle_override == IDLE_POLL ||
75                 boot_option_idle_override == IDLE_HALT;
76 }
77
78 /*
79  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80  * For now disable this. Probably a bug somewhere else.
81  *
82  * To skip this limit, boot/load with a large max_cstate limit.
83  */
84 static int set_max_cstate(const struct dmi_system_id *id)
85 {
86         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87                 return 0;
88
89         pr_notice("%s detected - limiting to C%ld max_cstate."
90                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
91                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92
93         max_cstate = (long)id->driver_data;
94
95         return 0;
96 }
97
98 static const struct dmi_system_id processor_power_dmi_table[] = {
99         { set_max_cstate, "Clevo 5600D", {
100           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
101           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
102          (void *)2},
103         { set_max_cstate, "Pavilion zv5000", {
104           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
105           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
106          (void *)1},
107         { set_max_cstate, "Asus L8400B", {
108           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
109           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
110          (void *)1},
111         {},
112 };
113
114
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void __cpuidle acpi_safe_halt(void)
120 {
121         if (!tif_need_resched()) {
122                 safe_halt();
123                 local_irq_disable();
124         }
125 }
126
127 #ifdef ARCH_APICTIMER_STOPS_ON_C3
128
129 /*
130  * Some BIOS implementations switch to C3 in the published C2 state.
131  * This seems to be a common problem on AMD boxen, but other vendors
132  * are affected too. We pick the most conservative approach: we assume
133  * that the local APIC stops in both C2 and C3.
134  */
135 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
136                                    struct acpi_processor_cx *cx)
137 {
138         struct acpi_processor_power *pwr = &pr->power;
139         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
140
141         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
142                 return;
143
144         if (amd_e400_c1e_detected)
145                 type = ACPI_STATE_C1;
146
147         /*
148          * Check, if one of the previous states already marked the lapic
149          * unstable
150          */
151         if (pwr->timer_broadcast_on_state < state)
152                 return;
153
154         if (cx->type >= type)
155                 pr->power.timer_broadcast_on_state = state;
156 }
157
158 static void __lapic_timer_propagate_broadcast(void *arg)
159 {
160         struct acpi_processor *pr = (struct acpi_processor *) arg;
161
162         if (pr->power.timer_broadcast_on_state < INT_MAX)
163                 tick_broadcast_enable();
164         else
165                 tick_broadcast_disable();
166 }
167
168 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
169 {
170         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
171                                  (void *)pr, 1);
172 }
173
174 /* Power(C) State timer broadcast control */
175 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
176                                        struct acpi_processor_cx *cx,
177                                        int broadcast)
178 {
179         int state = cx - pr->power.states;
180
181         if (state >= pr->power.timer_broadcast_on_state) {
182                 if (broadcast)
183                         tick_broadcast_enter();
184                 else
185                         tick_broadcast_exit();
186         }
187 }
188
189 #else
190
191 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
192                                    struct acpi_processor_cx *cstate) { }
193 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
194 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
195                                        struct acpi_processor_cx *cx,
196                                        int broadcast)
197 {
198 }
199
200 #endif
201
202 #if defined(CONFIG_X86)
203 static void tsc_check_state(int state)
204 {
205         switch (boot_cpu_data.x86_vendor) {
206         case X86_VENDOR_AMD:
207         case X86_VENDOR_INTEL:
208                 /*
209                  * AMD Fam10h TSC will tick in all
210                  * C/P/S0/S1 states when this bit is set.
211                  */
212                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
213                         return;
214
215                 /*FALL THROUGH*/
216         default:
217                 /* TSC could halt in idle, so notify users */
218                 if (state > ACPI_STATE_C1)
219                         mark_tsc_unstable("TSC halts in idle");
220         }
221 }
222 #else
223 static void tsc_check_state(int state) { return; }
224 #endif
225
226 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
227 {
228
229         if (!pr->pblk)
230                 return -ENODEV;
231
232         /* if info is obtained from pblk/fadt, type equals state */
233         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
234         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
235
236 #ifndef CONFIG_HOTPLUG_CPU
237         /*
238          * Check for P_LVL2_UP flag before entering C2 and above on
239          * an SMP system.
240          */
241         if ((num_online_cpus() > 1) &&
242             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
243                 return -ENODEV;
244 #endif
245
246         /* determine C2 and C3 address from pblk */
247         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
248         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
249
250         /* determine latencies from FADT */
251         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
252         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
253
254         /*
255          * FADT specified C2 latency must be less than or equal to
256          * 100 microseconds.
257          */
258         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
259                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
260                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
261                 /* invalidate C2 */
262                 pr->power.states[ACPI_STATE_C2].address = 0;
263         }
264
265         /*
266          * FADT supplied C3 latency must be less than or equal to
267          * 1000 microseconds.
268          */
269         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
270                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
271                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
272                 /* invalidate C3 */
273                 pr->power.states[ACPI_STATE_C3].address = 0;
274         }
275
276         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
277                           "lvl2[0x%08x] lvl3[0x%08x]\n",
278                           pr->power.states[ACPI_STATE_C2].address,
279                           pr->power.states[ACPI_STATE_C3].address));
280
281         return 0;
282 }
283
284 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
285 {
286         if (!pr->power.states[ACPI_STATE_C1].valid) {
287                 /* set the first C-State to C1 */
288                 /* all processors need to support C1 */
289                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
290                 pr->power.states[ACPI_STATE_C1].valid = 1;
291                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
292         }
293         /* the C0 state only exists as a filler in our array */
294         pr->power.states[ACPI_STATE_C0].valid = 1;
295         return 0;
296 }
297
298 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
299 {
300         acpi_status status;
301         u64 count;
302         int current_count;
303         int i, ret = 0;
304         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
305         union acpi_object *cst;
306
307         if (nocst)
308                 return -ENODEV;
309
310         current_count = 0;
311
312         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
313         if (ACPI_FAILURE(status)) {
314                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
315                 return -ENODEV;
316         }
317
318         cst = buffer.pointer;
319
320         /* There must be at least 2 elements */
321         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
322                 pr_err("not enough elements in _CST\n");
323                 ret = -EFAULT;
324                 goto end;
325         }
326
327         count = cst->package.elements[0].integer.value;
328
329         /* Validate number of power states. */
330         if (count < 1 || count != cst->package.count - 1) {
331                 pr_err("count given by _CST is not valid\n");
332                 ret = -EFAULT;
333                 goto end;
334         }
335
336         /* Tell driver that at least _CST is supported. */
337         pr->flags.has_cst = 1;
338
339         for (i = 1; i <= count; i++) {
340                 union acpi_object *element;
341                 union acpi_object *obj;
342                 struct acpi_power_register *reg;
343                 struct acpi_processor_cx cx;
344
345                 memset(&cx, 0, sizeof(cx));
346
347                 element = &(cst->package.elements[i]);
348                 if (element->type != ACPI_TYPE_PACKAGE)
349                         continue;
350
351                 if (element->package.count != 4)
352                         continue;
353
354                 obj = &(element->package.elements[0]);
355
356                 if (obj->type != ACPI_TYPE_BUFFER)
357                         continue;
358
359                 reg = (struct acpi_power_register *)obj->buffer.pointer;
360
361                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
362                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
363                         continue;
364
365                 /* There should be an easy way to extract an integer... */
366                 obj = &(element->package.elements[1]);
367                 if (obj->type != ACPI_TYPE_INTEGER)
368                         continue;
369
370                 cx.type = obj->integer.value;
371                 /*
372                  * Some buggy BIOSes won't list C1 in _CST -
373                  * Let acpi_processor_get_power_info_default() handle them later
374                  */
375                 if (i == 1 && cx.type != ACPI_STATE_C1)
376                         current_count++;
377
378                 cx.address = reg->address;
379                 cx.index = current_count + 1;
380
381                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
382                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
383                         if (acpi_processor_ffh_cstate_probe
384                                         (pr->id, &cx, reg) == 0) {
385                                 cx.entry_method = ACPI_CSTATE_FFH;
386                         } else if (cx.type == ACPI_STATE_C1) {
387                                 /*
388                                  * C1 is a special case where FIXED_HARDWARE
389                                  * can be handled in non-MWAIT way as well.
390                                  * In that case, save this _CST entry info.
391                                  * Otherwise, ignore this info and continue.
392                                  */
393                                 cx.entry_method = ACPI_CSTATE_HALT;
394                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
395                         } else {
396                                 continue;
397                         }
398                         if (cx.type == ACPI_STATE_C1 &&
399                             (boot_option_idle_override == IDLE_NOMWAIT)) {
400                                 /*
401                                  * In most cases the C1 space_id obtained from
402                                  * _CST object is FIXED_HARDWARE access mode.
403                                  * But when the option of idle=halt is added,
404                                  * the entry_method type should be changed from
405                                  * CSTATE_FFH to CSTATE_HALT.
406                                  * When the option of idle=nomwait is added,
407                                  * the C1 entry_method type should be
408                                  * CSTATE_HALT.
409                                  */
410                                 cx.entry_method = ACPI_CSTATE_HALT;
411                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
412                         }
413                 } else {
414                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
415                                  cx.address);
416                 }
417
418                 if (cx.type == ACPI_STATE_C1) {
419                         cx.valid = 1;
420                 }
421
422                 obj = &(element->package.elements[2]);
423                 if (obj->type != ACPI_TYPE_INTEGER)
424                         continue;
425
426                 cx.latency = obj->integer.value;
427
428                 obj = &(element->package.elements[3]);
429                 if (obj->type != ACPI_TYPE_INTEGER)
430                         continue;
431
432                 current_count++;
433                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
434
435                 /*
436                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
437                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
438                  */
439                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
440                         pr_warn("Limiting number of power states to max (%d)\n",
441                                 ACPI_PROCESSOR_MAX_POWER);
442                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
443                         break;
444                 }
445         }
446
447         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
448                           current_count));
449
450         /* Validate number of power states discovered */
451         if (current_count < 2)
452                 ret = -EFAULT;
453
454       end:
455         kfree(buffer.pointer);
456
457         return ret;
458 }
459
460 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
461                                            struct acpi_processor_cx *cx)
462 {
463         static int bm_check_flag = -1;
464         static int bm_control_flag = -1;
465
466
467         if (!cx->address)
468                 return;
469
470         /*
471          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
472          * DMA transfers are used by any ISA device to avoid livelock.
473          * Note that we could disable Type-F DMA (as recommended by
474          * the erratum), but this is known to disrupt certain ISA
475          * devices thus we take the conservative approach.
476          */
477         else if (errata.piix4.fdma) {
478                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
479                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
480                 return;
481         }
482
483         /* All the logic here assumes flags.bm_check is same across all CPUs */
484         if (bm_check_flag == -1) {
485                 /* Determine whether bm_check is needed based on CPU  */
486                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
487                 bm_check_flag = pr->flags.bm_check;
488                 bm_control_flag = pr->flags.bm_control;
489         } else {
490                 pr->flags.bm_check = bm_check_flag;
491                 pr->flags.bm_control = bm_control_flag;
492         }
493
494         if (pr->flags.bm_check) {
495                 if (!pr->flags.bm_control) {
496                         if (pr->flags.has_cst != 1) {
497                                 /* bus mastering control is necessary */
498                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
499                                         "C3 support requires BM control\n"));
500                                 return;
501                         } else {
502                                 /* Here we enter C3 without bus mastering */
503                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
504                                         "C3 support without BM control\n"));
505                         }
506                 }
507         } else {
508                 /*
509                  * WBINVD should be set in fadt, for C3 state to be
510                  * supported on when bm_check is not required.
511                  */
512                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
513                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
514                                           "Cache invalidation should work properly"
515                                           " for C3 to be enabled on SMP systems\n"));
516                         return;
517                 }
518         }
519
520         /*
521          * Otherwise we've met all of our C3 requirements.
522          * Normalize the C3 latency to expidite policy.  Enable
523          * checking of bus mastering status (bm_check) so we can
524          * use this in our C3 policy
525          */
526         cx->valid = 1;
527
528         /*
529          * On older chipsets, BM_RLD needs to be set
530          * in order for Bus Master activity to wake the
531          * system from C3.  Newer chipsets handle DMA
532          * during C3 automatically and BM_RLD is a NOP.
533          * In either case, the proper way to
534          * handle BM_RLD is to set it and leave it set.
535          */
536         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
537
538         return;
539 }
540
541 static int acpi_processor_power_verify(struct acpi_processor *pr)
542 {
543         unsigned int i;
544         unsigned int working = 0;
545
546         pr->power.timer_broadcast_on_state = INT_MAX;
547
548         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
549                 struct acpi_processor_cx *cx = &pr->power.states[i];
550
551                 switch (cx->type) {
552                 case ACPI_STATE_C1:
553                         cx->valid = 1;
554                         break;
555
556                 case ACPI_STATE_C2:
557                         if (!cx->address)
558                                 break;
559                         cx->valid = 1;
560                         break;
561
562                 case ACPI_STATE_C3:
563                         acpi_processor_power_verify_c3(pr, cx);
564                         break;
565                 }
566                 if (!cx->valid)
567                         continue;
568
569                 lapic_timer_check_state(i, pr, cx);
570                 tsc_check_state(cx->type);
571                 working++;
572         }
573
574         lapic_timer_propagate_broadcast(pr);
575
576         return (working);
577 }
578
579 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
580 {
581         unsigned int i;
582         int result;
583
584
585         /* NOTE: the idle thread may not be running while calling
586          * this function */
587
588         /* Zero initialize all the C-states info. */
589         memset(pr->power.states, 0, sizeof(pr->power.states));
590
591         result = acpi_processor_get_power_info_cst(pr);
592         if (result == -ENODEV)
593                 result = acpi_processor_get_power_info_fadt(pr);
594
595         if (result)
596                 return result;
597
598         acpi_processor_get_power_info_default(pr);
599
600         pr->power.count = acpi_processor_power_verify(pr);
601
602         /*
603          * if one state of type C2 or C3 is available, mark this
604          * CPU as being "idle manageable"
605          */
606         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
607                 if (pr->power.states[i].valid) {
608                         pr->power.count = i;
609                         if (pr->power.states[i].type >= ACPI_STATE_C2)
610                                 pr->flags.power = 1;
611                 }
612         }
613
614         return 0;
615 }
616
617 /**
618  * acpi_idle_bm_check - checks if bus master activity was detected
619  */
620 static int acpi_idle_bm_check(void)
621 {
622         u32 bm_status = 0;
623
624         if (bm_check_disable)
625                 return 0;
626
627         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
628         if (bm_status)
629                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
630         /*
631          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
632          * the true state of bus mastering activity; forcing us to
633          * manually check the BMIDEA bit of each IDE channel.
634          */
635         else if (errata.piix4.bmisx) {
636                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
637                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
638                         bm_status = 1;
639         }
640         return bm_status;
641 }
642
643 /**
644  * acpi_idle_do_entry - enter idle state using the appropriate method
645  * @cx: cstate data
646  *
647  * Caller disables interrupt before call and enables interrupt after return.
648  */
649 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
650 {
651         if (cx->entry_method == ACPI_CSTATE_FFH) {
652                 /* Call into architectural FFH based C-state */
653                 acpi_processor_ffh_cstate_enter(cx);
654         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
655                 acpi_safe_halt();
656         } else {
657                 /* IO port based C-state */
658                 inb(cx->address);
659                 /* Dummy wait op - must do something useless after P_LVL2 read
660                    because chipsets cannot guarantee that STPCLK# signal
661                    gets asserted in time to freeze execution properly. */
662                 inl(acpi_gbl_FADT.xpm_timer_block.address);
663         }
664 }
665
666 /**
667  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
668  * @dev: the target CPU
669  * @index: the index of suggested state
670  */
671 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
672 {
673         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
674
675         ACPI_FLUSH_CPU_CACHE();
676
677         while (1) {
678
679                 if (cx->entry_method == ACPI_CSTATE_HALT)
680                         safe_halt();
681                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
682                         inb(cx->address);
683                         /* See comment in acpi_idle_do_entry() */
684                         inl(acpi_gbl_FADT.xpm_timer_block.address);
685                 } else
686                         return -ENODEV;
687         }
688
689         /* Never reached */
690         return 0;
691 }
692
693 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
694 {
695         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
696                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
697 }
698
699 static int c3_cpu_count;
700 static DEFINE_RAW_SPINLOCK(c3_lock);
701
702 /**
703  * acpi_idle_enter_bm - enters C3 with proper BM handling
704  * @pr: Target processor
705  * @cx: Target state context
706  * @timer_bc: Whether or not to change timer mode to broadcast
707  */
708 static void acpi_idle_enter_bm(struct acpi_processor *pr,
709                                struct acpi_processor_cx *cx, bool timer_bc)
710 {
711         acpi_unlazy_tlb(smp_processor_id());
712
713         /*
714          * Must be done before busmaster disable as we might need to
715          * access HPET !
716          */
717         if (timer_bc)
718                 lapic_timer_state_broadcast(pr, cx, 1);
719
720         /*
721          * disable bus master
722          * bm_check implies we need ARB_DIS
723          * bm_control implies whether we can do ARB_DIS
724          *
725          * That leaves a case where bm_check is set and bm_control is
726          * not set. In that case we cannot do much, we enter C3
727          * without doing anything.
728          */
729         if (pr->flags.bm_control) {
730                 raw_spin_lock(&c3_lock);
731                 c3_cpu_count++;
732                 /* Disable bus master arbitration when all CPUs are in C3 */
733                 if (c3_cpu_count == num_online_cpus())
734                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
735                 raw_spin_unlock(&c3_lock);
736         }
737
738         acpi_idle_do_entry(cx);
739
740         /* Re-enable bus master arbitration */
741         if (pr->flags.bm_control) {
742                 raw_spin_lock(&c3_lock);
743                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
744                 c3_cpu_count--;
745                 raw_spin_unlock(&c3_lock);
746         }
747
748         if (timer_bc)
749                 lapic_timer_state_broadcast(pr, cx, 0);
750 }
751
752 static int acpi_idle_enter(struct cpuidle_device *dev,
753                            struct cpuidle_driver *drv, int index)
754 {
755         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
756         struct acpi_processor *pr;
757
758         pr = __this_cpu_read(processors);
759         if (unlikely(!pr))
760                 return -EINVAL;
761
762         if (cx->type != ACPI_STATE_C1) {
763                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
764                         index = CPUIDLE_DRIVER_STATE_START;
765                         cx = per_cpu(acpi_cstate[index], dev->cpu);
766                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
767                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
768                                 acpi_idle_enter_bm(pr, cx, true);
769                                 return index;
770                         } else if (drv->safe_state_index >= 0) {
771                                 index = drv->safe_state_index;
772                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
773                         } else {
774                                 acpi_safe_halt();
775                                 return -EBUSY;
776                         }
777                 }
778         }
779
780         lapic_timer_state_broadcast(pr, cx, 1);
781
782         if (cx->type == ACPI_STATE_C3)
783                 ACPI_FLUSH_CPU_CACHE();
784
785         acpi_idle_do_entry(cx);
786
787         lapic_timer_state_broadcast(pr, cx, 0);
788
789         return index;
790 }
791
792 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
793                                    struct cpuidle_driver *drv, int index)
794 {
795         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
796
797         if (cx->type == ACPI_STATE_C3) {
798                 struct acpi_processor *pr = __this_cpu_read(processors);
799
800                 if (unlikely(!pr))
801                         return;
802
803                 if (pr->flags.bm_check) {
804                         acpi_idle_enter_bm(pr, cx, false);
805                         return;
806                 } else {
807                         ACPI_FLUSH_CPU_CACHE();
808                 }
809         }
810         acpi_idle_do_entry(cx);
811 }
812
813 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
814                                            struct cpuidle_device *dev)
815 {
816         int i, count = CPUIDLE_DRIVER_STATE_START;
817         struct acpi_processor_cx *cx;
818
819         if (max_cstate == 0)
820                 max_cstate = 1;
821
822         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
823                 cx = &pr->power.states[i];
824
825                 if (!cx->valid)
826                         continue;
827
828                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
829
830                 count++;
831                 if (count == CPUIDLE_STATE_MAX)
832                         break;
833         }
834
835         if (!count)
836                 return -EINVAL;
837
838         return 0;
839 }
840
841 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
842 {
843         int i, count = CPUIDLE_DRIVER_STATE_START;
844         struct acpi_processor_cx *cx;
845         struct cpuidle_state *state;
846         struct cpuidle_driver *drv = &acpi_idle_driver;
847
848         if (max_cstate == 0)
849                 max_cstate = 1;
850
851         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
852                 cx = &pr->power.states[i];
853
854                 if (!cx->valid)
855                         continue;
856
857                 state = &drv->states[count];
858                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
859                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
860                 state->exit_latency = cx->latency;
861                 state->target_residency = cx->latency * latency_factor;
862                 state->enter = acpi_idle_enter;
863
864                 state->flags = 0;
865                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
866                         state->enter_dead = acpi_idle_play_dead;
867                         drv->safe_state_index = count;
868                 }
869                 /*
870                  * Halt-induced C1 is not good for ->enter_freeze, because it
871                  * re-enables interrupts on exit.  Moreover, C1 is generally not
872                  * particularly interesting from the suspend-to-idle angle, so
873                  * avoid C1 and the situations in which we may need to fall back
874                  * to it altogether.
875                  */
876                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
877                         state->enter_freeze = acpi_idle_enter_freeze;
878
879                 count++;
880                 if (count == CPUIDLE_STATE_MAX)
881                         break;
882         }
883
884         drv->state_count = count;
885
886         if (!count)
887                 return -EINVAL;
888
889         return 0;
890 }
891
892 static inline void acpi_processor_cstate_first_run_checks(void)
893 {
894         acpi_status status;
895         static int first_run;
896
897         if (first_run)
898                 return;
899         dmi_check_system(processor_power_dmi_table);
900         max_cstate = acpi_processor_cstate_check(max_cstate);
901         if (max_cstate < ACPI_C_STATES_MAX)
902                 pr_notice("ACPI: processor limited to max C-state %d\n",
903                           max_cstate);
904         first_run++;
905
906         if (acpi_gbl_FADT.cst_control && !nocst) {
907                 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
908                                             acpi_gbl_FADT.cst_control, 8);
909                 if (ACPI_FAILURE(status))
910                         ACPI_EXCEPTION((AE_INFO, status,
911                                         "Notifying BIOS of _CST ability failed"));
912         }
913 }
914 #else
915
916 static inline int disabled_by_idle_boot_param(void) { return 0; }
917 static inline void acpi_processor_cstate_first_run_checks(void) { }
918 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
919 {
920         return -ENODEV;
921 }
922
923 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
924                                            struct cpuidle_device *dev)
925 {
926         return -EINVAL;
927 }
928
929 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
930 {
931         return -EINVAL;
932 }
933
934 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
935
936 struct acpi_lpi_states_array {
937         unsigned int size;
938         unsigned int composite_states_size;
939         struct acpi_lpi_state *entries;
940         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
941 };
942
943 static int obj_get_integer(union acpi_object *obj, u32 *value)
944 {
945         if (obj->type != ACPI_TYPE_INTEGER)
946                 return -EINVAL;
947
948         *value = obj->integer.value;
949         return 0;
950 }
951
952 static int acpi_processor_evaluate_lpi(acpi_handle handle,
953                                        struct acpi_lpi_states_array *info)
954 {
955         acpi_status status;
956         int ret = 0;
957         int pkg_count, state_idx = 1, loop;
958         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
959         union acpi_object *lpi_data;
960         struct acpi_lpi_state *lpi_state;
961
962         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
963         if (ACPI_FAILURE(status)) {
964                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
965                 return -ENODEV;
966         }
967
968         lpi_data = buffer.pointer;
969
970         /* There must be at least 4 elements = 3 elements + 1 package */
971         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
972             lpi_data->package.count < 4) {
973                 pr_debug("not enough elements in _LPI\n");
974                 ret = -ENODATA;
975                 goto end;
976         }
977
978         pkg_count = lpi_data->package.elements[2].integer.value;
979
980         /* Validate number of power states. */
981         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
982                 pr_debug("count given by _LPI is not valid\n");
983                 ret = -ENODATA;
984                 goto end;
985         }
986
987         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
988         if (!lpi_state) {
989                 ret = -ENOMEM;
990                 goto end;
991         }
992
993         info->size = pkg_count;
994         info->entries = lpi_state;
995
996         /* LPI States start at index 3 */
997         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
998                 union acpi_object *element, *pkg_elem, *obj;
999
1000                 element = &lpi_data->package.elements[loop];
1001                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002                         continue;
1003
1004                 pkg_elem = element->package.elements;
1005
1006                 obj = pkg_elem + 6;
1007                 if (obj->type == ACPI_TYPE_BUFFER) {
1008                         struct acpi_power_register *reg;
1009
1010                         reg = (struct acpi_power_register *)obj->buffer.pointer;
1011                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013                                 continue;
1014
1015                         lpi_state->address = reg->address;
1016                         lpi_state->entry_method =
1017                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019                 } else if (obj->type == ACPI_TYPE_INTEGER) {
1020                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021                         lpi_state->address = obj->integer.value;
1022                 } else {
1023                         continue;
1024                 }
1025
1026                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1027
1028                 obj = pkg_elem + 9;
1029                 if (obj->type == ACPI_TYPE_STRING)
1030                         strlcpy(lpi_state->desc, obj->string.pointer,
1031                                 ACPI_CX_DESC_LEN);
1032
1033                 lpi_state->index = state_idx;
1034                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035                         pr_debug("No min. residency found, assuming 10 us\n");
1036                         lpi_state->min_residency = 10;
1037                 }
1038
1039                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040                         pr_debug("No wakeup residency found, assuming 10 us\n");
1041                         lpi_state->wake_latency = 10;
1042                 }
1043
1044                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045                         lpi_state->flags = 0;
1046
1047                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048                         lpi_state->arch_flags = 0;
1049
1050                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051                         lpi_state->res_cnt_freq = 1;
1052
1053                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054                         lpi_state->enable_parent_state = 0;
1055         }
1056
1057         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058 end:
1059         kfree(buffer.pointer);
1060         return ret;
1061 }
1062
1063 /*
1064  * flat_state_cnt - the number of composite LPI states after the process of flattening
1065  */
1066 static int flat_state_cnt;
1067
1068 /**
1069  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070  *
1071  * @local: local LPI state
1072  * @parent: parent LPI state
1073  * @result: composite LPI state
1074  */
1075 static bool combine_lpi_states(struct acpi_lpi_state *local,
1076                                struct acpi_lpi_state *parent,
1077                                struct acpi_lpi_state *result)
1078 {
1079         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080                 if (!parent->address) /* 0 means autopromotable */
1081                         return false;
1082                 result->address = local->address + parent->address;
1083         } else {
1084                 result->address = parent->address;
1085         }
1086
1087         result->min_residency = max(local->min_residency, parent->min_residency);
1088         result->wake_latency = local->wake_latency + parent->wake_latency;
1089         result->enable_parent_state = parent->enable_parent_state;
1090         result->entry_method = local->entry_method;
1091
1092         result->flags = parent->flags;
1093         result->arch_flags = parent->arch_flags;
1094         result->index = parent->index;
1095
1096         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099         return true;
1100 }
1101
1102 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1103
1104 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105                                   struct acpi_lpi_state *t)
1106 {
1107         curr_level->composite_states[curr_level->composite_states_size++] = t;
1108 }
1109
1110 static int flatten_lpi_states(struct acpi_processor *pr,
1111                               struct acpi_lpi_states_array *curr_level,
1112                               struct acpi_lpi_states_array *prev_level)
1113 {
1114         int i, j, state_count = curr_level->size;
1115         struct acpi_lpi_state *p, *t = curr_level->entries;
1116
1117         curr_level->composite_states_size = 0;
1118         for (j = 0; j < state_count; j++, t++) {
1119                 struct acpi_lpi_state *flpi;
1120
1121                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122                         continue;
1123
1124                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125                         pr_warn("Limiting number of LPI states to max (%d)\n",
1126                                 ACPI_PROCESSOR_MAX_POWER);
1127                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128                         break;
1129                 }
1130
1131                 flpi = &pr->power.lpi_states[flat_state_cnt];
1132
1133                 if (!prev_level) { /* leaf/processor node */
1134                         memcpy(flpi, t, sizeof(*t));
1135                         stash_composite_state(curr_level, flpi);
1136                         flat_state_cnt++;
1137                         continue;
1138                 }
1139
1140                 for (i = 0; i < prev_level->composite_states_size; i++) {
1141                         p = prev_level->composite_states[i];
1142                         if (t->index <= p->enable_parent_state &&
1143                             combine_lpi_states(p, t, flpi)) {
1144                                 stash_composite_state(curr_level, flpi);
1145                                 flat_state_cnt++;
1146                                 flpi++;
1147                         }
1148                 }
1149         }
1150
1151         kfree(curr_level->entries);
1152         return 0;
1153 }
1154
1155 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1156 {
1157         int ret, i;
1158         acpi_status status;
1159         acpi_handle handle = pr->handle, pr_ahandle;
1160         struct acpi_device *d = NULL;
1161         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162
1163         if (!osc_pc_lpi_support_confirmed)
1164                 return -EOPNOTSUPP;
1165
1166         if (!acpi_has_method(handle, "_LPI"))
1167                 return -EINVAL;
1168
1169         flat_state_cnt = 0;
1170         prev = &info[0];
1171         curr = &info[1];
1172         handle = pr->handle;
1173         ret = acpi_processor_evaluate_lpi(handle, prev);
1174         if (ret)
1175                 return ret;
1176         flatten_lpi_states(pr, prev, NULL);
1177
1178         status = acpi_get_parent(handle, &pr_ahandle);
1179         while (ACPI_SUCCESS(status)) {
1180                 acpi_bus_get_device(pr_ahandle, &d);
1181                 handle = pr_ahandle;
1182
1183                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184                         break;
1185
1186                 /* can be optional ? */
1187                 if (!acpi_has_method(handle, "_LPI"))
1188                         break;
1189
1190                 ret = acpi_processor_evaluate_lpi(handle, curr);
1191                 if (ret)
1192                         break;
1193
1194                 /* flatten all the LPI states in this level of hierarchy */
1195                 flatten_lpi_states(pr, curr, prev);
1196
1197                 tmp = prev, prev = curr, curr = tmp;
1198
1199                 status = acpi_get_parent(handle, &pr_ahandle);
1200         }
1201
1202         pr->power.count = flat_state_cnt;
1203         /* reset the index after flattening */
1204         for (i = 0; i < pr->power.count; i++)
1205                 pr->power.lpi_states[i].index = i;
1206
1207         /* Tell driver that _LPI is supported. */
1208         pr->flags.has_lpi = 1;
1209         pr->flags.power = 1;
1210
1211         return 0;
1212 }
1213
1214 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1215 {
1216         return -ENODEV;
1217 }
1218
1219 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1220 {
1221         return -ENODEV;
1222 }
1223
1224 /**
1225  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226  * @dev: the target CPU
1227  * @drv: cpuidle driver containing cpuidle state info
1228  * @index: index of target state
1229  *
1230  * Return: 0 for success or negative value for error
1231  */
1232 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233                                struct cpuidle_driver *drv, int index)
1234 {
1235         struct acpi_processor *pr;
1236         struct acpi_lpi_state *lpi;
1237
1238         pr = __this_cpu_read(processors);
1239
1240         if (unlikely(!pr))
1241                 return -EINVAL;
1242
1243         lpi = &pr->power.lpi_states[index];
1244         if (lpi->entry_method == ACPI_CSTATE_FFH)
1245                 return acpi_processor_ffh_lpi_enter(lpi);
1246
1247         return -EINVAL;
1248 }
1249
1250 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1251 {
1252         int i;
1253         struct acpi_lpi_state *lpi;
1254         struct cpuidle_state *state;
1255         struct cpuidle_driver *drv = &acpi_idle_driver;
1256
1257         if (!pr->flags.has_lpi)
1258                 return -EOPNOTSUPP;
1259
1260         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261                 lpi = &pr->power.lpi_states[i];
1262
1263                 state = &drv->states[i];
1264                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266                 state->exit_latency = lpi->wake_latency;
1267                 state->target_residency = lpi->min_residency;
1268                 if (lpi->arch_flags)
1269                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270                 state->enter = acpi_idle_lpi_enter;
1271                 drv->safe_state_index = i;
1272         }
1273
1274         drv->state_count = i;
1275
1276         return 0;
1277 }
1278
1279 /**
1280  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281  * global state data i.e. idle routines
1282  *
1283  * @pr: the ACPI processor
1284  */
1285 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1286 {
1287         int i;
1288         struct cpuidle_driver *drv = &acpi_idle_driver;
1289
1290         if (!pr->flags.power_setup_done || !pr->flags.power)
1291                 return -EINVAL;
1292
1293         drv->safe_state_index = -1;
1294         for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295                 drv->states[i].name[0] = '\0';
1296                 drv->states[i].desc[0] = '\0';
1297         }
1298
1299         if (pr->flags.has_lpi)
1300                 return acpi_processor_setup_lpi_states(pr);
1301
1302         return acpi_processor_setup_cstates(pr);
1303 }
1304
1305 /**
1306  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307  * device i.e. per-cpu data
1308  *
1309  * @pr: the ACPI processor
1310  * @dev : the cpuidle device
1311  */
1312 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313                                             struct cpuidle_device *dev)
1314 {
1315         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316                 return -EINVAL;
1317
1318         dev->cpu = pr->id;
1319         if (pr->flags.has_lpi)
1320                 return acpi_processor_ffh_lpi_probe(pr->id);
1321
1322         return acpi_processor_setup_cpuidle_cx(pr, dev);
1323 }
1324
1325 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1326 {
1327         int ret;
1328
1329         ret = acpi_processor_get_lpi_info(pr);
1330         if (ret)
1331                 ret = acpi_processor_get_cstate_info(pr);
1332
1333         return ret;
1334 }
1335
1336 int acpi_processor_hotplug(struct acpi_processor *pr)
1337 {
1338         int ret = 0;
1339         struct cpuidle_device *dev;
1340
1341         if (disabled_by_idle_boot_param())
1342                 return 0;
1343
1344         if (!pr->flags.power_setup_done)
1345                 return -ENODEV;
1346
1347         dev = per_cpu(acpi_cpuidle_device, pr->id);
1348         cpuidle_pause_and_lock();
1349         cpuidle_disable_device(dev);
1350         ret = acpi_processor_get_power_info(pr);
1351         if (!ret && pr->flags.power) {
1352                 acpi_processor_setup_cpuidle_dev(pr, dev);
1353                 ret = cpuidle_enable_device(dev);
1354         }
1355         cpuidle_resume_and_unlock();
1356
1357         return ret;
1358 }
1359
1360 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1361 {
1362         int cpu;
1363         struct acpi_processor *_pr;
1364         struct cpuidle_device *dev;
1365
1366         if (disabled_by_idle_boot_param())
1367                 return 0;
1368
1369         if (!pr->flags.power_setup_done)
1370                 return -ENODEV;
1371
1372         /*
1373          * FIXME:  Design the ACPI notification to make it once per
1374          * system instead of once per-cpu.  This condition is a hack
1375          * to make the code that updates C-States be called once.
1376          */
1377
1378         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379
1380                 /* Protect against cpu-hotplug */
1381                 get_online_cpus();
1382                 cpuidle_pause_and_lock();
1383
1384                 /* Disable all cpuidle devices */
1385                 for_each_online_cpu(cpu) {
1386                         _pr = per_cpu(processors, cpu);
1387                         if (!_pr || !_pr->flags.power_setup_done)
1388                                 continue;
1389                         dev = per_cpu(acpi_cpuidle_device, cpu);
1390                         cpuidle_disable_device(dev);
1391                 }
1392
1393                 /* Populate Updated C-state information */
1394                 acpi_processor_get_power_info(pr);
1395                 acpi_processor_setup_cpuidle_states(pr);
1396
1397                 /* Enable all cpuidle devices */
1398                 for_each_online_cpu(cpu) {
1399                         _pr = per_cpu(processors, cpu);
1400                         if (!_pr || !_pr->flags.power_setup_done)
1401                                 continue;
1402                         acpi_processor_get_power_info(_pr);
1403                         if (_pr->flags.power) {
1404                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1405                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1406                                 cpuidle_enable_device(dev);
1407                         }
1408                 }
1409                 cpuidle_resume_and_unlock();
1410                 put_online_cpus();
1411         }
1412
1413         return 0;
1414 }
1415
1416 static int acpi_processor_registered;
1417
1418 int acpi_processor_power_init(struct acpi_processor *pr)
1419 {
1420         int retval;
1421         struct cpuidle_device *dev;
1422
1423         if (disabled_by_idle_boot_param())
1424                 return 0;
1425
1426         acpi_processor_cstate_first_run_checks();
1427
1428         if (!acpi_processor_get_power_info(pr))
1429                 pr->flags.power_setup_done = 1;
1430
1431         /*
1432          * Install the idle handler if processor power management is supported.
1433          * Note that we use previously set idle handler will be used on
1434          * platforms that only support C1.
1435          */
1436         if (pr->flags.power) {
1437                 /* Register acpi_idle_driver if not already registered */
1438                 if (!acpi_processor_registered) {
1439                         acpi_processor_setup_cpuidle_states(pr);
1440                         retval = cpuidle_register_driver(&acpi_idle_driver);
1441                         if (retval)
1442                                 return retval;
1443                         pr_debug("%s registered with cpuidle\n",
1444                                  acpi_idle_driver.name);
1445                 }
1446
1447                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448                 if (!dev)
1449                         return -ENOMEM;
1450                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451
1452                 acpi_processor_setup_cpuidle_dev(pr, dev);
1453
1454                 /* Register per-cpu cpuidle_device. Cpuidle driver
1455                  * must already be registered before registering device
1456                  */
1457                 retval = cpuidle_register_device(dev);
1458                 if (retval) {
1459                         if (acpi_processor_registered == 0)
1460                                 cpuidle_unregister_driver(&acpi_idle_driver);
1461                         return retval;
1462                 }
1463                 acpi_processor_registered++;
1464         }
1465         return 0;
1466 }
1467
1468 int acpi_processor_power_exit(struct acpi_processor *pr)
1469 {
1470         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471
1472         if (disabled_by_idle_boot_param())
1473                 return 0;
1474
1475         if (pr->flags.power) {
1476                 cpuidle_unregister_device(dev);
1477                 acpi_processor_registered--;
1478                 if (acpi_processor_registered == 0)
1479                         cpuidle_unregister_driver(&acpi_idle_driver);
1480         }
1481
1482         pr->flags.power_setup_done = 0;
1483         return 0;
1484 }