Merge branch 'linus' into perf/urgent
[cascardo/linux.git] / drivers / ata / sata_dwc_460ex.c
1 /*
2  * drivers/ata/sata_dwc_460ex.c
3  *
4  * Synopsys DesignWare Cores (DWC) SATA host driver
5  *
6  * Author: Mark Miesfeld <mmiesfeld@amcc.com>
7  *
8  * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9  * Copyright 2008 DENX Software Engineering
10  *
11  * Based on versions provided by AMCC and Synopsys which are:
12  *          Copyright 2006 Applied Micro Circuits Corporation
13  *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  */
20
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
24
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_platform.h>
37 #include <linux/platform_device.h>
38 #include <linux/libata.h>
39 #include <linux/slab.h>
40 #include "libata.h"
41
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_cmnd.h>
44
45 /* These two are defined in "libata.h" */
46 #undef  DRV_NAME
47 #undef  DRV_VERSION
48
49 #define DRV_NAME        "sata-dwc"
50 #define DRV_VERSION     "1.3"
51
52 /* SATA DMA driver Globals */
53 #define DMA_NUM_CHANS           1
54 #define DMA_NUM_CHAN_REGS       8
55
56 /* SATA DMA Register definitions */
57 #define AHB_DMA_BRST_DFLT       64      /* 16 data items burst length*/
58
59 struct dmareg {
60         u32 low;                /* Low bits 0-31 */
61         u32 high;               /* High bits 32-63 */
62 };
63
64 /* DMA Per Channel registers */
65 struct dma_chan_regs {
66         struct dmareg sar;      /* Source Address */
67         struct dmareg dar;      /* Destination address */
68         struct dmareg llp;      /* Linked List Pointer */
69         struct dmareg ctl;      /* Control */
70         struct dmareg sstat;    /* Source Status not implemented in core */
71         struct dmareg dstat;    /* Destination Status not implemented in core*/
72         struct dmareg sstatar;  /* Source Status Address not impl in core */
73         struct dmareg dstatar;  /* Destination Status Address not implemente */
74         struct dmareg cfg;      /* Config */
75         struct dmareg sgr;      /* Source Gather */
76         struct dmareg dsr;      /* Destination Scatter */
77 };
78
79 /* Generic Interrupt Registers */
80 struct dma_interrupt_regs {
81         struct dmareg tfr;      /* Transfer Interrupt */
82         struct dmareg block;    /* Block Interrupt */
83         struct dmareg srctran;  /* Source Transfer Interrupt */
84         struct dmareg dsttran;  /* Dest Transfer Interrupt */
85         struct dmareg error;    /* Error */
86 };
87
88 struct ahb_dma_regs {
89         struct dma_chan_regs    chan_regs[DMA_NUM_CHAN_REGS];
90         struct dma_interrupt_regs interrupt_raw;        /* Raw Interrupt */
91         struct dma_interrupt_regs interrupt_status;     /* Interrupt Status */
92         struct dma_interrupt_regs interrupt_mask;       /* Interrupt Mask */
93         struct dma_interrupt_regs interrupt_clear;      /* Interrupt Clear */
94         struct dmareg           statusInt;      /* Interrupt combined*/
95         struct dmareg           rq_srcreg;      /* Src Trans Req */
96         struct dmareg           rq_dstreg;      /* Dst Trans Req */
97         struct dmareg           rq_sgl_srcreg;  /* Sngl Src Trans Req*/
98         struct dmareg           rq_sgl_dstreg;  /* Sngl Dst Trans Req*/
99         struct dmareg           rq_lst_srcreg;  /* Last Src Trans Req*/
100         struct dmareg           rq_lst_dstreg;  /* Last Dst Trans Req*/
101         struct dmareg           dma_cfg;                /* DMA Config */
102         struct dmareg           dma_chan_en;            /* DMA Channel Enable*/
103         struct dmareg           dma_id;                 /* DMA ID */
104         struct dmareg           dma_test;               /* DMA Test */
105         struct dmareg           res1;                   /* reserved */
106         struct dmareg           res2;                   /* reserved */
107         /*
108          * DMA Comp Params
109          * Param 6 = dma_param[0], Param 5 = dma_param[1],
110          * Param 4 = dma_param[2] ...
111          */
112         struct dmareg           dma_params[6];
113 };
114
115 /* Data structure for linked list item */
116 struct lli {
117         u32             sar;            /* Source Address */
118         u32             dar;            /* Destination address */
119         u32             llp;            /* Linked List Pointer */
120         struct dmareg   ctl;            /* Control */
121         struct dmareg   dstat;          /* Destination Status */
122 };
123
124 enum {
125         SATA_DWC_DMAC_LLI_SZ =  (sizeof(struct lli)),
126         SATA_DWC_DMAC_LLI_NUM = 256,
127         SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
128                                         SATA_DWC_DMAC_LLI_NUM),
129         SATA_DWC_DMAC_TWIDTH_BYTES = 4,
130         SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
131                                                 SATA_DWC_DMAC_TWIDTH_BYTES),
132 };
133
134 /* DMA Register Operation Bits */
135 enum {
136         DMA_EN  =               0x00000001, /* Enable AHB DMA */
137         DMA_CTL_LLP_SRCEN =     0x10000000, /* Blk chain enable Src */
138         DMA_CTL_LLP_DSTEN =     0x08000000, /* Blk chain enable Dst */
139 };
140
141 #define DMA_CTL_BLK_TS(size)    ((size) & 0x000000FFF)  /* Blk Transfer size */
142 #define DMA_CHANNEL(ch)         (0x00000001 << (ch))    /* Select channel */
143         /* Enable channel */
144 #define DMA_ENABLE_CHAN(ch)     ((0x00000001 << (ch)) |                 \
145                                  ((0x000000001 << (ch)) << 8))
146         /* Disable channel */
147 #define DMA_DISABLE_CHAN(ch)    (0x00000000 | ((0x000000001 << (ch)) << 8))
148         /* Transfer Type & Flow Controller */
149 #define DMA_CTL_TTFC(type)      (((type) & 0x7) << 20)
150 #define DMA_CTL_SMS(num)        (((num) & 0x3) << 25) /* Src Master Select */
151 #define DMA_CTL_DMS(num)        (((num) & 0x3) << 23)/* Dst Master Select */
152         /* Src Burst Transaction Length */
153 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
154         /* Dst Burst Transaction Length */
155 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
156         /* Source Transfer Width */
157 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
158         /* Destination Transfer Width */
159 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
160
161 /* Assign HW handshaking interface (x) to destination / source peripheral */
162 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
163 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
164 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
165 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
166
167 /*
168  * This define is used to set block chaining disabled in the control low
169  * register.  It is already in little endian format so it can be &'d dirctly.
170  * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
171  */
172 enum {
173         DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
174         DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
175         DMA_CTL_TTFC_M2P_PER =  0x00000003, /* Mem to per, peripheral cntr */
176         DMA_CTL_SINC_INC =      0x00000000, /* Source Address Increment */
177         DMA_CTL_SINC_DEC =      0x00000200,
178         DMA_CTL_SINC_NOCHANGE = 0x00000400,
179         DMA_CTL_DINC_INC =      0x00000000, /* Destination Address Increment */
180         DMA_CTL_DINC_DEC =      0x00000080,
181         DMA_CTL_DINC_NOCHANGE = 0x00000100,
182         DMA_CTL_INT_EN =        0x00000001, /* Interrupt Enable */
183
184 /* Channel Configuration Register high bits */
185         DMA_CFG_FCMOD_REQ =     0x00000001, /* Flow Control - request based */
186         DMA_CFG_PROTCTL =       (0x00000003 << 2),/* Protection Control */
187
188 /* Channel Configuration Register low bits */
189         DMA_CFG_RELD_DST =      0x80000000, /* Reload Dest / Src Addr */
190         DMA_CFG_RELD_SRC =      0x40000000,
191         DMA_CFG_HS_SELSRC =     0x00000800, /* Software handshake Src/ Dest */
192         DMA_CFG_HS_SELDST =     0x00000400,
193         DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */
194
195 /* Channel Linked List Pointer Register */
196         DMA_LLP_AHBMASTER1 =    0,      /* List Master Select */
197         DMA_LLP_AHBMASTER2 =    1,
198
199         SATA_DWC_MAX_PORTS = 1,
200
201         SATA_DWC_SCR_OFFSET = 0x24,
202         SATA_DWC_REG_OFFSET = 0x64,
203 };
204
205 /* DWC SATA Registers */
206 struct sata_dwc_regs {
207         u32 fptagr;             /* 1st party DMA tag */
208         u32 fpbor;              /* 1st party DMA buffer offset */
209         u32 fptcr;              /* 1st party DMA Xfr count */
210         u32 dmacr;              /* DMA Control */
211         u32 dbtsr;              /* DMA Burst Transac size */
212         u32 intpr;              /* Interrupt Pending */
213         u32 intmr;              /* Interrupt Mask */
214         u32 errmr;              /* Error Mask */
215         u32 llcr;               /* Link Layer Control */
216         u32 phycr;              /* PHY Control */
217         u32 physr;              /* PHY Status */
218         u32 rxbistpd;           /* Recvd BIST pattern def register */
219         u32 rxbistpd1;          /* Recvd BIST data dword1 */
220         u32 rxbistpd2;          /* Recvd BIST pattern data dword2 */
221         u32 txbistpd;           /* Trans BIST pattern def register */
222         u32 txbistpd1;          /* Trans BIST data dword1 */
223         u32 txbistpd2;          /* Trans BIST data dword2 */
224         u32 bistcr;             /* BIST Control Register */
225         u32 bistfctr;           /* BIST FIS Count Register */
226         u32 bistsr;             /* BIST Status Register */
227         u32 bistdecr;           /* BIST Dword Error count register */
228         u32 res[15];            /* Reserved locations */
229         u32 testr;              /* Test Register */
230         u32 versionr;           /* Version Register */
231         u32 idr;                /* ID Register */
232         u32 unimpl[192];        /* Unimplemented */
233         u32 dmadr[256]; /* FIFO Locations in DMA Mode */
234 };
235
236 enum {
237         SCR_SCONTROL_DET_ENABLE =       0x00000001,
238         SCR_SSTATUS_DET_PRESENT =       0x00000001,
239         SCR_SERROR_DIAG_X       =       0x04000000,
240 /* DWC SATA Register Operations */
241         SATA_DWC_TXFIFO_DEPTH   =       0x01FF,
242         SATA_DWC_RXFIFO_DEPTH   =       0x01FF,
243         SATA_DWC_DMACR_TMOD_TXCHEN =    0x00000004,
244         SATA_DWC_DMACR_TXCHEN   = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
245         SATA_DWC_DMACR_RXCHEN   = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
246         SATA_DWC_DMACR_TXRXCH_CLEAR =   SATA_DWC_DMACR_TMOD_TXCHEN,
247         SATA_DWC_INTPR_DMAT     =       0x00000001,
248         SATA_DWC_INTPR_NEWFP    =       0x00000002,
249         SATA_DWC_INTPR_PMABRT   =       0x00000004,
250         SATA_DWC_INTPR_ERR      =       0x00000008,
251         SATA_DWC_INTPR_NEWBIST  =       0x00000010,
252         SATA_DWC_INTPR_IPF      =       0x10000000,
253         SATA_DWC_INTMR_DMATM    =       0x00000001,
254         SATA_DWC_INTMR_NEWFPM   =       0x00000002,
255         SATA_DWC_INTMR_PMABRTM  =       0x00000004,
256         SATA_DWC_INTMR_ERRM     =       0x00000008,
257         SATA_DWC_INTMR_NEWBISTM =       0x00000010,
258         SATA_DWC_LLCR_SCRAMEN   =       0x00000001,
259         SATA_DWC_LLCR_DESCRAMEN =       0x00000002,
260         SATA_DWC_LLCR_RPDEN     =       0x00000004,
261 /* This is all error bits, zero's are reserved fields. */
262         SATA_DWC_SERROR_ERR_BITS =      0x0FFF0F03
263 };
264
265 #define SATA_DWC_SCR0_SPD_GET(v)        (((v) >> 4) & 0x0000000F)
266 #define SATA_DWC_DMACR_TX_CLEAR(v)      (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
267                                                  SATA_DWC_DMACR_TMOD_TXCHEN)
268 #define SATA_DWC_DMACR_RX_CLEAR(v)      (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
269                                                  SATA_DWC_DMACR_TMOD_TXCHEN)
270 #define SATA_DWC_DBTSR_MWR(size)        (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
271 #define SATA_DWC_DBTSR_MRD(size)        ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
272                                                  << 16)
273 struct sata_dwc_device {
274         struct device           *dev;           /* generic device struct */
275         struct ata_probe_ent    *pe;            /* ptr to probe-ent */
276         struct ata_host         *host;
277         u8                      *reg_base;
278         struct sata_dwc_regs    *sata_dwc_regs; /* DW Synopsys SATA specific */
279         int                     irq_dma;
280 };
281
282 #define SATA_DWC_QCMD_MAX       32
283
284 struct sata_dwc_device_port {
285         struct sata_dwc_device  *hsdev;
286         int                     cmd_issued[SATA_DWC_QCMD_MAX];
287         struct lli              *llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */
288         dma_addr_t              llit_dma[SATA_DWC_QCMD_MAX];
289         u32                     dma_chan[SATA_DWC_QCMD_MAX];
290         int                     dma_pending[SATA_DWC_QCMD_MAX];
291 };
292
293 /*
294  * Commonly used DWC SATA driver Macros
295  */
296 #define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\
297                                         (host)->private_data)
298 #define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\
299                                         (ap)->host->private_data)
300 #define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\
301                                         (ap)->private_data)
302 #define HSDEV_FROM_QC(qc)       ((struct sata_dwc_device *)\
303                                         (qc)->ap->host->private_data)
304 #define HSDEV_FROM_HSDEVP(p)    ((struct sata_dwc_device *)\
305                                                 (hsdevp)->hsdev)
306
307 enum {
308         SATA_DWC_CMD_ISSUED_NOT         = 0,
309         SATA_DWC_CMD_ISSUED_PEND        = 1,
310         SATA_DWC_CMD_ISSUED_EXEC        = 2,
311         SATA_DWC_CMD_ISSUED_NODATA      = 3,
312
313         SATA_DWC_DMA_PENDING_NONE       = 0,
314         SATA_DWC_DMA_PENDING_TX         = 1,
315         SATA_DWC_DMA_PENDING_RX         = 2,
316 };
317
318 struct sata_dwc_host_priv {
319         void    __iomem  *scr_addr_sstatus;
320         u32     sata_dwc_sactive_issued ;
321         u32     sata_dwc_sactive_queued ;
322         u32     dma_interrupt_count;
323         struct  ahb_dma_regs    *sata_dma_regs;
324         struct  device  *dwc_dev;
325         int     dma_channel;
326 };
327 struct sata_dwc_host_priv host_pvt;
328 /*
329  * Prototypes
330  */
331 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
332 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
333                                 u32 check_status);
334 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
335 static void sata_dwc_port_stop(struct ata_port *ap);
336 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
337 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
338 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
339 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
340                               struct lli *lli, dma_addr_t dma_lli,
341                               void __iomem *addr, int dir);
342 static void dma_dwc_xfer_start(int dma_ch);
343
344 static const char *get_prot_descript(u8 protocol)
345 {
346         switch ((enum ata_tf_protocols)protocol) {
347         case ATA_PROT_NODATA:
348                 return "ATA no data";
349         case ATA_PROT_PIO:
350                 return "ATA PIO";
351         case ATA_PROT_DMA:
352                 return "ATA DMA";
353         case ATA_PROT_NCQ:
354                 return "ATA NCQ";
355         case ATAPI_PROT_NODATA:
356                 return "ATAPI no data";
357         case ATAPI_PROT_PIO:
358                 return "ATAPI PIO";
359         case ATAPI_PROT_DMA:
360                 return "ATAPI DMA";
361         default:
362                 return "unknown";
363         }
364 }
365
366 static const char *get_dma_dir_descript(int dma_dir)
367 {
368         switch ((enum dma_data_direction)dma_dir) {
369         case DMA_BIDIRECTIONAL:
370                 return "bidirectional";
371         case DMA_TO_DEVICE:
372                 return "to device";
373         case DMA_FROM_DEVICE:
374                 return "from device";
375         default:
376                 return "none";
377         }
378 }
379
380 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
381 {
382         dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
383                 "0x%lx device: %x\n", tf->command,
384                 get_prot_descript(tf->protocol), tf->flags, tf->device);
385         dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
386                 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
387                  tf->lbam, tf->lbah);
388         dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
389                 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
390                 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
391                 tf->hob_lbah);
392 }
393
394 /*
395  * Function: get_burst_length_encode
396  * arguments: datalength: length in bytes of data
397  * returns value to be programmed in register corresponding to data length
398  * This value is effectively the log(base 2) of the length
399  */
400 static  int get_burst_length_encode(int datalength)
401 {
402         int items = datalength >> 2;    /* div by 4 to get lword count */
403
404         if (items >= 64)
405                 return 5;
406
407         if (items >= 32)
408                 return 4;
409
410         if (items >= 16)
411                 return 3;
412
413         if (items >= 8)
414                 return 2;
415
416         if (items >= 4)
417                 return 1;
418
419         return 0;
420 }
421
422 static  void clear_chan_interrupts(int c)
423 {
424         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
425                  DMA_CHANNEL(c));
426         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
427                  DMA_CHANNEL(c));
428         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
429                  DMA_CHANNEL(c));
430         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
431                  DMA_CHANNEL(c));
432         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
433                  DMA_CHANNEL(c));
434 }
435
436 /*
437  * Function: dma_request_channel
438  * arguments: None
439  * returns channel number if available else -1
440  * This function assigns the next available DMA channel from the list to the
441  * requester
442  */
443 static int dma_request_channel(void)
444 {
445         /* Check if the channel is not currently in use */
446         if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
447                 DMA_CHANNEL(host_pvt.dma_channel)))
448                 return host_pvt.dma_channel;
449         dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
450                 __func__, host_pvt.dma_channel);
451         return -1;
452 }
453
454 /*
455  * Function: dma_dwc_interrupt
456  * arguments: irq, dev_id, pt_regs
457  * returns channel number if available else -1
458  * Interrupt Handler for DW AHB SATA DMA
459  */
460 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
461 {
462         int chan;
463         u32 tfr_reg, err_reg;
464         unsigned long flags;
465         struct sata_dwc_device *hsdev =
466                 (struct sata_dwc_device *)hsdev_instance;
467         struct ata_host *host = (struct ata_host *)hsdev->host;
468         struct ata_port *ap;
469         struct sata_dwc_device_port *hsdevp;
470         u8 tag = 0;
471         unsigned int port = 0;
472
473         spin_lock_irqsave(&host->lock, flags);
474         ap = host->ports[port];
475         hsdevp = HSDEVP_FROM_AP(ap);
476         tag = ap->link.active_tag;
477
478         tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
479                         .low));
480         err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
481                         .low));
482
483         dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
484                 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
485
486         chan = host_pvt.dma_channel;
487         if (chan >= 0) {
488                 /* Check for end-of-transfer interrupt. */
489                 if (tfr_reg & DMA_CHANNEL(chan)) {
490                         /*
491                          * Each DMA command produces 2 interrupts.  Only
492                          * complete the command after both interrupts have been
493                          * seen. (See sata_dwc_isr())
494                          */
495                         host_pvt.dma_interrupt_count++;
496                         sata_dwc_clear_dmacr(hsdevp, tag);
497
498                         if (hsdevp->dma_pending[tag] ==
499                             SATA_DWC_DMA_PENDING_NONE) {
500                                 dev_err(ap->dev, "DMA not pending eot=0x%08x "
501                                         "err=0x%08x tag=0x%02x pending=%d\n",
502                                         tfr_reg, err_reg, tag,
503                                         hsdevp->dma_pending[tag]);
504                         }
505
506                         if ((host_pvt.dma_interrupt_count % 2) == 0)
507                                 sata_dwc_dma_xfer_complete(ap, 1);
508
509                         /* Clear the interrupt */
510                         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
511                                 .tfr.low),
512                                  DMA_CHANNEL(chan));
513                 }
514
515                 /* Check for error interrupt. */
516                 if (err_reg & DMA_CHANNEL(chan)) {
517                         /* TODO Need error handler ! */
518                         dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
519                                 err_reg);
520
521                         /* Clear the interrupt. */
522                         out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
523                                 .error.low),
524                                  DMA_CHANNEL(chan));
525                 }
526         }
527         spin_unlock_irqrestore(&host->lock, flags);
528         return IRQ_HANDLED;
529 }
530
531 /*
532  * Function: dma_request_interrupts
533  * arguments: hsdev
534  * returns status
535  * This function registers ISR for a particular DMA channel interrupt
536  */
537 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
538 {
539         int retval = 0;
540         int chan = host_pvt.dma_channel;
541
542         if (chan >= 0) {
543                 /* Unmask error interrupt */
544                 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
545                          DMA_ENABLE_CHAN(chan));
546
547                 /* Unmask end-of-transfer interrupt */
548                 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
549                          DMA_ENABLE_CHAN(chan));
550         }
551
552         retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
553         if (retval) {
554                 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
555                 __func__, irq);
556                 return -ENODEV;
557         }
558
559         /* Mark this interrupt as requested */
560         hsdev->irq_dma = irq;
561         return 0;
562 }
563
564 /*
565  * Function: map_sg_to_lli
566  * The Synopsis driver has a comment proposing that better performance
567  * is possible by only enabling interrupts on the last item in the linked list.
568  * However, it seems that could be a problem if an error happened on one of the
569  * first items.  The transfer would halt, but no error interrupt would occur.
570  * Currently this function sets interrupts enabled for each linked list item:
571  * DMA_CTL_INT_EN.
572  */
573 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
574                         struct lli *lli, dma_addr_t dma_lli,
575                         void __iomem *dmadr_addr, int dir)
576 {
577         int i, idx = 0;
578         int fis_len = 0;
579         dma_addr_t next_llp;
580         int bl;
581         int sms_val, dms_val;
582
583         sms_val = 0;
584         dms_val = 1 + host_pvt.dma_channel;
585         dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
586                 " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
587                 (u32)dmadr_addr);
588
589         bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
590
591         for (i = 0; i < num_elems; i++, sg++) {
592                 u32 addr, offset;
593                 u32 sg_len, len;
594
595                 addr = (u32) sg_dma_address(sg);
596                 sg_len = sg_dma_len(sg);
597
598                 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
599                         "=%d\n", __func__, i, addr, sg_len);
600
601                 while (sg_len) {
602                         if (idx >= SATA_DWC_DMAC_LLI_NUM) {
603                                 /* The LLI table is not large enough. */
604                                 dev_err(host_pvt.dwc_dev, "LLI table overrun "
605                                 "(idx=%d)\n", idx);
606                                 break;
607                         }
608                         len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
609                                 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
610
611                         offset = addr & 0xffff;
612                         if ((offset + sg_len) > 0x10000)
613                                 len = 0x10000 - offset;
614
615                         /*
616                          * Make sure a LLI block is not created that will span
617                          * 8K max FIS boundary.  If the block spans such a FIS
618                          * boundary, there is a chance that a DMA burst will
619                          * cross that boundary -- this results in an error in
620                          * the host controller.
621                          */
622                         if (fis_len + len > 8192) {
623                                 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
624                                         "%d(0x%x) len=%d(0x%x)\n", fis_len,
625                                          fis_len, len, len);
626                                 len = 8192 - fis_len;
627                                 fis_len = 0;
628                         } else {
629                                 fis_len += len;
630                         }
631                         if (fis_len == 8192)
632                                 fis_len = 0;
633
634                         /*
635                          * Set DMA addresses and lower half of control register
636                          * based on direction.
637                          */
638                         if (dir == DMA_FROM_DEVICE) {
639                                 lli[idx].dar = cpu_to_le32(addr);
640                                 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
641
642                                 lli[idx].ctl.low = cpu_to_le32(
643                                         DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
644                                         DMA_CTL_SMS(sms_val) |
645                                         DMA_CTL_DMS(dms_val) |
646                                         DMA_CTL_SRC_MSIZE(bl) |
647                                         DMA_CTL_DST_MSIZE(bl) |
648                                         DMA_CTL_SINC_NOCHANGE |
649                                         DMA_CTL_SRC_TRWID(2) |
650                                         DMA_CTL_DST_TRWID(2) |
651                                         DMA_CTL_INT_EN |
652                                         DMA_CTL_LLP_SRCEN |
653                                         DMA_CTL_LLP_DSTEN);
654                         } else {        /* DMA_TO_DEVICE */
655                                 lli[idx].sar = cpu_to_le32(addr);
656                                 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
657
658                                 lli[idx].ctl.low = cpu_to_le32(
659                                         DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
660                                         DMA_CTL_SMS(dms_val) |
661                                         DMA_CTL_DMS(sms_val) |
662                                         DMA_CTL_SRC_MSIZE(bl) |
663                                         DMA_CTL_DST_MSIZE(bl) |
664                                         DMA_CTL_DINC_NOCHANGE |
665                                         DMA_CTL_SRC_TRWID(2) |
666                                         DMA_CTL_DST_TRWID(2) |
667                                         DMA_CTL_INT_EN |
668                                         DMA_CTL_LLP_SRCEN |
669                                         DMA_CTL_LLP_DSTEN);
670                         }
671
672                         dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
673                                 "0x%08x val: 0x%08x\n", __func__,
674                                 len, DMA_CTL_BLK_TS(len / 4));
675
676                         /* Program the LLI CTL high register */
677                         lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
678                                                 (len / 4));
679
680                         /* Program the next pointer.  The next pointer must be
681                          * the physical address, not the virtual address.
682                          */
683                         next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
684                                                         lli)));
685
686                         /* The last 2 bits encode the list master select. */
687                         next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
688
689                         lli[idx].llp = cpu_to_le32(next_llp);
690                         idx++;
691                         sg_len -= len;
692                         addr += len;
693                 }
694         }
695
696         /*
697          * The last next ptr has to be zero and the last control low register
698          * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
699          * and destination enable) set back to 0 (disabled.) This is what tells
700          * the core that this is the last item in the linked list.
701          */
702         if (idx) {
703                 lli[idx-1].llp = 0x00000000;
704                 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
705
706                 /* Flush cache to memory */
707                 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
708                                DMA_BIDIRECTIONAL);
709         }
710
711         return idx;
712 }
713
714 /*
715  * Function: dma_dwc_xfer_start
716  * arguments: Channel number
717  * Return : None
718  * Enables the DMA channel
719  */
720 static void dma_dwc_xfer_start(int dma_ch)
721 {
722         /* Enable the DMA channel */
723         out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
724                  in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
725                  DMA_ENABLE_CHAN(dma_ch));
726 }
727
728 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
729                               struct lli *lli, dma_addr_t dma_lli,
730                               void __iomem *addr, int dir)
731 {
732         int dma_ch;
733         int num_lli;
734         /* Acquire DMA channel */
735         dma_ch = dma_request_channel();
736         if (dma_ch == -1) {
737                 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
738                          __func__);
739                 return -EAGAIN;
740         }
741
742         /* Convert SG list to linked list of items (LLIs) for AHB DMA */
743         num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
744
745         dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
746                 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
747                  lli, (u32)dma_lli, addr, num_lli);
748
749         clear_chan_interrupts(dma_ch);
750
751         /* Program the CFG register. */
752         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
753                  DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
754                  DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
755         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
756                  DMA_CFG_HW_CH_PRIOR(dma_ch));
757
758         /* Program the address of the linked list */
759         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
760                  DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
761
762         /* Program the CTL register with src enable / dst enable */
763         out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
764                  DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
765         return dma_ch;
766 }
767
768 /*
769  * Function: dma_dwc_exit
770  * arguments: None
771  * returns status
772  * This function exits the SATA DMA driver
773  */
774 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
775 {
776         dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
777         if (host_pvt.sata_dma_regs) {
778                 iounmap(host_pvt.sata_dma_regs);
779                 host_pvt.sata_dma_regs = NULL;
780         }
781
782         if (hsdev->irq_dma) {
783                 free_irq(hsdev->irq_dma, hsdev);
784                 hsdev->irq_dma = 0;
785         }
786 }
787
788 /*
789  * Function: dma_dwc_init
790  * arguments: hsdev
791  * returns status
792  * This function initializes the SATA DMA driver
793  */
794 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
795 {
796         int err;
797
798         err = dma_request_interrupts(hsdev, irq);
799         if (err) {
800                 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
801                         " %d\n", __func__, err);
802                 goto error_out;
803         }
804
805         /* Enabe DMA */
806         out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
807
808         dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
809         dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
810                 sata_dma_regs);
811
812         return 0;
813
814 error_out:
815         dma_dwc_exit(hsdev);
816
817         return err;
818 }
819
820 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
821 {
822         if (scr > SCR_NOTIFICATION) {
823                 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
824                         __func__, scr);
825                 return -EINVAL;
826         }
827
828         *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
829         dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
830                 __func__, link->ap->print_id, scr, *val);
831
832         return 0;
833 }
834
835 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
836 {
837         dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
838                 __func__, link->ap->print_id, scr, val);
839         if (scr > SCR_NOTIFICATION) {
840                 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
841                          __func__, scr);
842                 return -EINVAL;
843         }
844         out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
845
846         return 0;
847 }
848
849 static u32 core_scr_read(unsigned int scr)
850 {
851         return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
852                         (scr * 4));
853 }
854
855 static void core_scr_write(unsigned int scr, u32 val)
856 {
857         out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
858                 val);
859 }
860
861 static void clear_serror(void)
862 {
863         u32 val;
864         val = core_scr_read(SCR_ERROR);
865         core_scr_write(SCR_ERROR, val);
866
867 }
868
869 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
870 {
871         out_le32(&hsdev->sata_dwc_regs->intpr,
872                  in_le32(&hsdev->sata_dwc_regs->intpr));
873 }
874
875 static u32 qcmd_tag_to_mask(u8 tag)
876 {
877         return 0x00000001 << (tag & 0x1f);
878 }
879
880 /* See ahci.c */
881 static void sata_dwc_error_intr(struct ata_port *ap,
882                                 struct sata_dwc_device *hsdev, uint intpr)
883 {
884         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
885         struct ata_eh_info *ehi = &ap->link.eh_info;
886         unsigned int err_mask = 0, action = 0;
887         struct ata_queued_cmd *qc;
888         u32 serror;
889         u8 status, tag;
890         u32 err_reg;
891
892         ata_ehi_clear_desc(ehi);
893
894         serror = core_scr_read(SCR_ERROR);
895         status = ap->ops->sff_check_status(ap);
896
897         err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
898                         low));
899         tag = ap->link.active_tag;
900
901         dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
902                 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
903                 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
904                 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
905
906         /* Clear error register and interrupt bit */
907         clear_serror();
908         clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
909
910         /* This is the only error happening now.  TODO check for exact error */
911
912         err_mask |= AC_ERR_HOST_BUS;
913         action |= ATA_EH_RESET;
914
915         /* Pass this on to EH */
916         ehi->serror |= serror;
917         ehi->action |= action;
918
919         qc = ata_qc_from_tag(ap, tag);
920         if (qc)
921                 qc->err_mask |= err_mask;
922         else
923                 ehi->err_mask |= err_mask;
924
925         ata_port_abort(ap);
926 }
927
928 /*
929  * Function : sata_dwc_isr
930  * arguments : irq, void *dev_instance, struct pt_regs *regs
931  * Return value : irqreturn_t - status of IRQ
932  * This Interrupt handler called via port ops registered function.
933  * .irq_handler = sata_dwc_isr
934  */
935 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
936 {
937         struct ata_host *host = (struct ata_host *)dev_instance;
938         struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
939         struct ata_port *ap;
940         struct ata_queued_cmd *qc;
941         unsigned long flags;
942         u8 status, tag;
943         int handled, num_processed, port = 0;
944         uint intpr, sactive, sactive2, tag_mask;
945         struct sata_dwc_device_port *hsdevp;
946         host_pvt.sata_dwc_sactive_issued = 0;
947
948         spin_lock_irqsave(&host->lock, flags);
949
950         /* Read the interrupt register */
951         intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
952
953         ap = host->ports[port];
954         hsdevp = HSDEVP_FROM_AP(ap);
955
956         dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
957                 ap->link.active_tag);
958
959         /* Check for error interrupt */
960         if (intpr & SATA_DWC_INTPR_ERR) {
961                 sata_dwc_error_intr(ap, hsdev, intpr);
962                 handled = 1;
963                 goto DONE;
964         }
965
966         /* Check for DMA SETUP FIS (FP DMA) interrupt */
967         if (intpr & SATA_DWC_INTPR_NEWFP) {
968                 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
969
970                 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
971                 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
972                 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
973                         dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
974
975                 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
976
977                 qc = ata_qc_from_tag(ap, tag);
978                 /*
979                  * Start FP DMA for NCQ command.  At this point the tag is the
980                  * active tag.  It is the tag that matches the command about to
981                  * be completed.
982                  */
983                 qc->ap->link.active_tag = tag;
984                 sata_dwc_bmdma_start_by_tag(qc, tag);
985
986                 handled = 1;
987                 goto DONE;
988         }
989         sactive = core_scr_read(SCR_ACTIVE);
990         tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
991
992         /* If no sactive issued and tag_mask is zero then this is not NCQ */
993         if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
994                 if (ap->link.active_tag == ATA_TAG_POISON)
995                         tag = 0;
996                 else
997                         tag = ap->link.active_tag;
998                 qc = ata_qc_from_tag(ap, tag);
999
1000                 /* DEV interrupt w/ no active qc? */
1001                 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
1002                         dev_err(ap->dev, "%s interrupt with no active qc "
1003                                 "qc=%p\n", __func__, qc);
1004                         ap->ops->sff_check_status(ap);
1005                         handled = 1;
1006                         goto DONE;
1007                 }
1008                 status = ap->ops->sff_check_status(ap);
1009
1010                 qc->ap->link.active_tag = tag;
1011                 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1012
1013                 if (status & ATA_ERR) {
1014                         dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1015                         sata_dwc_qc_complete(ap, qc, 1);
1016                         handled = 1;
1017                         goto DONE;
1018                 }
1019
1020                 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1021                         __func__, get_prot_descript(qc->tf.protocol));
1022 DRVSTILLBUSY:
1023                 if (ata_is_dma(qc->tf.protocol)) {
1024                         /*
1025                          * Each DMA transaction produces 2 interrupts. The DMAC
1026                          * transfer complete interrupt and the SATA controller
1027                          * operation done interrupt. The command should be
1028                          * completed only after both interrupts are seen.
1029                          */
1030                         host_pvt.dma_interrupt_count++;
1031                         if (hsdevp->dma_pending[tag] == \
1032                                         SATA_DWC_DMA_PENDING_NONE) {
1033                                 dev_err(ap->dev, "%s: DMA not pending "
1034                                         "intpr=0x%08x status=0x%08x pending"
1035                                         "=%d\n", __func__, intpr, status,
1036                                         hsdevp->dma_pending[tag]);
1037                         }
1038
1039                         if ((host_pvt.dma_interrupt_count % 2) == 0)
1040                                 sata_dwc_dma_xfer_complete(ap, 1);
1041                 } else if (ata_is_pio(qc->tf.protocol)) {
1042                         ata_sff_hsm_move(ap, qc, status, 0);
1043                         handled = 1;
1044                         goto DONE;
1045                 } else {
1046                         if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1047                                 goto DRVSTILLBUSY;
1048                 }
1049
1050                 handled = 1;
1051                 goto DONE;
1052         }
1053
1054         /*
1055          * This is a NCQ command. At this point we need to figure out for which
1056          * tags we have gotten a completion interrupt.  One interrupt may serve
1057          * as completion for more than one operation when commands are queued
1058          * (NCQ).  We need to process each completed command.
1059          */
1060
1061          /* process completed commands */
1062         sactive = core_scr_read(SCR_ACTIVE);
1063         tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1064
1065         if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1066                                                         tag_mask > 1) {
1067                 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x"
1068                         "tag_mask=0x%08x\n", __func__, sactive,
1069                         host_pvt.sata_dwc_sactive_issued, tag_mask);
1070         }
1071
1072         if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1073                                         (host_pvt.sata_dwc_sactive_issued)) {
1074                 dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x "
1075                          "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask"
1076                          "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1077                           tag_mask);
1078         }
1079
1080         /* read just to clear ... not bad if currently still busy */
1081         status = ap->ops->sff_check_status(ap);
1082         dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1083
1084         tag = 0;
1085         num_processed = 0;
1086         while (tag_mask) {
1087                 num_processed++;
1088                 while (!(tag_mask & 0x00000001)) {
1089                         tag++;
1090                         tag_mask <<= 1;
1091                 }
1092
1093                 tag_mask &= (~0x00000001);
1094                 qc = ata_qc_from_tag(ap, tag);
1095
1096                 /* To be picked up by completion functions */
1097                 qc->ap->link.active_tag = tag;
1098                 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1099
1100                 /* Let libata/scsi layers handle error */
1101                 if (status & ATA_ERR) {
1102                         dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1103                                 status);
1104                         sata_dwc_qc_complete(ap, qc, 1);
1105                         handled = 1;
1106                         goto DONE;
1107                 }
1108
1109                 /* Process completed command */
1110                 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1111                         get_prot_descript(qc->tf.protocol));
1112                 if (ata_is_dma(qc->tf.protocol)) {
1113                         host_pvt.dma_interrupt_count++;
1114                         if (hsdevp->dma_pending[tag] == \
1115                                         SATA_DWC_DMA_PENDING_NONE)
1116                                 dev_warn(ap->dev, "%s: DMA not pending?\n",
1117                                         __func__);
1118                         if ((host_pvt.dma_interrupt_count % 2) == 0)
1119                                 sata_dwc_dma_xfer_complete(ap, 1);
1120                 } else {
1121                         if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1122                                 goto STILLBUSY;
1123                 }
1124                 continue;
1125
1126 STILLBUSY:
1127                 ap->stats.idle_irq++;
1128                 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1129                         ap->print_id);
1130         } /* while tag_mask */
1131
1132         /*
1133          * Check to see if any commands completed while we were processing our
1134          * initial set of completed commands (read status clears interrupts,
1135          * so we might miss a completed command interrupt if one came in while
1136          * we were processing --we read status as part of processing a completed
1137          * command).
1138          */
1139         sactive2 = core_scr_read(SCR_ACTIVE);
1140         if (sactive2 != sactive) {
1141                 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1142                         "=0x%x\n", sactive, sactive2);
1143         }
1144         handled = 1;
1145
1146 DONE:
1147         spin_unlock_irqrestore(&host->lock, flags);
1148         return IRQ_RETVAL(handled);
1149 }
1150
1151 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1152 {
1153         struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1154
1155         if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1156                 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1157                          SATA_DWC_DMACR_RX_CLEAR(
1158                                  in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1159         } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1160                 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1161                          SATA_DWC_DMACR_TX_CLEAR(
1162                                  in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1163         } else {
1164                 /*
1165                  * This should not happen, it indicates the driver is out of
1166                  * sync.  If it does happen, clear dmacr anyway.
1167                  */
1168                 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1169                         "TX DMA not pending tag=0x%02x pending=%d"
1170                         " dmacr: 0x%08x\n", __func__, tag,
1171                         hsdevp->dma_pending[tag],
1172                         in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1173                 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1174                         SATA_DWC_DMACR_TXRXCH_CLEAR);
1175         }
1176 }
1177
1178 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1179 {
1180         struct ata_queued_cmd *qc;
1181         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1182         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1183         u8 tag = 0;
1184
1185         tag = ap->link.active_tag;
1186         qc = ata_qc_from_tag(ap, tag);
1187         if (!qc) {
1188                 dev_err(ap->dev, "failed to get qc");
1189                 return;
1190         }
1191
1192 #ifdef DEBUG_NCQ
1193         if (tag > 0) {
1194                 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1195                          "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1196                          get_dma_dir_descript(qc->dma_dir),
1197                          get_prot_descript(qc->tf.protocol),
1198                          in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1199         }
1200 #endif
1201
1202         if (ata_is_dma(qc->tf.protocol)) {
1203                 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1204                         dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1205                                 "pending dmacr: 0x%08x\n", __func__,
1206                                 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1207                 }
1208
1209                 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1210                 sata_dwc_qc_complete(ap, qc, check_status);
1211                 ap->link.active_tag = ATA_TAG_POISON;
1212         } else {
1213                 sata_dwc_qc_complete(ap, qc, check_status);
1214         }
1215 }
1216
1217 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1218                                 u32 check_status)
1219 {
1220         u8 status = 0;
1221         u32 mask = 0x0;
1222         u8 tag = qc->tag;
1223         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1224         host_pvt.sata_dwc_sactive_queued = 0;
1225         dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1226
1227         if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1228                 dev_err(ap->dev, "TX DMA PENDING\n");
1229         else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1230                 dev_err(ap->dev, "RX DMA PENDING\n");
1231         dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1232                 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1233                  qc->tf.protocol);
1234
1235         /* clear active bit */
1236         mask = (~(qcmd_tag_to_mask(tag)));
1237         host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1238                                                 & mask;
1239         host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1240                                                 & mask;
1241         ata_qc_complete(qc);
1242         return 0;
1243 }
1244
1245 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1246 {
1247         /* Enable selective interrupts by setting the interrupt maskregister*/
1248         out_le32(&hsdev->sata_dwc_regs->intmr,
1249                  SATA_DWC_INTMR_ERRM |
1250                  SATA_DWC_INTMR_NEWFPM |
1251                  SATA_DWC_INTMR_PMABRTM |
1252                  SATA_DWC_INTMR_DMATM);
1253         /*
1254          * Unmask the error bits that should trigger an error interrupt by
1255          * setting the error mask register.
1256          */
1257         out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1258
1259         dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1260                  __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1261                 in_le32(&hsdev->sata_dwc_regs->errmr));
1262 }
1263
1264 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1265 {
1266         port->cmd_addr = (void *)base + 0x00;
1267         port->data_addr = (void *)base + 0x00;
1268
1269         port->error_addr = (void *)base + 0x04;
1270         port->feature_addr = (void *)base + 0x04;
1271
1272         port->nsect_addr = (void *)base + 0x08;
1273
1274         port->lbal_addr = (void *)base + 0x0c;
1275         port->lbam_addr = (void *)base + 0x10;
1276         port->lbah_addr = (void *)base + 0x14;
1277
1278         port->device_addr = (void *)base + 0x18;
1279         port->command_addr = (void *)base + 0x1c;
1280         port->status_addr = (void *)base + 0x1c;
1281
1282         port->altstatus_addr = (void *)base + 0x20;
1283         port->ctl_addr = (void *)base + 0x20;
1284 }
1285
1286 /*
1287  * Function : sata_dwc_port_start
1288  * arguments : struct ata_ioports *port
1289  * Return value : returns 0 if success, error code otherwise
1290  * This function allocates the scatter gather LLI table for AHB DMA
1291  */
1292 static int sata_dwc_port_start(struct ata_port *ap)
1293 {
1294         int err = 0;
1295         struct sata_dwc_device *hsdev;
1296         struct sata_dwc_device_port *hsdevp = NULL;
1297         struct device *pdev;
1298         int i;
1299
1300         hsdev = HSDEV_FROM_AP(ap);
1301
1302         dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1303
1304         hsdev->host = ap->host;
1305         pdev = ap->host->dev;
1306         if (!pdev) {
1307                 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1308                 err = -ENODEV;
1309                 goto CLEANUP;
1310         }
1311
1312         /* Allocate Port Struct */
1313         hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1314         if (!hsdevp) {
1315                 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1316                 err = -ENOMEM;
1317                 goto CLEANUP;
1318         }
1319         hsdevp->hsdev = hsdev;
1320
1321         for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1322                 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1323
1324         ap->bmdma_prd = 0;      /* set these so libata doesn't use them */
1325         ap->bmdma_prd_dma = 0;
1326
1327         /*
1328          * DMA - Assign scatter gather LLI table. We can't use the libata
1329          * version since it's PRD is IDE PCI specific.
1330          */
1331         for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1332                 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1333                                                      SATA_DWC_DMAC_LLI_TBL_SZ,
1334                                                      &(hsdevp->llit_dma[i]),
1335                                                      GFP_ATOMIC);
1336                 if (!hsdevp->llit[i]) {
1337                         dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1338                                  __func__);
1339                         err = -ENOMEM;
1340                         goto CLEANUP_ALLOC;
1341                 }
1342         }
1343
1344         if (ap->port_no == 0)  {
1345                 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1346                         __func__);
1347                 out_le32(&hsdev->sata_dwc_regs->dmacr,
1348                          SATA_DWC_DMACR_TXRXCH_CLEAR);
1349
1350                 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1351                          __func__);
1352                 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1353                          (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1354                           SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1355         }
1356
1357         /* Clear any error bits before libata starts issuing commands */
1358         clear_serror();
1359         ap->private_data = hsdevp;
1360         dev_dbg(ap->dev, "%s: done\n", __func__);
1361         return 0;
1362
1363 CLEANUP_ALLOC:
1364         kfree(hsdevp);
1365 CLEANUP:
1366         dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1367         return err;
1368 }
1369
1370 static void sata_dwc_port_stop(struct ata_port *ap)
1371 {
1372         int i;
1373         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1374         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1375
1376         dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1377
1378         if (hsdevp && hsdev) {
1379                 /* deallocate LLI table */
1380                 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1381                         dma_free_coherent(ap->host->dev,
1382                                           SATA_DWC_DMAC_LLI_TBL_SZ,
1383                                          hsdevp->llit[i], hsdevp->llit_dma[i]);
1384                 }
1385
1386                 kfree(hsdevp);
1387         }
1388         ap->private_data = NULL;
1389 }
1390
1391 /*
1392  * Function : sata_dwc_exec_command_by_tag
1393  * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1394  * Return value : None
1395  * This function keeps track of individual command tag ids and calls
1396  * ata_exec_command in libata
1397  */
1398 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1399                                          struct ata_taskfile *tf,
1400                                          u8 tag, u32 cmd_issued)
1401 {
1402         unsigned long flags;
1403         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1404
1405         dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1406                 ata_get_cmd_descript(tf->command), tag);
1407
1408         spin_lock_irqsave(&ap->host->lock, flags);
1409         hsdevp->cmd_issued[tag] = cmd_issued;
1410         spin_unlock_irqrestore(&ap->host->lock, flags);
1411         /*
1412          * Clear SError before executing a new command.
1413          * sata_dwc_scr_write and read can not be used here. Clearing the PM
1414          * managed SError register for the disk needs to be done before the
1415          * task file is loaded.
1416          */
1417         clear_serror();
1418         ata_sff_exec_command(ap, tf);
1419 }
1420
1421 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1422 {
1423         sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1424                                      SATA_DWC_CMD_ISSUED_PEND);
1425 }
1426
1427 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1428 {
1429         u8 tag = qc->tag;
1430
1431         if (ata_is_ncq(qc->tf.protocol)) {
1432                 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1433                         __func__, qc->ap->link.sactive, tag);
1434         } else {
1435                 tag = 0;
1436         }
1437         sata_dwc_bmdma_setup_by_tag(qc, tag);
1438 }
1439
1440 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1441 {
1442         int start_dma;
1443         u32 reg, dma_chan;
1444         struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1445         struct ata_port *ap = qc->ap;
1446         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1447         int dir = qc->dma_dir;
1448         dma_chan = hsdevp->dma_chan[tag];
1449
1450         if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1451                 start_dma = 1;
1452                 if (dir == DMA_TO_DEVICE)
1453                         hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1454                 else
1455                         hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1456         } else {
1457                 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1458                         "(tag=%d) DMA NOT started\n", __func__,
1459                         hsdevp->cmd_issued[tag], tag);
1460                 start_dma = 0;
1461         }
1462
1463         dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1464                 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1465                 get_dma_dir_descript(qc->dma_dir), start_dma);
1466         sata_dwc_tf_dump(&(qc->tf));
1467
1468         if (start_dma) {
1469                 reg = core_scr_read(SCR_ERROR);
1470                 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1471                         dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1472                                 __func__, reg);
1473                 }
1474
1475                 if (dir == DMA_TO_DEVICE)
1476                         out_le32(&hsdev->sata_dwc_regs->dmacr,
1477                                 SATA_DWC_DMACR_TXCHEN);
1478                 else
1479                         out_le32(&hsdev->sata_dwc_regs->dmacr,
1480                                 SATA_DWC_DMACR_RXCHEN);
1481
1482                 /* Enable AHB DMA transfer on the specified channel */
1483                 dma_dwc_xfer_start(dma_chan);
1484         }
1485 }
1486
1487 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1488 {
1489         u8 tag = qc->tag;
1490
1491         if (ata_is_ncq(qc->tf.protocol)) {
1492                 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1493                         __func__, qc->ap->link.sactive, tag);
1494         } else {
1495                 tag = 0;
1496         }
1497         dev_dbg(qc->ap->dev, "%s\n", __func__);
1498         sata_dwc_bmdma_start_by_tag(qc, tag);
1499 }
1500
1501 /*
1502  * Function : sata_dwc_qc_prep_by_tag
1503  * arguments : ata_queued_cmd *qc, u8 tag
1504  * Return value : None
1505  * qc_prep for a particular queued command based on tag
1506  */
1507 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1508 {
1509         struct scatterlist *sg = qc->sg;
1510         struct ata_port *ap = qc->ap;
1511         int dma_chan;
1512         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1513         struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1514
1515         dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1516                 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1517                  qc->n_elem);
1518
1519         dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1520                                       hsdevp->llit_dma[tag],
1521                                       (void *__iomem)(&hsdev->sata_dwc_regs->\
1522                                       dmadr), qc->dma_dir);
1523         if (dma_chan < 0) {
1524                 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1525                         __func__, dma_chan);
1526                 return;
1527         }
1528         hsdevp->dma_chan[tag] = dma_chan;
1529 }
1530
1531 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1532 {
1533         u32 sactive;
1534         u8 tag = qc->tag;
1535         struct ata_port *ap = qc->ap;
1536
1537 #ifdef DEBUG_NCQ
1538         if (qc->tag > 0 || ap->link.sactive > 1)
1539                 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1540                          "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1541                          __func__, ap->print_id, qc->tf.command,
1542                          ata_get_cmd_descript(qc->tf.command),
1543                          qc->tag, get_prot_descript(qc->tf.protocol),
1544                          ap->link.active_tag, ap->link.sactive);
1545 #endif
1546
1547         if (!ata_is_ncq(qc->tf.protocol))
1548                 tag = 0;
1549         sata_dwc_qc_prep_by_tag(qc, tag);
1550
1551         if (ata_is_ncq(qc->tf.protocol)) {
1552                 sactive = core_scr_read(SCR_ACTIVE);
1553                 sactive |= (0x00000001 << tag);
1554                 core_scr_write(SCR_ACTIVE, sactive);
1555
1556                 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1557                         "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1558                         sactive);
1559
1560                 ap->ops->sff_tf_load(ap, &qc->tf);
1561                 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1562                                              SATA_DWC_CMD_ISSUED_PEND);
1563         } else {
1564                 ata_sff_qc_issue(qc);
1565         }
1566         return 0;
1567 }
1568
1569 /*
1570  * Function : sata_dwc_qc_prep
1571  * arguments : ata_queued_cmd *qc
1572  * Return value : None
1573  * qc_prep for a particular queued command
1574  */
1575
1576 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1577 {
1578         if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1579                 return;
1580
1581 #ifdef DEBUG_NCQ
1582         if (qc->tag > 0)
1583                 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1584                          __func__, qc->tag, qc->ap->link.active_tag);
1585
1586         return ;
1587 #endif
1588 }
1589
1590 static void sata_dwc_error_handler(struct ata_port *ap)
1591 {
1592         ata_sff_error_handler(ap);
1593 }
1594
1595 int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1596                         unsigned long deadline)
1597 {
1598         struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1599         int ret;
1600
1601         ret = sata_sff_hardreset(link, class, deadline);
1602
1603         sata_dwc_enable_interrupts(hsdev);
1604
1605         /* Reconfigure the DMA control register */
1606         out_le32(&hsdev->sata_dwc_regs->dmacr,
1607                  SATA_DWC_DMACR_TXRXCH_CLEAR);
1608
1609         /* Reconfigure the DMA Burst Transaction Size register */
1610         out_le32(&hsdev->sata_dwc_regs->dbtsr,
1611                  SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1612                  SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1613
1614         return ret;
1615 }
1616
1617 /*
1618  * scsi mid-layer and libata interface structures
1619  */
1620 static struct scsi_host_template sata_dwc_sht = {
1621         ATA_NCQ_SHT(DRV_NAME),
1622         /*
1623          * test-only: Currently this driver doesn't handle NCQ
1624          * correctly. We enable NCQ but set the queue depth to a
1625          * max of 1. This will get fixed in in a future release.
1626          */
1627         .sg_tablesize           = LIBATA_MAX_PRD,
1628         .can_queue              = ATA_DEF_QUEUE,        /* ATA_MAX_QUEUE */
1629         .dma_boundary           = ATA_DMA_BOUNDARY,
1630 };
1631
1632 static struct ata_port_operations sata_dwc_ops = {
1633         .inherits               = &ata_sff_port_ops,
1634
1635         .error_handler          = sata_dwc_error_handler,
1636         .hardreset              = sata_dwc_hardreset,
1637
1638         .qc_prep                = sata_dwc_qc_prep,
1639         .qc_issue               = sata_dwc_qc_issue,
1640
1641         .scr_read               = sata_dwc_scr_read,
1642         .scr_write              = sata_dwc_scr_write,
1643
1644         .port_start             = sata_dwc_port_start,
1645         .port_stop              = sata_dwc_port_stop,
1646
1647         .bmdma_setup            = sata_dwc_bmdma_setup,
1648         .bmdma_start            = sata_dwc_bmdma_start,
1649 };
1650
1651 static const struct ata_port_info sata_dwc_port_info[] = {
1652         {
1653                 .flags          = ATA_FLAG_SATA | ATA_FLAG_NCQ,
1654                 .pio_mask       = ATA_PIO4,
1655                 .udma_mask      = ATA_UDMA6,
1656                 .port_ops       = &sata_dwc_ops,
1657         },
1658 };
1659
1660 static int sata_dwc_probe(struct platform_device *ofdev)
1661 {
1662         struct sata_dwc_device *hsdev;
1663         u32 idr, versionr;
1664         char *ver = (char *)&versionr;
1665         u8 *base = NULL;
1666         int err = 0;
1667         int irq, rc;
1668         struct ata_host *host;
1669         struct ata_port_info pi = sata_dwc_port_info[0];
1670         const struct ata_port_info *ppi[] = { &pi, NULL };
1671         struct device_node *np = ofdev->dev.of_node;
1672         u32 dma_chan;
1673
1674         /* Allocate DWC SATA device */
1675         hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1676         if (hsdev == NULL) {
1677                 dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1678                 err = -ENOMEM;
1679                 goto error;
1680         }
1681
1682         if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1683                 dev_warn(&ofdev->dev, "no dma-channel property set."
1684                          " Use channel 0\n");
1685                 dma_chan = 0;
1686         }
1687         host_pvt.dma_channel = dma_chan;
1688
1689         /* Ioremap SATA registers */
1690         base = of_iomap(ofdev->dev.of_node, 0);
1691         if (!base) {
1692                 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1693                         " address\n");
1694                 err = -ENODEV;
1695                 goto error_kmalloc;
1696         }
1697         hsdev->reg_base = base;
1698         dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1699
1700         /* Synopsys DWC SATA specific Registers */
1701         hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1702
1703         /* Allocate and fill host */
1704         host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1705         if (!host) {
1706                 dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1707                 err = -ENOMEM;
1708                 goto error_iomap;
1709         }
1710
1711         host->private_data = hsdev;
1712
1713         /* Setup port */
1714         host->ports[0]->ioaddr.cmd_addr = base;
1715         host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1716         host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1717         sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1718
1719         /* Read the ID and Version Registers */
1720         idr = in_le32(&hsdev->sata_dwc_regs->idr);
1721         versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1722         dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1723                    idr, ver[0], ver[1], ver[2]);
1724
1725         /* Get SATA DMA interrupt number */
1726         irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1727         if (irq == NO_IRQ) {
1728                 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1729                 err = -ENODEV;
1730                 goto error_out;
1731         }
1732
1733         /* Get physical SATA DMA register base address */
1734         host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1735         if (!(host_pvt.sata_dma_regs)) {
1736                 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1737                         " address\n");
1738                 err = -ENODEV;
1739                 goto error_out;
1740         }
1741
1742         /* Save dev for later use in dev_xxx() routines */
1743         host_pvt.dwc_dev = &ofdev->dev;
1744
1745         /* Initialize AHB DMAC */
1746         dma_dwc_init(hsdev, irq);
1747
1748         /* Enable SATA Interrupts */
1749         sata_dwc_enable_interrupts(hsdev);
1750
1751         /* Get SATA interrupt number */
1752         irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1753         if (irq == NO_IRQ) {
1754                 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1755                 err = -ENODEV;
1756                 goto error_out;
1757         }
1758
1759         /*
1760          * Now, register with libATA core, this will also initiate the
1761          * device discovery process, invoking our port_start() handler &
1762          * error_handler() to execute a dummy Softreset EH session
1763          */
1764         rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1765
1766         if (rc != 0)
1767                 dev_err(&ofdev->dev, "failed to activate host");
1768
1769         dev_set_drvdata(&ofdev->dev, host);
1770         return 0;
1771
1772 error_out:
1773         /* Free SATA DMA resources */
1774         dma_dwc_exit(hsdev);
1775
1776 error_iomap:
1777         iounmap(base);
1778 error_kmalloc:
1779         kfree(hsdev);
1780 error:
1781         return err;
1782 }
1783
1784 static int sata_dwc_remove(struct platform_device *ofdev)
1785 {
1786         struct device *dev = &ofdev->dev;
1787         struct ata_host *host = dev_get_drvdata(dev);
1788         struct sata_dwc_device *hsdev = host->private_data;
1789
1790         ata_host_detach(host);
1791         dev_set_drvdata(dev, NULL);
1792
1793         /* Free SATA DMA resources */
1794         dma_dwc_exit(hsdev);
1795
1796         iounmap(hsdev->reg_base);
1797         kfree(hsdev);
1798         kfree(host);
1799         dev_dbg(&ofdev->dev, "done\n");
1800         return 0;
1801 }
1802
1803 static const struct of_device_id sata_dwc_match[] = {
1804         { .compatible = "amcc,sata-460ex", },
1805         {}
1806 };
1807 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1808
1809 static struct platform_driver sata_dwc_driver = {
1810         .driver = {
1811                 .name = DRV_NAME,
1812                 .owner = THIS_MODULE,
1813                 .of_match_table = sata_dwc_match,
1814         },
1815         .probe = sata_dwc_probe,
1816         .remove = sata_dwc_remove,
1817 };
1818
1819 module_platform_driver(sata_dwc_driver);
1820
1821 MODULE_LICENSE("GPL");
1822 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1823 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1824 MODULE_VERSION(DRV_VERSION);