Merge tag 'for-linus-4.5-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25
26 #include "internal.h"
27
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37                                unsigned int mask, unsigned int val,
38                                bool *change, bool force_write);
39
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41                                 unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43                             unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45                                        unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47                                  unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49                                  unsigned int val);
50
51 bool regmap_reg_in_ranges(unsigned int reg,
52                           const struct regmap_range *ranges,
53                           unsigned int nranges)
54 {
55         const struct regmap_range *r;
56         int i;
57
58         for (i = 0, r = ranges; i < nranges; i++, r++)
59                 if (regmap_reg_in_range(reg, r))
60                         return true;
61         return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66                               const struct regmap_access_table *table)
67 {
68         /* Check "no ranges" first */
69         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70                 return false;
71
72         /* In case zero "yes ranges" are supplied, any reg is OK */
73         if (!table->n_yes_ranges)
74                 return true;
75
76         return regmap_reg_in_ranges(reg, table->yes_ranges,
77                                     table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83         if (map->max_register && reg > map->max_register)
84                 return false;
85
86         if (map->writeable_reg)
87                 return map->writeable_reg(map->dev, reg);
88
89         if (map->wr_table)
90                 return regmap_check_range_table(map, reg, map->wr_table);
91
92         return true;
93 }
94
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97         if (!map->reg_read)
98                 return false;
99
100         if (map->max_register && reg > map->max_register)
101                 return false;
102
103         if (map->format.format_write)
104                 return false;
105
106         if (map->readable_reg)
107                 return map->readable_reg(map->dev, reg);
108
109         if (map->rd_table)
110                 return regmap_check_range_table(map, reg, map->rd_table);
111
112         return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117         if (!map->format.format_write && !regmap_readable(map, reg))
118                 return false;
119
120         if (map->volatile_reg)
121                 return map->volatile_reg(map->dev, reg);
122
123         if (map->volatile_table)
124                 return regmap_check_range_table(map, reg, map->volatile_table);
125
126         if (map->cache_ops)
127                 return false;
128         else
129                 return true;
130 }
131
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134         if (!regmap_readable(map, reg))
135                 return false;
136
137         if (map->precious_reg)
138                 return map->precious_reg(map->dev, reg);
139
140         if (map->precious_table)
141                 return regmap_check_range_table(map, reg, map->precious_table);
142
143         return false;
144 }
145
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147         size_t num)
148 {
149         unsigned int i;
150
151         for (i = 0; i < num; i++)
152                 if (!regmap_volatile(map, reg + i))
153                         return false;
154
155         return true;
156 }
157
158 static void regmap_format_2_6_write(struct regmap *map,
159                                      unsigned int reg, unsigned int val)
160 {
161         u8 *out = map->work_buf;
162
163         *out = (reg << 6) | val;
164 }
165
166 static void regmap_format_4_12_write(struct regmap *map,
167                                      unsigned int reg, unsigned int val)
168 {
169         __be16 *out = map->work_buf;
170         *out = cpu_to_be16((reg << 12) | val);
171 }
172
173 static void regmap_format_7_9_write(struct regmap *map,
174                                     unsigned int reg, unsigned int val)
175 {
176         __be16 *out = map->work_buf;
177         *out = cpu_to_be16((reg << 9) | val);
178 }
179
180 static void regmap_format_10_14_write(struct regmap *map,
181                                     unsigned int reg, unsigned int val)
182 {
183         u8 *out = map->work_buf;
184
185         out[2] = val;
186         out[1] = (val >> 8) | (reg << 6);
187         out[0] = reg >> 2;
188 }
189
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192         u8 *b = buf;
193
194         b[0] = val << shift;
195 }
196
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199         __be16 *b = buf;
200
201         b[0] = cpu_to_be16(val << shift);
202 }
203
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206         __le16 *b = buf;
207
208         b[0] = cpu_to_le16(val << shift);
209 }
210
211 static void regmap_format_16_native(void *buf, unsigned int val,
212                                     unsigned int shift)
213 {
214         *(u16 *)buf = val << shift;
215 }
216
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219         u8 *b = buf;
220
221         val <<= shift;
222
223         b[0] = val >> 16;
224         b[1] = val >> 8;
225         b[2] = val;
226 }
227
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230         __be32 *b = buf;
231
232         b[0] = cpu_to_be32(val << shift);
233 }
234
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237         __le32 *b = buf;
238
239         b[0] = cpu_to_le32(val << shift);
240 }
241
242 static void regmap_format_32_native(void *buf, unsigned int val,
243                                     unsigned int shift)
244 {
245         *(u32 *)buf = val << shift;
246 }
247
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251         __be64 *b = buf;
252
253         b[0] = cpu_to_be64((u64)val << shift);
254 }
255
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258         __le64 *b = buf;
259
260         b[0] = cpu_to_le64((u64)val << shift);
261 }
262
263 static void regmap_format_64_native(void *buf, unsigned int val,
264                                     unsigned int shift)
265 {
266         *(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276         const u8 *b = buf;
277
278         return b[0];
279 }
280
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283         const __be16 *b = buf;
284
285         return be16_to_cpu(b[0]);
286 }
287
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290         const __le16 *b = buf;
291
292         return le16_to_cpu(b[0]);
293 }
294
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297         __be16 *b = buf;
298
299         b[0] = be16_to_cpu(b[0]);
300 }
301
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304         __le16 *b = buf;
305
306         b[0] = le16_to_cpu(b[0]);
307 }
308
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311         return *(u16 *)buf;
312 }
313
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316         const u8 *b = buf;
317         unsigned int ret = b[2];
318         ret |= ((unsigned int)b[1]) << 8;
319         ret |= ((unsigned int)b[0]) << 16;
320
321         return ret;
322 }
323
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326         const __be32 *b = buf;
327
328         return be32_to_cpu(b[0]);
329 }
330
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333         const __le32 *b = buf;
334
335         return le32_to_cpu(b[0]);
336 }
337
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340         __be32 *b = buf;
341
342         b[0] = be32_to_cpu(b[0]);
343 }
344
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347         __le32 *b = buf;
348
349         b[0] = le32_to_cpu(b[0]);
350 }
351
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354         return *(u32 *)buf;
355 }
356
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360         const __be64 *b = buf;
361
362         return be64_to_cpu(b[0]);
363 }
364
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367         const __le64 *b = buf;
368
369         return le64_to_cpu(b[0]);
370 }
371
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374         __be64 *b = buf;
375
376         b[0] = be64_to_cpu(b[0]);
377 }
378
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381         __le64 *b = buf;
382
383         b[0] = le64_to_cpu(b[0]);
384 }
385
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388         return *(u64 *)buf;
389 }
390 #endif
391
392 static void regmap_lock_mutex(void *__map)
393 {
394         struct regmap *map = __map;
395         mutex_lock(&map->mutex);
396 }
397
398 static void regmap_unlock_mutex(void *__map)
399 {
400         struct regmap *map = __map;
401         mutex_unlock(&map->mutex);
402 }
403
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407         struct regmap *map = __map;
408         unsigned long flags;
409
410         spin_lock_irqsave(&map->spinlock, flags);
411         map->spinlock_flags = flags;
412 }
413
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417         struct regmap *map = __map;
418         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423         /*
424          * We don't actually have anything to do here; the goal here
425          * is not to manage the regmap but to provide a simple way to
426          * get the regmap back given a struct device.
427          */
428 }
429
430 static bool _regmap_range_add(struct regmap *map,
431                               struct regmap_range_node *data)
432 {
433         struct rb_root *root = &map->range_tree;
434         struct rb_node **new = &(root->rb_node), *parent = NULL;
435
436         while (*new) {
437                 struct regmap_range_node *this =
438                         container_of(*new, struct regmap_range_node, node);
439
440                 parent = *new;
441                 if (data->range_max < this->range_min)
442                         new = &((*new)->rb_left);
443                 else if (data->range_min > this->range_max)
444                         new = &((*new)->rb_right);
445                 else
446                         return false;
447         }
448
449         rb_link_node(&data->node, parent, new);
450         rb_insert_color(&data->node, root);
451
452         return true;
453 }
454
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456                                                       unsigned int reg)
457 {
458         struct rb_node *node = map->range_tree.rb_node;
459
460         while (node) {
461                 struct regmap_range_node *this =
462                         container_of(node, struct regmap_range_node, node);
463
464                 if (reg < this->range_min)
465                         node = node->rb_left;
466                 else if (reg > this->range_max)
467                         node = node->rb_right;
468                 else
469                         return this;
470         }
471
472         return NULL;
473 }
474
475 static void regmap_range_exit(struct regmap *map)
476 {
477         struct rb_node *next;
478         struct regmap_range_node *range_node;
479
480         next = rb_first(&map->range_tree);
481         while (next) {
482                 range_node = rb_entry(next, struct regmap_range_node, node);
483                 next = rb_next(&range_node->node);
484                 rb_erase(&range_node->node, &map->range_tree);
485                 kfree(range_node);
486         }
487
488         kfree(map->selector_work_buf);
489 }
490
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492                       const struct regmap_config *config)
493 {
494         struct regmap **m;
495
496         map->dev = dev;
497
498         regmap_debugfs_init(map, config->name);
499
500         /* Add a devres resource for dev_get_regmap() */
501         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502         if (!m) {
503                 regmap_debugfs_exit(map);
504                 return -ENOMEM;
505         }
506         *m = map;
507         devres_add(dev, m);
508
509         return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514                                         const struct regmap_config *config)
515 {
516         enum regmap_endian endian;
517
518         /* Retrieve the endianness specification from the regmap config */
519         endian = config->reg_format_endian;
520
521         /* If the regmap config specified a non-default value, use that */
522         if (endian != REGMAP_ENDIAN_DEFAULT)
523                 return endian;
524
525         /* Retrieve the endianness specification from the bus config */
526         if (bus && bus->reg_format_endian_default)
527                 endian = bus->reg_format_endian_default;
528
529         /* If the bus specified a non-default value, use that */
530         if (endian != REGMAP_ENDIAN_DEFAULT)
531                 return endian;
532
533         /* Use this if no other value was found */
534         return REGMAP_ENDIAN_BIG;
535 }
536
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538                                          const struct regmap_bus *bus,
539                                          const struct regmap_config *config)
540 {
541         struct device_node *np;
542         enum regmap_endian endian;
543
544         /* Retrieve the endianness specification from the regmap config */
545         endian = config->val_format_endian;
546
547         /* If the regmap config specified a non-default value, use that */
548         if (endian != REGMAP_ENDIAN_DEFAULT)
549                 return endian;
550
551         /* If the dev and dev->of_node exist try to get endianness from DT */
552         if (dev && dev->of_node) {
553                 np = dev->of_node;
554
555                 /* Parse the device's DT node for an endianness specification */
556                 if (of_property_read_bool(np, "big-endian"))
557                         endian = REGMAP_ENDIAN_BIG;
558                 else if (of_property_read_bool(np, "little-endian"))
559                         endian = REGMAP_ENDIAN_LITTLE;
560
561                 /* If the endianness was specified in DT, use that */
562                 if (endian != REGMAP_ENDIAN_DEFAULT)
563                         return endian;
564         }
565
566         /* Retrieve the endianness specification from the bus config */
567         if (bus && bus->val_format_endian_default)
568                 endian = bus->val_format_endian_default;
569
570         /* If the bus specified a non-default value, use that */
571         if (endian != REGMAP_ENDIAN_DEFAULT)
572                 return endian;
573
574         /* Use this if no other value was found */
575         return REGMAP_ENDIAN_BIG;
576 }
577 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578
579 struct regmap *__regmap_init(struct device *dev,
580                              const struct regmap_bus *bus,
581                              void *bus_context,
582                              const struct regmap_config *config,
583                              struct lock_class_key *lock_key,
584                              const char *lock_name)
585 {
586         struct regmap *map;
587         int ret = -EINVAL;
588         enum regmap_endian reg_endian, val_endian;
589         int i, j;
590
591         if (!config)
592                 goto err;
593
594         map = kzalloc(sizeof(*map), GFP_KERNEL);
595         if (map == NULL) {
596                 ret = -ENOMEM;
597                 goto err;
598         }
599
600         if (config->lock && config->unlock) {
601                 map->lock = config->lock;
602                 map->unlock = config->unlock;
603                 map->lock_arg = config->lock_arg;
604         } else {
605                 if ((bus && bus->fast_io) ||
606                     config->fast_io) {
607                         spin_lock_init(&map->spinlock);
608                         map->lock = regmap_lock_spinlock;
609                         map->unlock = regmap_unlock_spinlock;
610                         lockdep_set_class_and_name(&map->spinlock,
611                                                    lock_key, lock_name);
612                 } else {
613                         mutex_init(&map->mutex);
614                         map->lock = regmap_lock_mutex;
615                         map->unlock = regmap_unlock_mutex;
616                         lockdep_set_class_and_name(&map->mutex,
617                                                    lock_key, lock_name);
618                 }
619                 map->lock_arg = map;
620         }
621
622         /*
623          * When we write in fast-paths with regmap_bulk_write() don't allocate
624          * scratch buffers with sleeping allocations.
625          */
626         if ((bus && bus->fast_io) || config->fast_io)
627                 map->alloc_flags = GFP_ATOMIC;
628         else
629                 map->alloc_flags = GFP_KERNEL;
630
631         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632         map->format.pad_bytes = config->pad_bits / 8;
633         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
635                         config->val_bits + config->pad_bits, 8);
636         map->reg_shift = config->pad_bits % 8;
637         if (config->reg_stride)
638                 map->reg_stride = config->reg_stride;
639         else
640                 map->reg_stride = 1;
641         map->use_single_read = config->use_single_rw || !bus || !bus->read;
642         map->use_single_write = config->use_single_rw || !bus || !bus->write;
643         map->can_multi_write = config->can_multi_write && bus && bus->write;
644         if (bus) {
645                 map->max_raw_read = bus->max_raw_read;
646                 map->max_raw_write = bus->max_raw_write;
647         }
648         map->dev = dev;
649         map->bus = bus;
650         map->bus_context = bus_context;
651         map->max_register = config->max_register;
652         map->wr_table = config->wr_table;
653         map->rd_table = config->rd_table;
654         map->volatile_table = config->volatile_table;
655         map->precious_table = config->precious_table;
656         map->writeable_reg = config->writeable_reg;
657         map->readable_reg = config->readable_reg;
658         map->volatile_reg = config->volatile_reg;
659         map->precious_reg = config->precious_reg;
660         map->cache_type = config->cache_type;
661         map->name = config->name;
662
663         spin_lock_init(&map->async_lock);
664         INIT_LIST_HEAD(&map->async_list);
665         INIT_LIST_HEAD(&map->async_free);
666         init_waitqueue_head(&map->async_waitq);
667
668         if (config->read_flag_mask || config->write_flag_mask) {
669                 map->read_flag_mask = config->read_flag_mask;
670                 map->write_flag_mask = config->write_flag_mask;
671         } else if (bus) {
672                 map->read_flag_mask = bus->read_flag_mask;
673         }
674
675         if (!bus) {
676                 map->reg_read  = config->reg_read;
677                 map->reg_write = config->reg_write;
678
679                 map->defer_caching = false;
680                 goto skip_format_initialization;
681         } else if (!bus->read || !bus->write) {
682                 map->reg_read = _regmap_bus_reg_read;
683                 map->reg_write = _regmap_bus_reg_write;
684
685                 map->defer_caching = false;
686                 goto skip_format_initialization;
687         } else {
688                 map->reg_read  = _regmap_bus_read;
689                 map->reg_update_bits = bus->reg_update_bits;
690         }
691
692         reg_endian = regmap_get_reg_endian(bus, config);
693         val_endian = regmap_get_val_endian(dev, bus, config);
694
695         switch (config->reg_bits + map->reg_shift) {
696         case 2:
697                 switch (config->val_bits) {
698                 case 6:
699                         map->format.format_write = regmap_format_2_6_write;
700                         break;
701                 default:
702                         goto err_map;
703                 }
704                 break;
705
706         case 4:
707                 switch (config->val_bits) {
708                 case 12:
709                         map->format.format_write = regmap_format_4_12_write;
710                         break;
711                 default:
712                         goto err_map;
713                 }
714                 break;
715
716         case 7:
717                 switch (config->val_bits) {
718                 case 9:
719                         map->format.format_write = regmap_format_7_9_write;
720                         break;
721                 default:
722                         goto err_map;
723                 }
724                 break;
725
726         case 10:
727                 switch (config->val_bits) {
728                 case 14:
729                         map->format.format_write = regmap_format_10_14_write;
730                         break;
731                 default:
732                         goto err_map;
733                 }
734                 break;
735
736         case 8:
737                 map->format.format_reg = regmap_format_8;
738                 break;
739
740         case 16:
741                 switch (reg_endian) {
742                 case REGMAP_ENDIAN_BIG:
743                         map->format.format_reg = regmap_format_16_be;
744                         break;
745                 case REGMAP_ENDIAN_NATIVE:
746                         map->format.format_reg = regmap_format_16_native;
747                         break;
748                 default:
749                         goto err_map;
750                 }
751                 break;
752
753         case 24:
754                 if (reg_endian != REGMAP_ENDIAN_BIG)
755                         goto err_map;
756                 map->format.format_reg = regmap_format_24;
757                 break;
758
759         case 32:
760                 switch (reg_endian) {
761                 case REGMAP_ENDIAN_BIG:
762                         map->format.format_reg = regmap_format_32_be;
763                         break;
764                 case REGMAP_ENDIAN_NATIVE:
765                         map->format.format_reg = regmap_format_32_native;
766                         break;
767                 default:
768                         goto err_map;
769                 }
770                 break;
771
772 #ifdef CONFIG_64BIT
773         case 64:
774                 switch (reg_endian) {
775                 case REGMAP_ENDIAN_BIG:
776                         map->format.format_reg = regmap_format_64_be;
777                         break;
778                 case REGMAP_ENDIAN_NATIVE:
779                         map->format.format_reg = regmap_format_64_native;
780                         break;
781                 default:
782                         goto err_map;
783                 }
784                 break;
785 #endif
786
787         default:
788                 goto err_map;
789         }
790
791         if (val_endian == REGMAP_ENDIAN_NATIVE)
792                 map->format.parse_inplace = regmap_parse_inplace_noop;
793
794         switch (config->val_bits) {
795         case 8:
796                 map->format.format_val = regmap_format_8;
797                 map->format.parse_val = regmap_parse_8;
798                 map->format.parse_inplace = regmap_parse_inplace_noop;
799                 break;
800         case 16:
801                 switch (val_endian) {
802                 case REGMAP_ENDIAN_BIG:
803                         map->format.format_val = regmap_format_16_be;
804                         map->format.parse_val = regmap_parse_16_be;
805                         map->format.parse_inplace = regmap_parse_16_be_inplace;
806                         break;
807                 case REGMAP_ENDIAN_LITTLE:
808                         map->format.format_val = regmap_format_16_le;
809                         map->format.parse_val = regmap_parse_16_le;
810                         map->format.parse_inplace = regmap_parse_16_le_inplace;
811                         break;
812                 case REGMAP_ENDIAN_NATIVE:
813                         map->format.format_val = regmap_format_16_native;
814                         map->format.parse_val = regmap_parse_16_native;
815                         break;
816                 default:
817                         goto err_map;
818                 }
819                 break;
820         case 24:
821                 if (val_endian != REGMAP_ENDIAN_BIG)
822                         goto err_map;
823                 map->format.format_val = regmap_format_24;
824                 map->format.parse_val = regmap_parse_24;
825                 break;
826         case 32:
827                 switch (val_endian) {
828                 case REGMAP_ENDIAN_BIG:
829                         map->format.format_val = regmap_format_32_be;
830                         map->format.parse_val = regmap_parse_32_be;
831                         map->format.parse_inplace = regmap_parse_32_be_inplace;
832                         break;
833                 case REGMAP_ENDIAN_LITTLE:
834                         map->format.format_val = regmap_format_32_le;
835                         map->format.parse_val = regmap_parse_32_le;
836                         map->format.parse_inplace = regmap_parse_32_le_inplace;
837                         break;
838                 case REGMAP_ENDIAN_NATIVE:
839                         map->format.format_val = regmap_format_32_native;
840                         map->format.parse_val = regmap_parse_32_native;
841                         break;
842                 default:
843                         goto err_map;
844                 }
845                 break;
846 #ifdef CONFIG_64BIT
847         case 64:
848                 switch (val_endian) {
849                 case REGMAP_ENDIAN_BIG:
850                         map->format.format_val = regmap_format_64_be;
851                         map->format.parse_val = regmap_parse_64_be;
852                         map->format.parse_inplace = regmap_parse_64_be_inplace;
853                         break;
854                 case REGMAP_ENDIAN_LITTLE:
855                         map->format.format_val = regmap_format_64_le;
856                         map->format.parse_val = regmap_parse_64_le;
857                         map->format.parse_inplace = regmap_parse_64_le_inplace;
858                         break;
859                 case REGMAP_ENDIAN_NATIVE:
860                         map->format.format_val = regmap_format_64_native;
861                         map->format.parse_val = regmap_parse_64_native;
862                         break;
863                 default:
864                         goto err_map;
865                 }
866                 break;
867 #endif
868         }
869
870         if (map->format.format_write) {
871                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
872                     (val_endian != REGMAP_ENDIAN_BIG))
873                         goto err_map;
874                 map->use_single_write = true;
875         }
876
877         if (!map->format.format_write &&
878             !(map->format.format_reg && map->format.format_val))
879                 goto err_map;
880
881         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
882         if (map->work_buf == NULL) {
883                 ret = -ENOMEM;
884                 goto err_map;
885         }
886
887         if (map->format.format_write) {
888                 map->defer_caching = false;
889                 map->reg_write = _regmap_bus_formatted_write;
890         } else if (map->format.format_val) {
891                 map->defer_caching = true;
892                 map->reg_write = _regmap_bus_raw_write;
893         }
894
895 skip_format_initialization:
896
897         map->range_tree = RB_ROOT;
898         for (i = 0; i < config->num_ranges; i++) {
899                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
900                 struct regmap_range_node *new;
901
902                 /* Sanity check */
903                 if (range_cfg->range_max < range_cfg->range_min) {
904                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
905                                 range_cfg->range_max, range_cfg->range_min);
906                         goto err_range;
907                 }
908
909                 if (range_cfg->range_max > map->max_register) {
910                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
911                                 range_cfg->range_max, map->max_register);
912                         goto err_range;
913                 }
914
915                 if (range_cfg->selector_reg > map->max_register) {
916                         dev_err(map->dev,
917                                 "Invalid range %d: selector out of map\n", i);
918                         goto err_range;
919                 }
920
921                 if (range_cfg->window_len == 0) {
922                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
923                                 i);
924                         goto err_range;
925                 }
926
927                 /* Make sure, that this register range has no selector
928                    or data window within its boundary */
929                 for (j = 0; j < config->num_ranges; j++) {
930                         unsigned sel_reg = config->ranges[j].selector_reg;
931                         unsigned win_min = config->ranges[j].window_start;
932                         unsigned win_max = win_min +
933                                            config->ranges[j].window_len - 1;
934
935                         /* Allow data window inside its own virtual range */
936                         if (j == i)
937                                 continue;
938
939                         if (range_cfg->range_min <= sel_reg &&
940                             sel_reg <= range_cfg->range_max) {
941                                 dev_err(map->dev,
942                                         "Range %d: selector for %d in window\n",
943                                         i, j);
944                                 goto err_range;
945                         }
946
947                         if (!(win_max < range_cfg->range_min ||
948                               win_min > range_cfg->range_max)) {
949                                 dev_err(map->dev,
950                                         "Range %d: window for %d in window\n",
951                                         i, j);
952                                 goto err_range;
953                         }
954                 }
955
956                 new = kzalloc(sizeof(*new), GFP_KERNEL);
957                 if (new == NULL) {
958                         ret = -ENOMEM;
959                         goto err_range;
960                 }
961
962                 new->map = map;
963                 new->name = range_cfg->name;
964                 new->range_min = range_cfg->range_min;
965                 new->range_max = range_cfg->range_max;
966                 new->selector_reg = range_cfg->selector_reg;
967                 new->selector_mask = range_cfg->selector_mask;
968                 new->selector_shift = range_cfg->selector_shift;
969                 new->window_start = range_cfg->window_start;
970                 new->window_len = range_cfg->window_len;
971
972                 if (!_regmap_range_add(map, new)) {
973                         dev_err(map->dev, "Failed to add range %d\n", i);
974                         kfree(new);
975                         goto err_range;
976                 }
977
978                 if (map->selector_work_buf == NULL) {
979                         map->selector_work_buf =
980                                 kzalloc(map->format.buf_size, GFP_KERNEL);
981                         if (map->selector_work_buf == NULL) {
982                                 ret = -ENOMEM;
983                                 goto err_range;
984                         }
985                 }
986         }
987
988         ret = regcache_init(map, config);
989         if (ret != 0)
990                 goto err_range;
991
992         if (dev) {
993                 ret = regmap_attach_dev(dev, map, config);
994                 if (ret != 0)
995                         goto err_regcache;
996         }
997
998         return map;
999
1000 err_regcache:
1001         regcache_exit(map);
1002 err_range:
1003         regmap_range_exit(map);
1004         kfree(map->work_buf);
1005 err_map:
1006         kfree(map);
1007 err:
1008         return ERR_PTR(ret);
1009 }
1010 EXPORT_SYMBOL_GPL(__regmap_init);
1011
1012 static void devm_regmap_release(struct device *dev, void *res)
1013 {
1014         regmap_exit(*(struct regmap **)res);
1015 }
1016
1017 struct regmap *__devm_regmap_init(struct device *dev,
1018                                   const struct regmap_bus *bus,
1019                                   void *bus_context,
1020                                   const struct regmap_config *config,
1021                                   struct lock_class_key *lock_key,
1022                                   const char *lock_name)
1023 {
1024         struct regmap **ptr, *regmap;
1025
1026         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1027         if (!ptr)
1028                 return ERR_PTR(-ENOMEM);
1029
1030         regmap = __regmap_init(dev, bus, bus_context, config,
1031                                lock_key, lock_name);
1032         if (!IS_ERR(regmap)) {
1033                 *ptr = regmap;
1034                 devres_add(dev, ptr);
1035         } else {
1036                 devres_free(ptr);
1037         }
1038
1039         return regmap;
1040 }
1041 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1042
1043 static void regmap_field_init(struct regmap_field *rm_field,
1044         struct regmap *regmap, struct reg_field reg_field)
1045 {
1046         rm_field->regmap = regmap;
1047         rm_field->reg = reg_field.reg;
1048         rm_field->shift = reg_field.lsb;
1049         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1050         rm_field->id_size = reg_field.id_size;
1051         rm_field->id_offset = reg_field.id_offset;
1052 }
1053
1054 /**
1055  * devm_regmap_field_alloc(): Allocate and initialise a register field
1056  * in a register map.
1057  *
1058  * @dev: Device that will be interacted with
1059  * @regmap: regmap bank in which this register field is located.
1060  * @reg_field: Register field with in the bank.
1061  *
1062  * The return value will be an ERR_PTR() on error or a valid pointer
1063  * to a struct regmap_field. The regmap_field will be automatically freed
1064  * by the device management code.
1065  */
1066 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1067                 struct regmap *regmap, struct reg_field reg_field)
1068 {
1069         struct regmap_field *rm_field = devm_kzalloc(dev,
1070                                         sizeof(*rm_field), GFP_KERNEL);
1071         if (!rm_field)
1072                 return ERR_PTR(-ENOMEM);
1073
1074         regmap_field_init(rm_field, regmap, reg_field);
1075
1076         return rm_field;
1077
1078 }
1079 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1080
1081 /**
1082  * devm_regmap_field_free(): Free register field allocated using
1083  * devm_regmap_field_alloc. Usally drivers need not call this function,
1084  * as the memory allocated via devm will be freed as per device-driver
1085  * life-cyle.
1086  *
1087  * @dev: Device that will be interacted with
1088  * @field: regmap field which should be freed.
1089  */
1090 void devm_regmap_field_free(struct device *dev,
1091         struct regmap_field *field)
1092 {
1093         devm_kfree(dev, field);
1094 }
1095 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1096
1097 /**
1098  * regmap_field_alloc(): Allocate and initialise a register field
1099  * in a register map.
1100  *
1101  * @regmap: regmap bank in which this register field is located.
1102  * @reg_field: Register field with in the bank.
1103  *
1104  * The return value will be an ERR_PTR() on error or a valid pointer
1105  * to a struct regmap_field. The regmap_field should be freed by the
1106  * user once its finished working with it using regmap_field_free().
1107  */
1108 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1109                 struct reg_field reg_field)
1110 {
1111         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1112
1113         if (!rm_field)
1114                 return ERR_PTR(-ENOMEM);
1115
1116         regmap_field_init(rm_field, regmap, reg_field);
1117
1118         return rm_field;
1119 }
1120 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1121
1122 /**
1123  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1124  *
1125  * @field: regmap field which should be freed.
1126  */
1127 void regmap_field_free(struct regmap_field *field)
1128 {
1129         kfree(field);
1130 }
1131 EXPORT_SYMBOL_GPL(regmap_field_free);
1132
1133 /**
1134  * regmap_reinit_cache(): Reinitialise the current register cache
1135  *
1136  * @map: Register map to operate on.
1137  * @config: New configuration.  Only the cache data will be used.
1138  *
1139  * Discard any existing register cache for the map and initialize a
1140  * new cache.  This can be used to restore the cache to defaults or to
1141  * update the cache configuration to reflect runtime discovery of the
1142  * hardware.
1143  *
1144  * No explicit locking is done here, the user needs to ensure that
1145  * this function will not race with other calls to regmap.
1146  */
1147 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1148 {
1149         regcache_exit(map);
1150         regmap_debugfs_exit(map);
1151
1152         map->max_register = config->max_register;
1153         map->writeable_reg = config->writeable_reg;
1154         map->readable_reg = config->readable_reg;
1155         map->volatile_reg = config->volatile_reg;
1156         map->precious_reg = config->precious_reg;
1157         map->cache_type = config->cache_type;
1158
1159         regmap_debugfs_init(map, config->name);
1160
1161         map->cache_bypass = false;
1162         map->cache_only = false;
1163
1164         return regcache_init(map, config);
1165 }
1166 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1167
1168 /**
1169  * regmap_exit(): Free a previously allocated register map
1170  */
1171 void regmap_exit(struct regmap *map)
1172 {
1173         struct regmap_async *async;
1174
1175         regcache_exit(map);
1176         regmap_debugfs_exit(map);
1177         regmap_range_exit(map);
1178         if (map->bus && map->bus->free_context)
1179                 map->bus->free_context(map->bus_context);
1180         kfree(map->work_buf);
1181         while (!list_empty(&map->async_free)) {
1182                 async = list_first_entry_or_null(&map->async_free,
1183                                                  struct regmap_async,
1184                                                  list);
1185                 list_del(&async->list);
1186                 kfree(async->work_buf);
1187                 kfree(async);
1188         }
1189         kfree(map);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_exit);
1192
1193 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1194 {
1195         struct regmap **r = res;
1196         if (!r || !*r) {
1197                 WARN_ON(!r || !*r);
1198                 return 0;
1199         }
1200
1201         /* If the user didn't specify a name match any */
1202         if (data)
1203                 return (*r)->name == data;
1204         else
1205                 return 1;
1206 }
1207
1208 /**
1209  * dev_get_regmap(): Obtain the regmap (if any) for a device
1210  *
1211  * @dev: Device to retrieve the map for
1212  * @name: Optional name for the register map, usually NULL.
1213  *
1214  * Returns the regmap for the device if one is present, or NULL.  If
1215  * name is specified then it must match the name specified when
1216  * registering the device, if it is NULL then the first regmap found
1217  * will be used.  Devices with multiple register maps are very rare,
1218  * generic code should normally not need to specify a name.
1219  */
1220 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1221 {
1222         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1223                                         dev_get_regmap_match, (void *)name);
1224
1225         if (!r)
1226                 return NULL;
1227         return *r;
1228 }
1229 EXPORT_SYMBOL_GPL(dev_get_regmap);
1230
1231 /**
1232  * regmap_get_device(): Obtain the device from a regmap
1233  *
1234  * @map: Register map to operate on.
1235  *
1236  * Returns the underlying device that the regmap has been created for.
1237  */
1238 struct device *regmap_get_device(struct regmap *map)
1239 {
1240         return map->dev;
1241 }
1242 EXPORT_SYMBOL_GPL(regmap_get_device);
1243
1244 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1245                                struct regmap_range_node *range,
1246                                unsigned int val_num)
1247 {
1248         void *orig_work_buf;
1249         unsigned int win_offset;
1250         unsigned int win_page;
1251         bool page_chg;
1252         int ret;
1253
1254         win_offset = (*reg - range->range_min) % range->window_len;
1255         win_page = (*reg - range->range_min) / range->window_len;
1256
1257         if (val_num > 1) {
1258                 /* Bulk write shouldn't cross range boundary */
1259                 if (*reg + val_num - 1 > range->range_max)
1260                         return -EINVAL;
1261
1262                 /* ... or single page boundary */
1263                 if (val_num > range->window_len - win_offset)
1264                         return -EINVAL;
1265         }
1266
1267         /* It is possible to have selector register inside data window.
1268            In that case, selector register is located on every page and
1269            it needs no page switching, when accessed alone. */
1270         if (val_num > 1 ||
1271             range->window_start + win_offset != range->selector_reg) {
1272                 /* Use separate work_buf during page switching */
1273                 orig_work_buf = map->work_buf;
1274                 map->work_buf = map->selector_work_buf;
1275
1276                 ret = _regmap_update_bits(map, range->selector_reg,
1277                                           range->selector_mask,
1278                                           win_page << range->selector_shift,
1279                                           &page_chg, false);
1280
1281                 map->work_buf = orig_work_buf;
1282
1283                 if (ret != 0)
1284                         return ret;
1285         }
1286
1287         *reg = range->window_start + win_offset;
1288
1289         return 0;
1290 }
1291
1292 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1293                       const void *val, size_t val_len)
1294 {
1295         struct regmap_range_node *range;
1296         unsigned long flags;
1297         u8 *u8 = map->work_buf;
1298         void *work_val = map->work_buf + map->format.reg_bytes +
1299                 map->format.pad_bytes;
1300         void *buf;
1301         int ret = -ENOTSUPP;
1302         size_t len;
1303         int i;
1304
1305         WARN_ON(!map->bus);
1306
1307         /* Check for unwritable registers before we start */
1308         if (map->writeable_reg)
1309                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1310                         if (!map->writeable_reg(map->dev,
1311                                                 reg + (i * map->reg_stride)))
1312                                 return -EINVAL;
1313
1314         if (!map->cache_bypass && map->format.parse_val) {
1315                 unsigned int ival;
1316                 int val_bytes = map->format.val_bytes;
1317                 for (i = 0; i < val_len / val_bytes; i++) {
1318                         ival = map->format.parse_val(val + (i * val_bytes));
1319                         ret = regcache_write(map, reg + (i * map->reg_stride),
1320                                              ival);
1321                         if (ret) {
1322                                 dev_err(map->dev,
1323                                         "Error in caching of register: %x ret: %d\n",
1324                                         reg + i, ret);
1325                                 return ret;
1326                         }
1327                 }
1328                 if (map->cache_only) {
1329                         map->cache_dirty = true;
1330                         return 0;
1331                 }
1332         }
1333
1334         range = _regmap_range_lookup(map, reg);
1335         if (range) {
1336                 int val_num = val_len / map->format.val_bytes;
1337                 int win_offset = (reg - range->range_min) % range->window_len;
1338                 int win_residue = range->window_len - win_offset;
1339
1340                 /* If the write goes beyond the end of the window split it */
1341                 while (val_num > win_residue) {
1342                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1343                                 win_residue, val_len / map->format.val_bytes);
1344                         ret = _regmap_raw_write(map, reg, val, win_residue *
1345                                                 map->format.val_bytes);
1346                         if (ret != 0)
1347                                 return ret;
1348
1349                         reg += win_residue;
1350                         val_num -= win_residue;
1351                         val += win_residue * map->format.val_bytes;
1352                         val_len -= win_residue * map->format.val_bytes;
1353
1354                         win_offset = (reg - range->range_min) %
1355                                 range->window_len;
1356                         win_residue = range->window_len - win_offset;
1357                 }
1358
1359                 ret = _regmap_select_page(map, &reg, range, val_num);
1360                 if (ret != 0)
1361                         return ret;
1362         }
1363
1364         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1365
1366         u8[0] |= map->write_flag_mask;
1367
1368         /*
1369          * Essentially all I/O mechanisms will be faster with a single
1370          * buffer to write.  Since register syncs often generate raw
1371          * writes of single registers optimise that case.
1372          */
1373         if (val != work_val && val_len == map->format.val_bytes) {
1374                 memcpy(work_val, val, map->format.val_bytes);
1375                 val = work_val;
1376         }
1377
1378         if (map->async && map->bus->async_write) {
1379                 struct regmap_async *async;
1380
1381                 trace_regmap_async_write_start(map, reg, val_len);
1382
1383                 spin_lock_irqsave(&map->async_lock, flags);
1384                 async = list_first_entry_or_null(&map->async_free,
1385                                                  struct regmap_async,
1386                                                  list);
1387                 if (async)
1388                         list_del(&async->list);
1389                 spin_unlock_irqrestore(&map->async_lock, flags);
1390
1391                 if (!async) {
1392                         async = map->bus->async_alloc();
1393                         if (!async)
1394                                 return -ENOMEM;
1395
1396                         async->work_buf = kzalloc(map->format.buf_size,
1397                                                   GFP_KERNEL | GFP_DMA);
1398                         if (!async->work_buf) {
1399                                 kfree(async);
1400                                 return -ENOMEM;
1401                         }
1402                 }
1403
1404                 async->map = map;
1405
1406                 /* If the caller supplied the value we can use it safely. */
1407                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1408                        map->format.reg_bytes + map->format.val_bytes);
1409
1410                 spin_lock_irqsave(&map->async_lock, flags);
1411                 list_add_tail(&async->list, &map->async_list);
1412                 spin_unlock_irqrestore(&map->async_lock, flags);
1413
1414                 if (val != work_val)
1415                         ret = map->bus->async_write(map->bus_context,
1416                                                     async->work_buf,
1417                                                     map->format.reg_bytes +
1418                                                     map->format.pad_bytes,
1419                                                     val, val_len, async);
1420                 else
1421                         ret = map->bus->async_write(map->bus_context,
1422                                                     async->work_buf,
1423                                                     map->format.reg_bytes +
1424                                                     map->format.pad_bytes +
1425                                                     val_len, NULL, 0, async);
1426
1427                 if (ret != 0) {
1428                         dev_err(map->dev, "Failed to schedule write: %d\n",
1429                                 ret);
1430
1431                         spin_lock_irqsave(&map->async_lock, flags);
1432                         list_move(&async->list, &map->async_free);
1433                         spin_unlock_irqrestore(&map->async_lock, flags);
1434                 }
1435
1436                 return ret;
1437         }
1438
1439         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1440
1441         /* If we're doing a single register write we can probably just
1442          * send the work_buf directly, otherwise try to do a gather
1443          * write.
1444          */
1445         if (val == work_val)
1446                 ret = map->bus->write(map->bus_context, map->work_buf,
1447                                       map->format.reg_bytes +
1448                                       map->format.pad_bytes +
1449                                       val_len);
1450         else if (map->bus->gather_write)
1451                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1452                                              map->format.reg_bytes +
1453                                              map->format.pad_bytes,
1454                                              val, val_len);
1455
1456         /* If that didn't work fall back on linearising by hand. */
1457         if (ret == -ENOTSUPP) {
1458                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1459                 buf = kzalloc(len, GFP_KERNEL);
1460                 if (!buf)
1461                         return -ENOMEM;
1462
1463                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1464                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1465                        val, val_len);
1466                 ret = map->bus->write(map->bus_context, buf, len);
1467
1468                 kfree(buf);
1469         }
1470
1471         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1472
1473         return ret;
1474 }
1475
1476 /**
1477  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1478  *
1479  * @map: Map to check.
1480  */
1481 bool regmap_can_raw_write(struct regmap *map)
1482 {
1483         return map->bus && map->bus->write && map->format.format_val &&
1484                 map->format.format_reg;
1485 }
1486 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1487
1488 /**
1489  * regmap_get_raw_read_max - Get the maximum size we can read
1490  *
1491  * @map: Map to check.
1492  */
1493 size_t regmap_get_raw_read_max(struct regmap *map)
1494 {
1495         return map->max_raw_read;
1496 }
1497 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1498
1499 /**
1500  * regmap_get_raw_write_max - Get the maximum size we can read
1501  *
1502  * @map: Map to check.
1503  */
1504 size_t regmap_get_raw_write_max(struct regmap *map)
1505 {
1506         return map->max_raw_write;
1507 }
1508 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1509
1510 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1511                                        unsigned int val)
1512 {
1513         int ret;
1514         struct regmap_range_node *range;
1515         struct regmap *map = context;
1516
1517         WARN_ON(!map->bus || !map->format.format_write);
1518
1519         range = _regmap_range_lookup(map, reg);
1520         if (range) {
1521                 ret = _regmap_select_page(map, &reg, range, 1);
1522                 if (ret != 0)
1523                         return ret;
1524         }
1525
1526         map->format.format_write(map, reg, val);
1527
1528         trace_regmap_hw_write_start(map, reg, 1);
1529
1530         ret = map->bus->write(map->bus_context, map->work_buf,
1531                               map->format.buf_size);
1532
1533         trace_regmap_hw_write_done(map, reg, 1);
1534
1535         return ret;
1536 }
1537
1538 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1539                                  unsigned int val)
1540 {
1541         struct regmap *map = context;
1542
1543         return map->bus->reg_write(map->bus_context, reg, val);
1544 }
1545
1546 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1547                                  unsigned int val)
1548 {
1549         struct regmap *map = context;
1550
1551         WARN_ON(!map->bus || !map->format.format_val);
1552
1553         map->format.format_val(map->work_buf + map->format.reg_bytes
1554                                + map->format.pad_bytes, val, 0);
1555         return _regmap_raw_write(map, reg,
1556                                  map->work_buf +
1557                                  map->format.reg_bytes +
1558                                  map->format.pad_bytes,
1559                                  map->format.val_bytes);
1560 }
1561
1562 static inline void *_regmap_map_get_context(struct regmap *map)
1563 {
1564         return (map->bus) ? map : map->bus_context;
1565 }
1566
1567 int _regmap_write(struct regmap *map, unsigned int reg,
1568                   unsigned int val)
1569 {
1570         int ret;
1571         void *context = _regmap_map_get_context(map);
1572
1573         if (!regmap_writeable(map, reg))
1574                 return -EIO;
1575
1576         if (!map->cache_bypass && !map->defer_caching) {
1577                 ret = regcache_write(map, reg, val);
1578                 if (ret != 0)
1579                         return ret;
1580                 if (map->cache_only) {
1581                         map->cache_dirty = true;
1582                         return 0;
1583                 }
1584         }
1585
1586 #ifdef LOG_DEVICE
1587         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1588                 dev_info(map->dev, "%x <= %x\n", reg, val);
1589 #endif
1590
1591         trace_regmap_reg_write(map, reg, val);
1592
1593         return map->reg_write(context, reg, val);
1594 }
1595
1596 /**
1597  * regmap_write(): Write a value to a single register
1598  *
1599  * @map: Register map to write to
1600  * @reg: Register to write to
1601  * @val: Value to be written
1602  *
1603  * A value of zero will be returned on success, a negative errno will
1604  * be returned in error cases.
1605  */
1606 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1607 {
1608         int ret;
1609
1610         if (!IS_ALIGNED(reg, map->reg_stride))
1611                 return -EINVAL;
1612
1613         map->lock(map->lock_arg);
1614
1615         ret = _regmap_write(map, reg, val);
1616
1617         map->unlock(map->lock_arg);
1618
1619         return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regmap_write);
1622
1623 /**
1624  * regmap_write_async(): Write a value to a single register asynchronously
1625  *
1626  * @map: Register map to write to
1627  * @reg: Register to write to
1628  * @val: Value to be written
1629  *
1630  * A value of zero will be returned on success, a negative errno will
1631  * be returned in error cases.
1632  */
1633 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1634 {
1635         int ret;
1636
1637         if (!IS_ALIGNED(reg, map->reg_stride))
1638                 return -EINVAL;
1639
1640         map->lock(map->lock_arg);
1641
1642         map->async = true;
1643
1644         ret = _regmap_write(map, reg, val);
1645
1646         map->async = false;
1647
1648         map->unlock(map->lock_arg);
1649
1650         return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_write_async);
1653
1654 /**
1655  * regmap_raw_write(): Write raw values to one or more registers
1656  *
1657  * @map: Register map to write to
1658  * @reg: Initial register to write to
1659  * @val: Block of data to be written, laid out for direct transmission to the
1660  *       device
1661  * @val_len: Length of data pointed to by val.
1662  *
1663  * This function is intended to be used for things like firmware
1664  * download where a large block of data needs to be transferred to the
1665  * device.  No formatting will be done on the data provided.
1666  *
1667  * A value of zero will be returned on success, a negative errno will
1668  * be returned in error cases.
1669  */
1670 int regmap_raw_write(struct regmap *map, unsigned int reg,
1671                      const void *val, size_t val_len)
1672 {
1673         int ret;
1674
1675         if (!regmap_can_raw_write(map))
1676                 return -EINVAL;
1677         if (val_len % map->format.val_bytes)
1678                 return -EINVAL;
1679         if (map->max_raw_write && map->max_raw_write > val_len)
1680                 return -E2BIG;
1681
1682         map->lock(map->lock_arg);
1683
1684         ret = _regmap_raw_write(map, reg, val, val_len);
1685
1686         map->unlock(map->lock_arg);
1687
1688         return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_raw_write);
1691
1692 /**
1693  * regmap_field_write(): Write a value to a single register field
1694  *
1695  * @field: Register field to write to
1696  * @val: Value to be written
1697  *
1698  * A value of zero will be returned on success, a negative errno will
1699  * be returned in error cases.
1700  */
1701 int regmap_field_write(struct regmap_field *field, unsigned int val)
1702 {
1703         return regmap_update_bits(field->regmap, field->reg,
1704                                 field->mask, val << field->shift);
1705 }
1706 EXPORT_SYMBOL_GPL(regmap_field_write);
1707
1708 /**
1709  * regmap_field_update_bits():  Perform a read/modify/write cycle
1710  *                              on the register field
1711  *
1712  * @field: Register field to write to
1713  * @mask: Bitmask to change
1714  * @val: Value to be written
1715  *
1716  * A value of zero will be returned on success, a negative errno will
1717  * be returned in error cases.
1718  */
1719 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1720 {
1721         mask = (mask << field->shift) & field->mask;
1722
1723         return regmap_update_bits(field->regmap, field->reg,
1724                                   mask, val << field->shift);
1725 }
1726 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1727
1728 /**
1729  * regmap_fields_write(): Write a value to a single register field with port ID
1730  *
1731  * @field: Register field to write to
1732  * @id: port ID
1733  * @val: Value to be written
1734  *
1735  * A value of zero will be returned on success, a negative errno will
1736  * be returned in error cases.
1737  */
1738 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1739                         unsigned int val)
1740 {
1741         if (id >= field->id_size)
1742                 return -EINVAL;
1743
1744         return regmap_update_bits(field->regmap,
1745                                   field->reg + (field->id_offset * id),
1746                                   field->mask, val << field->shift);
1747 }
1748 EXPORT_SYMBOL_GPL(regmap_fields_write);
1749
1750 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1751                         unsigned int val)
1752 {
1753         if (id >= field->id_size)
1754                 return -EINVAL;
1755
1756         return regmap_write_bits(field->regmap,
1757                                   field->reg + (field->id_offset * id),
1758                                   field->mask, val << field->shift);
1759 }
1760 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1761
1762 /**
1763  * regmap_fields_update_bits(): Perform a read/modify/write cycle
1764  *                              on the register field
1765  *
1766  * @field: Register field to write to
1767  * @id: port ID
1768  * @mask: Bitmask to change
1769  * @val: Value to be written
1770  *
1771  * A value of zero will be returned on success, a negative errno will
1772  * be returned in error cases.
1773  */
1774 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1775                               unsigned int mask, unsigned int val)
1776 {
1777         if (id >= field->id_size)
1778                 return -EINVAL;
1779
1780         mask = (mask << field->shift) & field->mask;
1781
1782         return regmap_update_bits(field->regmap,
1783                                   field->reg + (field->id_offset * id),
1784                                   mask, val << field->shift);
1785 }
1786 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1787
1788 /*
1789  * regmap_bulk_write(): Write multiple registers to the device
1790  *
1791  * @map: Register map to write to
1792  * @reg: First register to be write from
1793  * @val: Block of data to be written, in native register size for device
1794  * @val_count: Number of registers to write
1795  *
1796  * This function is intended to be used for writing a large block of
1797  * data to the device either in single transfer or multiple transfer.
1798  *
1799  * A value of zero will be returned on success, a negative errno will
1800  * be returned in error cases.
1801  */
1802 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1803                      size_t val_count)
1804 {
1805         int ret = 0, i;
1806         size_t val_bytes = map->format.val_bytes;
1807         size_t total_size = val_bytes * val_count;
1808
1809         if (map->bus && !map->format.parse_inplace)
1810                 return -EINVAL;
1811         if (!IS_ALIGNED(reg, map->reg_stride))
1812                 return -EINVAL;
1813
1814         /*
1815          * Some devices don't support bulk write, for
1816          * them we have a series of single write operations in the first two if
1817          * blocks.
1818          *
1819          * The first if block is used for memory mapped io. It does not allow
1820          * val_bytes of 3 for example.
1821          * The second one is used for busses which do not have this limitation
1822          * and can write arbitrary value lengths.
1823          */
1824         if (!map->bus) {
1825                 map->lock(map->lock_arg);
1826                 for (i = 0; i < val_count; i++) {
1827                         unsigned int ival;
1828
1829                         switch (val_bytes) {
1830                         case 1:
1831                                 ival = *(u8 *)(val + (i * val_bytes));
1832                                 break;
1833                         case 2:
1834                                 ival = *(u16 *)(val + (i * val_bytes));
1835                                 break;
1836                         case 4:
1837                                 ival = *(u32 *)(val + (i * val_bytes));
1838                                 break;
1839 #ifdef CONFIG_64BIT
1840                         case 8:
1841                                 ival = *(u64 *)(val + (i * val_bytes));
1842                                 break;
1843 #endif
1844                         default:
1845                                 ret = -EINVAL;
1846                                 goto out;
1847                         }
1848
1849                         ret = _regmap_write(map, reg + (i * map->reg_stride),
1850                                         ival);
1851                         if (ret != 0)
1852                                 goto out;
1853                 }
1854 out:
1855                 map->unlock(map->lock_arg);
1856         } else if (map->use_single_write ||
1857                    (map->max_raw_write && map->max_raw_write < total_size)) {
1858                 int chunk_stride = map->reg_stride;
1859                 size_t chunk_size = val_bytes;
1860                 size_t chunk_count = val_count;
1861
1862                 if (!map->use_single_write) {
1863                         chunk_size = map->max_raw_write;
1864                         if (chunk_size % val_bytes)
1865                                 chunk_size -= chunk_size % val_bytes;
1866                         chunk_count = total_size / chunk_size;
1867                         chunk_stride *= chunk_size / val_bytes;
1868                 }
1869
1870                 map->lock(map->lock_arg);
1871                 /* Write as many bytes as possible with chunk_size */
1872                 for (i = 0; i < chunk_count; i++) {
1873                         ret = _regmap_raw_write(map,
1874                                                 reg + (i * chunk_stride),
1875                                                 val + (i * chunk_size),
1876                                                 chunk_size);
1877                         if (ret)
1878                                 break;
1879                 }
1880
1881                 /* Write remaining bytes */
1882                 if (!ret && chunk_size * i < total_size) {
1883                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1884                                                 val + (i * chunk_size),
1885                                                 total_size - i * chunk_size);
1886                 }
1887                 map->unlock(map->lock_arg);
1888         } else {
1889                 void *wval;
1890
1891                 if (!val_count)
1892                         return -EINVAL;
1893
1894                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1895                 if (!wval) {
1896                         dev_err(map->dev, "Error in memory allocation\n");
1897                         return -ENOMEM;
1898                 }
1899                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1900                         map->format.parse_inplace(wval + i);
1901
1902                 map->lock(map->lock_arg);
1903                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1904                 map->unlock(map->lock_arg);
1905
1906                 kfree(wval);
1907         }
1908         return ret;
1909 }
1910 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1911
1912 /*
1913  * _regmap_raw_multi_reg_write()
1914  *
1915  * the (register,newvalue) pairs in regs have not been formatted, but
1916  * they are all in the same page and have been changed to being page
1917  * relative. The page register has been written if that was necessary.
1918  */
1919 static int _regmap_raw_multi_reg_write(struct regmap *map,
1920                                        const struct reg_sequence *regs,
1921                                        size_t num_regs)
1922 {
1923         int ret;
1924         void *buf;
1925         int i;
1926         u8 *u8;
1927         size_t val_bytes = map->format.val_bytes;
1928         size_t reg_bytes = map->format.reg_bytes;
1929         size_t pad_bytes = map->format.pad_bytes;
1930         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1931         size_t len = pair_size * num_regs;
1932
1933         if (!len)
1934                 return -EINVAL;
1935
1936         buf = kzalloc(len, GFP_KERNEL);
1937         if (!buf)
1938                 return -ENOMEM;
1939
1940         /* We have to linearise by hand. */
1941
1942         u8 = buf;
1943
1944         for (i = 0; i < num_regs; i++) {
1945                 unsigned int reg = regs[i].reg;
1946                 unsigned int val = regs[i].def;
1947                 trace_regmap_hw_write_start(map, reg, 1);
1948                 map->format.format_reg(u8, reg, map->reg_shift);
1949                 u8 += reg_bytes + pad_bytes;
1950                 map->format.format_val(u8, val, 0);
1951                 u8 += val_bytes;
1952         }
1953         u8 = buf;
1954         *u8 |= map->write_flag_mask;
1955
1956         ret = map->bus->write(map->bus_context, buf, len);
1957
1958         kfree(buf);
1959
1960         for (i = 0; i < num_regs; i++) {
1961                 int reg = regs[i].reg;
1962                 trace_regmap_hw_write_done(map, reg, 1);
1963         }
1964         return ret;
1965 }
1966
1967 static unsigned int _regmap_register_page(struct regmap *map,
1968                                           unsigned int reg,
1969                                           struct regmap_range_node *range)
1970 {
1971         unsigned int win_page = (reg - range->range_min) / range->window_len;
1972
1973         return win_page;
1974 }
1975
1976 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1977                                                struct reg_sequence *regs,
1978                                                size_t num_regs)
1979 {
1980         int ret;
1981         int i, n;
1982         struct reg_sequence *base;
1983         unsigned int this_page = 0;
1984         unsigned int page_change = 0;
1985         /*
1986          * the set of registers are not neccessarily in order, but
1987          * since the order of write must be preserved this algorithm
1988          * chops the set each time the page changes. This also applies
1989          * if there is a delay required at any point in the sequence.
1990          */
1991         base = regs;
1992         for (i = 0, n = 0; i < num_regs; i++, n++) {
1993                 unsigned int reg = regs[i].reg;
1994                 struct regmap_range_node *range;
1995
1996                 range = _regmap_range_lookup(map, reg);
1997                 if (range) {
1998                         unsigned int win_page = _regmap_register_page(map, reg,
1999                                                                       range);
2000
2001                         if (i == 0)
2002                                 this_page = win_page;
2003                         if (win_page != this_page) {
2004                                 this_page = win_page;
2005                                 page_change = 1;
2006                         }
2007                 }
2008
2009                 /* If we have both a page change and a delay make sure to
2010                  * write the regs and apply the delay before we change the
2011                  * page.
2012                  */
2013
2014                 if (page_change || regs[i].delay_us) {
2015
2016                                 /* For situations where the first write requires
2017                                  * a delay we need to make sure we don't call
2018                                  * raw_multi_reg_write with n=0
2019                                  * This can't occur with page breaks as we
2020                                  * never write on the first iteration
2021                                  */
2022                                 if (regs[i].delay_us && i == 0)
2023                                         n = 1;
2024
2025                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2026                                 if (ret != 0)
2027                                         return ret;
2028
2029                                 if (regs[i].delay_us)
2030                                         udelay(regs[i].delay_us);
2031
2032                                 base += n;
2033                                 n = 0;
2034
2035                                 if (page_change) {
2036                                         ret = _regmap_select_page(map,
2037                                                                   &base[n].reg,
2038                                                                   range, 1);
2039                                         if (ret != 0)
2040                                                 return ret;
2041
2042                                         page_change = 0;
2043                                 }
2044
2045                 }
2046
2047         }
2048         if (n > 0)
2049                 return _regmap_raw_multi_reg_write(map, base, n);
2050         return 0;
2051 }
2052
2053 static int _regmap_multi_reg_write(struct regmap *map,
2054                                    const struct reg_sequence *regs,
2055                                    size_t num_regs)
2056 {
2057         int i;
2058         int ret;
2059
2060         if (!map->can_multi_write) {
2061                 for (i = 0; i < num_regs; i++) {
2062                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2063                         if (ret != 0)
2064                                 return ret;
2065
2066                         if (regs[i].delay_us)
2067                                 udelay(regs[i].delay_us);
2068                 }
2069                 return 0;
2070         }
2071
2072         if (!map->format.parse_inplace)
2073                 return -EINVAL;
2074
2075         if (map->writeable_reg)
2076                 for (i = 0; i < num_regs; i++) {
2077                         int reg = regs[i].reg;
2078                         if (!map->writeable_reg(map->dev, reg))
2079                                 return -EINVAL;
2080                         if (!IS_ALIGNED(reg, map->reg_stride))
2081                                 return -EINVAL;
2082                 }
2083
2084         if (!map->cache_bypass) {
2085                 for (i = 0; i < num_regs; i++) {
2086                         unsigned int val = regs[i].def;
2087                         unsigned int reg = regs[i].reg;
2088                         ret = regcache_write(map, reg, val);
2089                         if (ret) {
2090                                 dev_err(map->dev,
2091                                 "Error in caching of register: %x ret: %d\n",
2092                                                                 reg, ret);
2093                                 return ret;
2094                         }
2095                 }
2096                 if (map->cache_only) {
2097                         map->cache_dirty = true;
2098                         return 0;
2099                 }
2100         }
2101
2102         WARN_ON(!map->bus);
2103
2104         for (i = 0; i < num_regs; i++) {
2105                 unsigned int reg = regs[i].reg;
2106                 struct regmap_range_node *range;
2107
2108                 /* Coalesce all the writes between a page break or a delay
2109                  * in a sequence
2110                  */
2111                 range = _regmap_range_lookup(map, reg);
2112                 if (range || regs[i].delay_us) {
2113                         size_t len = sizeof(struct reg_sequence)*num_regs;
2114                         struct reg_sequence *base = kmemdup(regs, len,
2115                                                            GFP_KERNEL);
2116                         if (!base)
2117                                 return -ENOMEM;
2118                         ret = _regmap_range_multi_paged_reg_write(map, base,
2119                                                                   num_regs);
2120                         kfree(base);
2121
2122                         return ret;
2123                 }
2124         }
2125         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2126 }
2127
2128 /*
2129  * regmap_multi_reg_write(): Write multiple registers to the device
2130  *
2131  * where the set of register,value pairs are supplied in any order,
2132  * possibly not all in a single range.
2133  *
2134  * @map: Register map to write to
2135  * @regs: Array of structures containing register,value to be written
2136  * @num_regs: Number of registers to write
2137  *
2138  * The 'normal' block write mode will send ultimately send data on the
2139  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2140  * addressed. However, this alternative block multi write mode will send
2141  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2142  * must of course support the mode.
2143  *
2144  * A value of zero will be returned on success, a negative errno will be
2145  * returned in error cases.
2146  */
2147 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2148                            int num_regs)
2149 {
2150         int ret;
2151
2152         map->lock(map->lock_arg);
2153
2154         ret = _regmap_multi_reg_write(map, regs, num_regs);
2155
2156         map->unlock(map->lock_arg);
2157
2158         return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2161
2162 /*
2163  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2164  *                                    device but not the cache
2165  *
2166  * where the set of register are supplied in any order
2167  *
2168  * @map: Register map to write to
2169  * @regs: Array of structures containing register,value to be written
2170  * @num_regs: Number of registers to write
2171  *
2172  * This function is intended to be used for writing a large block of data
2173  * atomically to the device in single transfer for those I2C client devices
2174  * that implement this alternative block write mode.
2175  *
2176  * A value of zero will be returned on success, a negative errno will
2177  * be returned in error cases.
2178  */
2179 int regmap_multi_reg_write_bypassed(struct regmap *map,
2180                                     const struct reg_sequence *regs,
2181                                     int num_regs)
2182 {
2183         int ret;
2184         bool bypass;
2185
2186         map->lock(map->lock_arg);
2187
2188         bypass = map->cache_bypass;
2189         map->cache_bypass = true;
2190
2191         ret = _regmap_multi_reg_write(map, regs, num_regs);
2192
2193         map->cache_bypass = bypass;
2194
2195         map->unlock(map->lock_arg);
2196
2197         return ret;
2198 }
2199 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2200
2201 /**
2202  * regmap_raw_write_async(): Write raw values to one or more registers
2203  *                           asynchronously
2204  *
2205  * @map: Register map to write to
2206  * @reg: Initial register to write to
2207  * @val: Block of data to be written, laid out for direct transmission to the
2208  *       device.  Must be valid until regmap_async_complete() is called.
2209  * @val_len: Length of data pointed to by val.
2210  *
2211  * This function is intended to be used for things like firmware
2212  * download where a large block of data needs to be transferred to the
2213  * device.  No formatting will be done on the data provided.
2214  *
2215  * If supported by the underlying bus the write will be scheduled
2216  * asynchronously, helping maximise I/O speed on higher speed buses
2217  * like SPI.  regmap_async_complete() can be called to ensure that all
2218  * asynchrnous writes have been completed.
2219  *
2220  * A value of zero will be returned on success, a negative errno will
2221  * be returned in error cases.
2222  */
2223 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2224                            const void *val, size_t val_len)
2225 {
2226         int ret;
2227
2228         if (val_len % map->format.val_bytes)
2229                 return -EINVAL;
2230         if (!IS_ALIGNED(reg, map->reg_stride))
2231                 return -EINVAL;
2232
2233         map->lock(map->lock_arg);
2234
2235         map->async = true;
2236
2237         ret = _regmap_raw_write(map, reg, val, val_len);
2238
2239         map->async = false;
2240
2241         map->unlock(map->lock_arg);
2242
2243         return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2246
2247 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2248                             unsigned int val_len)
2249 {
2250         struct regmap_range_node *range;
2251         u8 *u8 = map->work_buf;
2252         int ret;
2253
2254         WARN_ON(!map->bus);
2255
2256         range = _regmap_range_lookup(map, reg);
2257         if (range) {
2258                 ret = _regmap_select_page(map, &reg, range,
2259                                           val_len / map->format.val_bytes);
2260                 if (ret != 0)
2261                         return ret;
2262         }
2263
2264         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2265
2266         /*
2267          * Some buses or devices flag reads by setting the high bits in the
2268          * register address; since it's always the high bits for all
2269          * current formats we can do this here rather than in
2270          * formatting.  This may break if we get interesting formats.
2271          */
2272         u8[0] |= map->read_flag_mask;
2273
2274         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2275
2276         ret = map->bus->read(map->bus_context, map->work_buf,
2277                              map->format.reg_bytes + map->format.pad_bytes,
2278                              val, val_len);
2279
2280         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2281
2282         return ret;
2283 }
2284
2285 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2286                                 unsigned int *val)
2287 {
2288         struct regmap *map = context;
2289
2290         return map->bus->reg_read(map->bus_context, reg, val);
2291 }
2292
2293 static int _regmap_bus_read(void *context, unsigned int reg,
2294                             unsigned int *val)
2295 {
2296         int ret;
2297         struct regmap *map = context;
2298
2299         if (!map->format.parse_val)
2300                 return -EINVAL;
2301
2302         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2303         if (ret == 0)
2304                 *val = map->format.parse_val(map->work_buf);
2305
2306         return ret;
2307 }
2308
2309 static int _regmap_read(struct regmap *map, unsigned int reg,
2310                         unsigned int *val)
2311 {
2312         int ret;
2313         void *context = _regmap_map_get_context(map);
2314
2315         if (!map->cache_bypass) {
2316                 ret = regcache_read(map, reg, val);
2317                 if (ret == 0)
2318                         return 0;
2319         }
2320
2321         if (map->cache_only)
2322                 return -EBUSY;
2323
2324         if (!regmap_readable(map, reg))
2325                 return -EIO;
2326
2327         ret = map->reg_read(context, reg, val);
2328         if (ret == 0) {
2329 #ifdef LOG_DEVICE
2330                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2331                         dev_info(map->dev, "%x => %x\n", reg, *val);
2332 #endif
2333
2334                 trace_regmap_reg_read(map, reg, *val);
2335
2336                 if (!map->cache_bypass)
2337                         regcache_write(map, reg, *val);
2338         }
2339
2340         return ret;
2341 }
2342
2343 /**
2344  * regmap_read(): Read a value from a single register
2345  *
2346  * @map: Register map to read from
2347  * @reg: Register to be read from
2348  * @val: Pointer to store read value
2349  *
2350  * A value of zero will be returned on success, a negative errno will
2351  * be returned in error cases.
2352  */
2353 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2354 {
2355         int ret;
2356
2357         if (!IS_ALIGNED(reg, map->reg_stride))
2358                 return -EINVAL;
2359
2360         map->lock(map->lock_arg);
2361
2362         ret = _regmap_read(map, reg, val);
2363
2364         map->unlock(map->lock_arg);
2365
2366         return ret;
2367 }
2368 EXPORT_SYMBOL_GPL(regmap_read);
2369
2370 /**
2371  * regmap_raw_read(): Read raw data from the device
2372  *
2373  * @map: Register map to read from
2374  * @reg: First register to be read from
2375  * @val: Pointer to store read value
2376  * @val_len: Size of data to read
2377  *
2378  * A value of zero will be returned on success, a negative errno will
2379  * be returned in error cases.
2380  */
2381 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2382                     size_t val_len)
2383 {
2384         size_t val_bytes = map->format.val_bytes;
2385         size_t val_count = val_len / val_bytes;
2386         unsigned int v;
2387         int ret, i;
2388
2389         if (!map->bus)
2390                 return -EINVAL;
2391         if (val_len % map->format.val_bytes)
2392                 return -EINVAL;
2393         if (!IS_ALIGNED(reg, map->reg_stride))
2394                 return -EINVAL;
2395         if (val_count == 0)
2396                 return -EINVAL;
2397
2398         map->lock(map->lock_arg);
2399
2400         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2401             map->cache_type == REGCACHE_NONE) {
2402                 if (!map->bus->read) {
2403                         ret = -ENOTSUPP;
2404                         goto out;
2405                 }
2406                 if (map->max_raw_read && map->max_raw_read < val_len) {
2407                         ret = -E2BIG;
2408                         goto out;
2409                 }
2410
2411                 /* Physical block read if there's no cache involved */
2412                 ret = _regmap_raw_read(map, reg, val, val_len);
2413
2414         } else {
2415                 /* Otherwise go word by word for the cache; should be low
2416                  * cost as we expect to hit the cache.
2417                  */
2418                 for (i = 0; i < val_count; i++) {
2419                         ret = _regmap_read(map, reg + (i * map->reg_stride),
2420                                            &v);
2421                         if (ret != 0)
2422                                 goto out;
2423
2424                         map->format.format_val(val + (i * val_bytes), v, 0);
2425                 }
2426         }
2427
2428  out:
2429         map->unlock(map->lock_arg);
2430
2431         return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(regmap_raw_read);
2434
2435 /**
2436  * regmap_field_read(): Read a value to a single register field
2437  *
2438  * @field: Register field to read from
2439  * @val: Pointer to store read value
2440  *
2441  * A value of zero will be returned on success, a negative errno will
2442  * be returned in error cases.
2443  */
2444 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2445 {
2446         int ret;
2447         unsigned int reg_val;
2448         ret = regmap_read(field->regmap, field->reg, &reg_val);
2449         if (ret != 0)
2450                 return ret;
2451
2452         reg_val &= field->mask;
2453         reg_val >>= field->shift;
2454         *val = reg_val;
2455
2456         return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(regmap_field_read);
2459
2460 /**
2461  * regmap_fields_read(): Read a value to a single register field with port ID
2462  *
2463  * @field: Register field to read from
2464  * @id: port ID
2465  * @val: Pointer to store read value
2466  *
2467  * A value of zero will be returned on success, a negative errno will
2468  * be returned in error cases.
2469  */
2470 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2471                        unsigned int *val)
2472 {
2473         int ret;
2474         unsigned int reg_val;
2475
2476         if (id >= field->id_size)
2477                 return -EINVAL;
2478
2479         ret = regmap_read(field->regmap,
2480                           field->reg + (field->id_offset * id),
2481                           &reg_val);
2482         if (ret != 0)
2483                 return ret;
2484
2485         reg_val &= field->mask;
2486         reg_val >>= field->shift;
2487         *val = reg_val;
2488
2489         return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regmap_fields_read);
2492
2493 /**
2494  * regmap_bulk_read(): Read multiple registers from the device
2495  *
2496  * @map: Register map to read from
2497  * @reg: First register to be read from
2498  * @val: Pointer to store read value, in native register size for device
2499  * @val_count: Number of registers to read
2500  *
2501  * A value of zero will be returned on success, a negative errno will
2502  * be returned in error cases.
2503  */
2504 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2505                      size_t val_count)
2506 {
2507         int ret, i;
2508         size_t val_bytes = map->format.val_bytes;
2509         bool vol = regmap_volatile_range(map, reg, val_count);
2510
2511         if (!IS_ALIGNED(reg, map->reg_stride))
2512                 return -EINVAL;
2513
2514         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2515                 /*
2516                  * Some devices does not support bulk read, for
2517                  * them we have a series of single read operations.
2518                  */
2519                 size_t total_size = val_bytes * val_count;
2520
2521                 if (!map->use_single_read &&
2522                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2523                         ret = regmap_raw_read(map, reg, val,
2524                                               val_bytes * val_count);
2525                         if (ret != 0)
2526                                 return ret;
2527                 } else {
2528                         /*
2529                          * Some devices do not support bulk read or do not
2530                          * support large bulk reads, for them we have a series
2531                          * of read operations.
2532                          */
2533                         int chunk_stride = map->reg_stride;
2534                         size_t chunk_size = val_bytes;
2535                         size_t chunk_count = val_count;
2536
2537                         if (!map->use_single_read) {
2538                                 chunk_size = map->max_raw_read;
2539                                 if (chunk_size % val_bytes)
2540                                         chunk_size -= chunk_size % val_bytes;
2541                                 chunk_count = total_size / chunk_size;
2542                                 chunk_stride *= chunk_size / val_bytes;
2543                         }
2544
2545                         /* Read bytes that fit into a multiple of chunk_size */
2546                         for (i = 0; i < chunk_count; i++) {
2547                                 ret = regmap_raw_read(map,
2548                                                       reg + (i * chunk_stride),
2549                                                       val + (i * chunk_size),
2550                                                       chunk_size);
2551                                 if (ret != 0)
2552                                         return ret;
2553                         }
2554
2555                         /* Read remaining bytes */
2556                         if (chunk_size * i < total_size) {
2557                                 ret = regmap_raw_read(map,
2558                                                       reg + (i * chunk_stride),
2559                                                       val + (i * chunk_size),
2560                                                       total_size - i * chunk_size);
2561                                 if (ret != 0)
2562                                         return ret;
2563                         }
2564                 }
2565
2566                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2567                         map->format.parse_inplace(val + i);
2568         } else {
2569                 for (i = 0; i < val_count; i++) {
2570                         unsigned int ival;
2571                         ret = regmap_read(map, reg + (i * map->reg_stride),
2572                                           &ival);
2573                         if (ret != 0)
2574                                 return ret;
2575
2576                         if (map->format.format_val) {
2577                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2578                         } else {
2579                                 /* Devices providing read and write
2580                                  * operations can use the bulk I/O
2581                                  * functions if they define a val_bytes,
2582                                  * we assume that the values are native
2583                                  * endian.
2584                                  */
2585 #ifdef CONFIG_64BIT
2586                                 u64 *u64 = val;
2587 #endif
2588                                 u32 *u32 = val;
2589                                 u16 *u16 = val;
2590                                 u8 *u8 = val;
2591
2592                                 switch (map->format.val_bytes) {
2593 #ifdef CONFIG_64BIT
2594                                 case 8:
2595                                         u64[i] = ival;
2596                                         break;
2597 #endif
2598                                 case 4:
2599                                         u32[i] = ival;
2600                                         break;
2601                                 case 2:
2602                                         u16[i] = ival;
2603                                         break;
2604                                 case 1:
2605                                         u8[i] = ival;
2606                                         break;
2607                                 default:
2608                                         return -EINVAL;
2609                                 }
2610                         }
2611                 }
2612         }
2613
2614         return 0;
2615 }
2616 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2617
2618 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2619                                unsigned int mask, unsigned int val,
2620                                bool *change, bool force_write)
2621 {
2622         int ret;
2623         unsigned int tmp, orig;
2624
2625         if (change)
2626                 *change = false;
2627
2628         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2629                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2630                 if (ret == 0 && change)
2631                         *change = true;
2632         } else {
2633                 ret = _regmap_read(map, reg, &orig);
2634                 if (ret != 0)
2635                         return ret;
2636
2637                 tmp = orig & ~mask;
2638                 tmp |= val & mask;
2639
2640                 if (force_write || (tmp != orig)) {
2641                         ret = _regmap_write(map, reg, tmp);
2642                         if (ret == 0 && change)
2643                                 *change = true;
2644                 }
2645         }
2646
2647         return ret;
2648 }
2649
2650 /**
2651  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2652  *
2653  * @map: Register map to update
2654  * @reg: Register to update
2655  * @mask: Bitmask to change
2656  * @val: New value for bitmask
2657  *
2658  * Returns zero for success, a negative number on error.
2659  */
2660 int regmap_update_bits(struct regmap *map, unsigned int reg,
2661                        unsigned int mask, unsigned int val)
2662 {
2663         int ret;
2664
2665         map->lock(map->lock_arg);
2666         ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2667         map->unlock(map->lock_arg);
2668
2669         return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(regmap_update_bits);
2672
2673 /**
2674  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2675  *
2676  * @map: Register map to update
2677  * @reg: Register to update
2678  * @mask: Bitmask to change
2679  * @val: New value for bitmask
2680  *
2681  * Returns zero for success, a negative number on error.
2682  */
2683 int regmap_write_bits(struct regmap *map, unsigned int reg,
2684                       unsigned int mask, unsigned int val)
2685 {
2686         int ret;
2687
2688         map->lock(map->lock_arg);
2689         ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2690         map->unlock(map->lock_arg);
2691
2692         return ret;
2693 }
2694 EXPORT_SYMBOL_GPL(regmap_write_bits);
2695
2696 /**
2697  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2698  *                           map asynchronously
2699  *
2700  * @map: Register map to update
2701  * @reg: Register to update
2702  * @mask: Bitmask to change
2703  * @val: New value for bitmask
2704  *
2705  * With most buses the read must be done synchronously so this is most
2706  * useful for devices with a cache which do not need to interact with
2707  * the hardware to determine the current register value.
2708  *
2709  * Returns zero for success, a negative number on error.
2710  */
2711 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2712                              unsigned int mask, unsigned int val)
2713 {
2714         int ret;
2715
2716         map->lock(map->lock_arg);
2717
2718         map->async = true;
2719
2720         ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2721
2722         map->async = false;
2723
2724         map->unlock(map->lock_arg);
2725
2726         return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2729
2730 /**
2731  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2732  *                           register map and report if updated
2733  *
2734  * @map: Register map to update
2735  * @reg: Register to update
2736  * @mask: Bitmask to change
2737  * @val: New value for bitmask
2738  * @change: Boolean indicating if a write was done
2739  *
2740  * Returns zero for success, a negative number on error.
2741  */
2742 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2743                              unsigned int mask, unsigned int val,
2744                              bool *change)
2745 {
2746         int ret;
2747
2748         map->lock(map->lock_arg);
2749         ret = _regmap_update_bits(map, reg, mask, val, change, false);
2750         map->unlock(map->lock_arg);
2751         return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2754
2755 /**
2756  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2757  *                                 register map asynchronously and report if
2758  *                                 updated
2759  *
2760  * @map: Register map to update
2761  * @reg: Register to update
2762  * @mask: Bitmask to change
2763  * @val: New value for bitmask
2764  * @change: Boolean indicating if a write was done
2765  *
2766  * With most buses the read must be done synchronously so this is most
2767  * useful for devices with a cache which do not need to interact with
2768  * the hardware to determine the current register value.
2769  *
2770  * Returns zero for success, a negative number on error.
2771  */
2772 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2773                                    unsigned int mask, unsigned int val,
2774                                    bool *change)
2775 {
2776         int ret;
2777
2778         map->lock(map->lock_arg);
2779
2780         map->async = true;
2781
2782         ret = _regmap_update_bits(map, reg, mask, val, change, false);
2783
2784         map->async = false;
2785
2786         map->unlock(map->lock_arg);
2787
2788         return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2791
2792 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2793 {
2794         struct regmap *map = async->map;
2795         bool wake;
2796
2797         trace_regmap_async_io_complete(map);
2798
2799         spin_lock(&map->async_lock);
2800         list_move(&async->list, &map->async_free);
2801         wake = list_empty(&map->async_list);
2802
2803         if (ret != 0)
2804                 map->async_ret = ret;
2805
2806         spin_unlock(&map->async_lock);
2807
2808         if (wake)
2809                 wake_up(&map->async_waitq);
2810 }
2811 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2812
2813 static int regmap_async_is_done(struct regmap *map)
2814 {
2815         unsigned long flags;
2816         int ret;
2817
2818         spin_lock_irqsave(&map->async_lock, flags);
2819         ret = list_empty(&map->async_list);
2820         spin_unlock_irqrestore(&map->async_lock, flags);
2821
2822         return ret;
2823 }
2824
2825 /**
2826  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2827  *
2828  * @map: Map to operate on.
2829  *
2830  * Blocks until any pending asynchronous I/O has completed.  Returns
2831  * an error code for any failed I/O operations.
2832  */
2833 int regmap_async_complete(struct regmap *map)
2834 {
2835         unsigned long flags;
2836         int ret;
2837
2838         /* Nothing to do with no async support */
2839         if (!map->bus || !map->bus->async_write)
2840                 return 0;
2841
2842         trace_regmap_async_complete_start(map);
2843
2844         wait_event(map->async_waitq, regmap_async_is_done(map));
2845
2846         spin_lock_irqsave(&map->async_lock, flags);
2847         ret = map->async_ret;
2848         map->async_ret = 0;
2849         spin_unlock_irqrestore(&map->async_lock, flags);
2850
2851         trace_regmap_async_complete_done(map);
2852
2853         return ret;
2854 }
2855 EXPORT_SYMBOL_GPL(regmap_async_complete);
2856
2857 /**
2858  * regmap_register_patch: Register and apply register updates to be applied
2859  *                        on device initialistion
2860  *
2861  * @map: Register map to apply updates to.
2862  * @regs: Values to update.
2863  * @num_regs: Number of entries in regs.
2864  *
2865  * Register a set of register updates to be applied to the device
2866  * whenever the device registers are synchronised with the cache and
2867  * apply them immediately.  Typically this is used to apply
2868  * corrections to be applied to the device defaults on startup, such
2869  * as the updates some vendors provide to undocumented registers.
2870  *
2871  * The caller must ensure that this function cannot be called
2872  * concurrently with either itself or regcache_sync().
2873  */
2874 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2875                           int num_regs)
2876 {
2877         struct reg_sequence *p;
2878         int ret;
2879         bool bypass;
2880
2881         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2882             num_regs))
2883                 return 0;
2884
2885         p = krealloc(map->patch,
2886                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2887                      GFP_KERNEL);
2888         if (p) {
2889                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2890                 map->patch = p;
2891                 map->patch_regs += num_regs;
2892         } else {
2893                 return -ENOMEM;
2894         }
2895
2896         map->lock(map->lock_arg);
2897
2898         bypass = map->cache_bypass;
2899
2900         map->cache_bypass = true;
2901         map->async = true;
2902
2903         ret = _regmap_multi_reg_write(map, regs, num_regs);
2904
2905         map->async = false;
2906         map->cache_bypass = bypass;
2907
2908         map->unlock(map->lock_arg);
2909
2910         regmap_async_complete(map);
2911
2912         return ret;
2913 }
2914 EXPORT_SYMBOL_GPL(regmap_register_patch);
2915
2916 /*
2917  * regmap_get_val_bytes(): Report the size of a register value
2918  *
2919  * Report the size of a register value, mainly intended to for use by
2920  * generic infrastructure built on top of regmap.
2921  */
2922 int regmap_get_val_bytes(struct regmap *map)
2923 {
2924         if (map->format.format_write)
2925                 return -EINVAL;
2926
2927         return map->format.val_bytes;
2928 }
2929 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2930
2931 /**
2932  * regmap_get_max_register(): Report the max register value
2933  *
2934  * Report the max register value, mainly intended to for use by
2935  * generic infrastructure built on top of regmap.
2936  */
2937 int regmap_get_max_register(struct regmap *map)
2938 {
2939         return map->max_register ? map->max_register : -EINVAL;
2940 }
2941 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2942
2943 /**
2944  * regmap_get_reg_stride(): Report the register address stride
2945  *
2946  * Report the register address stride, mainly intended to for use by
2947  * generic infrastructure built on top of regmap.
2948  */
2949 int regmap_get_reg_stride(struct regmap *map)
2950 {
2951         return map->reg_stride;
2952 }
2953 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2954
2955 int regmap_parse_val(struct regmap *map, const void *buf,
2956                         unsigned int *val)
2957 {
2958         if (!map->format.parse_val)
2959                 return -EINVAL;
2960
2961         *val = map->format.parse_val(buf);
2962
2963         return 0;
2964 }
2965 EXPORT_SYMBOL_GPL(regmap_parse_val);
2966
2967 static int __init regmap_initcall(void)
2968 {
2969         regmap_debugfs_initcall();
2970
2971         return 0;
2972 }
2973 postcore_initcall(regmap_initcall);