cc4c9f4c0d97adc8f20effac90fdd4a85298e0a9
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG       /* Activate rbd_assert() calls */
52
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define SECTOR_SHIFT    9
60 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
61
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70         unsigned int counter;
71
72         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73         if (counter <= (unsigned int)INT_MAX)
74                 return (int)counter;
75
76         atomic_dec(v);
77
78         return -EINVAL;
79 }
80
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84         int counter;
85
86         counter = atomic_dec_return(v);
87         if (counter >= 0)
88                 return counter;
89
90         atomic_inc(v);
91
92         return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR            256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN        16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN   \
104                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME      "-"
109
110 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX    64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX  64
117
118 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
119 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING    (1<<0)
124 #define RBD_FEATURE_STRIPINGV2  (1<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
126 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
127                                  RBD_FEATURE_STRIPINGV2 |       \
128                                  RBD_FEATURE_EXCLUSIVE_LOCK)
129
130 /* Features supported by this (client software) implementation. */
131
132 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
133
134 /*
135  * An RBD device name will be "rbd#", where the "rbd" comes from
136  * RBD_DRV_NAME above, and # is a unique integer identifier.
137  */
138 #define DEV_NAME_LEN            32
139
140 /*
141  * block device image metadata (in-memory version)
142  */
143 struct rbd_image_header {
144         /* These six fields never change for a given rbd image */
145         char *object_prefix;
146         __u8 obj_order;
147         __u8 crypt_type;
148         __u8 comp_type;
149         u64 stripe_unit;
150         u64 stripe_count;
151         u64 features;           /* Might be changeable someday? */
152
153         /* The remaining fields need to be updated occasionally */
154         u64 image_size;
155         struct ceph_snap_context *snapc;
156         char *snap_names;       /* format 1 only */
157         u64 *snap_sizes;        /* format 1 only */
158 };
159
160 /*
161  * An rbd image specification.
162  *
163  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
164  * identify an image.  Each rbd_dev structure includes a pointer to
165  * an rbd_spec structure that encapsulates this identity.
166  *
167  * Each of the id's in an rbd_spec has an associated name.  For a
168  * user-mapped image, the names are supplied and the id's associated
169  * with them are looked up.  For a layered image, a parent image is
170  * defined by the tuple, and the names are looked up.
171  *
172  * An rbd_dev structure contains a parent_spec pointer which is
173  * non-null if the image it represents is a child in a layered
174  * image.  This pointer will refer to the rbd_spec structure used
175  * by the parent rbd_dev for its own identity (i.e., the structure
176  * is shared between the parent and child).
177  *
178  * Since these structures are populated once, during the discovery
179  * phase of image construction, they are effectively immutable so
180  * we make no effort to synchronize access to them.
181  *
182  * Note that code herein does not assume the image name is known (it
183  * could be a null pointer).
184  */
185 struct rbd_spec {
186         u64             pool_id;
187         const char      *pool_name;
188
189         const char      *image_id;
190         const char      *image_name;
191
192         u64             snap_id;
193         const char      *snap_name;
194
195         struct kref     kref;
196 };
197
198 /*
199  * an instance of the client.  multiple devices may share an rbd client.
200  */
201 struct rbd_client {
202         struct ceph_client      *client;
203         struct kref             kref;
204         struct list_head        node;
205 };
206
207 struct rbd_img_request;
208 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
209
210 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
211
212 struct rbd_obj_request;
213 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
214
215 enum obj_request_type {
216         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
217 };
218
219 enum obj_operation_type {
220         OBJ_OP_WRITE,
221         OBJ_OP_READ,
222         OBJ_OP_DISCARD,
223 };
224
225 enum obj_req_flags {
226         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
227         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
228         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
229         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
230 };
231
232 struct rbd_obj_request {
233         const char              *object_name;
234         u64                     offset;         /* object start byte */
235         u64                     length;         /* bytes from offset */
236         unsigned long           flags;
237
238         /*
239          * An object request associated with an image will have its
240          * img_data flag set; a standalone object request will not.
241          *
242          * A standalone object request will have which == BAD_WHICH
243          * and a null obj_request pointer.
244          *
245          * An object request initiated in support of a layered image
246          * object (to check for its existence before a write) will
247          * have which == BAD_WHICH and a non-null obj_request pointer.
248          *
249          * Finally, an object request for rbd image data will have
250          * which != BAD_WHICH, and will have a non-null img_request
251          * pointer.  The value of which will be in the range
252          * 0..(img_request->obj_request_count-1).
253          */
254         union {
255                 struct rbd_obj_request  *obj_request;   /* STAT op */
256                 struct {
257                         struct rbd_img_request  *img_request;
258                         u64                     img_offset;
259                         /* links for img_request->obj_requests list */
260                         struct list_head        links;
261                 };
262         };
263         u32                     which;          /* posn image request list */
264
265         enum obj_request_type   type;
266         union {
267                 struct bio      *bio_list;
268                 struct {
269                         struct page     **pages;
270                         u32             page_count;
271                 };
272         };
273         struct page             **copyup_pages;
274         u32                     copyup_page_count;
275
276         struct ceph_osd_request *osd_req;
277
278         u64                     xferred;        /* bytes transferred */
279         int                     result;
280
281         rbd_obj_callback_t      callback;
282         struct completion       completion;
283
284         struct kref             kref;
285 };
286
287 enum img_req_flags {
288         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
289         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
290         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
291         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
292 };
293
294 struct rbd_img_request {
295         struct rbd_device       *rbd_dev;
296         u64                     offset; /* starting image byte offset */
297         u64                     length; /* byte count from offset */
298         unsigned long           flags;
299         union {
300                 u64                     snap_id;        /* for reads */
301                 struct ceph_snap_context *snapc;        /* for writes */
302         };
303         union {
304                 struct request          *rq;            /* block request */
305                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
306         };
307         struct page             **copyup_pages;
308         u32                     copyup_page_count;
309         spinlock_t              completion_lock;/* protects next_completion */
310         u32                     next_completion;
311         rbd_img_callback_t      callback;
312         u64                     xferred;/* aggregate bytes transferred */
313         int                     result; /* first nonzero obj_request result */
314
315         u32                     obj_request_count;
316         struct list_head        obj_requests;   /* rbd_obj_request structs */
317
318         struct kref             kref;
319 };
320
321 #define for_each_obj_request(ireq, oreq) \
322         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
323 #define for_each_obj_request_from(ireq, oreq) \
324         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_safe(ireq, oreq, n) \
326         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
327
328 enum rbd_watch_state {
329         RBD_WATCH_STATE_UNREGISTERED,
330         RBD_WATCH_STATE_REGISTERED,
331         RBD_WATCH_STATE_ERROR,
332 };
333
334 enum rbd_lock_state {
335         RBD_LOCK_STATE_UNLOCKED,
336         RBD_LOCK_STATE_LOCKED,
337         RBD_LOCK_STATE_RELEASING,
338 };
339
340 /* WatchNotify::ClientId */
341 struct rbd_client_id {
342         u64 gid;
343         u64 handle;
344 };
345
346 struct rbd_mapping {
347         u64                     size;
348         u64                     features;
349         bool                    read_only;
350 };
351
352 /*
353  * a single device
354  */
355 struct rbd_device {
356         int                     dev_id;         /* blkdev unique id */
357
358         int                     major;          /* blkdev assigned major */
359         int                     minor;
360         struct gendisk          *disk;          /* blkdev's gendisk and rq */
361
362         u32                     image_format;   /* Either 1 or 2 */
363         struct rbd_client       *rbd_client;
364
365         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
366
367         spinlock_t              lock;           /* queue, flags, open_count */
368
369         struct rbd_image_header header;
370         unsigned long           flags;          /* possibly lock protected */
371         struct rbd_spec         *spec;
372         struct rbd_options      *opts;
373         char                    *config_info;   /* add{,_single_major} string */
374
375         struct ceph_object_id   header_oid;
376         struct ceph_object_locator header_oloc;
377
378         struct ceph_file_layout layout;         /* used for all rbd requests */
379
380         struct mutex            watch_mutex;
381         enum rbd_watch_state    watch_state;
382         struct ceph_osd_linger_request *watch_handle;
383         u64                     watch_cookie;
384         struct delayed_work     watch_dwork;
385
386         struct rw_semaphore     lock_rwsem;
387         enum rbd_lock_state     lock_state;
388         struct rbd_client_id    owner_cid;
389         struct work_struct      acquired_lock_work;
390         struct work_struct      released_lock_work;
391         struct delayed_work     lock_dwork;
392         struct work_struct      unlock_work;
393         wait_queue_head_t       lock_waitq;
394
395         struct workqueue_struct *task_wq;
396
397         struct rbd_spec         *parent_spec;
398         u64                     parent_overlap;
399         atomic_t                parent_ref;
400         struct rbd_device       *parent;
401
402         /* Block layer tags. */
403         struct blk_mq_tag_set   tag_set;
404
405         /* protects updating the header */
406         struct rw_semaphore     header_rwsem;
407
408         struct rbd_mapping      mapping;
409
410         struct list_head        node;
411
412         /* sysfs related */
413         struct device           dev;
414         unsigned long           open_count;     /* protected by lock */
415 };
416
417 /*
418  * Flag bits for rbd_dev->flags.  If atomicity is required,
419  * rbd_dev->lock is used to protect access.
420  *
421  * Currently, only the "removing" flag (which is coupled with the
422  * "open_count" field) requires atomic access.
423  */
424 enum rbd_dev_flags {
425         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
426         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
427 };
428
429 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
430
431 static LIST_HEAD(rbd_dev_list);    /* devices */
432 static DEFINE_SPINLOCK(rbd_dev_list_lock);
433
434 static LIST_HEAD(rbd_client_list);              /* clients */
435 static DEFINE_SPINLOCK(rbd_client_list_lock);
436
437 /* Slab caches for frequently-allocated structures */
438
439 static struct kmem_cache        *rbd_img_request_cache;
440 static struct kmem_cache        *rbd_obj_request_cache;
441 static struct kmem_cache        *rbd_segment_name_cache;
442
443 static int rbd_major;
444 static DEFINE_IDA(rbd_dev_id_ida);
445
446 static struct workqueue_struct *rbd_wq;
447
448 /*
449  * Default to false for now, as single-major requires >= 0.75 version of
450  * userspace rbd utility.
451  */
452 static bool single_major = false;
453 module_param(single_major, bool, S_IRUGO);
454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
455
456 static int rbd_img_request_submit(struct rbd_img_request *img_request);
457
458 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
459                        size_t count);
460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
461                           size_t count);
462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
463                                     size_t count);
464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
465                                        size_t count);
466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
467 static void rbd_spec_put(struct rbd_spec *spec);
468
469 static int rbd_dev_id_to_minor(int dev_id)
470 {
471         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
472 }
473
474 static int minor_to_rbd_dev_id(int minor)
475 {
476         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
477 }
478
479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
480 {
481         return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
482                rbd_dev->spec->snap_id == CEPH_NOSNAP &&
483                !rbd_dev->mapping.read_only;
484 }
485
486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
487 {
488         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
489                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
490 }
491
492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
493 {
494         bool is_lock_owner;
495
496         down_read(&rbd_dev->lock_rwsem);
497         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
498         up_read(&rbd_dev->lock_rwsem);
499         return is_lock_owner;
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506
507 static struct attribute *rbd_bus_attrs[] = {
508         &bus_attr_add.attr,
509         &bus_attr_remove.attr,
510         &bus_attr_add_single_major.attr,
511         &bus_attr_remove_single_major.attr,
512         NULL,
513 };
514
515 static umode_t rbd_bus_is_visible(struct kobject *kobj,
516                                   struct attribute *attr, int index)
517 {
518         if (!single_major &&
519             (attr == &bus_attr_add_single_major.attr ||
520              attr == &bus_attr_remove_single_major.attr))
521                 return 0;
522
523         return attr->mode;
524 }
525
526 static const struct attribute_group rbd_bus_group = {
527         .attrs = rbd_bus_attrs,
528         .is_visible = rbd_bus_is_visible,
529 };
530 __ATTRIBUTE_GROUPS(rbd_bus);
531
532 static struct bus_type rbd_bus_type = {
533         .name           = "rbd",
534         .bus_groups     = rbd_bus_groups,
535 };
536
537 static void rbd_root_dev_release(struct device *dev)
538 {
539 }
540
541 static struct device rbd_root_dev = {
542         .init_name =    "rbd",
543         .release =      rbd_root_dev_release,
544 };
545
546 static __printf(2, 3)
547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
548 {
549         struct va_format vaf;
550         va_list args;
551
552         va_start(args, fmt);
553         vaf.fmt = fmt;
554         vaf.va = &args;
555
556         if (!rbd_dev)
557                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
558         else if (rbd_dev->disk)
559                 printk(KERN_WARNING "%s: %s: %pV\n",
560                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
561         else if (rbd_dev->spec && rbd_dev->spec->image_name)
562                 printk(KERN_WARNING "%s: image %s: %pV\n",
563                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
564         else if (rbd_dev->spec && rbd_dev->spec->image_id)
565                 printk(KERN_WARNING "%s: id %s: %pV\n",
566                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
567         else    /* punt */
568                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
569                         RBD_DRV_NAME, rbd_dev, &vaf);
570         va_end(args);
571 }
572
573 #ifdef RBD_DEBUG
574 #define rbd_assert(expr)                                                \
575                 if (unlikely(!(expr))) {                                \
576                         printk(KERN_ERR "\nAssertion failure in %s() "  \
577                                                 "at line %d:\n\n"       \
578                                         "\trbd_assert(%s);\n\n",        \
579                                         __func__, __LINE__, #expr);     \
580                         BUG();                                          \
581                 }
582 #else /* !RBD_DEBUG */
583 #  define rbd_assert(expr)      ((void) 0)
584 #endif /* !RBD_DEBUG */
585
586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
590
591 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
593 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
596                                         u64 snap_id);
597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
598                                 u8 *order, u64 *snap_size);
599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
600                 u64 *snap_features);
601
602 static int rbd_open(struct block_device *bdev, fmode_t mode)
603 {
604         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
605         bool removing = false;
606
607         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
608                 return -EROFS;
609
610         spin_lock_irq(&rbd_dev->lock);
611         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
612                 removing = true;
613         else
614                 rbd_dev->open_count++;
615         spin_unlock_irq(&rbd_dev->lock);
616         if (removing)
617                 return -ENOENT;
618
619         (void) get_device(&rbd_dev->dev);
620
621         return 0;
622 }
623
624 static void rbd_release(struct gendisk *disk, fmode_t mode)
625 {
626         struct rbd_device *rbd_dev = disk->private_data;
627         unsigned long open_count_before;
628
629         spin_lock_irq(&rbd_dev->lock);
630         open_count_before = rbd_dev->open_count--;
631         spin_unlock_irq(&rbd_dev->lock);
632         rbd_assert(open_count_before > 0);
633
634         put_device(&rbd_dev->dev);
635 }
636
637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
638 {
639         int ret = 0;
640         int val;
641         bool ro;
642         bool ro_changed = false;
643
644         /* get_user() may sleep, so call it before taking rbd_dev->lock */
645         if (get_user(val, (int __user *)(arg)))
646                 return -EFAULT;
647
648         ro = val ? true : false;
649         /* Snapshot doesn't allow to write*/
650         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
651                 return -EROFS;
652
653         spin_lock_irq(&rbd_dev->lock);
654         /* prevent others open this device */
655         if (rbd_dev->open_count > 1) {
656                 ret = -EBUSY;
657                 goto out;
658         }
659
660         if (rbd_dev->mapping.read_only != ro) {
661                 rbd_dev->mapping.read_only = ro;
662                 ro_changed = true;
663         }
664
665 out:
666         spin_unlock_irq(&rbd_dev->lock);
667         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
668         if (ret == 0 && ro_changed)
669                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
670
671         return ret;
672 }
673
674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
675                         unsigned int cmd, unsigned long arg)
676 {
677         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
678         int ret = 0;
679
680         switch (cmd) {
681         case BLKROSET:
682                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
683                 break;
684         default:
685                 ret = -ENOTTY;
686         }
687
688         return ret;
689 }
690
691 #ifdef CONFIG_COMPAT
692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
693                                 unsigned int cmd, unsigned long arg)
694 {
695         return rbd_ioctl(bdev, mode, cmd, arg);
696 }
697 #endif /* CONFIG_COMPAT */
698
699 static const struct block_device_operations rbd_bd_ops = {
700         .owner                  = THIS_MODULE,
701         .open                   = rbd_open,
702         .release                = rbd_release,
703         .ioctl                  = rbd_ioctl,
704 #ifdef CONFIG_COMPAT
705         .compat_ioctl           = rbd_compat_ioctl,
706 #endif
707 };
708
709 /*
710  * Initialize an rbd client instance.  Success or not, this function
711  * consumes ceph_opts.  Caller holds client_mutex.
712  */
713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
714 {
715         struct rbd_client *rbdc;
716         int ret = -ENOMEM;
717
718         dout("%s:\n", __func__);
719         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
720         if (!rbdc)
721                 goto out_opt;
722
723         kref_init(&rbdc->kref);
724         INIT_LIST_HEAD(&rbdc->node);
725
726         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
727         if (IS_ERR(rbdc->client))
728                 goto out_rbdc;
729         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
730
731         ret = ceph_open_session(rbdc->client);
732         if (ret < 0)
733                 goto out_client;
734
735         spin_lock(&rbd_client_list_lock);
736         list_add_tail(&rbdc->node, &rbd_client_list);
737         spin_unlock(&rbd_client_list_lock);
738
739         dout("%s: rbdc %p\n", __func__, rbdc);
740
741         return rbdc;
742 out_client:
743         ceph_destroy_client(rbdc->client);
744 out_rbdc:
745         kfree(rbdc);
746 out_opt:
747         if (ceph_opts)
748                 ceph_destroy_options(ceph_opts);
749         dout("%s: error %d\n", __func__, ret);
750
751         return ERR_PTR(ret);
752 }
753
754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
755 {
756         kref_get(&rbdc->kref);
757
758         return rbdc;
759 }
760
761 /*
762  * Find a ceph client with specific addr and configuration.  If
763  * found, bump its reference count.
764  */
765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
766 {
767         struct rbd_client *client_node;
768         bool found = false;
769
770         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
771                 return NULL;
772
773         spin_lock(&rbd_client_list_lock);
774         list_for_each_entry(client_node, &rbd_client_list, node) {
775                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
776                         __rbd_get_client(client_node);
777
778                         found = true;
779                         break;
780                 }
781         }
782         spin_unlock(&rbd_client_list_lock);
783
784         return found ? client_node : NULL;
785 }
786
787 /*
788  * (Per device) rbd map options
789  */
790 enum {
791         Opt_queue_depth,
792         Opt_last_int,
793         /* int args above */
794         Opt_last_string,
795         /* string args above */
796         Opt_read_only,
797         Opt_read_write,
798         Opt_lock_on_read,
799         Opt_err
800 };
801
802 static match_table_t rbd_opts_tokens = {
803         {Opt_queue_depth, "queue_depth=%d"},
804         /* int args above */
805         /* string args above */
806         {Opt_read_only, "read_only"},
807         {Opt_read_only, "ro"},          /* Alternate spelling */
808         {Opt_read_write, "read_write"},
809         {Opt_read_write, "rw"},         /* Alternate spelling */
810         {Opt_lock_on_read, "lock_on_read"},
811         {Opt_err, NULL}
812 };
813
814 struct rbd_options {
815         int     queue_depth;
816         bool    read_only;
817         bool    lock_on_read;
818 };
819
820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
821 #define RBD_READ_ONLY_DEFAULT   false
822 #define RBD_LOCK_ON_READ_DEFAULT false
823
824 static int parse_rbd_opts_token(char *c, void *private)
825 {
826         struct rbd_options *rbd_opts = private;
827         substring_t argstr[MAX_OPT_ARGS];
828         int token, intval, ret;
829
830         token = match_token(c, rbd_opts_tokens, argstr);
831         if (token < Opt_last_int) {
832                 ret = match_int(&argstr[0], &intval);
833                 if (ret < 0) {
834                         pr_err("bad mount option arg (not int) at '%s'\n", c);
835                         return ret;
836                 }
837                 dout("got int token %d val %d\n", token, intval);
838         } else if (token > Opt_last_int && token < Opt_last_string) {
839                 dout("got string token %d val %s\n", token, argstr[0].from);
840         } else {
841                 dout("got token %d\n", token);
842         }
843
844         switch (token) {
845         case Opt_queue_depth:
846                 if (intval < 1) {
847                         pr_err("queue_depth out of range\n");
848                         return -EINVAL;
849                 }
850                 rbd_opts->queue_depth = intval;
851                 break;
852         case Opt_read_only:
853                 rbd_opts->read_only = true;
854                 break;
855         case Opt_read_write:
856                 rbd_opts->read_only = false;
857                 break;
858         case Opt_lock_on_read:
859                 rbd_opts->lock_on_read = true;
860                 break;
861         default:
862                 /* libceph prints "bad option" msg */
863                 return -EINVAL;
864         }
865
866         return 0;
867 }
868
869 static char* obj_op_name(enum obj_operation_type op_type)
870 {
871         switch (op_type) {
872         case OBJ_OP_READ:
873                 return "read";
874         case OBJ_OP_WRITE:
875                 return "write";
876         case OBJ_OP_DISCARD:
877                 return "discard";
878         default:
879                 return "???";
880         }
881 }
882
883 /*
884  * Get a ceph client with specific addr and configuration, if one does
885  * not exist create it.  Either way, ceph_opts is consumed by this
886  * function.
887  */
888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
889 {
890         struct rbd_client *rbdc;
891
892         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
893         rbdc = rbd_client_find(ceph_opts);
894         if (rbdc)       /* using an existing client */
895                 ceph_destroy_options(ceph_opts);
896         else
897                 rbdc = rbd_client_create(ceph_opts);
898         mutex_unlock(&client_mutex);
899
900         return rbdc;
901 }
902
903 /*
904  * Destroy ceph client
905  *
906  * Caller must hold rbd_client_list_lock.
907  */
908 static void rbd_client_release(struct kref *kref)
909 {
910         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
911
912         dout("%s: rbdc %p\n", __func__, rbdc);
913         spin_lock(&rbd_client_list_lock);
914         list_del(&rbdc->node);
915         spin_unlock(&rbd_client_list_lock);
916
917         ceph_destroy_client(rbdc->client);
918         kfree(rbdc);
919 }
920
921 /*
922  * Drop reference to ceph client node. If it's not referenced anymore, release
923  * it.
924  */
925 static void rbd_put_client(struct rbd_client *rbdc)
926 {
927         if (rbdc)
928                 kref_put(&rbdc->kref, rbd_client_release);
929 }
930
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933         return image_format == 1 || image_format == 2;
934 }
935
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938         size_t size;
939         u32 snap_count;
940
941         /* The header has to start with the magic rbd header text */
942         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943                 return false;
944
945         /* The bio layer requires at least sector-sized I/O */
946
947         if (ondisk->options.order < SECTOR_SHIFT)
948                 return false;
949
950         /* If we use u64 in a few spots we may be able to loosen this */
951
952         if (ondisk->options.order > 8 * sizeof (int) - 1)
953                 return false;
954
955         /*
956          * The size of a snapshot header has to fit in a size_t, and
957          * that limits the number of snapshots.
958          */
959         snap_count = le32_to_cpu(ondisk->snap_count);
960         size = SIZE_MAX - sizeof (struct ceph_snap_context);
961         if (snap_count > size / sizeof (__le64))
962                 return false;
963
964         /*
965          * Not only that, but the size of the entire the snapshot
966          * header must also be representable in a size_t.
967          */
968         size -= snap_count * sizeof (__le64);
969         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970                 return false;
971
972         return true;
973 }
974
975 /*
976  * Fill an rbd image header with information from the given format 1
977  * on-disk header.
978  */
979 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
980                                  struct rbd_image_header_ondisk *ondisk)
981 {
982         struct rbd_image_header *header = &rbd_dev->header;
983         bool first_time = header->object_prefix == NULL;
984         struct ceph_snap_context *snapc;
985         char *object_prefix = NULL;
986         char *snap_names = NULL;
987         u64 *snap_sizes = NULL;
988         u32 snap_count;
989         size_t size;
990         int ret = -ENOMEM;
991         u32 i;
992
993         /* Allocate this now to avoid having to handle failure below */
994
995         if (first_time) {
996                 size_t len;
997
998                 len = strnlen(ondisk->object_prefix,
999                                 sizeof (ondisk->object_prefix));
1000                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
1001                 if (!object_prefix)
1002                         return -ENOMEM;
1003                 memcpy(object_prefix, ondisk->object_prefix, len);
1004                 object_prefix[len] = '\0';
1005         }
1006
1007         /* Allocate the snapshot context and fill it in */
1008
1009         snap_count = le32_to_cpu(ondisk->snap_count);
1010         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1011         if (!snapc)
1012                 goto out_err;
1013         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1014         if (snap_count) {
1015                 struct rbd_image_snap_ondisk *snaps;
1016                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1017
1018                 /* We'll keep a copy of the snapshot names... */
1019
1020                 if (snap_names_len > (u64)SIZE_MAX)
1021                         goto out_2big;
1022                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1023                 if (!snap_names)
1024                         goto out_err;
1025
1026                 /* ...as well as the array of their sizes. */
1027
1028                 size = snap_count * sizeof (*header->snap_sizes);
1029                 snap_sizes = kmalloc(size, GFP_KERNEL);
1030                 if (!snap_sizes)
1031                         goto out_err;
1032
1033                 /*
1034                  * Copy the names, and fill in each snapshot's id
1035                  * and size.
1036                  *
1037                  * Note that rbd_dev_v1_header_info() guarantees the
1038                  * ondisk buffer we're working with has
1039                  * snap_names_len bytes beyond the end of the
1040                  * snapshot id array, this memcpy() is safe.
1041                  */
1042                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1043                 snaps = ondisk->snaps;
1044                 for (i = 0; i < snap_count; i++) {
1045                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1046                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1047                 }
1048         }
1049
1050         /* We won't fail any more, fill in the header */
1051
1052         if (first_time) {
1053                 header->object_prefix = object_prefix;
1054                 header->obj_order = ondisk->options.order;
1055                 header->crypt_type = ondisk->options.crypt_type;
1056                 header->comp_type = ondisk->options.comp_type;
1057                 /* The rest aren't used for format 1 images */
1058                 header->stripe_unit = 0;
1059                 header->stripe_count = 0;
1060                 header->features = 0;
1061         } else {
1062                 ceph_put_snap_context(header->snapc);
1063                 kfree(header->snap_names);
1064                 kfree(header->snap_sizes);
1065         }
1066
1067         /* The remaining fields always get updated (when we refresh) */
1068
1069         header->image_size = le64_to_cpu(ondisk->image_size);
1070         header->snapc = snapc;
1071         header->snap_names = snap_names;
1072         header->snap_sizes = snap_sizes;
1073
1074         return 0;
1075 out_2big:
1076         ret = -EIO;
1077 out_err:
1078         kfree(snap_sizes);
1079         kfree(snap_names);
1080         ceph_put_snap_context(snapc);
1081         kfree(object_prefix);
1082
1083         return ret;
1084 }
1085
1086 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1087 {
1088         const char *snap_name;
1089
1090         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1091
1092         /* Skip over names until we find the one we are looking for */
1093
1094         snap_name = rbd_dev->header.snap_names;
1095         while (which--)
1096                 snap_name += strlen(snap_name) + 1;
1097
1098         return kstrdup(snap_name, GFP_KERNEL);
1099 }
1100
1101 /*
1102  * Snapshot id comparison function for use with qsort()/bsearch().
1103  * Note that result is for snapshots in *descending* order.
1104  */
1105 static int snapid_compare_reverse(const void *s1, const void *s2)
1106 {
1107         u64 snap_id1 = *(u64 *)s1;
1108         u64 snap_id2 = *(u64 *)s2;
1109
1110         if (snap_id1 < snap_id2)
1111                 return 1;
1112         return snap_id1 == snap_id2 ? 0 : -1;
1113 }
1114
1115 /*
1116  * Search a snapshot context to see if the given snapshot id is
1117  * present.
1118  *
1119  * Returns the position of the snapshot id in the array if it's found,
1120  * or BAD_SNAP_INDEX otherwise.
1121  *
1122  * Note: The snapshot array is in kept sorted (by the osd) in
1123  * reverse order, highest snapshot id first.
1124  */
1125 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1126 {
1127         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1128         u64 *found;
1129
1130         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1131                                 sizeof (snap_id), snapid_compare_reverse);
1132
1133         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1134 }
1135
1136 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1137                                         u64 snap_id)
1138 {
1139         u32 which;
1140         const char *snap_name;
1141
1142         which = rbd_dev_snap_index(rbd_dev, snap_id);
1143         if (which == BAD_SNAP_INDEX)
1144                 return ERR_PTR(-ENOENT);
1145
1146         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1147         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1148 }
1149
1150 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1151 {
1152         if (snap_id == CEPH_NOSNAP)
1153                 return RBD_SNAP_HEAD_NAME;
1154
1155         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1156         if (rbd_dev->image_format == 1)
1157                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1158
1159         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1160 }
1161
1162 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1163                                 u64 *snap_size)
1164 {
1165         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1166         if (snap_id == CEPH_NOSNAP) {
1167                 *snap_size = rbd_dev->header.image_size;
1168         } else if (rbd_dev->image_format == 1) {
1169                 u32 which;
1170
1171                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1172                 if (which == BAD_SNAP_INDEX)
1173                         return -ENOENT;
1174
1175                 *snap_size = rbd_dev->header.snap_sizes[which];
1176         } else {
1177                 u64 size = 0;
1178                 int ret;
1179
1180                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1181                 if (ret)
1182                         return ret;
1183
1184                 *snap_size = size;
1185         }
1186         return 0;
1187 }
1188
1189 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1190                         u64 *snap_features)
1191 {
1192         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1193         if (snap_id == CEPH_NOSNAP) {
1194                 *snap_features = rbd_dev->header.features;
1195         } else if (rbd_dev->image_format == 1) {
1196                 *snap_features = 0;     /* No features for format 1 */
1197         } else {
1198                 u64 features = 0;
1199                 int ret;
1200
1201                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1202                 if (ret)
1203                         return ret;
1204
1205                 *snap_features = features;
1206         }
1207         return 0;
1208 }
1209
1210 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1211 {
1212         u64 snap_id = rbd_dev->spec->snap_id;
1213         u64 size = 0;
1214         u64 features = 0;
1215         int ret;
1216
1217         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1218         if (ret)
1219                 return ret;
1220         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1221         if (ret)
1222                 return ret;
1223
1224         rbd_dev->mapping.size = size;
1225         rbd_dev->mapping.features = features;
1226
1227         return 0;
1228 }
1229
1230 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1231 {
1232         rbd_dev->mapping.size = 0;
1233         rbd_dev->mapping.features = 0;
1234 }
1235
1236 static void rbd_segment_name_free(const char *name)
1237 {
1238         /* The explicit cast here is needed to drop the const qualifier */
1239
1240         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1241 }
1242
1243 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1244 {
1245         char *name;
1246         u64 segment;
1247         int ret;
1248         char *name_format;
1249
1250         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1251         if (!name)
1252                 return NULL;
1253         segment = offset >> rbd_dev->header.obj_order;
1254         name_format = "%s.%012llx";
1255         if (rbd_dev->image_format == 2)
1256                 name_format = "%s.%016llx";
1257         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1258                         rbd_dev->header.object_prefix, segment);
1259         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1260                 pr_err("error formatting segment name for #%llu (%d)\n",
1261                         segment, ret);
1262                 rbd_segment_name_free(name);
1263                 name = NULL;
1264         }
1265
1266         return name;
1267 }
1268
1269 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1270 {
1271         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1272
1273         return offset & (segment_size - 1);
1274 }
1275
1276 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1277                                 u64 offset, u64 length)
1278 {
1279         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1280
1281         offset &= segment_size - 1;
1282
1283         rbd_assert(length <= U64_MAX - offset);
1284         if (offset + length > segment_size)
1285                 length = segment_size - offset;
1286
1287         return length;
1288 }
1289
1290 /*
1291  * returns the size of an object in the image
1292  */
1293 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1294 {
1295         return 1 << header->obj_order;
1296 }
1297
1298 /*
1299  * bio helpers
1300  */
1301
1302 static void bio_chain_put(struct bio *chain)
1303 {
1304         struct bio *tmp;
1305
1306         while (chain) {
1307                 tmp = chain;
1308                 chain = chain->bi_next;
1309                 bio_put(tmp);
1310         }
1311 }
1312
1313 /*
1314  * zeros a bio chain, starting at specific offset
1315  */
1316 static void zero_bio_chain(struct bio *chain, int start_ofs)
1317 {
1318         struct bio_vec bv;
1319         struct bvec_iter iter;
1320         unsigned long flags;
1321         void *buf;
1322         int pos = 0;
1323
1324         while (chain) {
1325                 bio_for_each_segment(bv, chain, iter) {
1326                         if (pos + bv.bv_len > start_ofs) {
1327                                 int remainder = max(start_ofs - pos, 0);
1328                                 buf = bvec_kmap_irq(&bv, &flags);
1329                                 memset(buf + remainder, 0,
1330                                        bv.bv_len - remainder);
1331                                 flush_dcache_page(bv.bv_page);
1332                                 bvec_kunmap_irq(buf, &flags);
1333                         }
1334                         pos += bv.bv_len;
1335                 }
1336
1337                 chain = chain->bi_next;
1338         }
1339 }
1340
1341 /*
1342  * similar to zero_bio_chain(), zeros data defined by a page array,
1343  * starting at the given byte offset from the start of the array and
1344  * continuing up to the given end offset.  The pages array is
1345  * assumed to be big enough to hold all bytes up to the end.
1346  */
1347 static void zero_pages(struct page **pages, u64 offset, u64 end)
1348 {
1349         struct page **page = &pages[offset >> PAGE_SHIFT];
1350
1351         rbd_assert(end > offset);
1352         rbd_assert(end - offset <= (u64)SIZE_MAX);
1353         while (offset < end) {
1354                 size_t page_offset;
1355                 size_t length;
1356                 unsigned long flags;
1357                 void *kaddr;
1358
1359                 page_offset = offset & ~PAGE_MASK;
1360                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1361                 local_irq_save(flags);
1362                 kaddr = kmap_atomic(*page);
1363                 memset(kaddr + page_offset, 0, length);
1364                 flush_dcache_page(*page);
1365                 kunmap_atomic(kaddr);
1366                 local_irq_restore(flags);
1367
1368                 offset += length;
1369                 page++;
1370         }
1371 }
1372
1373 /*
1374  * Clone a portion of a bio, starting at the given byte offset
1375  * and continuing for the number of bytes indicated.
1376  */
1377 static struct bio *bio_clone_range(struct bio *bio_src,
1378                                         unsigned int offset,
1379                                         unsigned int len,
1380                                         gfp_t gfpmask)
1381 {
1382         struct bio *bio;
1383
1384         bio = bio_clone(bio_src, gfpmask);
1385         if (!bio)
1386                 return NULL;    /* ENOMEM */
1387
1388         bio_advance(bio, offset);
1389         bio->bi_iter.bi_size = len;
1390
1391         return bio;
1392 }
1393
1394 /*
1395  * Clone a portion of a bio chain, starting at the given byte offset
1396  * into the first bio in the source chain and continuing for the
1397  * number of bytes indicated.  The result is another bio chain of
1398  * exactly the given length, or a null pointer on error.
1399  *
1400  * The bio_src and offset parameters are both in-out.  On entry they
1401  * refer to the first source bio and the offset into that bio where
1402  * the start of data to be cloned is located.
1403  *
1404  * On return, bio_src is updated to refer to the bio in the source
1405  * chain that contains first un-cloned byte, and *offset will
1406  * contain the offset of that byte within that bio.
1407  */
1408 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1409                                         unsigned int *offset,
1410                                         unsigned int len,
1411                                         gfp_t gfpmask)
1412 {
1413         struct bio *bi = *bio_src;
1414         unsigned int off = *offset;
1415         struct bio *chain = NULL;
1416         struct bio **end;
1417
1418         /* Build up a chain of clone bios up to the limit */
1419
1420         if (!bi || off >= bi->bi_iter.bi_size || !len)
1421                 return NULL;            /* Nothing to clone */
1422
1423         end = &chain;
1424         while (len) {
1425                 unsigned int bi_size;
1426                 struct bio *bio;
1427
1428                 if (!bi) {
1429                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1430                         goto out_err;   /* EINVAL; ran out of bio's */
1431                 }
1432                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1433                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1434                 if (!bio)
1435                         goto out_err;   /* ENOMEM */
1436
1437                 *end = bio;
1438                 end = &bio->bi_next;
1439
1440                 off += bi_size;
1441                 if (off == bi->bi_iter.bi_size) {
1442                         bi = bi->bi_next;
1443                         off = 0;
1444                 }
1445                 len -= bi_size;
1446         }
1447         *bio_src = bi;
1448         *offset = off;
1449
1450         return chain;
1451 out_err:
1452         bio_chain_put(chain);
1453
1454         return NULL;
1455 }
1456
1457 /*
1458  * The default/initial value for all object request flags is 0.  For
1459  * each flag, once its value is set to 1 it is never reset to 0
1460  * again.
1461  */
1462 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1463 {
1464         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1465                 struct rbd_device *rbd_dev;
1466
1467                 rbd_dev = obj_request->img_request->rbd_dev;
1468                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1469                         obj_request);
1470         }
1471 }
1472
1473 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1474 {
1475         smp_mb();
1476         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1477 }
1478
1479 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1480 {
1481         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1482                 struct rbd_device *rbd_dev = NULL;
1483
1484                 if (obj_request_img_data_test(obj_request))
1485                         rbd_dev = obj_request->img_request->rbd_dev;
1486                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1487                         obj_request);
1488         }
1489 }
1490
1491 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1492 {
1493         smp_mb();
1494         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1495 }
1496
1497 /*
1498  * This sets the KNOWN flag after (possibly) setting the EXISTS
1499  * flag.  The latter is set based on the "exists" value provided.
1500  *
1501  * Note that for our purposes once an object exists it never goes
1502  * away again.  It's possible that the response from two existence
1503  * checks are separated by the creation of the target object, and
1504  * the first ("doesn't exist") response arrives *after* the second
1505  * ("does exist").  In that case we ignore the second one.
1506  */
1507 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1508                                 bool exists)
1509 {
1510         if (exists)
1511                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1512         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1513         smp_mb();
1514 }
1515
1516 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1517 {
1518         smp_mb();
1519         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1520 }
1521
1522 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1523 {
1524         smp_mb();
1525         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1526 }
1527
1528 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1529 {
1530         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1531
1532         return obj_request->img_offset <
1533             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1534 }
1535
1536 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1537 {
1538         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1539                 atomic_read(&obj_request->kref.refcount));
1540         kref_get(&obj_request->kref);
1541 }
1542
1543 static void rbd_obj_request_destroy(struct kref *kref);
1544 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1545 {
1546         rbd_assert(obj_request != NULL);
1547         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1548                 atomic_read(&obj_request->kref.refcount));
1549         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1550 }
1551
1552 static void rbd_img_request_get(struct rbd_img_request *img_request)
1553 {
1554         dout("%s: img %p (was %d)\n", __func__, img_request,
1555              atomic_read(&img_request->kref.refcount));
1556         kref_get(&img_request->kref);
1557 }
1558
1559 static bool img_request_child_test(struct rbd_img_request *img_request);
1560 static void rbd_parent_request_destroy(struct kref *kref);
1561 static void rbd_img_request_destroy(struct kref *kref);
1562 static void rbd_img_request_put(struct rbd_img_request *img_request)
1563 {
1564         rbd_assert(img_request != NULL);
1565         dout("%s: img %p (was %d)\n", __func__, img_request,
1566                 atomic_read(&img_request->kref.refcount));
1567         if (img_request_child_test(img_request))
1568                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1569         else
1570                 kref_put(&img_request->kref, rbd_img_request_destroy);
1571 }
1572
1573 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1574                                         struct rbd_obj_request *obj_request)
1575 {
1576         rbd_assert(obj_request->img_request == NULL);
1577
1578         /* Image request now owns object's original reference */
1579         obj_request->img_request = img_request;
1580         obj_request->which = img_request->obj_request_count;
1581         rbd_assert(!obj_request_img_data_test(obj_request));
1582         obj_request_img_data_set(obj_request);
1583         rbd_assert(obj_request->which != BAD_WHICH);
1584         img_request->obj_request_count++;
1585         list_add_tail(&obj_request->links, &img_request->obj_requests);
1586         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1587                 obj_request->which);
1588 }
1589
1590 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1591                                         struct rbd_obj_request *obj_request)
1592 {
1593         rbd_assert(obj_request->which != BAD_WHICH);
1594
1595         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1596                 obj_request->which);
1597         list_del(&obj_request->links);
1598         rbd_assert(img_request->obj_request_count > 0);
1599         img_request->obj_request_count--;
1600         rbd_assert(obj_request->which == img_request->obj_request_count);
1601         obj_request->which = BAD_WHICH;
1602         rbd_assert(obj_request_img_data_test(obj_request));
1603         rbd_assert(obj_request->img_request == img_request);
1604         obj_request->img_request = NULL;
1605         obj_request->callback = NULL;
1606         rbd_obj_request_put(obj_request);
1607 }
1608
1609 static bool obj_request_type_valid(enum obj_request_type type)
1610 {
1611         switch (type) {
1612         case OBJ_REQUEST_NODATA:
1613         case OBJ_REQUEST_BIO:
1614         case OBJ_REQUEST_PAGES:
1615                 return true;
1616         default:
1617                 return false;
1618         }
1619 }
1620
1621 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1622                                 struct rbd_obj_request *obj_request)
1623 {
1624         dout("%s %p\n", __func__, obj_request);
1625         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1626 }
1627
1628 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1629 {
1630         dout("%s %p\n", __func__, obj_request);
1631         ceph_osdc_cancel_request(obj_request->osd_req);
1632 }
1633
1634 /*
1635  * Wait for an object request to complete.  If interrupted, cancel the
1636  * underlying osd request.
1637  *
1638  * @timeout: in jiffies, 0 means "wait forever"
1639  */
1640 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1641                                   unsigned long timeout)
1642 {
1643         long ret;
1644
1645         dout("%s %p\n", __func__, obj_request);
1646         ret = wait_for_completion_interruptible_timeout(
1647                                         &obj_request->completion,
1648                                         ceph_timeout_jiffies(timeout));
1649         if (ret <= 0) {
1650                 if (ret == 0)
1651                         ret = -ETIMEDOUT;
1652                 rbd_obj_request_end(obj_request);
1653         } else {
1654                 ret = 0;
1655         }
1656
1657         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1658         return ret;
1659 }
1660
1661 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1662 {
1663         return __rbd_obj_request_wait(obj_request, 0);
1664 }
1665
1666 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1667 {
1668
1669         dout("%s: img %p\n", __func__, img_request);
1670
1671         /*
1672          * If no error occurred, compute the aggregate transfer
1673          * count for the image request.  We could instead use
1674          * atomic64_cmpxchg() to update it as each object request
1675          * completes; not clear which way is better off hand.
1676          */
1677         if (!img_request->result) {
1678                 struct rbd_obj_request *obj_request;
1679                 u64 xferred = 0;
1680
1681                 for_each_obj_request(img_request, obj_request)
1682                         xferred += obj_request->xferred;
1683                 img_request->xferred = xferred;
1684         }
1685
1686         if (img_request->callback)
1687                 img_request->callback(img_request);
1688         else
1689                 rbd_img_request_put(img_request);
1690 }
1691
1692 /*
1693  * The default/initial value for all image request flags is 0.  Each
1694  * is conditionally set to 1 at image request initialization time
1695  * and currently never change thereafter.
1696  */
1697 static void img_request_write_set(struct rbd_img_request *img_request)
1698 {
1699         set_bit(IMG_REQ_WRITE, &img_request->flags);
1700         smp_mb();
1701 }
1702
1703 static bool img_request_write_test(struct rbd_img_request *img_request)
1704 {
1705         smp_mb();
1706         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1707 }
1708
1709 /*
1710  * Set the discard flag when the img_request is an discard request
1711  */
1712 static void img_request_discard_set(struct rbd_img_request *img_request)
1713 {
1714         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1715         smp_mb();
1716 }
1717
1718 static bool img_request_discard_test(struct rbd_img_request *img_request)
1719 {
1720         smp_mb();
1721         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1722 }
1723
1724 static void img_request_child_set(struct rbd_img_request *img_request)
1725 {
1726         set_bit(IMG_REQ_CHILD, &img_request->flags);
1727         smp_mb();
1728 }
1729
1730 static void img_request_child_clear(struct rbd_img_request *img_request)
1731 {
1732         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1733         smp_mb();
1734 }
1735
1736 static bool img_request_child_test(struct rbd_img_request *img_request)
1737 {
1738         smp_mb();
1739         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1740 }
1741
1742 static void img_request_layered_set(struct rbd_img_request *img_request)
1743 {
1744         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1745         smp_mb();
1746 }
1747
1748 static void img_request_layered_clear(struct rbd_img_request *img_request)
1749 {
1750         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1751         smp_mb();
1752 }
1753
1754 static bool img_request_layered_test(struct rbd_img_request *img_request)
1755 {
1756         smp_mb();
1757         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1758 }
1759
1760 static enum obj_operation_type
1761 rbd_img_request_op_type(struct rbd_img_request *img_request)
1762 {
1763         if (img_request_write_test(img_request))
1764                 return OBJ_OP_WRITE;
1765         else if (img_request_discard_test(img_request))
1766                 return OBJ_OP_DISCARD;
1767         else
1768                 return OBJ_OP_READ;
1769 }
1770
1771 static void
1772 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1773 {
1774         u64 xferred = obj_request->xferred;
1775         u64 length = obj_request->length;
1776
1777         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1778                 obj_request, obj_request->img_request, obj_request->result,
1779                 xferred, length);
1780         /*
1781          * ENOENT means a hole in the image.  We zero-fill the entire
1782          * length of the request.  A short read also implies zero-fill
1783          * to the end of the request.  An error requires the whole
1784          * length of the request to be reported finished with an error
1785          * to the block layer.  In each case we update the xferred
1786          * count to indicate the whole request was satisfied.
1787          */
1788         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1789         if (obj_request->result == -ENOENT) {
1790                 if (obj_request->type == OBJ_REQUEST_BIO)
1791                         zero_bio_chain(obj_request->bio_list, 0);
1792                 else
1793                         zero_pages(obj_request->pages, 0, length);
1794                 obj_request->result = 0;
1795         } else if (xferred < length && !obj_request->result) {
1796                 if (obj_request->type == OBJ_REQUEST_BIO)
1797                         zero_bio_chain(obj_request->bio_list, xferred);
1798                 else
1799                         zero_pages(obj_request->pages, xferred, length);
1800         }
1801         obj_request->xferred = length;
1802         obj_request_done_set(obj_request);
1803 }
1804
1805 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1806 {
1807         dout("%s: obj %p cb %p\n", __func__, obj_request,
1808                 obj_request->callback);
1809         if (obj_request->callback)
1810                 obj_request->callback(obj_request);
1811         else
1812                 complete_all(&obj_request->completion);
1813 }
1814
1815 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1816 {
1817         struct rbd_img_request *img_request = NULL;
1818         struct rbd_device *rbd_dev = NULL;
1819         bool layered = false;
1820
1821         if (obj_request_img_data_test(obj_request)) {
1822                 img_request = obj_request->img_request;
1823                 layered = img_request && img_request_layered_test(img_request);
1824                 rbd_dev = img_request->rbd_dev;
1825         }
1826
1827         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1828                 obj_request, img_request, obj_request->result,
1829                 obj_request->xferred, obj_request->length);
1830         if (layered && obj_request->result == -ENOENT &&
1831                         obj_request->img_offset < rbd_dev->parent_overlap)
1832                 rbd_img_parent_read(obj_request);
1833         else if (img_request)
1834                 rbd_img_obj_request_read_callback(obj_request);
1835         else
1836                 obj_request_done_set(obj_request);
1837 }
1838
1839 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1840 {
1841         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1842                 obj_request->result, obj_request->length);
1843         /*
1844          * There is no such thing as a successful short write.  Set
1845          * it to our originally-requested length.
1846          */
1847         obj_request->xferred = obj_request->length;
1848         obj_request_done_set(obj_request);
1849 }
1850
1851 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1852 {
1853         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1854                 obj_request->result, obj_request->length);
1855         /*
1856          * There is no such thing as a successful short discard.  Set
1857          * it to our originally-requested length.
1858          */
1859         obj_request->xferred = obj_request->length;
1860         /* discarding a non-existent object is not a problem */
1861         if (obj_request->result == -ENOENT)
1862                 obj_request->result = 0;
1863         obj_request_done_set(obj_request);
1864 }
1865
1866 /*
1867  * For a simple stat call there's nothing to do.  We'll do more if
1868  * this is part of a write sequence for a layered image.
1869  */
1870 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1871 {
1872         dout("%s: obj %p\n", __func__, obj_request);
1873         obj_request_done_set(obj_request);
1874 }
1875
1876 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1877 {
1878         dout("%s: obj %p\n", __func__, obj_request);
1879
1880         if (obj_request_img_data_test(obj_request))
1881                 rbd_osd_copyup_callback(obj_request);
1882         else
1883                 obj_request_done_set(obj_request);
1884 }
1885
1886 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1887 {
1888         struct rbd_obj_request *obj_request = osd_req->r_priv;
1889         u16 opcode;
1890
1891         dout("%s: osd_req %p\n", __func__, osd_req);
1892         rbd_assert(osd_req == obj_request->osd_req);
1893         if (obj_request_img_data_test(obj_request)) {
1894                 rbd_assert(obj_request->img_request);
1895                 rbd_assert(obj_request->which != BAD_WHICH);
1896         } else {
1897                 rbd_assert(obj_request->which == BAD_WHICH);
1898         }
1899
1900         if (osd_req->r_result < 0)
1901                 obj_request->result = osd_req->r_result;
1902
1903         /*
1904          * We support a 64-bit length, but ultimately it has to be
1905          * passed to the block layer, which just supports a 32-bit
1906          * length field.
1907          */
1908         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1909         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1910
1911         opcode = osd_req->r_ops[0].op;
1912         switch (opcode) {
1913         case CEPH_OSD_OP_READ:
1914                 rbd_osd_read_callback(obj_request);
1915                 break;
1916         case CEPH_OSD_OP_SETALLOCHINT:
1917                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1918                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1919                 /* fall through */
1920         case CEPH_OSD_OP_WRITE:
1921         case CEPH_OSD_OP_WRITEFULL:
1922                 rbd_osd_write_callback(obj_request);
1923                 break;
1924         case CEPH_OSD_OP_STAT:
1925                 rbd_osd_stat_callback(obj_request);
1926                 break;
1927         case CEPH_OSD_OP_DELETE:
1928         case CEPH_OSD_OP_TRUNCATE:
1929         case CEPH_OSD_OP_ZERO:
1930                 rbd_osd_discard_callback(obj_request);
1931                 break;
1932         case CEPH_OSD_OP_CALL:
1933                 rbd_osd_call_callback(obj_request);
1934                 break;
1935         default:
1936                 rbd_warn(NULL, "%s: unsupported op %hu",
1937                         obj_request->object_name, (unsigned short) opcode);
1938                 break;
1939         }
1940
1941         if (obj_request_done_test(obj_request))
1942                 rbd_obj_request_complete(obj_request);
1943 }
1944
1945 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1946 {
1947         struct rbd_img_request *img_request = obj_request->img_request;
1948         struct ceph_osd_request *osd_req = obj_request->osd_req;
1949
1950         if (img_request)
1951                 osd_req->r_snapid = img_request->snap_id;
1952 }
1953
1954 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1955 {
1956         struct ceph_osd_request *osd_req = obj_request->osd_req;
1957
1958         osd_req->r_mtime = CURRENT_TIME;
1959         osd_req->r_data_offset = obj_request->offset;
1960 }
1961
1962 /*
1963  * Create an osd request.  A read request has one osd op (read).
1964  * A write request has either one (watch) or two (hint+write) osd ops.
1965  * (All rbd data writes are prefixed with an allocation hint op, but
1966  * technically osd watch is a write request, hence this distinction.)
1967  */
1968 static struct ceph_osd_request *rbd_osd_req_create(
1969                                         struct rbd_device *rbd_dev,
1970                                         enum obj_operation_type op_type,
1971                                         unsigned int num_ops,
1972                                         struct rbd_obj_request *obj_request)
1973 {
1974         struct ceph_snap_context *snapc = NULL;
1975         struct ceph_osd_client *osdc;
1976         struct ceph_osd_request *osd_req;
1977
1978         if (obj_request_img_data_test(obj_request) &&
1979                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1980                 struct rbd_img_request *img_request = obj_request->img_request;
1981                 if (op_type == OBJ_OP_WRITE) {
1982                         rbd_assert(img_request_write_test(img_request));
1983                 } else {
1984                         rbd_assert(img_request_discard_test(img_request));
1985                 }
1986                 snapc = img_request->snapc;
1987         }
1988
1989         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1990
1991         /* Allocate and initialize the request, for the num_ops ops */
1992
1993         osdc = &rbd_dev->rbd_client->client->osdc;
1994         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1995                                           GFP_NOIO);
1996         if (!osd_req)
1997                 goto fail;
1998
1999         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2000                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2001         else
2002                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
2003
2004         osd_req->r_callback = rbd_osd_req_callback;
2005         osd_req->r_priv = obj_request;
2006
2007         osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2008         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2009                              obj_request->object_name))
2010                 goto fail;
2011
2012         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2013                 goto fail;
2014
2015         return osd_req;
2016
2017 fail:
2018         ceph_osdc_put_request(osd_req);
2019         return NULL;
2020 }
2021
2022 /*
2023  * Create a copyup osd request based on the information in the object
2024  * request supplied.  A copyup request has two or three osd ops, a
2025  * copyup method call, potentially a hint op, and a write or truncate
2026  * or zero op.
2027  */
2028 static struct ceph_osd_request *
2029 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2030 {
2031         struct rbd_img_request *img_request;
2032         struct ceph_snap_context *snapc;
2033         struct rbd_device *rbd_dev;
2034         struct ceph_osd_client *osdc;
2035         struct ceph_osd_request *osd_req;
2036         int num_osd_ops = 3;
2037
2038         rbd_assert(obj_request_img_data_test(obj_request));
2039         img_request = obj_request->img_request;
2040         rbd_assert(img_request);
2041         rbd_assert(img_request_write_test(img_request) ||
2042                         img_request_discard_test(img_request));
2043
2044         if (img_request_discard_test(img_request))
2045                 num_osd_ops = 2;
2046
2047         /* Allocate and initialize the request, for all the ops */
2048
2049         snapc = img_request->snapc;
2050         rbd_dev = img_request->rbd_dev;
2051         osdc = &rbd_dev->rbd_client->client->osdc;
2052         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2053                                                 false, GFP_NOIO);
2054         if (!osd_req)
2055                 goto fail;
2056
2057         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2058         osd_req->r_callback = rbd_osd_req_callback;
2059         osd_req->r_priv = obj_request;
2060
2061         osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2062         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2063                              obj_request->object_name))
2064                 goto fail;
2065
2066         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2067                 goto fail;
2068
2069         return osd_req;
2070
2071 fail:
2072         ceph_osdc_put_request(osd_req);
2073         return NULL;
2074 }
2075
2076
2077 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2078 {
2079         ceph_osdc_put_request(osd_req);
2080 }
2081
2082 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2083
2084 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2085                                                 u64 offset, u64 length,
2086                                                 enum obj_request_type type)
2087 {
2088         struct rbd_obj_request *obj_request;
2089         size_t size;
2090         char *name;
2091
2092         rbd_assert(obj_request_type_valid(type));
2093
2094         size = strlen(object_name) + 1;
2095         name = kmalloc(size, GFP_NOIO);
2096         if (!name)
2097                 return NULL;
2098
2099         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2100         if (!obj_request) {
2101                 kfree(name);
2102                 return NULL;
2103         }
2104
2105         obj_request->object_name = memcpy(name, object_name, size);
2106         obj_request->offset = offset;
2107         obj_request->length = length;
2108         obj_request->flags = 0;
2109         obj_request->which = BAD_WHICH;
2110         obj_request->type = type;
2111         INIT_LIST_HEAD(&obj_request->links);
2112         init_completion(&obj_request->completion);
2113         kref_init(&obj_request->kref);
2114
2115         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2116                 offset, length, (int)type, obj_request);
2117
2118         return obj_request;
2119 }
2120
2121 static void rbd_obj_request_destroy(struct kref *kref)
2122 {
2123         struct rbd_obj_request *obj_request;
2124
2125         obj_request = container_of(kref, struct rbd_obj_request, kref);
2126
2127         dout("%s: obj %p\n", __func__, obj_request);
2128
2129         rbd_assert(obj_request->img_request == NULL);
2130         rbd_assert(obj_request->which == BAD_WHICH);
2131
2132         if (obj_request->osd_req)
2133                 rbd_osd_req_destroy(obj_request->osd_req);
2134
2135         rbd_assert(obj_request_type_valid(obj_request->type));
2136         switch (obj_request->type) {
2137         case OBJ_REQUEST_NODATA:
2138                 break;          /* Nothing to do */
2139         case OBJ_REQUEST_BIO:
2140                 if (obj_request->bio_list)
2141                         bio_chain_put(obj_request->bio_list);
2142                 break;
2143         case OBJ_REQUEST_PAGES:
2144                 if (obj_request->pages)
2145                         ceph_release_page_vector(obj_request->pages,
2146                                                 obj_request->page_count);
2147                 break;
2148         }
2149
2150         kfree(obj_request->object_name);
2151         obj_request->object_name = NULL;
2152         kmem_cache_free(rbd_obj_request_cache, obj_request);
2153 }
2154
2155 /* It's OK to call this for a device with no parent */
2156
2157 static void rbd_spec_put(struct rbd_spec *spec);
2158 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2159 {
2160         rbd_dev_remove_parent(rbd_dev);
2161         rbd_spec_put(rbd_dev->parent_spec);
2162         rbd_dev->parent_spec = NULL;
2163         rbd_dev->parent_overlap = 0;
2164 }
2165
2166 /*
2167  * Parent image reference counting is used to determine when an
2168  * image's parent fields can be safely torn down--after there are no
2169  * more in-flight requests to the parent image.  When the last
2170  * reference is dropped, cleaning them up is safe.
2171  */
2172 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2173 {
2174         int counter;
2175
2176         if (!rbd_dev->parent_spec)
2177                 return;
2178
2179         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2180         if (counter > 0)
2181                 return;
2182
2183         /* Last reference; clean up parent data structures */
2184
2185         if (!counter)
2186                 rbd_dev_unparent(rbd_dev);
2187         else
2188                 rbd_warn(rbd_dev, "parent reference underflow");
2189 }
2190
2191 /*
2192  * If an image has a non-zero parent overlap, get a reference to its
2193  * parent.
2194  *
2195  * Returns true if the rbd device has a parent with a non-zero
2196  * overlap and a reference for it was successfully taken, or
2197  * false otherwise.
2198  */
2199 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2200 {
2201         int counter = 0;
2202
2203         if (!rbd_dev->parent_spec)
2204                 return false;
2205
2206         down_read(&rbd_dev->header_rwsem);
2207         if (rbd_dev->parent_overlap)
2208                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2209         up_read(&rbd_dev->header_rwsem);
2210
2211         if (counter < 0)
2212                 rbd_warn(rbd_dev, "parent reference overflow");
2213
2214         return counter > 0;
2215 }
2216
2217 /*
2218  * Caller is responsible for filling in the list of object requests
2219  * that comprises the image request, and the Linux request pointer
2220  * (if there is one).
2221  */
2222 static struct rbd_img_request *rbd_img_request_create(
2223                                         struct rbd_device *rbd_dev,
2224                                         u64 offset, u64 length,
2225                                         enum obj_operation_type op_type,
2226                                         struct ceph_snap_context *snapc)
2227 {
2228         struct rbd_img_request *img_request;
2229
2230         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2231         if (!img_request)
2232                 return NULL;
2233
2234         img_request->rq = NULL;
2235         img_request->rbd_dev = rbd_dev;
2236         img_request->offset = offset;
2237         img_request->length = length;
2238         img_request->flags = 0;
2239         if (op_type == OBJ_OP_DISCARD) {
2240                 img_request_discard_set(img_request);
2241                 img_request->snapc = snapc;
2242         } else if (op_type == OBJ_OP_WRITE) {
2243                 img_request_write_set(img_request);
2244                 img_request->snapc = snapc;
2245         } else {
2246                 img_request->snap_id = rbd_dev->spec->snap_id;
2247         }
2248         if (rbd_dev_parent_get(rbd_dev))
2249                 img_request_layered_set(img_request);
2250         spin_lock_init(&img_request->completion_lock);
2251         img_request->next_completion = 0;
2252         img_request->callback = NULL;
2253         img_request->result = 0;
2254         img_request->obj_request_count = 0;
2255         INIT_LIST_HEAD(&img_request->obj_requests);
2256         kref_init(&img_request->kref);
2257
2258         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2259                 obj_op_name(op_type), offset, length, img_request);
2260
2261         return img_request;
2262 }
2263
2264 static void rbd_img_request_destroy(struct kref *kref)
2265 {
2266         struct rbd_img_request *img_request;
2267         struct rbd_obj_request *obj_request;
2268         struct rbd_obj_request *next_obj_request;
2269
2270         img_request = container_of(kref, struct rbd_img_request, kref);
2271
2272         dout("%s: img %p\n", __func__, img_request);
2273
2274         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2275                 rbd_img_obj_request_del(img_request, obj_request);
2276         rbd_assert(img_request->obj_request_count == 0);
2277
2278         if (img_request_layered_test(img_request)) {
2279                 img_request_layered_clear(img_request);
2280                 rbd_dev_parent_put(img_request->rbd_dev);
2281         }
2282
2283         if (img_request_write_test(img_request) ||
2284                 img_request_discard_test(img_request))
2285                 ceph_put_snap_context(img_request->snapc);
2286
2287         kmem_cache_free(rbd_img_request_cache, img_request);
2288 }
2289
2290 static struct rbd_img_request *rbd_parent_request_create(
2291                                         struct rbd_obj_request *obj_request,
2292                                         u64 img_offset, u64 length)
2293 {
2294         struct rbd_img_request *parent_request;
2295         struct rbd_device *rbd_dev;
2296
2297         rbd_assert(obj_request->img_request);
2298         rbd_dev = obj_request->img_request->rbd_dev;
2299
2300         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2301                                                 length, OBJ_OP_READ, NULL);
2302         if (!parent_request)
2303                 return NULL;
2304
2305         img_request_child_set(parent_request);
2306         rbd_obj_request_get(obj_request);
2307         parent_request->obj_request = obj_request;
2308
2309         return parent_request;
2310 }
2311
2312 static void rbd_parent_request_destroy(struct kref *kref)
2313 {
2314         struct rbd_img_request *parent_request;
2315         struct rbd_obj_request *orig_request;
2316
2317         parent_request = container_of(kref, struct rbd_img_request, kref);
2318         orig_request = parent_request->obj_request;
2319
2320         parent_request->obj_request = NULL;
2321         rbd_obj_request_put(orig_request);
2322         img_request_child_clear(parent_request);
2323
2324         rbd_img_request_destroy(kref);
2325 }
2326
2327 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2328 {
2329         struct rbd_img_request *img_request;
2330         unsigned int xferred;
2331         int result;
2332         bool more;
2333
2334         rbd_assert(obj_request_img_data_test(obj_request));
2335         img_request = obj_request->img_request;
2336
2337         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2338         xferred = (unsigned int)obj_request->xferred;
2339         result = obj_request->result;
2340         if (result) {
2341                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2342                 enum obj_operation_type op_type;
2343
2344                 if (img_request_discard_test(img_request))
2345                         op_type = OBJ_OP_DISCARD;
2346                 else if (img_request_write_test(img_request))
2347                         op_type = OBJ_OP_WRITE;
2348                 else
2349                         op_type = OBJ_OP_READ;
2350
2351                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2352                         obj_op_name(op_type), obj_request->length,
2353                         obj_request->img_offset, obj_request->offset);
2354                 rbd_warn(rbd_dev, "  result %d xferred %x",
2355                         result, xferred);
2356                 if (!img_request->result)
2357                         img_request->result = result;
2358                 /*
2359                  * Need to end I/O on the entire obj_request worth of
2360                  * bytes in case of error.
2361                  */
2362                 xferred = obj_request->length;
2363         }
2364
2365         /* Image object requests don't own their page array */
2366
2367         if (obj_request->type == OBJ_REQUEST_PAGES) {
2368                 obj_request->pages = NULL;
2369                 obj_request->page_count = 0;
2370         }
2371
2372         if (img_request_child_test(img_request)) {
2373                 rbd_assert(img_request->obj_request != NULL);
2374                 more = obj_request->which < img_request->obj_request_count - 1;
2375         } else {
2376                 rbd_assert(img_request->rq != NULL);
2377
2378                 more = blk_update_request(img_request->rq, result, xferred);
2379                 if (!more)
2380                         __blk_mq_end_request(img_request->rq, result);
2381         }
2382
2383         return more;
2384 }
2385
2386 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2387 {
2388         struct rbd_img_request *img_request;
2389         u32 which = obj_request->which;
2390         bool more = true;
2391
2392         rbd_assert(obj_request_img_data_test(obj_request));
2393         img_request = obj_request->img_request;
2394
2395         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2396         rbd_assert(img_request != NULL);
2397         rbd_assert(img_request->obj_request_count > 0);
2398         rbd_assert(which != BAD_WHICH);
2399         rbd_assert(which < img_request->obj_request_count);
2400
2401         spin_lock_irq(&img_request->completion_lock);
2402         if (which != img_request->next_completion)
2403                 goto out;
2404
2405         for_each_obj_request_from(img_request, obj_request) {
2406                 rbd_assert(more);
2407                 rbd_assert(which < img_request->obj_request_count);
2408
2409                 if (!obj_request_done_test(obj_request))
2410                         break;
2411                 more = rbd_img_obj_end_request(obj_request);
2412                 which++;
2413         }
2414
2415         rbd_assert(more ^ (which == img_request->obj_request_count));
2416         img_request->next_completion = which;
2417 out:
2418         spin_unlock_irq(&img_request->completion_lock);
2419         rbd_img_request_put(img_request);
2420
2421         if (!more)
2422                 rbd_img_request_complete(img_request);
2423 }
2424
2425 /*
2426  * Add individual osd ops to the given ceph_osd_request and prepare
2427  * them for submission. num_ops is the current number of
2428  * osd operations already to the object request.
2429  */
2430 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2431                                 struct ceph_osd_request *osd_request,
2432                                 enum obj_operation_type op_type,
2433                                 unsigned int num_ops)
2434 {
2435         struct rbd_img_request *img_request = obj_request->img_request;
2436         struct rbd_device *rbd_dev = img_request->rbd_dev;
2437         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2438         u64 offset = obj_request->offset;
2439         u64 length = obj_request->length;
2440         u64 img_end;
2441         u16 opcode;
2442
2443         if (op_type == OBJ_OP_DISCARD) {
2444                 if (!offset && length == object_size &&
2445                     (!img_request_layered_test(img_request) ||
2446                      !obj_request_overlaps_parent(obj_request))) {
2447                         opcode = CEPH_OSD_OP_DELETE;
2448                 } else if ((offset + length == object_size)) {
2449                         opcode = CEPH_OSD_OP_TRUNCATE;
2450                 } else {
2451                         down_read(&rbd_dev->header_rwsem);
2452                         img_end = rbd_dev->header.image_size;
2453                         up_read(&rbd_dev->header_rwsem);
2454
2455                         if (obj_request->img_offset + length == img_end)
2456                                 opcode = CEPH_OSD_OP_TRUNCATE;
2457                         else
2458                                 opcode = CEPH_OSD_OP_ZERO;
2459                 }
2460         } else if (op_type == OBJ_OP_WRITE) {
2461                 if (!offset && length == object_size)
2462                         opcode = CEPH_OSD_OP_WRITEFULL;
2463                 else
2464                         opcode = CEPH_OSD_OP_WRITE;
2465                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2466                                         object_size, object_size);
2467                 num_ops++;
2468         } else {
2469                 opcode = CEPH_OSD_OP_READ;
2470         }
2471
2472         if (opcode == CEPH_OSD_OP_DELETE)
2473                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2474         else
2475                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2476                                        offset, length, 0, 0);
2477
2478         if (obj_request->type == OBJ_REQUEST_BIO)
2479                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2480                                         obj_request->bio_list, length);
2481         else if (obj_request->type == OBJ_REQUEST_PAGES)
2482                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2483                                         obj_request->pages, length,
2484                                         offset & ~PAGE_MASK, false, false);
2485
2486         /* Discards are also writes */
2487         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2488                 rbd_osd_req_format_write(obj_request);
2489         else
2490                 rbd_osd_req_format_read(obj_request);
2491 }
2492
2493 /*
2494  * Split up an image request into one or more object requests, each
2495  * to a different object.  The "type" parameter indicates whether
2496  * "data_desc" is the pointer to the head of a list of bio
2497  * structures, or the base of a page array.  In either case this
2498  * function assumes data_desc describes memory sufficient to hold
2499  * all data described by the image request.
2500  */
2501 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2502                                         enum obj_request_type type,
2503                                         void *data_desc)
2504 {
2505         struct rbd_device *rbd_dev = img_request->rbd_dev;
2506         struct rbd_obj_request *obj_request = NULL;
2507         struct rbd_obj_request *next_obj_request;
2508         struct bio *bio_list = NULL;
2509         unsigned int bio_offset = 0;
2510         struct page **pages = NULL;
2511         enum obj_operation_type op_type;
2512         u64 img_offset;
2513         u64 resid;
2514
2515         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2516                 (int)type, data_desc);
2517
2518         img_offset = img_request->offset;
2519         resid = img_request->length;
2520         rbd_assert(resid > 0);
2521         op_type = rbd_img_request_op_type(img_request);
2522
2523         if (type == OBJ_REQUEST_BIO) {
2524                 bio_list = data_desc;
2525                 rbd_assert(img_offset ==
2526                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2527         } else if (type == OBJ_REQUEST_PAGES) {
2528                 pages = data_desc;
2529         }
2530
2531         while (resid) {
2532                 struct ceph_osd_request *osd_req;
2533                 const char *object_name;
2534                 u64 offset;
2535                 u64 length;
2536
2537                 object_name = rbd_segment_name(rbd_dev, img_offset);
2538                 if (!object_name)
2539                         goto out_unwind;
2540                 offset = rbd_segment_offset(rbd_dev, img_offset);
2541                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2542                 obj_request = rbd_obj_request_create(object_name,
2543                                                 offset, length, type);
2544                 /* object request has its own copy of the object name */
2545                 rbd_segment_name_free(object_name);
2546                 if (!obj_request)
2547                         goto out_unwind;
2548
2549                 /*
2550                  * set obj_request->img_request before creating the
2551                  * osd_request so that it gets the right snapc
2552                  */
2553                 rbd_img_obj_request_add(img_request, obj_request);
2554
2555                 if (type == OBJ_REQUEST_BIO) {
2556                         unsigned int clone_size;
2557
2558                         rbd_assert(length <= (u64)UINT_MAX);
2559                         clone_size = (unsigned int)length;
2560                         obj_request->bio_list =
2561                                         bio_chain_clone_range(&bio_list,
2562                                                                 &bio_offset,
2563                                                                 clone_size,
2564                                                                 GFP_NOIO);
2565                         if (!obj_request->bio_list)
2566                                 goto out_unwind;
2567                 } else if (type == OBJ_REQUEST_PAGES) {
2568                         unsigned int page_count;
2569
2570                         obj_request->pages = pages;
2571                         page_count = (u32)calc_pages_for(offset, length);
2572                         obj_request->page_count = page_count;
2573                         if ((offset + length) & ~PAGE_MASK)
2574                                 page_count--;   /* more on last page */
2575                         pages += page_count;
2576                 }
2577
2578                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2579                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2580                                         obj_request);
2581                 if (!osd_req)
2582                         goto out_unwind;
2583
2584                 obj_request->osd_req = osd_req;
2585                 obj_request->callback = rbd_img_obj_callback;
2586                 obj_request->img_offset = img_offset;
2587
2588                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2589
2590                 rbd_img_request_get(img_request);
2591
2592                 img_offset += length;
2593                 resid -= length;
2594         }
2595
2596         return 0;
2597
2598 out_unwind:
2599         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2600                 rbd_img_obj_request_del(img_request, obj_request);
2601
2602         return -ENOMEM;
2603 }
2604
2605 static void
2606 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2607 {
2608         struct rbd_img_request *img_request;
2609         struct rbd_device *rbd_dev;
2610         struct page **pages;
2611         u32 page_count;
2612
2613         dout("%s: obj %p\n", __func__, obj_request);
2614
2615         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2616                 obj_request->type == OBJ_REQUEST_NODATA);
2617         rbd_assert(obj_request_img_data_test(obj_request));
2618         img_request = obj_request->img_request;
2619         rbd_assert(img_request);
2620
2621         rbd_dev = img_request->rbd_dev;
2622         rbd_assert(rbd_dev);
2623
2624         pages = obj_request->copyup_pages;
2625         rbd_assert(pages != NULL);
2626         obj_request->copyup_pages = NULL;
2627         page_count = obj_request->copyup_page_count;
2628         rbd_assert(page_count);
2629         obj_request->copyup_page_count = 0;
2630         ceph_release_page_vector(pages, page_count);
2631
2632         /*
2633          * We want the transfer count to reflect the size of the
2634          * original write request.  There is no such thing as a
2635          * successful short write, so if the request was successful
2636          * we can just set it to the originally-requested length.
2637          */
2638         if (!obj_request->result)
2639                 obj_request->xferred = obj_request->length;
2640
2641         obj_request_done_set(obj_request);
2642 }
2643
2644 static void
2645 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2646 {
2647         struct rbd_obj_request *orig_request;
2648         struct ceph_osd_request *osd_req;
2649         struct ceph_osd_client *osdc;
2650         struct rbd_device *rbd_dev;
2651         struct page **pages;
2652         enum obj_operation_type op_type;
2653         u32 page_count;
2654         int img_result;
2655         u64 parent_length;
2656
2657         rbd_assert(img_request_child_test(img_request));
2658
2659         /* First get what we need from the image request */
2660
2661         pages = img_request->copyup_pages;
2662         rbd_assert(pages != NULL);
2663         img_request->copyup_pages = NULL;
2664         page_count = img_request->copyup_page_count;
2665         rbd_assert(page_count);
2666         img_request->copyup_page_count = 0;
2667
2668         orig_request = img_request->obj_request;
2669         rbd_assert(orig_request != NULL);
2670         rbd_assert(obj_request_type_valid(orig_request->type));
2671         img_result = img_request->result;
2672         parent_length = img_request->length;
2673         rbd_assert(parent_length == img_request->xferred);
2674         rbd_img_request_put(img_request);
2675
2676         rbd_assert(orig_request->img_request);
2677         rbd_dev = orig_request->img_request->rbd_dev;
2678         rbd_assert(rbd_dev);
2679
2680         /*
2681          * If the overlap has become 0 (most likely because the
2682          * image has been flattened) we need to free the pages
2683          * and re-submit the original write request.
2684          */
2685         if (!rbd_dev->parent_overlap) {
2686                 struct ceph_osd_client *osdc;
2687
2688                 ceph_release_page_vector(pages, page_count);
2689                 osdc = &rbd_dev->rbd_client->client->osdc;
2690                 img_result = rbd_obj_request_submit(osdc, orig_request);
2691                 if (!img_result)
2692                         return;
2693         }
2694
2695         if (img_result)
2696                 goto out_err;
2697
2698         /*
2699          * The original osd request is of no use to use any more.
2700          * We need a new one that can hold the three ops in a copyup
2701          * request.  Allocate the new copyup osd request for the
2702          * original request, and release the old one.
2703          */
2704         img_result = -ENOMEM;
2705         osd_req = rbd_osd_req_create_copyup(orig_request);
2706         if (!osd_req)
2707                 goto out_err;
2708         rbd_osd_req_destroy(orig_request->osd_req);
2709         orig_request->osd_req = osd_req;
2710         orig_request->copyup_pages = pages;
2711         orig_request->copyup_page_count = page_count;
2712
2713         /* Initialize the copyup op */
2714
2715         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2716         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2717                                                 false, false);
2718
2719         /* Add the other op(s) */
2720
2721         op_type = rbd_img_request_op_type(orig_request->img_request);
2722         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2723
2724         /* All set, send it off. */
2725
2726         osdc = &rbd_dev->rbd_client->client->osdc;
2727         img_result = rbd_obj_request_submit(osdc, orig_request);
2728         if (!img_result)
2729                 return;
2730 out_err:
2731         /* Record the error code and complete the request */
2732
2733         orig_request->result = img_result;
2734         orig_request->xferred = 0;
2735         obj_request_done_set(orig_request);
2736         rbd_obj_request_complete(orig_request);
2737 }
2738
2739 /*
2740  * Read from the parent image the range of data that covers the
2741  * entire target of the given object request.  This is used for
2742  * satisfying a layered image write request when the target of an
2743  * object request from the image request does not exist.
2744  *
2745  * A page array big enough to hold the returned data is allocated
2746  * and supplied to rbd_img_request_fill() as the "data descriptor."
2747  * When the read completes, this page array will be transferred to
2748  * the original object request for the copyup operation.
2749  *
2750  * If an error occurs, record it as the result of the original
2751  * object request and mark it done so it gets completed.
2752  */
2753 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2754 {
2755         struct rbd_img_request *img_request = NULL;
2756         struct rbd_img_request *parent_request = NULL;
2757         struct rbd_device *rbd_dev;
2758         u64 img_offset;
2759         u64 length;
2760         struct page **pages = NULL;
2761         u32 page_count;
2762         int result;
2763
2764         rbd_assert(obj_request_img_data_test(obj_request));
2765         rbd_assert(obj_request_type_valid(obj_request->type));
2766
2767         img_request = obj_request->img_request;
2768         rbd_assert(img_request != NULL);
2769         rbd_dev = img_request->rbd_dev;
2770         rbd_assert(rbd_dev->parent != NULL);
2771
2772         /*
2773          * Determine the byte range covered by the object in the
2774          * child image to which the original request was to be sent.
2775          */
2776         img_offset = obj_request->img_offset - obj_request->offset;
2777         length = (u64)1 << rbd_dev->header.obj_order;
2778
2779         /*
2780          * There is no defined parent data beyond the parent
2781          * overlap, so limit what we read at that boundary if
2782          * necessary.
2783          */
2784         if (img_offset + length > rbd_dev->parent_overlap) {
2785                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2786                 length = rbd_dev->parent_overlap - img_offset;
2787         }
2788
2789         /*
2790          * Allocate a page array big enough to receive the data read
2791          * from the parent.
2792          */
2793         page_count = (u32)calc_pages_for(0, length);
2794         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2795         if (IS_ERR(pages)) {
2796                 result = PTR_ERR(pages);
2797                 pages = NULL;
2798                 goto out_err;
2799         }
2800
2801         result = -ENOMEM;
2802         parent_request = rbd_parent_request_create(obj_request,
2803                                                 img_offset, length);
2804         if (!parent_request)
2805                 goto out_err;
2806
2807         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2808         if (result)
2809                 goto out_err;
2810         parent_request->copyup_pages = pages;
2811         parent_request->copyup_page_count = page_count;
2812
2813         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2814         result = rbd_img_request_submit(parent_request);
2815         if (!result)
2816                 return 0;
2817
2818         parent_request->copyup_pages = NULL;
2819         parent_request->copyup_page_count = 0;
2820         parent_request->obj_request = NULL;
2821         rbd_obj_request_put(obj_request);
2822 out_err:
2823         if (pages)
2824                 ceph_release_page_vector(pages, page_count);
2825         if (parent_request)
2826                 rbd_img_request_put(parent_request);
2827         obj_request->result = result;
2828         obj_request->xferred = 0;
2829         obj_request_done_set(obj_request);
2830
2831         return result;
2832 }
2833
2834 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2835 {
2836         struct rbd_obj_request *orig_request;
2837         struct rbd_device *rbd_dev;
2838         int result;
2839
2840         rbd_assert(!obj_request_img_data_test(obj_request));
2841
2842         /*
2843          * All we need from the object request is the original
2844          * request and the result of the STAT op.  Grab those, then
2845          * we're done with the request.
2846          */
2847         orig_request = obj_request->obj_request;
2848         obj_request->obj_request = NULL;
2849         rbd_obj_request_put(orig_request);
2850         rbd_assert(orig_request);
2851         rbd_assert(orig_request->img_request);
2852
2853         result = obj_request->result;
2854         obj_request->result = 0;
2855
2856         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2857                 obj_request, orig_request, result,
2858                 obj_request->xferred, obj_request->length);
2859         rbd_obj_request_put(obj_request);
2860
2861         /*
2862          * If the overlap has become 0 (most likely because the
2863          * image has been flattened) we need to free the pages
2864          * and re-submit the original write request.
2865          */
2866         rbd_dev = orig_request->img_request->rbd_dev;
2867         if (!rbd_dev->parent_overlap) {
2868                 struct ceph_osd_client *osdc;
2869
2870                 osdc = &rbd_dev->rbd_client->client->osdc;
2871                 result = rbd_obj_request_submit(osdc, orig_request);
2872                 if (!result)
2873                         return;
2874         }
2875
2876         /*
2877          * Our only purpose here is to determine whether the object
2878          * exists, and we don't want to treat the non-existence as
2879          * an error.  If something else comes back, transfer the
2880          * error to the original request and complete it now.
2881          */
2882         if (!result) {
2883                 obj_request_existence_set(orig_request, true);
2884         } else if (result == -ENOENT) {
2885                 obj_request_existence_set(orig_request, false);
2886         } else if (result) {
2887                 orig_request->result = result;
2888                 goto out;
2889         }
2890
2891         /*
2892          * Resubmit the original request now that we have recorded
2893          * whether the target object exists.
2894          */
2895         orig_request->result = rbd_img_obj_request_submit(orig_request);
2896 out:
2897         if (orig_request->result)
2898                 rbd_obj_request_complete(orig_request);
2899 }
2900
2901 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2902 {
2903         struct rbd_obj_request *stat_request;
2904         struct rbd_device *rbd_dev;
2905         struct ceph_osd_client *osdc;
2906         struct page **pages = NULL;
2907         u32 page_count;
2908         size_t size;
2909         int ret;
2910
2911         /*
2912          * The response data for a STAT call consists of:
2913          *     le64 length;
2914          *     struct {
2915          *         le32 tv_sec;
2916          *         le32 tv_nsec;
2917          *     } mtime;
2918          */
2919         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2920         page_count = (u32)calc_pages_for(0, size);
2921         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2922         if (IS_ERR(pages))
2923                 return PTR_ERR(pages);
2924
2925         ret = -ENOMEM;
2926         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2927                                                         OBJ_REQUEST_PAGES);
2928         if (!stat_request)
2929                 goto out;
2930
2931         rbd_obj_request_get(obj_request);
2932         stat_request->obj_request = obj_request;
2933         stat_request->pages = pages;
2934         stat_request->page_count = page_count;
2935
2936         rbd_assert(obj_request->img_request);
2937         rbd_dev = obj_request->img_request->rbd_dev;
2938         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2939                                                    stat_request);
2940         if (!stat_request->osd_req)
2941                 goto out;
2942         stat_request->callback = rbd_img_obj_exists_callback;
2943
2944         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2945         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2946                                         false, false);
2947         rbd_osd_req_format_read(stat_request);
2948
2949         osdc = &rbd_dev->rbd_client->client->osdc;
2950         ret = rbd_obj_request_submit(osdc, stat_request);
2951 out:
2952         if (ret)
2953                 rbd_obj_request_put(obj_request);
2954
2955         return ret;
2956 }
2957
2958 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2959 {
2960         struct rbd_img_request *img_request;
2961         struct rbd_device *rbd_dev;
2962
2963         rbd_assert(obj_request_img_data_test(obj_request));
2964
2965         img_request = obj_request->img_request;
2966         rbd_assert(img_request);
2967         rbd_dev = img_request->rbd_dev;
2968
2969         /* Reads */
2970         if (!img_request_write_test(img_request) &&
2971             !img_request_discard_test(img_request))
2972                 return true;
2973
2974         /* Non-layered writes */
2975         if (!img_request_layered_test(img_request))
2976                 return true;
2977
2978         /*
2979          * Layered writes outside of the parent overlap range don't
2980          * share any data with the parent.
2981          */
2982         if (!obj_request_overlaps_parent(obj_request))
2983                 return true;
2984
2985         /*
2986          * Entire-object layered writes - we will overwrite whatever
2987          * parent data there is anyway.
2988          */
2989         if (!obj_request->offset &&
2990             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2991                 return true;
2992
2993         /*
2994          * If the object is known to already exist, its parent data has
2995          * already been copied.
2996          */
2997         if (obj_request_known_test(obj_request) &&
2998             obj_request_exists_test(obj_request))
2999                 return true;
3000
3001         return false;
3002 }
3003
3004 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
3005 {
3006         if (img_obj_request_simple(obj_request)) {
3007                 struct rbd_device *rbd_dev;
3008                 struct ceph_osd_client *osdc;
3009
3010                 rbd_dev = obj_request->img_request->rbd_dev;
3011                 osdc = &rbd_dev->rbd_client->client->osdc;
3012
3013                 return rbd_obj_request_submit(osdc, obj_request);
3014         }
3015
3016         /*
3017          * It's a layered write.  The target object might exist but
3018          * we may not know that yet.  If we know it doesn't exist,
3019          * start by reading the data for the full target object from
3020          * the parent so we can use it for a copyup to the target.
3021          */
3022         if (obj_request_known_test(obj_request))
3023                 return rbd_img_obj_parent_read_full(obj_request);
3024
3025         /* We don't know whether the target exists.  Go find out. */
3026
3027         return rbd_img_obj_exists_submit(obj_request);
3028 }
3029
3030 static int rbd_img_request_submit(struct rbd_img_request *img_request)
3031 {
3032         struct rbd_obj_request *obj_request;
3033         struct rbd_obj_request *next_obj_request;
3034         int ret = 0;
3035
3036         dout("%s: img %p\n", __func__, img_request);
3037
3038         rbd_img_request_get(img_request);
3039         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3040                 ret = rbd_img_obj_request_submit(obj_request);
3041                 if (ret)
3042                         goto out_put_ireq;
3043         }
3044
3045 out_put_ireq:
3046         rbd_img_request_put(img_request);
3047         return ret;
3048 }
3049
3050 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3051 {
3052         struct rbd_obj_request *obj_request;
3053         struct rbd_device *rbd_dev;
3054         u64 obj_end;
3055         u64 img_xferred;
3056         int img_result;
3057
3058         rbd_assert(img_request_child_test(img_request));
3059
3060         /* First get what we need from the image request and release it */
3061
3062         obj_request = img_request->obj_request;
3063         img_xferred = img_request->xferred;
3064         img_result = img_request->result;
3065         rbd_img_request_put(img_request);
3066
3067         /*
3068          * If the overlap has become 0 (most likely because the
3069          * image has been flattened) we need to re-submit the
3070          * original request.
3071          */
3072         rbd_assert(obj_request);
3073         rbd_assert(obj_request->img_request);
3074         rbd_dev = obj_request->img_request->rbd_dev;
3075         if (!rbd_dev->parent_overlap) {
3076                 struct ceph_osd_client *osdc;
3077
3078                 osdc = &rbd_dev->rbd_client->client->osdc;
3079                 img_result = rbd_obj_request_submit(osdc, obj_request);
3080                 if (!img_result)
3081                         return;
3082         }
3083
3084         obj_request->result = img_result;
3085         if (obj_request->result)
3086                 goto out;
3087
3088         /*
3089          * We need to zero anything beyond the parent overlap
3090          * boundary.  Since rbd_img_obj_request_read_callback()
3091          * will zero anything beyond the end of a short read, an
3092          * easy way to do this is to pretend the data from the
3093          * parent came up short--ending at the overlap boundary.
3094          */
3095         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3096         obj_end = obj_request->img_offset + obj_request->length;
3097         if (obj_end > rbd_dev->parent_overlap) {
3098                 u64 xferred = 0;
3099
3100                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3101                         xferred = rbd_dev->parent_overlap -
3102                                         obj_request->img_offset;
3103
3104                 obj_request->xferred = min(img_xferred, xferred);
3105         } else {
3106                 obj_request->xferred = img_xferred;
3107         }
3108 out:
3109         rbd_img_obj_request_read_callback(obj_request);
3110         rbd_obj_request_complete(obj_request);
3111 }
3112
3113 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3114 {
3115         struct rbd_img_request *img_request;
3116         int result;
3117
3118         rbd_assert(obj_request_img_data_test(obj_request));
3119         rbd_assert(obj_request->img_request != NULL);
3120         rbd_assert(obj_request->result == (s32) -ENOENT);
3121         rbd_assert(obj_request_type_valid(obj_request->type));
3122
3123         /* rbd_read_finish(obj_request, obj_request->length); */
3124         img_request = rbd_parent_request_create(obj_request,
3125                                                 obj_request->img_offset,
3126                                                 obj_request->length);
3127         result = -ENOMEM;
3128         if (!img_request)
3129                 goto out_err;
3130
3131         if (obj_request->type == OBJ_REQUEST_BIO)
3132                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3133                                                 obj_request->bio_list);
3134         else
3135                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3136                                                 obj_request->pages);
3137         if (result)
3138                 goto out_err;
3139
3140         img_request->callback = rbd_img_parent_read_callback;
3141         result = rbd_img_request_submit(img_request);
3142         if (result)
3143                 goto out_err;
3144
3145         return;
3146 out_err:
3147         if (img_request)
3148                 rbd_img_request_put(img_request);
3149         obj_request->result = result;
3150         obj_request->xferred = 0;
3151         obj_request_done_set(obj_request);
3152 }
3153
3154 static const struct rbd_client_id rbd_empty_cid;
3155
3156 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3157                           const struct rbd_client_id *rhs)
3158 {
3159         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3160 }
3161
3162 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3163 {
3164         struct rbd_client_id cid;
3165
3166         mutex_lock(&rbd_dev->watch_mutex);
3167         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3168         cid.handle = rbd_dev->watch_cookie;
3169         mutex_unlock(&rbd_dev->watch_mutex);
3170         return cid;
3171 }
3172
3173 /*
3174  * lock_rwsem must be held for write
3175  */
3176 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3177                               const struct rbd_client_id *cid)
3178 {
3179         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3180              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3181              cid->gid, cid->handle);
3182         rbd_dev->owner_cid = *cid; /* struct */
3183 }
3184
3185 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3186 {
3187         mutex_lock(&rbd_dev->watch_mutex);
3188         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3189         mutex_unlock(&rbd_dev->watch_mutex);
3190 }
3191
3192 /*
3193  * lock_rwsem must be held for write
3194  */
3195 static int rbd_lock(struct rbd_device *rbd_dev)
3196 {
3197         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3198         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3199         char cookie[32];
3200         int ret;
3201
3202         WARN_ON(__rbd_is_lock_owner(rbd_dev));
3203
3204         format_lock_cookie(rbd_dev, cookie);
3205         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3206                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3207                             RBD_LOCK_TAG, "", 0);
3208         if (ret)
3209                 return ret;
3210
3211         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3212         rbd_set_owner_cid(rbd_dev, &cid);
3213         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3214         return 0;
3215 }
3216
3217 /*
3218  * lock_rwsem must be held for write
3219  */
3220 static int rbd_unlock(struct rbd_device *rbd_dev)
3221 {
3222         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3223         char cookie[32];
3224         int ret;
3225
3226         WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3227
3228         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3229
3230         format_lock_cookie(rbd_dev, cookie);
3231         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3232                               RBD_LOCK_NAME, cookie);
3233         if (ret && ret != -ENOENT) {
3234                 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3235                 return ret;
3236         }
3237
3238         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3239         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3240         return 0;
3241 }
3242
3243 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3244                                 enum rbd_notify_op notify_op,
3245                                 struct page ***preply_pages,
3246                                 size_t *preply_len)
3247 {
3248         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3249         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3250         int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3251         char buf[buf_size];
3252         void *p = buf;
3253
3254         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3255
3256         /* encode *LockPayload NotifyMessage (op + ClientId) */
3257         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3258         ceph_encode_32(&p, notify_op);
3259         ceph_encode_64(&p, cid.gid);
3260         ceph_encode_64(&p, cid.handle);
3261
3262         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3263                                 &rbd_dev->header_oloc, buf, buf_size,
3264                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3265 }
3266
3267 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3268                                enum rbd_notify_op notify_op)
3269 {
3270         struct page **reply_pages;
3271         size_t reply_len;
3272
3273         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3274         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3275 }
3276
3277 static void rbd_notify_acquired_lock(struct work_struct *work)
3278 {
3279         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3280                                                   acquired_lock_work);
3281
3282         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3283 }
3284
3285 static void rbd_notify_released_lock(struct work_struct *work)
3286 {
3287         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3288                                                   released_lock_work);
3289
3290         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3291 }
3292
3293 static int rbd_request_lock(struct rbd_device *rbd_dev)
3294 {
3295         struct page **reply_pages;
3296         size_t reply_len;
3297         bool lock_owner_responded = false;
3298         int ret;
3299
3300         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3301
3302         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3303                                    &reply_pages, &reply_len);
3304         if (ret && ret != -ETIMEDOUT) {
3305                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3306                 goto out;
3307         }
3308
3309         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3310                 void *p = page_address(reply_pages[0]);
3311                 void *const end = p + reply_len;
3312                 u32 n;
3313
3314                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3315                 while (n--) {
3316                         u8 struct_v;
3317                         u32 len;
3318
3319                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3320                         p += 8 + 8; /* skip gid and cookie */
3321
3322                         ceph_decode_32_safe(&p, end, len, e_inval);
3323                         if (!len)
3324                                 continue;
3325
3326                         if (lock_owner_responded) {
3327                                 rbd_warn(rbd_dev,
3328                                          "duplicate lock owners detected");
3329                                 ret = -EIO;
3330                                 goto out;
3331                         }
3332
3333                         lock_owner_responded = true;
3334                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3335                                                   &struct_v, &len);
3336                         if (ret) {
3337                                 rbd_warn(rbd_dev,
3338                                          "failed to decode ResponseMessage: %d",
3339                                          ret);
3340                                 goto e_inval;
3341                         }
3342
3343                         ret = ceph_decode_32(&p);
3344                 }
3345         }
3346
3347         if (!lock_owner_responded) {
3348                 rbd_warn(rbd_dev, "no lock owners detected");
3349                 ret = -ETIMEDOUT;
3350         }
3351
3352 out:
3353         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3354         return ret;
3355
3356 e_inval:
3357         ret = -EINVAL;
3358         goto out;
3359 }
3360
3361 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3362 {
3363         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3364
3365         cancel_delayed_work(&rbd_dev->lock_dwork);
3366         if (wake_all)
3367                 wake_up_all(&rbd_dev->lock_waitq);
3368         else
3369                 wake_up(&rbd_dev->lock_waitq);
3370 }
3371
3372 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3373                                struct ceph_locker **lockers, u32 *num_lockers)
3374 {
3375         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3376         u8 lock_type;
3377         char *lock_tag;
3378         int ret;
3379
3380         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3381
3382         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3383                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3384                                  &lock_type, &lock_tag, lockers, num_lockers);
3385         if (ret)
3386                 return ret;
3387
3388         if (*num_lockers == 0) {
3389                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3390                 goto out;
3391         }
3392
3393         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3394                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3395                          lock_tag);
3396                 ret = -EBUSY;
3397                 goto out;
3398         }
3399
3400         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3401                 rbd_warn(rbd_dev, "shared lock type detected");
3402                 ret = -EBUSY;
3403                 goto out;
3404         }
3405
3406         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3407                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3408                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3409                          (*lockers)[0].id.cookie);
3410                 ret = -EBUSY;
3411                 goto out;
3412         }
3413
3414 out:
3415         kfree(lock_tag);
3416         return ret;
3417 }
3418
3419 static int find_watcher(struct rbd_device *rbd_dev,
3420                         const struct ceph_locker *locker)
3421 {
3422         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3423         struct ceph_watch_item *watchers;
3424         u32 num_watchers;
3425         u64 cookie;
3426         int i;
3427         int ret;
3428
3429         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3430                                       &rbd_dev->header_oloc, &watchers,
3431                                       &num_watchers);
3432         if (ret)
3433                 return ret;
3434
3435         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3436         for (i = 0; i < num_watchers; i++) {
3437                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3438                             sizeof(locker->info.addr)) &&
3439                     watchers[i].cookie == cookie) {
3440                         struct rbd_client_id cid = {
3441                                 .gid = le64_to_cpu(watchers[i].name.num),
3442                                 .handle = cookie,
3443                         };
3444
3445                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3446                              rbd_dev, cid.gid, cid.handle);
3447                         rbd_set_owner_cid(rbd_dev, &cid);
3448                         ret = 1;
3449                         goto out;
3450                 }
3451         }
3452
3453         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3454         ret = 0;
3455 out:
3456         kfree(watchers);
3457         return ret;
3458 }
3459
3460 /*
3461  * lock_rwsem must be held for write
3462  */
3463 static int rbd_try_lock(struct rbd_device *rbd_dev)
3464 {
3465         struct ceph_client *client = rbd_dev->rbd_client->client;
3466         struct ceph_locker *lockers;
3467         u32 num_lockers;
3468         int ret;
3469
3470         for (;;) {
3471                 ret = rbd_lock(rbd_dev);
3472                 if (ret != -EBUSY)
3473                         return ret;
3474
3475                 /* determine if the current lock holder is still alive */
3476                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3477                 if (ret)
3478                         return ret;
3479
3480                 if (num_lockers == 0)
3481                         goto again;
3482
3483                 ret = find_watcher(rbd_dev, lockers);
3484                 if (ret) {
3485                         if (ret > 0)
3486                                 ret = 0; /* have to request lock */
3487                         goto out;
3488                 }
3489
3490                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3491                          ENTITY_NAME(lockers[0].id.name));
3492
3493                 ret = ceph_monc_blacklist_add(&client->monc,
3494                                               &lockers[0].info.addr);
3495                 if (ret) {
3496                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3497                                  ENTITY_NAME(lockers[0].id.name), ret);
3498                         goto out;
3499                 }
3500
3501                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3502                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3503                                           lockers[0].id.cookie,
3504                                           &lockers[0].id.name);
3505                 if (ret && ret != -ENOENT)
3506                         goto out;
3507
3508 again:
3509                 ceph_free_lockers(lockers, num_lockers);
3510         }
3511
3512 out:
3513         ceph_free_lockers(lockers, num_lockers);
3514         return ret;
3515 }
3516
3517 /*
3518  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3519  */
3520 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3521                                                 int *pret)
3522 {
3523         enum rbd_lock_state lock_state;
3524
3525         down_read(&rbd_dev->lock_rwsem);
3526         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3527              rbd_dev->lock_state);
3528         if (__rbd_is_lock_owner(rbd_dev)) {
3529                 lock_state = rbd_dev->lock_state;
3530                 up_read(&rbd_dev->lock_rwsem);
3531                 return lock_state;
3532         }
3533
3534         up_read(&rbd_dev->lock_rwsem);
3535         down_write(&rbd_dev->lock_rwsem);
3536         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3537              rbd_dev->lock_state);
3538         if (!__rbd_is_lock_owner(rbd_dev)) {
3539                 *pret = rbd_try_lock(rbd_dev);
3540                 if (*pret)
3541                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3542         }
3543
3544         lock_state = rbd_dev->lock_state;
3545         up_write(&rbd_dev->lock_rwsem);
3546         return lock_state;
3547 }
3548
3549 static void rbd_acquire_lock(struct work_struct *work)
3550 {
3551         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3552                                             struct rbd_device, lock_dwork);
3553         enum rbd_lock_state lock_state;
3554         int ret;
3555
3556         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3557 again:
3558         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3559         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3560                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3561                         wake_requests(rbd_dev, true);
3562                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3563                      rbd_dev, lock_state, ret);
3564                 return;
3565         }
3566
3567         ret = rbd_request_lock(rbd_dev);
3568         if (ret == -ETIMEDOUT) {
3569                 goto again; /* treat this as a dead client */
3570         } else if (ret < 0) {
3571                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3572                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3573                                  RBD_RETRY_DELAY);
3574         } else {
3575                 /*
3576                  * lock owner acked, but resend if we don't see them
3577                  * release the lock
3578                  */
3579                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3580                      rbd_dev);
3581                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3582                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3583         }
3584 }
3585
3586 /*
3587  * lock_rwsem must be held for write
3588  */
3589 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3590 {
3591         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3592              rbd_dev->lock_state);
3593         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3594                 return false;
3595
3596         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3597         downgrade_write(&rbd_dev->lock_rwsem);
3598         /*
3599          * Ensure that all in-flight IO is flushed.
3600          *
3601          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3602          * may be shared with other devices.
3603          */
3604         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3605         up_read(&rbd_dev->lock_rwsem);
3606
3607         down_write(&rbd_dev->lock_rwsem);
3608         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3609              rbd_dev->lock_state);
3610         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3611                 return false;
3612
3613         if (!rbd_unlock(rbd_dev))
3614                 /*
3615                  * Give others a chance to grab the lock - we would re-acquire
3616                  * almost immediately if we got new IO during ceph_osdc_sync()
3617                  * otherwise.  We need to ack our own notifications, so this
3618                  * lock_dwork will be requeued from rbd_wait_state_locked()
3619                  * after wake_requests() in rbd_handle_released_lock().
3620                  */
3621                 cancel_delayed_work(&rbd_dev->lock_dwork);
3622
3623         return true;
3624 }
3625
3626 static void rbd_release_lock_work(struct work_struct *work)
3627 {
3628         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3629                                                   unlock_work);
3630
3631         down_write(&rbd_dev->lock_rwsem);
3632         rbd_release_lock(rbd_dev);
3633         up_write(&rbd_dev->lock_rwsem);
3634 }
3635
3636 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3637                                      void **p)
3638 {
3639         struct rbd_client_id cid = { 0 };
3640
3641         if (struct_v >= 2) {
3642                 cid.gid = ceph_decode_64(p);
3643                 cid.handle = ceph_decode_64(p);
3644         }
3645
3646         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3647              cid.handle);
3648         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3649                 down_write(&rbd_dev->lock_rwsem);
3650                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3651                         /*
3652                          * we already know that the remote client is
3653                          * the owner
3654                          */
3655                         up_write(&rbd_dev->lock_rwsem);
3656                         return;
3657                 }
3658
3659                 rbd_set_owner_cid(rbd_dev, &cid);
3660                 downgrade_write(&rbd_dev->lock_rwsem);
3661         } else {
3662                 down_read(&rbd_dev->lock_rwsem);
3663         }
3664
3665         if (!__rbd_is_lock_owner(rbd_dev))
3666                 wake_requests(rbd_dev, false);
3667         up_read(&rbd_dev->lock_rwsem);
3668 }
3669
3670 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3671                                      void **p)
3672 {
3673         struct rbd_client_id cid = { 0 };
3674
3675         if (struct_v >= 2) {
3676                 cid.gid = ceph_decode_64(p);
3677                 cid.handle = ceph_decode_64(p);
3678         }
3679
3680         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3681              cid.handle);
3682         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3683                 down_write(&rbd_dev->lock_rwsem);
3684                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3685                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3686                              __func__, rbd_dev, cid.gid, cid.handle,
3687                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3688                         up_write(&rbd_dev->lock_rwsem);
3689                         return;
3690                 }
3691
3692                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3693                 downgrade_write(&rbd_dev->lock_rwsem);
3694         } else {
3695                 down_read(&rbd_dev->lock_rwsem);
3696         }
3697
3698         if (!__rbd_is_lock_owner(rbd_dev))
3699                 wake_requests(rbd_dev, false);
3700         up_read(&rbd_dev->lock_rwsem);
3701 }
3702
3703 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3704                                     void **p)
3705 {
3706         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3707         struct rbd_client_id cid = { 0 };
3708         bool need_to_send;
3709
3710         if (struct_v >= 2) {
3711                 cid.gid = ceph_decode_64(p);
3712                 cid.handle = ceph_decode_64(p);
3713         }
3714
3715         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3716              cid.handle);
3717         if (rbd_cid_equal(&cid, &my_cid))
3718                 return false;
3719
3720         down_read(&rbd_dev->lock_rwsem);
3721         need_to_send = __rbd_is_lock_owner(rbd_dev);
3722         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3723                 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3724                         dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3725                              rbd_dev);
3726                         queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3727                 }
3728         }
3729         up_read(&rbd_dev->lock_rwsem);
3730         return need_to_send;
3731 }
3732
3733 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3734                                      u64 notify_id, u64 cookie, s32 *result)
3735 {
3736         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3737         int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3738         char buf[buf_size];
3739         int ret;
3740
3741         if (result) {
3742                 void *p = buf;
3743
3744                 /* encode ResponseMessage */
3745                 ceph_start_encoding(&p, 1, 1,
3746                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3747                 ceph_encode_32(&p, *result);
3748         } else {
3749                 buf_size = 0;
3750         }
3751
3752         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3753                                    &rbd_dev->header_oloc, notify_id, cookie,
3754                                    buf, buf_size);
3755         if (ret)
3756                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3757 }
3758
3759 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3760                                    u64 cookie)
3761 {
3762         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3763         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3764 }
3765
3766 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3767                                           u64 notify_id, u64 cookie, s32 result)
3768 {
3769         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3770         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3771 }
3772
3773 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3774                          u64 notifier_id, void *data, size_t data_len)
3775 {
3776         struct rbd_device *rbd_dev = arg;
3777         void *p = data;
3778         void *const end = p + data_len;
3779         u8 struct_v;
3780         u32 len;
3781         u32 notify_op;
3782         int ret;
3783
3784         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3785              __func__, rbd_dev, cookie, notify_id, data_len);
3786         if (data_len) {
3787                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3788                                           &struct_v, &len);
3789                 if (ret) {
3790                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3791                                  ret);
3792                         return;
3793                 }
3794
3795                 notify_op = ceph_decode_32(&p);
3796         } else {
3797                 /* legacy notification for header updates */
3798                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3799                 len = 0;
3800         }
3801
3802         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3803         switch (notify_op) {
3804         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3805                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3806                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3807                 break;
3808         case RBD_NOTIFY_OP_RELEASED_LOCK:
3809                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3810                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3811                 break;
3812         case RBD_NOTIFY_OP_REQUEST_LOCK:
3813                 if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3814                         /*
3815                          * send ResponseMessage(0) back so the client
3816                          * can detect a missing owner
3817                          */
3818                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3819                                                       cookie, 0);
3820                 else
3821                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3822                 break;
3823         case RBD_NOTIFY_OP_HEADER_UPDATE:
3824                 ret = rbd_dev_refresh(rbd_dev);
3825                 if (ret)
3826                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3827
3828                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3829                 break;
3830         default:
3831                 if (rbd_is_lock_owner(rbd_dev))
3832                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3833                                                       cookie, -EOPNOTSUPP);
3834                 else
3835                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3836                 break;
3837         }
3838 }
3839
3840 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3841
3842 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3843 {
3844         struct rbd_device *rbd_dev = arg;
3845
3846         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3847
3848         down_write(&rbd_dev->lock_rwsem);
3849         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3850         up_write(&rbd_dev->lock_rwsem);
3851
3852         mutex_lock(&rbd_dev->watch_mutex);
3853         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3854                 __rbd_unregister_watch(rbd_dev);
3855                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3856
3857                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3858         }
3859         mutex_unlock(&rbd_dev->watch_mutex);
3860 }
3861
3862 /*
3863  * watch_mutex must be locked
3864  */
3865 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3866 {
3867         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3868         struct ceph_osd_linger_request *handle;
3869
3870         rbd_assert(!rbd_dev->watch_handle);
3871         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3872
3873         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3874                                  &rbd_dev->header_oloc, rbd_watch_cb,
3875                                  rbd_watch_errcb, rbd_dev);
3876         if (IS_ERR(handle))
3877                 return PTR_ERR(handle);
3878
3879         rbd_dev->watch_handle = handle;
3880         return 0;
3881 }
3882
3883 /*
3884  * watch_mutex must be locked
3885  */
3886 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3887 {
3888         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3889         int ret;
3890
3891         rbd_assert(rbd_dev->watch_handle);
3892         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3893
3894         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3895         if (ret)
3896                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3897
3898         rbd_dev->watch_handle = NULL;
3899 }
3900
3901 static int rbd_register_watch(struct rbd_device *rbd_dev)
3902 {
3903         int ret;
3904
3905         mutex_lock(&rbd_dev->watch_mutex);
3906         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3907         ret = __rbd_register_watch(rbd_dev);
3908         if (ret)
3909                 goto out;
3910
3911         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3912         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3913
3914 out:
3915         mutex_unlock(&rbd_dev->watch_mutex);
3916         return ret;
3917 }
3918
3919 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3920 {
3921         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3922
3923         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3924         cancel_work_sync(&rbd_dev->acquired_lock_work);
3925         cancel_work_sync(&rbd_dev->released_lock_work);
3926         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3927         cancel_work_sync(&rbd_dev->unlock_work);
3928 }
3929
3930 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3931 {
3932         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3933         cancel_tasks_sync(rbd_dev);
3934
3935         mutex_lock(&rbd_dev->watch_mutex);
3936         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3937                 __rbd_unregister_watch(rbd_dev);
3938         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3939         mutex_unlock(&rbd_dev->watch_mutex);
3940
3941         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3942 }
3943
3944 static void rbd_reregister_watch(struct work_struct *work)
3945 {
3946         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3947                                             struct rbd_device, watch_dwork);
3948         bool was_lock_owner = false;
3949         int ret;
3950
3951         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3952
3953         down_write(&rbd_dev->lock_rwsem);
3954         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3955                 was_lock_owner = rbd_release_lock(rbd_dev);
3956
3957         mutex_lock(&rbd_dev->watch_mutex);
3958         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR)
3959                 goto fail_unlock;
3960
3961         ret = __rbd_register_watch(rbd_dev);
3962         if (ret) {
3963                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3964                 if (ret != -EBLACKLISTED)
3965                         queue_delayed_work(rbd_dev->task_wq,
3966                                            &rbd_dev->watch_dwork,
3967                                            RBD_RETRY_DELAY);
3968                 goto fail_unlock;
3969         }
3970
3971         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3972         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3973         mutex_unlock(&rbd_dev->watch_mutex);
3974
3975         ret = rbd_dev_refresh(rbd_dev);
3976         if (ret)
3977                 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3978
3979         if (was_lock_owner) {
3980                 ret = rbd_try_lock(rbd_dev);
3981                 if (ret)
3982                         rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3983                                  ret);
3984         }
3985
3986         up_write(&rbd_dev->lock_rwsem);
3987         wake_requests(rbd_dev, true);
3988         return;
3989
3990 fail_unlock:
3991         mutex_unlock(&rbd_dev->watch_mutex);
3992         up_write(&rbd_dev->lock_rwsem);
3993 }
3994
3995 /*
3996  * Synchronous osd object method call.  Returns the number of bytes
3997  * returned in the outbound buffer, or a negative error code.
3998  */
3999 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4000                              const char *object_name,
4001                              const char *class_name,
4002                              const char *method_name,
4003                              const void *outbound,
4004                              size_t outbound_size,
4005                              void *inbound,
4006                              size_t inbound_size)
4007 {
4008         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4009         struct rbd_obj_request *obj_request;
4010         struct page **pages;
4011         u32 page_count;
4012         int ret;
4013
4014         /*
4015          * Method calls are ultimately read operations.  The result
4016          * should placed into the inbound buffer provided.  They
4017          * also supply outbound data--parameters for the object
4018          * method.  Currently if this is present it will be a
4019          * snapshot id.
4020          */
4021         page_count = (u32)calc_pages_for(0, inbound_size);
4022         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4023         if (IS_ERR(pages))
4024                 return PTR_ERR(pages);
4025
4026         ret = -ENOMEM;
4027         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4028                                                         OBJ_REQUEST_PAGES);
4029         if (!obj_request)
4030                 goto out;
4031
4032         obj_request->pages = pages;
4033         obj_request->page_count = page_count;
4034
4035         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4036                                                   obj_request);
4037         if (!obj_request->osd_req)
4038                 goto out;
4039
4040         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4041                                         class_name, method_name);
4042         if (outbound_size) {
4043                 struct ceph_pagelist *pagelist;
4044
4045                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4046                 if (!pagelist)
4047                         goto out;
4048
4049                 ceph_pagelist_init(pagelist);
4050                 ceph_pagelist_append(pagelist, outbound, outbound_size);
4051                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4052                                                 pagelist);
4053         }
4054         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4055                                         obj_request->pages, inbound_size,
4056                                         0, false, false);
4057         rbd_osd_req_format_read(obj_request);
4058
4059         ret = rbd_obj_request_submit(osdc, obj_request);
4060         if (ret)
4061                 goto out;
4062         ret = rbd_obj_request_wait(obj_request);
4063         if (ret)
4064                 goto out;
4065
4066         ret = obj_request->result;
4067         if (ret < 0)
4068                 goto out;
4069
4070         rbd_assert(obj_request->xferred < (u64)INT_MAX);
4071         ret = (int)obj_request->xferred;
4072         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4073 out:
4074         if (obj_request)
4075                 rbd_obj_request_put(obj_request);
4076         else
4077                 ceph_release_page_vector(pages, page_count);
4078
4079         return ret;
4080 }
4081
4082 /*
4083  * lock_rwsem must be held for read
4084  */
4085 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4086 {
4087         DEFINE_WAIT(wait);
4088
4089         do {
4090                 /*
4091                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
4092                  * and cancel_delayed_work() in wake_requests().
4093                  */
4094                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4095                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4096                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4097                                           TASK_UNINTERRUPTIBLE);
4098                 up_read(&rbd_dev->lock_rwsem);
4099                 schedule();
4100                 down_read(&rbd_dev->lock_rwsem);
4101         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
4102         finish_wait(&rbd_dev->lock_waitq, &wait);
4103 }
4104
4105 static void rbd_queue_workfn(struct work_struct *work)
4106 {
4107         struct request *rq = blk_mq_rq_from_pdu(work);
4108         struct rbd_device *rbd_dev = rq->q->queuedata;
4109         struct rbd_img_request *img_request;
4110         struct ceph_snap_context *snapc = NULL;
4111         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4112         u64 length = blk_rq_bytes(rq);
4113         enum obj_operation_type op_type;
4114         u64 mapping_size;
4115         bool must_be_locked;
4116         int result;
4117
4118         if (rq->cmd_type != REQ_TYPE_FS) {
4119                 dout("%s: non-fs request type %d\n", __func__,
4120                         (int) rq->cmd_type);
4121                 result = -EIO;
4122                 goto err;
4123         }
4124
4125         if (req_op(rq) == REQ_OP_DISCARD)
4126                 op_type = OBJ_OP_DISCARD;
4127         else if (req_op(rq) == REQ_OP_WRITE)
4128                 op_type = OBJ_OP_WRITE;
4129         else
4130                 op_type = OBJ_OP_READ;
4131
4132         /* Ignore/skip any zero-length requests */
4133
4134         if (!length) {
4135                 dout("%s: zero-length request\n", __func__);
4136                 result = 0;
4137                 goto err_rq;
4138         }
4139
4140         /* Only reads are allowed to a read-only device */
4141
4142         if (op_type != OBJ_OP_READ) {
4143                 if (rbd_dev->mapping.read_only) {
4144                         result = -EROFS;
4145                         goto err_rq;
4146                 }
4147                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4148         }
4149
4150         /*
4151          * Quit early if the mapped snapshot no longer exists.  It's
4152          * still possible the snapshot will have disappeared by the
4153          * time our request arrives at the osd, but there's no sense in
4154          * sending it if we already know.
4155          */
4156         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4157                 dout("request for non-existent snapshot");
4158                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4159                 result = -ENXIO;
4160                 goto err_rq;
4161         }
4162
4163         if (offset && length > U64_MAX - offset + 1) {
4164                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4165                          length);
4166                 result = -EINVAL;
4167                 goto err_rq;    /* Shouldn't happen */
4168         }
4169
4170         blk_mq_start_request(rq);
4171
4172         down_read(&rbd_dev->header_rwsem);
4173         mapping_size = rbd_dev->mapping.size;
4174         if (op_type != OBJ_OP_READ) {
4175                 snapc = rbd_dev->header.snapc;
4176                 ceph_get_snap_context(snapc);
4177                 must_be_locked = rbd_is_lock_supported(rbd_dev);
4178         } else {
4179                 must_be_locked = rbd_dev->opts->lock_on_read &&
4180                                         rbd_is_lock_supported(rbd_dev);
4181         }
4182         up_read(&rbd_dev->header_rwsem);
4183
4184         if (offset + length > mapping_size) {
4185                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4186                          length, mapping_size);
4187                 result = -EIO;
4188                 goto err_rq;
4189         }
4190
4191         if (must_be_locked) {
4192                 down_read(&rbd_dev->lock_rwsem);
4193                 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4194                         rbd_wait_state_locked(rbd_dev);
4195         }
4196
4197         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4198                                              snapc);
4199         if (!img_request) {
4200                 result = -ENOMEM;
4201                 goto err_unlock;
4202         }
4203         img_request->rq = rq;
4204         snapc = NULL; /* img_request consumes a ref */
4205
4206         if (op_type == OBJ_OP_DISCARD)
4207                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4208                                               NULL);
4209         else
4210                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4211                                               rq->bio);
4212         if (result)
4213                 goto err_img_request;
4214
4215         result = rbd_img_request_submit(img_request);
4216         if (result)
4217                 goto err_img_request;
4218
4219         if (must_be_locked)
4220                 up_read(&rbd_dev->lock_rwsem);
4221         return;
4222
4223 err_img_request:
4224         rbd_img_request_put(img_request);
4225 err_unlock:
4226         if (must_be_locked)
4227                 up_read(&rbd_dev->lock_rwsem);
4228 err_rq:
4229         if (result)
4230                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4231                          obj_op_name(op_type), length, offset, result);
4232         ceph_put_snap_context(snapc);
4233 err:
4234         blk_mq_end_request(rq, result);
4235 }
4236
4237 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4238                 const struct blk_mq_queue_data *bd)
4239 {
4240         struct request *rq = bd->rq;
4241         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4242
4243         queue_work(rbd_wq, work);
4244         return BLK_MQ_RQ_QUEUE_OK;
4245 }
4246
4247 static void rbd_free_disk(struct rbd_device *rbd_dev)
4248 {
4249         struct gendisk *disk = rbd_dev->disk;
4250
4251         if (!disk)
4252                 return;
4253
4254         rbd_dev->disk = NULL;
4255         if (disk->flags & GENHD_FL_UP) {
4256                 del_gendisk(disk);
4257                 if (disk->queue)
4258                         blk_cleanup_queue(disk->queue);
4259                 blk_mq_free_tag_set(&rbd_dev->tag_set);
4260         }
4261         put_disk(disk);
4262 }
4263
4264 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4265                                 const char *object_name,
4266                                 u64 offset, u64 length, void *buf)
4267
4268 {
4269         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4270         struct rbd_obj_request *obj_request;
4271         struct page **pages = NULL;
4272         u32 page_count;
4273         size_t size;
4274         int ret;
4275
4276         page_count = (u32) calc_pages_for(offset, length);
4277         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4278         if (IS_ERR(pages))
4279                 return PTR_ERR(pages);
4280
4281         ret = -ENOMEM;
4282         obj_request = rbd_obj_request_create(object_name, offset, length,
4283                                                         OBJ_REQUEST_PAGES);
4284         if (!obj_request)
4285                 goto out;
4286
4287         obj_request->pages = pages;
4288         obj_request->page_count = page_count;
4289
4290         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4291                                                   obj_request);
4292         if (!obj_request->osd_req)
4293                 goto out;
4294
4295         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4296                                         offset, length, 0, 0);
4297         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4298                                         obj_request->pages,
4299                                         obj_request->length,
4300                                         obj_request->offset & ~PAGE_MASK,
4301                                         false, false);
4302         rbd_osd_req_format_read(obj_request);
4303
4304         ret = rbd_obj_request_submit(osdc, obj_request);
4305         if (ret)
4306                 goto out;
4307         ret = rbd_obj_request_wait(obj_request);
4308         if (ret)
4309                 goto out;
4310
4311         ret = obj_request->result;
4312         if (ret < 0)
4313                 goto out;
4314
4315         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4316         size = (size_t) obj_request->xferred;
4317         ceph_copy_from_page_vector(pages, buf, 0, size);
4318         rbd_assert(size <= (size_t)INT_MAX);
4319         ret = (int)size;
4320 out:
4321         if (obj_request)
4322                 rbd_obj_request_put(obj_request);
4323         else
4324                 ceph_release_page_vector(pages, page_count);
4325
4326         return ret;
4327 }
4328
4329 /*
4330  * Read the complete header for the given rbd device.  On successful
4331  * return, the rbd_dev->header field will contain up-to-date
4332  * information about the image.
4333  */
4334 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4335 {
4336         struct rbd_image_header_ondisk *ondisk = NULL;
4337         u32 snap_count = 0;
4338         u64 names_size = 0;
4339         u32 want_count;
4340         int ret;
4341
4342         /*
4343          * The complete header will include an array of its 64-bit
4344          * snapshot ids, followed by the names of those snapshots as
4345          * a contiguous block of NUL-terminated strings.  Note that
4346          * the number of snapshots could change by the time we read
4347          * it in, in which case we re-read it.
4348          */
4349         do {
4350                 size_t size;
4351
4352                 kfree(ondisk);
4353
4354                 size = sizeof (*ondisk);
4355                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4356                 size += names_size;
4357                 ondisk = kmalloc(size, GFP_KERNEL);
4358                 if (!ondisk)
4359                         return -ENOMEM;
4360
4361                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4362                                        0, size, ondisk);
4363                 if (ret < 0)
4364                         goto out;
4365                 if ((size_t)ret < size) {
4366                         ret = -ENXIO;
4367                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4368                                 size, ret);
4369                         goto out;
4370                 }
4371                 if (!rbd_dev_ondisk_valid(ondisk)) {
4372                         ret = -ENXIO;
4373                         rbd_warn(rbd_dev, "invalid header");
4374                         goto out;
4375                 }
4376
4377                 names_size = le64_to_cpu(ondisk->snap_names_len);
4378                 want_count = snap_count;
4379                 snap_count = le32_to_cpu(ondisk->snap_count);
4380         } while (snap_count != want_count);
4381
4382         ret = rbd_header_from_disk(rbd_dev, ondisk);
4383 out:
4384         kfree(ondisk);
4385
4386         return ret;
4387 }
4388
4389 /*
4390  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4391  * has disappeared from the (just updated) snapshot context.
4392  */
4393 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4394 {
4395         u64 snap_id;
4396
4397         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4398                 return;
4399
4400         snap_id = rbd_dev->spec->snap_id;
4401         if (snap_id == CEPH_NOSNAP)
4402                 return;
4403
4404         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4405                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4406 }
4407
4408 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4409 {
4410         sector_t size;
4411
4412         /*
4413          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4414          * try to update its size.  If REMOVING is set, updating size
4415          * is just useless work since the device can't be opened.
4416          */
4417         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4418             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4419                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4420                 dout("setting size to %llu sectors", (unsigned long long)size);
4421                 set_capacity(rbd_dev->disk, size);
4422                 revalidate_disk(rbd_dev->disk);
4423         }
4424 }
4425
4426 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4427 {
4428         u64 mapping_size;
4429         int ret;
4430
4431         down_write(&rbd_dev->header_rwsem);
4432         mapping_size = rbd_dev->mapping.size;
4433
4434         ret = rbd_dev_header_info(rbd_dev);
4435         if (ret)
4436                 goto out;
4437
4438         /*
4439          * If there is a parent, see if it has disappeared due to the
4440          * mapped image getting flattened.
4441          */
4442         if (rbd_dev->parent) {
4443                 ret = rbd_dev_v2_parent_info(rbd_dev);
4444                 if (ret)
4445                         goto out;
4446         }
4447
4448         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4449                 rbd_dev->mapping.size = rbd_dev->header.image_size;
4450         } else {
4451                 /* validate mapped snapshot's EXISTS flag */
4452                 rbd_exists_validate(rbd_dev);
4453         }
4454
4455 out:
4456         up_write(&rbd_dev->header_rwsem);
4457         if (!ret && mapping_size != rbd_dev->mapping.size)
4458                 rbd_dev_update_size(rbd_dev);
4459
4460         return ret;
4461 }
4462
4463 static int rbd_init_request(void *data, struct request *rq,
4464                 unsigned int hctx_idx, unsigned int request_idx,
4465                 unsigned int numa_node)
4466 {
4467         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4468
4469         INIT_WORK(work, rbd_queue_workfn);
4470         return 0;
4471 }
4472
4473 static struct blk_mq_ops rbd_mq_ops = {
4474         .queue_rq       = rbd_queue_rq,
4475         .map_queue      = blk_mq_map_queue,
4476         .init_request   = rbd_init_request,
4477 };
4478
4479 static int rbd_init_disk(struct rbd_device *rbd_dev)
4480 {
4481         struct gendisk *disk;
4482         struct request_queue *q;
4483         u64 segment_size;
4484         int err;
4485
4486         /* create gendisk info */
4487         disk = alloc_disk(single_major ?
4488                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4489                           RBD_MINORS_PER_MAJOR);
4490         if (!disk)
4491                 return -ENOMEM;
4492
4493         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4494                  rbd_dev->dev_id);
4495         disk->major = rbd_dev->major;
4496         disk->first_minor = rbd_dev->minor;
4497         if (single_major)
4498                 disk->flags |= GENHD_FL_EXT_DEVT;
4499         disk->fops = &rbd_bd_ops;
4500         disk->private_data = rbd_dev;
4501
4502         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4503         rbd_dev->tag_set.ops = &rbd_mq_ops;
4504         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4505         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4506         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4507         rbd_dev->tag_set.nr_hw_queues = 1;
4508         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4509
4510         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4511         if (err)
4512                 goto out_disk;
4513
4514         q = blk_mq_init_queue(&rbd_dev->tag_set);
4515         if (IS_ERR(q)) {
4516                 err = PTR_ERR(q);
4517                 goto out_tag_set;
4518         }
4519
4520         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4521         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4522
4523         /* set io sizes to object size */
4524         segment_size = rbd_obj_bytes(&rbd_dev->header);
4525         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4526         q->limits.max_sectors = queue_max_hw_sectors(q);
4527         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4528         blk_queue_max_segment_size(q, segment_size);
4529         blk_queue_io_min(q, segment_size);
4530         blk_queue_io_opt(q, segment_size);
4531
4532         /* enable the discard support */
4533         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4534         q->limits.discard_granularity = segment_size;
4535         q->limits.discard_alignment = segment_size;
4536         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4537         q->limits.discard_zeroes_data = 1;
4538
4539         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4540                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4541
4542         disk->queue = q;
4543
4544         q->queuedata = rbd_dev;
4545
4546         rbd_dev->disk = disk;
4547
4548         return 0;
4549 out_tag_set:
4550         blk_mq_free_tag_set(&rbd_dev->tag_set);
4551 out_disk:
4552         put_disk(disk);
4553         return err;
4554 }
4555
4556 /*
4557   sysfs
4558 */
4559
4560 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4561 {
4562         return container_of(dev, struct rbd_device, dev);
4563 }
4564
4565 static ssize_t rbd_size_show(struct device *dev,
4566                              struct device_attribute *attr, char *buf)
4567 {
4568         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4569
4570         return sprintf(buf, "%llu\n",
4571                 (unsigned long long)rbd_dev->mapping.size);
4572 }
4573
4574 /*
4575  * Note this shows the features for whatever's mapped, which is not
4576  * necessarily the base image.
4577  */
4578 static ssize_t rbd_features_show(struct device *dev,
4579                              struct device_attribute *attr, char *buf)
4580 {
4581         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4582
4583         return sprintf(buf, "0x%016llx\n",
4584                         (unsigned long long)rbd_dev->mapping.features);
4585 }
4586
4587 static ssize_t rbd_major_show(struct device *dev,
4588                               struct device_attribute *attr, char *buf)
4589 {
4590         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4591
4592         if (rbd_dev->major)
4593                 return sprintf(buf, "%d\n", rbd_dev->major);
4594
4595         return sprintf(buf, "(none)\n");
4596 }
4597
4598 static ssize_t rbd_minor_show(struct device *dev,
4599                               struct device_attribute *attr, char *buf)
4600 {
4601         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4602
4603         return sprintf(buf, "%d\n", rbd_dev->minor);
4604 }
4605
4606 static ssize_t rbd_client_addr_show(struct device *dev,
4607                                     struct device_attribute *attr, char *buf)
4608 {
4609         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4610         struct ceph_entity_addr *client_addr =
4611             ceph_client_addr(rbd_dev->rbd_client->client);
4612
4613         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4614                        le32_to_cpu(client_addr->nonce));
4615 }
4616
4617 static ssize_t rbd_client_id_show(struct device *dev,
4618                                   struct device_attribute *attr, char *buf)
4619 {
4620         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4621
4622         return sprintf(buf, "client%lld\n",
4623                        ceph_client_gid(rbd_dev->rbd_client->client));
4624 }
4625
4626 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4627                                      struct device_attribute *attr, char *buf)
4628 {
4629         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4630
4631         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4632 }
4633
4634 static ssize_t rbd_config_info_show(struct device *dev,
4635                                     struct device_attribute *attr, char *buf)
4636 {
4637         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4638
4639         return sprintf(buf, "%s\n", rbd_dev->config_info);
4640 }
4641
4642 static ssize_t rbd_pool_show(struct device *dev,
4643                              struct device_attribute *attr, char *buf)
4644 {
4645         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4646
4647         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4648 }
4649
4650 static ssize_t rbd_pool_id_show(struct device *dev,
4651                              struct device_attribute *attr, char *buf)
4652 {
4653         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4654
4655         return sprintf(buf, "%llu\n",
4656                         (unsigned long long) rbd_dev->spec->pool_id);
4657 }
4658
4659 static ssize_t rbd_name_show(struct device *dev,
4660                              struct device_attribute *attr, char *buf)
4661 {
4662         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4663
4664         if (rbd_dev->spec->image_name)
4665                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4666
4667         return sprintf(buf, "(unknown)\n");
4668 }
4669
4670 static ssize_t rbd_image_id_show(struct device *dev,
4671                              struct device_attribute *attr, char *buf)
4672 {
4673         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4674
4675         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4676 }
4677
4678 /*
4679  * Shows the name of the currently-mapped snapshot (or
4680  * RBD_SNAP_HEAD_NAME for the base image).
4681  */
4682 static ssize_t rbd_snap_show(struct device *dev,
4683                              struct device_attribute *attr,
4684                              char *buf)
4685 {
4686         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4687
4688         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4689 }
4690
4691 static ssize_t rbd_snap_id_show(struct device *dev,
4692                                 struct device_attribute *attr, char *buf)
4693 {
4694         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4695
4696         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4697 }
4698
4699 /*
4700  * For a v2 image, shows the chain of parent images, separated by empty
4701  * lines.  For v1 images or if there is no parent, shows "(no parent
4702  * image)".
4703  */
4704 static ssize_t rbd_parent_show(struct device *dev,
4705                                struct device_attribute *attr,
4706                                char *buf)
4707 {
4708         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4709         ssize_t count = 0;
4710
4711         if (!rbd_dev->parent)
4712                 return sprintf(buf, "(no parent image)\n");
4713
4714         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4715                 struct rbd_spec *spec = rbd_dev->parent_spec;
4716
4717                 count += sprintf(&buf[count], "%s"
4718                             "pool_id %llu\npool_name %s\n"
4719                             "image_id %s\nimage_name %s\n"
4720                             "snap_id %llu\nsnap_name %s\n"
4721                             "overlap %llu\n",
4722                             !count ? "" : "\n", /* first? */
4723                             spec->pool_id, spec->pool_name,
4724                             spec->image_id, spec->image_name ?: "(unknown)",
4725                             spec->snap_id, spec->snap_name,
4726                             rbd_dev->parent_overlap);
4727         }
4728
4729         return count;
4730 }
4731
4732 static ssize_t rbd_image_refresh(struct device *dev,
4733                                  struct device_attribute *attr,
4734                                  const char *buf,
4735                                  size_t size)
4736 {
4737         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4738         int ret;
4739
4740         ret = rbd_dev_refresh(rbd_dev);
4741         if (ret)
4742                 return ret;
4743
4744         return size;
4745 }
4746
4747 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4748 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4749 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4750 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4751 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4752 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4753 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4754 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4755 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4756 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4757 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4758 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4759 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4760 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4761 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4762 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4763
4764 static struct attribute *rbd_attrs[] = {
4765         &dev_attr_size.attr,
4766         &dev_attr_features.attr,
4767         &dev_attr_major.attr,
4768         &dev_attr_minor.attr,
4769         &dev_attr_client_addr.attr,
4770         &dev_attr_client_id.attr,
4771         &dev_attr_cluster_fsid.attr,
4772         &dev_attr_config_info.attr,
4773         &dev_attr_pool.attr,
4774         &dev_attr_pool_id.attr,
4775         &dev_attr_name.attr,
4776         &dev_attr_image_id.attr,
4777         &dev_attr_current_snap.attr,
4778         &dev_attr_snap_id.attr,
4779         &dev_attr_parent.attr,
4780         &dev_attr_refresh.attr,
4781         NULL
4782 };
4783
4784 static struct attribute_group rbd_attr_group = {
4785         .attrs = rbd_attrs,
4786 };
4787
4788 static const struct attribute_group *rbd_attr_groups[] = {
4789         &rbd_attr_group,
4790         NULL
4791 };
4792
4793 static void rbd_dev_release(struct device *dev);
4794
4795 static struct device_type rbd_device_type = {
4796         .name           = "rbd",
4797         .groups         = rbd_attr_groups,
4798         .release        = rbd_dev_release,
4799 };
4800
4801 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4802 {
4803         kref_get(&spec->kref);
4804
4805         return spec;
4806 }
4807
4808 static void rbd_spec_free(struct kref *kref);
4809 static void rbd_spec_put(struct rbd_spec *spec)
4810 {
4811         if (spec)
4812                 kref_put(&spec->kref, rbd_spec_free);
4813 }
4814
4815 static struct rbd_spec *rbd_spec_alloc(void)
4816 {
4817         struct rbd_spec *spec;
4818
4819         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4820         if (!spec)
4821                 return NULL;
4822
4823         spec->pool_id = CEPH_NOPOOL;
4824         spec->snap_id = CEPH_NOSNAP;
4825         kref_init(&spec->kref);
4826
4827         return spec;
4828 }
4829
4830 static void rbd_spec_free(struct kref *kref)
4831 {
4832         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4833
4834         kfree(spec->pool_name);
4835         kfree(spec->image_id);
4836         kfree(spec->image_name);
4837         kfree(spec->snap_name);
4838         kfree(spec);
4839 }
4840
4841 static void rbd_dev_free(struct rbd_device *rbd_dev)
4842 {
4843         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4844         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4845
4846         ceph_oid_destroy(&rbd_dev->header_oid);
4847         ceph_oloc_destroy(&rbd_dev->header_oloc);
4848         kfree(rbd_dev->config_info);
4849
4850         rbd_put_client(rbd_dev->rbd_client);
4851         rbd_spec_put(rbd_dev->spec);
4852         kfree(rbd_dev->opts);
4853         kfree(rbd_dev);
4854 }
4855
4856 static void rbd_dev_release(struct device *dev)
4857 {
4858         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4859         bool need_put = !!rbd_dev->opts;
4860
4861         if (need_put) {
4862                 destroy_workqueue(rbd_dev->task_wq);
4863                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4864         }
4865
4866         rbd_dev_free(rbd_dev);
4867
4868         /*
4869          * This is racy, but way better than putting module outside of
4870          * the release callback.  The race window is pretty small, so
4871          * doing something similar to dm (dm-builtin.c) is overkill.
4872          */
4873         if (need_put)
4874                 module_put(THIS_MODULE);
4875 }
4876
4877 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4878                                            struct rbd_spec *spec)
4879 {
4880         struct rbd_device *rbd_dev;
4881
4882         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4883         if (!rbd_dev)
4884                 return NULL;
4885
4886         spin_lock_init(&rbd_dev->lock);
4887         INIT_LIST_HEAD(&rbd_dev->node);
4888         init_rwsem(&rbd_dev->header_rwsem);
4889
4890         ceph_oid_init(&rbd_dev->header_oid);
4891         ceph_oloc_init(&rbd_dev->header_oloc);
4892
4893         mutex_init(&rbd_dev->watch_mutex);
4894         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4895         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4896
4897         init_rwsem(&rbd_dev->lock_rwsem);
4898         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4899         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4900         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4901         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4902         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4903         init_waitqueue_head(&rbd_dev->lock_waitq);
4904
4905         rbd_dev->dev.bus = &rbd_bus_type;
4906         rbd_dev->dev.type = &rbd_device_type;
4907         rbd_dev->dev.parent = &rbd_root_dev;
4908         device_initialize(&rbd_dev->dev);
4909
4910         rbd_dev->rbd_client = rbdc;
4911         rbd_dev->spec = spec;
4912
4913         rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4914         rbd_dev->layout.stripe_count = 1;
4915         rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4916         rbd_dev->layout.pool_id = spec->pool_id;
4917         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4918
4919         return rbd_dev;
4920 }
4921
4922 /*
4923  * Create a mapping rbd_dev.
4924  */
4925 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4926                                          struct rbd_spec *spec,
4927                                          struct rbd_options *opts)
4928 {
4929         struct rbd_device *rbd_dev;
4930
4931         rbd_dev = __rbd_dev_create(rbdc, spec);
4932         if (!rbd_dev)
4933                 return NULL;
4934
4935         rbd_dev->opts = opts;
4936
4937         /* get an id and fill in device name */
4938         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4939                                          minor_to_rbd_dev_id(1 << MINORBITS),
4940                                          GFP_KERNEL);
4941         if (rbd_dev->dev_id < 0)
4942                 goto fail_rbd_dev;
4943
4944         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4945         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4946                                                    rbd_dev->name);
4947         if (!rbd_dev->task_wq)
4948                 goto fail_dev_id;
4949
4950         /* we have a ref from do_rbd_add() */
4951         __module_get(THIS_MODULE);
4952
4953         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4954         return rbd_dev;
4955
4956 fail_dev_id:
4957         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4958 fail_rbd_dev:
4959         rbd_dev_free(rbd_dev);
4960         return NULL;
4961 }
4962
4963 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4964 {
4965         if (rbd_dev)
4966                 put_device(&rbd_dev->dev);
4967 }
4968
4969 /*
4970  * Get the size and object order for an image snapshot, or if
4971  * snap_id is CEPH_NOSNAP, gets this information for the base
4972  * image.
4973  */
4974 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4975                                 u8 *order, u64 *snap_size)
4976 {
4977         __le64 snapid = cpu_to_le64(snap_id);
4978         int ret;
4979         struct {
4980                 u8 order;
4981                 __le64 size;
4982         } __attribute__ ((packed)) size_buf = { 0 };
4983
4984         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4985                                 "rbd", "get_size",
4986                                 &snapid, sizeof (snapid),
4987                                 &size_buf, sizeof (size_buf));
4988         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4989         if (ret < 0)
4990                 return ret;
4991         if (ret < sizeof (size_buf))
4992                 return -ERANGE;
4993
4994         if (order) {
4995                 *order = size_buf.order;
4996                 dout("  order %u", (unsigned int)*order);
4997         }
4998         *snap_size = le64_to_cpu(size_buf.size);
4999
5000         dout("  snap_id 0x%016llx snap_size = %llu\n",
5001                 (unsigned long long)snap_id,
5002                 (unsigned long long)*snap_size);
5003
5004         return 0;
5005 }
5006
5007 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5008 {
5009         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5010                                         &rbd_dev->header.obj_order,
5011                                         &rbd_dev->header.image_size);
5012 }
5013
5014 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5015 {
5016         void *reply_buf;
5017         int ret;
5018         void *p;
5019
5020         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
5021         if (!reply_buf)
5022                 return -ENOMEM;
5023
5024         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5025                                 "rbd", "get_object_prefix", NULL, 0,
5026                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
5027         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5028         if (ret < 0)
5029                 goto out;
5030
5031         p = reply_buf;
5032         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5033                                                 p + ret, NULL, GFP_NOIO);
5034         ret = 0;
5035
5036         if (IS_ERR(rbd_dev->header.object_prefix)) {
5037                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5038                 rbd_dev->header.object_prefix = NULL;
5039         } else {
5040                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5041         }
5042 out:
5043         kfree(reply_buf);
5044
5045         return ret;
5046 }
5047
5048 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5049                 u64 *snap_features)
5050 {
5051         __le64 snapid = cpu_to_le64(snap_id);
5052         struct {
5053                 __le64 features;
5054                 __le64 incompat;
5055         } __attribute__ ((packed)) features_buf = { 0 };
5056         u64 unsup;
5057         int ret;
5058
5059         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5060                                 "rbd", "get_features",
5061                                 &snapid, sizeof (snapid),
5062                                 &features_buf, sizeof (features_buf));
5063         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5064         if (ret < 0)
5065                 return ret;
5066         if (ret < sizeof (features_buf))
5067                 return -ERANGE;
5068
5069         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5070         if (unsup) {
5071                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5072                          unsup);
5073                 return -ENXIO;
5074         }
5075
5076         *snap_features = le64_to_cpu(features_buf.features);
5077
5078         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5079                 (unsigned long long)snap_id,
5080                 (unsigned long long)*snap_features,
5081                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5082
5083         return 0;
5084 }
5085
5086 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5087 {
5088         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5089                                                 &rbd_dev->header.features);
5090 }
5091
5092 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5093 {
5094         struct rbd_spec *parent_spec;
5095         size_t size;
5096         void *reply_buf = NULL;
5097         __le64 snapid;
5098         void *p;
5099         void *end;
5100         u64 pool_id;
5101         char *image_id;
5102         u64 snap_id;
5103         u64 overlap;
5104         int ret;
5105
5106         parent_spec = rbd_spec_alloc();
5107         if (!parent_spec)
5108                 return -ENOMEM;
5109
5110         size = sizeof (__le64) +                                /* pool_id */
5111                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
5112                 sizeof (__le64) +                               /* snap_id */
5113                 sizeof (__le64);                                /* overlap */
5114         reply_buf = kmalloc(size, GFP_KERNEL);
5115         if (!reply_buf) {
5116                 ret = -ENOMEM;
5117                 goto out_err;
5118         }
5119
5120         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5121         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5122                                 "rbd", "get_parent",
5123                                 &snapid, sizeof (snapid),
5124                                 reply_buf, size);
5125         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5126         if (ret < 0)
5127                 goto out_err;
5128
5129         p = reply_buf;
5130         end = reply_buf + ret;
5131         ret = -ERANGE;
5132         ceph_decode_64_safe(&p, end, pool_id, out_err);
5133         if (pool_id == CEPH_NOPOOL) {
5134                 /*
5135                  * Either the parent never existed, or we have
5136                  * record of it but the image got flattened so it no
5137                  * longer has a parent.  When the parent of a
5138                  * layered image disappears we immediately set the
5139                  * overlap to 0.  The effect of this is that all new
5140                  * requests will be treated as if the image had no
5141                  * parent.
5142                  */
5143                 if (rbd_dev->parent_overlap) {
5144                         rbd_dev->parent_overlap = 0;
5145                         rbd_dev_parent_put(rbd_dev);
5146                         pr_info("%s: clone image has been flattened\n",
5147                                 rbd_dev->disk->disk_name);
5148                 }
5149
5150                 goto out;       /* No parent?  No problem. */
5151         }
5152
5153         /* The ceph file layout needs to fit pool id in 32 bits */
5154
5155         ret = -EIO;
5156         if (pool_id > (u64)U32_MAX) {
5157                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5158                         (unsigned long long)pool_id, U32_MAX);
5159                 goto out_err;
5160         }
5161
5162         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5163         if (IS_ERR(image_id)) {
5164                 ret = PTR_ERR(image_id);
5165                 goto out_err;
5166         }
5167         ceph_decode_64_safe(&p, end, snap_id, out_err);
5168         ceph_decode_64_safe(&p, end, overlap, out_err);
5169
5170         /*
5171          * The parent won't change (except when the clone is
5172          * flattened, already handled that).  So we only need to
5173          * record the parent spec we have not already done so.
5174          */
5175         if (!rbd_dev->parent_spec) {
5176                 parent_spec->pool_id = pool_id;
5177                 parent_spec->image_id = image_id;
5178                 parent_spec->snap_id = snap_id;
5179                 rbd_dev->parent_spec = parent_spec;
5180                 parent_spec = NULL;     /* rbd_dev now owns this */
5181         } else {
5182                 kfree(image_id);
5183         }
5184
5185         /*
5186          * We always update the parent overlap.  If it's zero we issue
5187          * a warning, as we will proceed as if there was no parent.
5188          */
5189         if (!overlap) {
5190                 if (parent_spec) {
5191                         /* refresh, careful to warn just once */
5192                         if (rbd_dev->parent_overlap)
5193                                 rbd_warn(rbd_dev,
5194                                     "clone now standalone (overlap became 0)");
5195                 } else {
5196                         /* initial probe */
5197                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5198                 }
5199         }
5200         rbd_dev->parent_overlap = overlap;
5201
5202 out:
5203         ret = 0;
5204 out_err:
5205         kfree(reply_buf);
5206         rbd_spec_put(parent_spec);
5207
5208         return ret;
5209 }
5210
5211 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5212 {
5213         struct {
5214                 __le64 stripe_unit;
5215                 __le64 stripe_count;
5216         } __attribute__ ((packed)) striping_info_buf = { 0 };
5217         size_t size = sizeof (striping_info_buf);
5218         void *p;
5219         u64 obj_size;
5220         u64 stripe_unit;
5221         u64 stripe_count;
5222         int ret;
5223
5224         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5225                                 "rbd", "get_stripe_unit_count", NULL, 0,
5226                                 (char *)&striping_info_buf, size);
5227         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5228         if (ret < 0)
5229                 return ret;
5230         if (ret < size)
5231                 return -ERANGE;
5232
5233         /*
5234          * We don't actually support the "fancy striping" feature
5235          * (STRIPINGV2) yet, but if the striping sizes are the
5236          * defaults the behavior is the same as before.  So find
5237          * out, and only fail if the image has non-default values.
5238          */
5239         ret = -EINVAL;
5240         obj_size = (u64)1 << rbd_dev->header.obj_order;
5241         p = &striping_info_buf;
5242         stripe_unit = ceph_decode_64(&p);
5243         if (stripe_unit != obj_size) {
5244                 rbd_warn(rbd_dev, "unsupported stripe unit "
5245                                 "(got %llu want %llu)",
5246                                 stripe_unit, obj_size);
5247                 return -EINVAL;
5248         }
5249         stripe_count = ceph_decode_64(&p);
5250         if (stripe_count != 1) {
5251                 rbd_warn(rbd_dev, "unsupported stripe count "
5252                                 "(got %llu want 1)", stripe_count);
5253                 return -EINVAL;
5254         }
5255         rbd_dev->header.stripe_unit = stripe_unit;
5256         rbd_dev->header.stripe_count = stripe_count;
5257
5258         return 0;
5259 }
5260
5261 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5262 {
5263         size_t image_id_size;
5264         char *image_id;
5265         void *p;
5266         void *end;
5267         size_t size;
5268         void *reply_buf = NULL;
5269         size_t len = 0;
5270         char *image_name = NULL;
5271         int ret;
5272
5273         rbd_assert(!rbd_dev->spec->image_name);
5274
5275         len = strlen(rbd_dev->spec->image_id);
5276         image_id_size = sizeof (__le32) + len;
5277         image_id = kmalloc(image_id_size, GFP_KERNEL);
5278         if (!image_id)
5279                 return NULL;
5280
5281         p = image_id;
5282         end = image_id + image_id_size;
5283         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5284
5285         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5286         reply_buf = kmalloc(size, GFP_KERNEL);
5287         if (!reply_buf)
5288                 goto out;
5289
5290         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5291                                 "rbd", "dir_get_name",
5292                                 image_id, image_id_size,
5293                                 reply_buf, size);
5294         if (ret < 0)
5295                 goto out;
5296         p = reply_buf;
5297         end = reply_buf + ret;
5298
5299         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5300         if (IS_ERR(image_name))
5301                 image_name = NULL;
5302         else
5303                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5304 out:
5305         kfree(reply_buf);
5306         kfree(image_id);
5307
5308         return image_name;
5309 }
5310
5311 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5312 {
5313         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5314         const char *snap_name;
5315         u32 which = 0;
5316
5317         /* Skip over names until we find the one we are looking for */
5318
5319         snap_name = rbd_dev->header.snap_names;
5320         while (which < snapc->num_snaps) {
5321                 if (!strcmp(name, snap_name))
5322                         return snapc->snaps[which];
5323                 snap_name += strlen(snap_name) + 1;
5324                 which++;
5325         }
5326         return CEPH_NOSNAP;
5327 }
5328
5329 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5330 {
5331         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5332         u32 which;
5333         bool found = false;
5334         u64 snap_id;
5335
5336         for (which = 0; !found && which < snapc->num_snaps; which++) {
5337                 const char *snap_name;
5338
5339                 snap_id = snapc->snaps[which];
5340                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5341                 if (IS_ERR(snap_name)) {
5342                         /* ignore no-longer existing snapshots */
5343                         if (PTR_ERR(snap_name) == -ENOENT)
5344                                 continue;
5345                         else
5346                                 break;
5347                 }
5348                 found = !strcmp(name, snap_name);
5349                 kfree(snap_name);
5350         }
5351         return found ? snap_id : CEPH_NOSNAP;
5352 }
5353
5354 /*
5355  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5356  * no snapshot by that name is found, or if an error occurs.
5357  */
5358 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5359 {
5360         if (rbd_dev->image_format == 1)
5361                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5362
5363         return rbd_v2_snap_id_by_name(rbd_dev, name);
5364 }
5365
5366 /*
5367  * An image being mapped will have everything but the snap id.
5368  */
5369 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5370 {
5371         struct rbd_spec *spec = rbd_dev->spec;
5372
5373         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5374         rbd_assert(spec->image_id && spec->image_name);
5375         rbd_assert(spec->snap_name);
5376
5377         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5378                 u64 snap_id;
5379
5380                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5381                 if (snap_id == CEPH_NOSNAP)
5382                         return -ENOENT;
5383
5384                 spec->snap_id = snap_id;
5385         } else {
5386                 spec->snap_id = CEPH_NOSNAP;
5387         }
5388
5389         return 0;
5390 }
5391
5392 /*
5393  * A parent image will have all ids but none of the names.
5394  *
5395  * All names in an rbd spec are dynamically allocated.  It's OK if we
5396  * can't figure out the name for an image id.
5397  */
5398 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5399 {
5400         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5401         struct rbd_spec *spec = rbd_dev->spec;
5402         const char *pool_name;
5403         const char *image_name;
5404         const char *snap_name;
5405         int ret;
5406
5407         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5408         rbd_assert(spec->image_id);
5409         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5410
5411         /* Get the pool name; we have to make our own copy of this */
5412
5413         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5414         if (!pool_name) {
5415                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5416                 return -EIO;
5417         }
5418         pool_name = kstrdup(pool_name, GFP_KERNEL);
5419         if (!pool_name)
5420                 return -ENOMEM;
5421
5422         /* Fetch the image name; tolerate failure here */
5423
5424         image_name = rbd_dev_image_name(rbd_dev);
5425         if (!image_name)
5426                 rbd_warn(rbd_dev, "unable to get image name");
5427
5428         /* Fetch the snapshot name */
5429
5430         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5431         if (IS_ERR(snap_name)) {
5432                 ret = PTR_ERR(snap_name);
5433                 goto out_err;
5434         }
5435
5436         spec->pool_name = pool_name;
5437         spec->image_name = image_name;
5438         spec->snap_name = snap_name;
5439
5440         return 0;
5441
5442 out_err:
5443         kfree(image_name);
5444         kfree(pool_name);
5445         return ret;
5446 }
5447
5448 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5449 {
5450         size_t size;
5451         int ret;
5452         void *reply_buf;
5453         void *p;
5454         void *end;
5455         u64 seq;
5456         u32 snap_count;
5457         struct ceph_snap_context *snapc;
5458         u32 i;
5459
5460         /*
5461          * We'll need room for the seq value (maximum snapshot id),
5462          * snapshot count, and array of that many snapshot ids.
5463          * For now we have a fixed upper limit on the number we're
5464          * prepared to receive.
5465          */
5466         size = sizeof (__le64) + sizeof (__le32) +
5467                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5468         reply_buf = kzalloc(size, GFP_KERNEL);
5469         if (!reply_buf)
5470                 return -ENOMEM;
5471
5472         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5473                                 "rbd", "get_snapcontext", NULL, 0,
5474                                 reply_buf, size);
5475         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5476         if (ret < 0)
5477                 goto out;
5478
5479         p = reply_buf;
5480         end = reply_buf + ret;
5481         ret = -ERANGE;
5482         ceph_decode_64_safe(&p, end, seq, out);
5483         ceph_decode_32_safe(&p, end, snap_count, out);
5484
5485         /*
5486          * Make sure the reported number of snapshot ids wouldn't go
5487          * beyond the end of our buffer.  But before checking that,
5488          * make sure the computed size of the snapshot context we
5489          * allocate is representable in a size_t.
5490          */
5491         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5492                                  / sizeof (u64)) {
5493                 ret = -EINVAL;
5494                 goto out;
5495         }
5496         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5497                 goto out;
5498         ret = 0;
5499
5500         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5501         if (!snapc) {
5502                 ret = -ENOMEM;
5503                 goto out;
5504         }
5505         snapc->seq = seq;
5506         for (i = 0; i < snap_count; i++)
5507                 snapc->snaps[i] = ceph_decode_64(&p);
5508
5509         ceph_put_snap_context(rbd_dev->header.snapc);
5510         rbd_dev->header.snapc = snapc;
5511
5512         dout("  snap context seq = %llu, snap_count = %u\n",
5513                 (unsigned long long)seq, (unsigned int)snap_count);
5514 out:
5515         kfree(reply_buf);
5516
5517         return ret;
5518 }
5519
5520 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5521                                         u64 snap_id)
5522 {
5523         size_t size;
5524         void *reply_buf;
5525         __le64 snapid;
5526         int ret;
5527         void *p;
5528         void *end;
5529         char *snap_name;
5530
5531         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5532         reply_buf = kmalloc(size, GFP_KERNEL);
5533         if (!reply_buf)
5534                 return ERR_PTR(-ENOMEM);
5535
5536         snapid = cpu_to_le64(snap_id);
5537         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5538                                 "rbd", "get_snapshot_name",
5539                                 &snapid, sizeof (snapid),
5540                                 reply_buf, size);
5541         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5542         if (ret < 0) {
5543                 snap_name = ERR_PTR(ret);
5544                 goto out;
5545         }
5546
5547         p = reply_buf;
5548         end = reply_buf + ret;
5549         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5550         if (IS_ERR(snap_name))
5551                 goto out;
5552
5553         dout("  snap_id 0x%016llx snap_name = %s\n",
5554                 (unsigned long long)snap_id, snap_name);
5555 out:
5556         kfree(reply_buf);
5557
5558         return snap_name;
5559 }
5560
5561 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5562 {
5563         bool first_time = rbd_dev->header.object_prefix == NULL;
5564         int ret;
5565
5566         ret = rbd_dev_v2_image_size(rbd_dev);
5567         if (ret)
5568                 return ret;
5569
5570         if (first_time) {
5571                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5572                 if (ret)
5573                         return ret;
5574         }
5575
5576         ret = rbd_dev_v2_snap_context(rbd_dev);
5577         if (ret && first_time) {
5578                 kfree(rbd_dev->header.object_prefix);
5579                 rbd_dev->header.object_prefix = NULL;
5580         }
5581
5582         return ret;
5583 }
5584
5585 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5586 {
5587         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5588
5589         if (rbd_dev->image_format == 1)
5590                 return rbd_dev_v1_header_info(rbd_dev);
5591
5592         return rbd_dev_v2_header_info(rbd_dev);
5593 }
5594
5595 /*
5596  * Skips over white space at *buf, and updates *buf to point to the
5597  * first found non-space character (if any). Returns the length of
5598  * the token (string of non-white space characters) found.  Note
5599  * that *buf must be terminated with '\0'.
5600  */
5601 static inline size_t next_token(const char **buf)
5602 {
5603         /*
5604         * These are the characters that produce nonzero for
5605         * isspace() in the "C" and "POSIX" locales.
5606         */
5607         const char *spaces = " \f\n\r\t\v";
5608
5609         *buf += strspn(*buf, spaces);   /* Find start of token */
5610
5611         return strcspn(*buf, spaces);   /* Return token length */
5612 }
5613
5614 /*
5615  * Finds the next token in *buf, dynamically allocates a buffer big
5616  * enough to hold a copy of it, and copies the token into the new
5617  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5618  * that a duplicate buffer is created even for a zero-length token.
5619  *
5620  * Returns a pointer to the newly-allocated duplicate, or a null
5621  * pointer if memory for the duplicate was not available.  If
5622  * the lenp argument is a non-null pointer, the length of the token
5623  * (not including the '\0') is returned in *lenp.
5624  *
5625  * If successful, the *buf pointer will be updated to point beyond
5626  * the end of the found token.
5627  *
5628  * Note: uses GFP_KERNEL for allocation.
5629  */
5630 static inline char *dup_token(const char **buf, size_t *lenp)
5631 {
5632         char *dup;
5633         size_t len;
5634
5635         len = next_token(buf);
5636         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5637         if (!dup)
5638                 return NULL;
5639         *(dup + len) = '\0';
5640         *buf += len;
5641
5642         if (lenp)
5643                 *lenp = len;
5644
5645         return dup;
5646 }
5647
5648 /*
5649  * Parse the options provided for an "rbd add" (i.e., rbd image
5650  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5651  * and the data written is passed here via a NUL-terminated buffer.
5652  * Returns 0 if successful or an error code otherwise.
5653  *
5654  * The information extracted from these options is recorded in
5655  * the other parameters which return dynamically-allocated
5656  * structures:
5657  *  ceph_opts
5658  *      The address of a pointer that will refer to a ceph options
5659  *      structure.  Caller must release the returned pointer using
5660  *      ceph_destroy_options() when it is no longer needed.
5661  *  rbd_opts
5662  *      Address of an rbd options pointer.  Fully initialized by
5663  *      this function; caller must release with kfree().
5664  *  spec
5665  *      Address of an rbd image specification pointer.  Fully
5666  *      initialized by this function based on parsed options.
5667  *      Caller must release with rbd_spec_put().
5668  *
5669  * The options passed take this form:
5670  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5671  * where:
5672  *  <mon_addrs>
5673  *      A comma-separated list of one or more monitor addresses.
5674  *      A monitor address is an ip address, optionally followed
5675  *      by a port number (separated by a colon).
5676  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5677  *  <options>
5678  *      A comma-separated list of ceph and/or rbd options.
5679  *  <pool_name>
5680  *      The name of the rados pool containing the rbd image.
5681  *  <image_name>
5682  *      The name of the image in that pool to map.
5683  *  <snap_id>
5684  *      An optional snapshot id.  If provided, the mapping will
5685  *      present data from the image at the time that snapshot was
5686  *      created.  The image head is used if no snapshot id is
5687  *      provided.  Snapshot mappings are always read-only.
5688  */
5689 static int rbd_add_parse_args(const char *buf,
5690                                 struct ceph_options **ceph_opts,
5691                                 struct rbd_options **opts,
5692                                 struct rbd_spec **rbd_spec)
5693 {
5694         size_t len;
5695         char *options;
5696         const char *mon_addrs;
5697         char *snap_name;
5698         size_t mon_addrs_size;
5699         struct rbd_spec *spec = NULL;
5700         struct rbd_options *rbd_opts = NULL;
5701         struct ceph_options *copts;
5702         int ret;
5703
5704         /* The first four tokens are required */
5705
5706         len = next_token(&buf);
5707         if (!len) {
5708                 rbd_warn(NULL, "no monitor address(es) provided");
5709                 return -EINVAL;
5710         }
5711         mon_addrs = buf;
5712         mon_addrs_size = len + 1;
5713         buf += len;
5714
5715         ret = -EINVAL;
5716         options = dup_token(&buf, NULL);
5717         if (!options)
5718                 return -ENOMEM;
5719         if (!*options) {
5720                 rbd_warn(NULL, "no options provided");
5721                 goto out_err;
5722         }
5723
5724         spec = rbd_spec_alloc();
5725         if (!spec)
5726                 goto out_mem;
5727
5728         spec->pool_name = dup_token(&buf, NULL);
5729         if (!spec->pool_name)
5730                 goto out_mem;
5731         if (!*spec->pool_name) {
5732                 rbd_warn(NULL, "no pool name provided");
5733                 goto out_err;
5734         }
5735
5736         spec->image_name = dup_token(&buf, NULL);
5737         if (!spec->image_name)
5738                 goto out_mem;
5739         if (!*spec->image_name) {
5740                 rbd_warn(NULL, "no image name provided");
5741                 goto out_err;
5742         }
5743
5744         /*
5745          * Snapshot name is optional; default is to use "-"
5746          * (indicating the head/no snapshot).
5747          */
5748         len = next_token(&buf);
5749         if (!len) {
5750                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5751                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5752         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5753                 ret = -ENAMETOOLONG;
5754                 goto out_err;
5755         }
5756         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5757         if (!snap_name)
5758                 goto out_mem;
5759         *(snap_name + len) = '\0';
5760         spec->snap_name = snap_name;
5761
5762         /* Initialize all rbd options to the defaults */
5763
5764         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5765         if (!rbd_opts)
5766                 goto out_mem;
5767
5768         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5769         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5770         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5771
5772         copts = ceph_parse_options(options, mon_addrs,
5773                                         mon_addrs + mon_addrs_size - 1,
5774                                         parse_rbd_opts_token, rbd_opts);
5775         if (IS_ERR(copts)) {
5776                 ret = PTR_ERR(copts);
5777                 goto out_err;
5778         }
5779         kfree(options);
5780
5781         *ceph_opts = copts;
5782         *opts = rbd_opts;
5783         *rbd_spec = spec;
5784
5785         return 0;
5786 out_mem:
5787         ret = -ENOMEM;
5788 out_err:
5789         kfree(rbd_opts);
5790         rbd_spec_put(spec);
5791         kfree(options);
5792
5793         return ret;
5794 }
5795
5796 /*
5797  * Return pool id (>= 0) or a negative error code.
5798  */
5799 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5800 {
5801         struct ceph_options *opts = rbdc->client->options;
5802         u64 newest_epoch;
5803         int tries = 0;
5804         int ret;
5805
5806 again:
5807         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5808         if (ret == -ENOENT && tries++ < 1) {
5809                 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5810                                             &newest_epoch);
5811                 if (ret < 0)
5812                         return ret;
5813
5814                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5815                         ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5816                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5817                                                      newest_epoch,
5818                                                      opts->mount_timeout);
5819                         goto again;
5820                 } else {
5821                         /* the osdmap we have is new enough */
5822                         return -ENOENT;
5823                 }
5824         }
5825
5826         return ret;
5827 }
5828
5829 /*
5830  * An rbd format 2 image has a unique identifier, distinct from the
5831  * name given to it by the user.  Internally, that identifier is
5832  * what's used to specify the names of objects related to the image.
5833  *
5834  * A special "rbd id" object is used to map an rbd image name to its
5835  * id.  If that object doesn't exist, then there is no v2 rbd image
5836  * with the supplied name.
5837  *
5838  * This function will record the given rbd_dev's image_id field if
5839  * it can be determined, and in that case will return 0.  If any
5840  * errors occur a negative errno will be returned and the rbd_dev's
5841  * image_id field will be unchanged (and should be NULL).
5842  */
5843 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5844 {
5845         int ret;
5846         size_t size;
5847         char *object_name;
5848         void *response;
5849         char *image_id;
5850
5851         /*
5852          * When probing a parent image, the image id is already
5853          * known (and the image name likely is not).  There's no
5854          * need to fetch the image id again in this case.  We
5855          * do still need to set the image format though.
5856          */
5857         if (rbd_dev->spec->image_id) {
5858                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5859
5860                 return 0;
5861         }
5862
5863         /*
5864          * First, see if the format 2 image id file exists, and if
5865          * so, get the image's persistent id from it.
5866          */
5867         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5868         object_name = kmalloc(size, GFP_NOIO);
5869         if (!object_name)
5870                 return -ENOMEM;
5871         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5872         dout("rbd id object name is %s\n", object_name);
5873
5874         /* Response will be an encoded string, which includes a length */
5875
5876         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5877         response = kzalloc(size, GFP_NOIO);
5878         if (!response) {
5879                 ret = -ENOMEM;
5880                 goto out;
5881         }
5882
5883         /* If it doesn't exist we'll assume it's a format 1 image */
5884
5885         ret = rbd_obj_method_sync(rbd_dev, object_name,
5886                                 "rbd", "get_id", NULL, 0,
5887                                 response, RBD_IMAGE_ID_LEN_MAX);
5888         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5889         if (ret == -ENOENT) {
5890                 image_id = kstrdup("", GFP_KERNEL);
5891                 ret = image_id ? 0 : -ENOMEM;
5892                 if (!ret)
5893                         rbd_dev->image_format = 1;
5894         } else if (ret >= 0) {
5895                 void *p = response;
5896
5897                 image_id = ceph_extract_encoded_string(&p, p + ret,
5898                                                 NULL, GFP_NOIO);
5899                 ret = PTR_ERR_OR_ZERO(image_id);
5900                 if (!ret)
5901                         rbd_dev->image_format = 2;
5902         }
5903
5904         if (!ret) {
5905                 rbd_dev->spec->image_id = image_id;
5906                 dout("image_id is %s\n", image_id);
5907         }
5908 out:
5909         kfree(response);
5910         kfree(object_name);
5911
5912         return ret;
5913 }
5914
5915 /*
5916  * Undo whatever state changes are made by v1 or v2 header info
5917  * call.
5918  */
5919 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5920 {
5921         struct rbd_image_header *header;
5922
5923         rbd_dev_parent_put(rbd_dev);
5924
5925         /* Free dynamic fields from the header, then zero it out */
5926
5927         header = &rbd_dev->header;
5928         ceph_put_snap_context(header->snapc);
5929         kfree(header->snap_sizes);
5930         kfree(header->snap_names);
5931         kfree(header->object_prefix);
5932         memset(header, 0, sizeof (*header));
5933 }
5934
5935 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5936 {
5937         int ret;
5938
5939         ret = rbd_dev_v2_object_prefix(rbd_dev);
5940         if (ret)
5941                 goto out_err;
5942
5943         /*
5944          * Get the and check features for the image.  Currently the
5945          * features are assumed to never change.
5946          */
5947         ret = rbd_dev_v2_features(rbd_dev);
5948         if (ret)
5949                 goto out_err;
5950
5951         /* If the image supports fancy striping, get its parameters */
5952
5953         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5954                 ret = rbd_dev_v2_striping_info(rbd_dev);
5955                 if (ret < 0)
5956                         goto out_err;
5957         }
5958         /* No support for crypto and compression type format 2 images */
5959
5960         return 0;
5961 out_err:
5962         rbd_dev->header.features = 0;
5963         kfree(rbd_dev->header.object_prefix);
5964         rbd_dev->header.object_prefix = NULL;
5965
5966         return ret;
5967 }
5968
5969 /*
5970  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5971  * rbd_dev_image_probe() recursion depth, which means it's also the
5972  * length of the already discovered part of the parent chain.
5973  */
5974 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5975 {
5976         struct rbd_device *parent = NULL;
5977         int ret;
5978
5979         if (!rbd_dev->parent_spec)
5980                 return 0;
5981
5982         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5983                 pr_info("parent chain is too long (%d)\n", depth);
5984                 ret = -EINVAL;
5985                 goto out_err;
5986         }
5987
5988         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5989         if (!parent) {
5990                 ret = -ENOMEM;
5991                 goto out_err;
5992         }
5993
5994         /*
5995          * Images related by parent/child relationships always share
5996          * rbd_client and spec/parent_spec, so bump their refcounts.
5997          */
5998         __rbd_get_client(rbd_dev->rbd_client);
5999         rbd_spec_get(rbd_dev->parent_spec);
6000
6001         ret = rbd_dev_image_probe(parent, depth);
6002         if (ret < 0)
6003                 goto out_err;
6004
6005         rbd_dev->parent = parent;
6006         atomic_set(&rbd_dev->parent_ref, 1);
6007         return 0;
6008
6009 out_err:
6010         rbd_dev_unparent(rbd_dev);
6011         rbd_dev_destroy(parent);
6012         return ret;
6013 }
6014
6015 /*
6016  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6017  * upon return.
6018  */
6019 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6020 {
6021         int ret;
6022
6023         /* Record our major and minor device numbers. */
6024
6025         if (!single_major) {
6026                 ret = register_blkdev(0, rbd_dev->name);
6027                 if (ret < 0)
6028                         goto err_out_unlock;
6029
6030                 rbd_dev->major = ret;
6031                 rbd_dev->minor = 0;
6032         } else {
6033                 rbd_dev->major = rbd_major;
6034                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6035         }
6036
6037         /* Set up the blkdev mapping. */
6038
6039         ret = rbd_init_disk(rbd_dev);
6040         if (ret)
6041                 goto err_out_blkdev;
6042
6043         ret = rbd_dev_mapping_set(rbd_dev);
6044         if (ret)
6045                 goto err_out_disk;
6046
6047         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6048         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6049
6050         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6051         ret = device_add(&rbd_dev->dev);
6052         if (ret)
6053                 goto err_out_mapping;
6054
6055         /* Everything's ready.  Announce the disk to the world. */
6056
6057         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6058         up_write(&rbd_dev->header_rwsem);
6059
6060         spin_lock(&rbd_dev_list_lock);
6061         list_add_tail(&rbd_dev->node, &rbd_dev_list);
6062         spin_unlock(&rbd_dev_list_lock);
6063
6064         add_disk(rbd_dev->disk);
6065         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6066                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6067                 rbd_dev->header.features);
6068
6069         return ret;
6070
6071 err_out_mapping:
6072         rbd_dev_mapping_clear(rbd_dev);
6073 err_out_disk:
6074         rbd_free_disk(rbd_dev);
6075 err_out_blkdev:
6076         if (!single_major)
6077                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6078 err_out_unlock:
6079         up_write(&rbd_dev->header_rwsem);
6080         return ret;
6081 }
6082
6083 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6084 {
6085         struct rbd_spec *spec = rbd_dev->spec;
6086         int ret;
6087
6088         /* Record the header object name for this rbd image. */
6089
6090         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6091
6092         rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6093         if (rbd_dev->image_format == 1)
6094                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6095                                        spec->image_name, RBD_SUFFIX);
6096         else
6097                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6098                                        RBD_HEADER_PREFIX, spec->image_id);
6099
6100         return ret;
6101 }
6102
6103 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6104 {
6105         rbd_dev_unprobe(rbd_dev);
6106         rbd_dev->image_format = 0;
6107         kfree(rbd_dev->spec->image_id);
6108         rbd_dev->spec->image_id = NULL;
6109
6110         rbd_dev_destroy(rbd_dev);
6111 }
6112
6113 /*
6114  * Probe for the existence of the header object for the given rbd
6115  * device.  If this image is the one being mapped (i.e., not a
6116  * parent), initiate a watch on its header object before using that
6117  * object to get detailed information about the rbd image.
6118  */
6119 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6120 {
6121         int ret;
6122
6123         /*
6124          * Get the id from the image id object.  Unless there's an
6125          * error, rbd_dev->spec->image_id will be filled in with
6126          * a dynamically-allocated string, and rbd_dev->image_format
6127          * will be set to either 1 or 2.
6128          */
6129         ret = rbd_dev_image_id(rbd_dev);
6130         if (ret)
6131                 return ret;
6132
6133         ret = rbd_dev_header_name(rbd_dev);
6134         if (ret)
6135                 goto err_out_format;
6136
6137         if (!depth) {
6138                 ret = rbd_register_watch(rbd_dev);
6139                 if (ret) {
6140                         if (ret == -ENOENT)
6141                                 pr_info("image %s/%s does not exist\n",
6142                                         rbd_dev->spec->pool_name,
6143                                         rbd_dev->spec->image_name);
6144                         goto err_out_format;
6145                 }
6146         }
6147
6148         ret = rbd_dev_header_info(rbd_dev);
6149         if (ret)
6150                 goto err_out_watch;
6151
6152         /*
6153          * If this image is the one being mapped, we have pool name and
6154          * id, image name and id, and snap name - need to fill snap id.
6155          * Otherwise this is a parent image, identified by pool, image
6156          * and snap ids - need to fill in names for those ids.
6157          */
6158         if (!depth)
6159                 ret = rbd_spec_fill_snap_id(rbd_dev);
6160         else
6161                 ret = rbd_spec_fill_names(rbd_dev);
6162         if (ret) {
6163                 if (ret == -ENOENT)
6164                         pr_info("snap %s/%s@%s does not exist\n",
6165                                 rbd_dev->spec->pool_name,
6166                                 rbd_dev->spec->image_name,
6167                                 rbd_dev->spec->snap_name);
6168                 goto err_out_probe;
6169         }
6170
6171         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6172                 ret = rbd_dev_v2_parent_info(rbd_dev);
6173                 if (ret)
6174                         goto err_out_probe;
6175
6176                 /*
6177                  * Need to warn users if this image is the one being
6178                  * mapped and has a parent.
6179                  */
6180                 if (!depth && rbd_dev->parent_spec)
6181                         rbd_warn(rbd_dev,
6182                                  "WARNING: kernel layering is EXPERIMENTAL!");
6183         }
6184
6185         ret = rbd_dev_probe_parent(rbd_dev, depth);
6186         if (ret)
6187                 goto err_out_probe;
6188
6189         dout("discovered format %u image, header name is %s\n",
6190                 rbd_dev->image_format, rbd_dev->header_oid.name);
6191         return 0;
6192
6193 err_out_probe:
6194         rbd_dev_unprobe(rbd_dev);
6195 err_out_watch:
6196         if (!depth)
6197                 rbd_unregister_watch(rbd_dev);
6198 err_out_format:
6199         rbd_dev->image_format = 0;
6200         kfree(rbd_dev->spec->image_id);
6201         rbd_dev->spec->image_id = NULL;
6202         return ret;
6203 }
6204
6205 static ssize_t do_rbd_add(struct bus_type *bus,
6206                           const char *buf,
6207                           size_t count)
6208 {
6209         struct rbd_device *rbd_dev = NULL;
6210         struct ceph_options *ceph_opts = NULL;
6211         struct rbd_options *rbd_opts = NULL;
6212         struct rbd_spec *spec = NULL;
6213         struct rbd_client *rbdc;
6214         bool read_only;
6215         int rc;
6216
6217         if (!try_module_get(THIS_MODULE))
6218                 return -ENODEV;
6219
6220         /* parse add command */
6221         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6222         if (rc < 0)
6223                 goto out;
6224
6225         rbdc = rbd_get_client(ceph_opts);
6226         if (IS_ERR(rbdc)) {
6227                 rc = PTR_ERR(rbdc);
6228                 goto err_out_args;
6229         }
6230
6231         /* pick the pool */
6232         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6233         if (rc < 0) {
6234                 if (rc == -ENOENT)
6235                         pr_info("pool %s does not exist\n", spec->pool_name);
6236                 goto err_out_client;
6237         }
6238         spec->pool_id = (u64)rc;
6239
6240         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6241         if (!rbd_dev) {
6242                 rc = -ENOMEM;
6243                 goto err_out_client;
6244         }
6245         rbdc = NULL;            /* rbd_dev now owns this */
6246         spec = NULL;            /* rbd_dev now owns this */
6247         rbd_opts = NULL;        /* rbd_dev now owns this */
6248
6249         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6250         if (!rbd_dev->config_info) {
6251                 rc = -ENOMEM;
6252                 goto err_out_rbd_dev;
6253         }
6254
6255         down_write(&rbd_dev->header_rwsem);
6256         rc = rbd_dev_image_probe(rbd_dev, 0);
6257         if (rc < 0) {
6258                 up_write(&rbd_dev->header_rwsem);
6259                 goto err_out_rbd_dev;
6260         }
6261
6262         /* If we are mapping a snapshot it must be marked read-only */
6263
6264         read_only = rbd_dev->opts->read_only;
6265         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6266                 read_only = true;
6267         rbd_dev->mapping.read_only = read_only;
6268
6269         rc = rbd_dev_device_setup(rbd_dev);
6270         if (rc) {
6271                 /*
6272                  * rbd_unregister_watch() can't be moved into
6273                  * rbd_dev_image_release() without refactoring, see
6274                  * commit 1f3ef78861ac.
6275                  */
6276                 rbd_unregister_watch(rbd_dev);
6277                 rbd_dev_image_release(rbd_dev);
6278                 goto out;
6279         }
6280
6281         rc = count;
6282 out:
6283         module_put(THIS_MODULE);
6284         return rc;
6285
6286 err_out_rbd_dev:
6287         rbd_dev_destroy(rbd_dev);
6288 err_out_client:
6289         rbd_put_client(rbdc);
6290 err_out_args:
6291         rbd_spec_put(spec);
6292         kfree(rbd_opts);
6293         goto out;
6294 }
6295
6296 static ssize_t rbd_add(struct bus_type *bus,
6297                        const char *buf,
6298                        size_t count)
6299 {
6300         if (single_major)
6301                 return -EINVAL;
6302
6303         return do_rbd_add(bus, buf, count);
6304 }
6305
6306 static ssize_t rbd_add_single_major(struct bus_type *bus,
6307                                     const char *buf,
6308                                     size_t count)
6309 {
6310         return do_rbd_add(bus, buf, count);
6311 }
6312
6313 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6314 {
6315         rbd_free_disk(rbd_dev);
6316
6317         spin_lock(&rbd_dev_list_lock);
6318         list_del_init(&rbd_dev->node);
6319         spin_unlock(&rbd_dev_list_lock);
6320
6321         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6322         device_del(&rbd_dev->dev);
6323         rbd_dev_mapping_clear(rbd_dev);
6324         if (!single_major)
6325                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6326 }
6327
6328 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6329 {
6330         while (rbd_dev->parent) {
6331                 struct rbd_device *first = rbd_dev;
6332                 struct rbd_device *second = first->parent;
6333                 struct rbd_device *third;
6334
6335                 /*
6336                  * Follow to the parent with no grandparent and
6337                  * remove it.
6338                  */
6339                 while (second && (third = second->parent)) {
6340                         first = second;
6341                         second = third;
6342                 }
6343                 rbd_assert(second);
6344                 rbd_dev_image_release(second);
6345                 first->parent = NULL;
6346                 first->parent_overlap = 0;
6347
6348                 rbd_assert(first->parent_spec);
6349                 rbd_spec_put(first->parent_spec);
6350                 first->parent_spec = NULL;
6351         }
6352 }
6353
6354 static ssize_t do_rbd_remove(struct bus_type *bus,
6355                              const char *buf,
6356                              size_t count)
6357 {
6358         struct rbd_device *rbd_dev = NULL;
6359         struct list_head *tmp;
6360         int dev_id;
6361         char opt_buf[6];
6362         bool already = false;
6363         bool force = false;
6364         int ret;
6365
6366         dev_id = -1;
6367         opt_buf[0] = '\0';
6368         sscanf(buf, "%d %5s", &dev_id, opt_buf);
6369         if (dev_id < 0) {
6370                 pr_err("dev_id out of range\n");
6371                 return -EINVAL;
6372         }
6373         if (opt_buf[0] != '\0') {
6374                 if (!strcmp(opt_buf, "force")) {
6375                         force = true;
6376                 } else {
6377                         pr_err("bad remove option at '%s'\n", opt_buf);
6378                         return -EINVAL;
6379                 }
6380         }
6381
6382         ret = -ENOENT;
6383         spin_lock(&rbd_dev_list_lock);
6384         list_for_each(tmp, &rbd_dev_list) {
6385                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6386                 if (rbd_dev->dev_id == dev_id) {
6387                         ret = 0;
6388                         break;
6389                 }
6390         }
6391         if (!ret) {
6392                 spin_lock_irq(&rbd_dev->lock);
6393                 if (rbd_dev->open_count && !force)
6394                         ret = -EBUSY;
6395                 else
6396                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6397                                                         &rbd_dev->flags);
6398                 spin_unlock_irq(&rbd_dev->lock);
6399         }
6400         spin_unlock(&rbd_dev_list_lock);
6401         if (ret < 0 || already)
6402                 return ret;
6403
6404         if (force) {
6405                 /*
6406                  * Prevent new IO from being queued and wait for existing
6407                  * IO to complete/fail.
6408                  */
6409                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6410                 blk_set_queue_dying(rbd_dev->disk->queue);
6411         }
6412
6413         down_write(&rbd_dev->lock_rwsem);
6414         if (__rbd_is_lock_owner(rbd_dev))
6415                 rbd_unlock(rbd_dev);
6416         up_write(&rbd_dev->lock_rwsem);
6417         rbd_unregister_watch(rbd_dev);
6418
6419         /*
6420          * Don't free anything from rbd_dev->disk until after all
6421          * notifies are completely processed. Otherwise
6422          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6423          * in a potential use after free of rbd_dev->disk or rbd_dev.
6424          */
6425         rbd_dev_device_release(rbd_dev);
6426         rbd_dev_image_release(rbd_dev);
6427
6428         return count;
6429 }
6430
6431 static ssize_t rbd_remove(struct bus_type *bus,
6432                           const char *buf,
6433                           size_t count)
6434 {
6435         if (single_major)
6436                 return -EINVAL;
6437
6438         return do_rbd_remove(bus, buf, count);
6439 }
6440
6441 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6442                                        const char *buf,
6443                                        size_t count)
6444 {
6445         return do_rbd_remove(bus, buf, count);
6446 }
6447
6448 /*
6449  * create control files in sysfs
6450  * /sys/bus/rbd/...
6451  */
6452 static int rbd_sysfs_init(void)
6453 {
6454         int ret;
6455
6456         ret = device_register(&rbd_root_dev);
6457         if (ret < 0)
6458                 return ret;
6459
6460         ret = bus_register(&rbd_bus_type);
6461         if (ret < 0)
6462                 device_unregister(&rbd_root_dev);
6463
6464         return ret;
6465 }
6466
6467 static void rbd_sysfs_cleanup(void)
6468 {
6469         bus_unregister(&rbd_bus_type);
6470         device_unregister(&rbd_root_dev);
6471 }
6472
6473 static int rbd_slab_init(void)
6474 {
6475         rbd_assert(!rbd_img_request_cache);
6476         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6477         if (!rbd_img_request_cache)
6478                 return -ENOMEM;
6479
6480         rbd_assert(!rbd_obj_request_cache);
6481         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6482         if (!rbd_obj_request_cache)
6483                 goto out_err;
6484
6485         rbd_assert(!rbd_segment_name_cache);
6486         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6487                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6488         if (rbd_segment_name_cache)
6489                 return 0;
6490 out_err:
6491         kmem_cache_destroy(rbd_obj_request_cache);
6492         rbd_obj_request_cache = NULL;
6493
6494         kmem_cache_destroy(rbd_img_request_cache);
6495         rbd_img_request_cache = NULL;
6496
6497         return -ENOMEM;
6498 }
6499
6500 static void rbd_slab_exit(void)
6501 {
6502         rbd_assert(rbd_segment_name_cache);
6503         kmem_cache_destroy(rbd_segment_name_cache);
6504         rbd_segment_name_cache = NULL;
6505
6506         rbd_assert(rbd_obj_request_cache);
6507         kmem_cache_destroy(rbd_obj_request_cache);
6508         rbd_obj_request_cache = NULL;
6509
6510         rbd_assert(rbd_img_request_cache);
6511         kmem_cache_destroy(rbd_img_request_cache);
6512         rbd_img_request_cache = NULL;
6513 }
6514
6515 static int __init rbd_init(void)
6516 {
6517         int rc;
6518
6519         if (!libceph_compatible(NULL)) {
6520                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6521                 return -EINVAL;
6522         }
6523
6524         rc = rbd_slab_init();
6525         if (rc)
6526                 return rc;
6527
6528         /*
6529          * The number of active work items is limited by the number of
6530          * rbd devices * queue depth, so leave @max_active at default.
6531          */
6532         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6533         if (!rbd_wq) {
6534                 rc = -ENOMEM;
6535                 goto err_out_slab;
6536         }
6537
6538         if (single_major) {
6539                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6540                 if (rbd_major < 0) {
6541                         rc = rbd_major;
6542                         goto err_out_wq;
6543                 }
6544         }
6545
6546         rc = rbd_sysfs_init();
6547         if (rc)
6548                 goto err_out_blkdev;
6549
6550         if (single_major)
6551                 pr_info("loaded (major %d)\n", rbd_major);
6552         else
6553                 pr_info("loaded\n");
6554
6555         return 0;
6556
6557 err_out_blkdev:
6558         if (single_major)
6559                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6560 err_out_wq:
6561         destroy_workqueue(rbd_wq);
6562 err_out_slab:
6563         rbd_slab_exit();
6564         return rc;
6565 }
6566
6567 static void __exit rbd_exit(void)
6568 {
6569         ida_destroy(&rbd_dev_id_ida);
6570         rbd_sysfs_cleanup();
6571         if (single_major)
6572                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6573         destroy_workqueue(rbd_wq);
6574         rbd_slab_exit();
6575 }
6576
6577 module_init(rbd_init);
6578 module_exit(rbd_exit);
6579
6580 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6581 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6582 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6583 /* following authorship retained from original osdblk.c */
6584 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6585
6586 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6587 MODULE_LICENSE("GPL");