Merge tag 'tegra-for-4.8-i2c' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra...
[cascardo/linux.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         struct bvec_iter current_iter;
112
113         struct request_queue *queue;
114
115         struct mm_page {
116                 dma_addr_t              page_dma;
117                 struct mm_dma_desc      *desc;
118                 int                     cnt, headcnt;
119                 struct bio              *bio, **biotail;
120                 struct bvec_iter        iter;
121         } mm_pages[2];
122 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
123
124         int  Active, Ready;
125
126         struct tasklet_struct   tasklet;
127         unsigned int dma_status;
128
129         struct {
130                 int             good;
131                 int             warned;
132                 unsigned long   last_change;
133         } battery[2];
134
135         spinlock_t      lock;
136         int             check_batteries;
137
138         int             flags;
139 };
140
141 static struct cardinfo cards[MM_MAXCARDS];
142 static struct timer_list battery_timer;
143
144 static int num_cards;
145
146 static struct gendisk *mm_gendisk[MM_MAXCARDS];
147
148 static void check_batteries(struct cardinfo *card);
149
150 static int get_userbit(struct cardinfo *card, int bit)
151 {
152         unsigned char led;
153
154         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
155         return led & bit;
156 }
157
158 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
159 {
160         unsigned char led;
161
162         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
163         if (state)
164                 led |= bit;
165         else
166                 led &= ~bit;
167         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
168
169         return 0;
170 }
171
172 /*
173  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
174  */
175 static void set_led(struct cardinfo *card, int shift, unsigned char state)
176 {
177         unsigned char led;
178
179         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
180         if (state == LED_FLIP)
181                 led ^= (1<<shift);
182         else {
183                 led &= ~(0x03 << shift);
184                 led |= (state << shift);
185         }
186         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
187
188 }
189
190 #ifdef MM_DIAG
191 static void dump_regs(struct cardinfo *card)
192 {
193         unsigned char *p;
194         int i, i1;
195
196         p = card->csr_remap;
197         for (i = 0; i < 8; i++) {
198                 printk(KERN_DEBUG "%p   ", p);
199
200                 for (i1 = 0; i1 < 16; i1++)
201                         printk("%02x ", *p++);
202
203                 printk("\n");
204         }
205 }
206 #endif
207
208 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
209 {
210         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
211         if (dmastat & DMASCR_ANY_ERR)
212                 printk(KERN_CONT "ANY_ERR ");
213         if (dmastat & DMASCR_MBE_ERR)
214                 printk(KERN_CONT "MBE_ERR ");
215         if (dmastat & DMASCR_PARITY_ERR_REP)
216                 printk(KERN_CONT "PARITY_ERR_REP ");
217         if (dmastat & DMASCR_PARITY_ERR_DET)
218                 printk(KERN_CONT "PARITY_ERR_DET ");
219         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
220                 printk(KERN_CONT "SYSTEM_ERR_SIG ");
221         if (dmastat & DMASCR_TARGET_ABT)
222                 printk(KERN_CONT "TARGET_ABT ");
223         if (dmastat & DMASCR_MASTER_ABT)
224                 printk(KERN_CONT "MASTER_ABT ");
225         if (dmastat & DMASCR_CHAIN_COMPLETE)
226                 printk(KERN_CONT "CHAIN_COMPLETE ");
227         if (dmastat & DMASCR_DMA_COMPLETE)
228                 printk(KERN_CONT "DMA_COMPLETE ");
229         printk("\n");
230 }
231
232 /*
233  * Theory of request handling
234  *
235  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
236  * We have two pages of mm_dma_desc, holding about 64 descriptors
237  * each.  These are allocated at init time.
238  * One page is "Ready" and is either full, or can have request added.
239  * The other page might be "Active", which DMA is happening on it.
240  *
241  * Whenever IO on the active page completes, the Ready page is activated
242  * and the ex-Active page is clean out and made Ready.
243  * Otherwise the Ready page is only activated when it becomes full.
244  *
245  * If a request arrives while both pages a full, it is queued, and b_rdev is
246  * overloaded to record whether it was a read or a write.
247  *
248  * The interrupt handler only polls the device to clear the interrupt.
249  * The processing of the result is done in a tasklet.
250  */
251
252 static void mm_start_io(struct cardinfo *card)
253 {
254         /* we have the lock, we know there is
255          * no IO active, and we know that card->Active
256          * is set
257          */
258         struct mm_dma_desc *desc;
259         struct mm_page *page;
260         int offset;
261
262         /* make the last descriptor end the chain */
263         page = &card->mm_pages[card->Active];
264         pr_debug("start_io: %d %d->%d\n",
265                 card->Active, page->headcnt, page->cnt - 1);
266         desc = &page->desc[page->cnt-1];
267
268         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
269         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
270         desc->sem_control_bits = desc->control_bits;
271
272
273         if (debug & DEBUG_LED_ON_TRANSFER)
274                 set_led(card, LED_REMOVE, LED_ON);
275
276         desc = &page->desc[page->headcnt];
277         writel(0, card->csr_remap + DMA_PCI_ADDR);
278         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
279
280         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
281         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
282
283         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
284         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
285
286         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
287         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
288
289         offset = ((char *)desc) - ((char *)page->desc);
290         writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
291                card->csr_remap + DMA_DESCRIPTOR_ADDR);
292         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
293          * and on some ports will do nothing ! */
294         writel(cpu_to_le32(((u64)page->page_dma)>>32),
295                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
296
297         /* Go, go, go */
298         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
299                card->csr_remap + DMA_STATUS_CTRL);
300 }
301
302 static int add_bio(struct cardinfo *card);
303
304 static void activate(struct cardinfo *card)
305 {
306         /* if No page is Active, and Ready is
307          * not empty, then switch Ready page
308          * to active and start IO.
309          * Then add any bh's that are available to Ready
310          */
311
312         do {
313                 while (add_bio(card))
314                         ;
315
316                 if (card->Active == -1 &&
317                     card->mm_pages[card->Ready].cnt > 0) {
318                         card->Active = card->Ready;
319                         card->Ready = 1-card->Ready;
320                         mm_start_io(card);
321                 }
322
323         } while (card->Active == -1 && add_bio(card));
324 }
325
326 static inline void reset_page(struct mm_page *page)
327 {
328         page->cnt = 0;
329         page->headcnt = 0;
330         page->bio = NULL;
331         page->biotail = &page->bio;
332 }
333
334 /*
335  * If there is room on Ready page, take
336  * one bh off list and add it.
337  * return 1 if there was room, else 0.
338  */
339 static int add_bio(struct cardinfo *card)
340 {
341         struct mm_page *p;
342         struct mm_dma_desc *desc;
343         dma_addr_t dma_handle;
344         int offset;
345         struct bio *bio;
346         struct bio_vec vec;
347
348         bio = card->currentbio;
349         if (!bio && card->bio) {
350                 card->currentbio = card->bio;
351                 card->current_iter = card->bio->bi_iter;
352                 card->bio = card->bio->bi_next;
353                 if (card->bio == NULL)
354                         card->biotail = &card->bio;
355                 card->currentbio->bi_next = NULL;
356                 return 1;
357         }
358         if (!bio)
359                 return 0;
360
361         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
362                 return 0;
363
364         vec = bio_iter_iovec(bio, card->current_iter);
365
366         dma_handle = pci_map_page(card->dev,
367                                   vec.bv_page,
368                                   vec.bv_offset,
369                                   vec.bv_len,
370                                   bio_op(bio) == REQ_OP_READ ?
371                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
372
373         p = &card->mm_pages[card->Ready];
374         desc = &p->desc[p->cnt];
375         p->cnt++;
376         if (p->bio == NULL)
377                 p->iter = card->current_iter;
378         if ((p->biotail) != &bio->bi_next) {
379                 *(p->biotail) = bio;
380                 p->biotail = &(bio->bi_next);
381                 bio->bi_next = NULL;
382         }
383
384         desc->data_dma_handle = dma_handle;
385
386         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
387         desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
388         desc->transfer_size = cpu_to_le32(vec.bv_len);
389         offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
390         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
391         desc->zero1 = desc->zero2 = 0;
392         offset = (((char *)(desc+1)) - ((char *)p->desc));
393         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
394         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
395                                          DMASCR_PARITY_INT_EN|
396                                          DMASCR_CHAIN_EN |
397                                          DMASCR_SEM_EN |
398                                          pci_cmds);
399         if (bio_op(bio) == REQ_OP_WRITE)
400                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
401         desc->sem_control_bits = desc->control_bits;
402
403
404         bio_advance_iter(bio, &card->current_iter, vec.bv_len);
405         if (!card->current_iter.bi_size)
406                 card->currentbio = NULL;
407
408         return 1;
409 }
410
411 static void process_page(unsigned long data)
412 {
413         /* check if any of the requests in the page are DMA_COMPLETE,
414          * and deal with them appropriately.
415          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
416          * dma must have hit an error on that descriptor, so use dma_status
417          * instead and assume that all following descriptors must be re-tried.
418          */
419         struct mm_page *page;
420         struct bio *return_bio = NULL;
421         struct cardinfo *card = (struct cardinfo *)data;
422         unsigned int dma_status = card->dma_status;
423
424         spin_lock_bh(&card->lock);
425         if (card->Active < 0)
426                 goto out_unlock;
427         page = &card->mm_pages[card->Active];
428
429         while (page->headcnt < page->cnt) {
430                 struct bio *bio = page->bio;
431                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
432                 int control = le32_to_cpu(desc->sem_control_bits);
433                 int last = 0;
434                 struct bio_vec vec;
435
436                 if (!(control & DMASCR_DMA_COMPLETE)) {
437                         control = dma_status;
438                         last = 1;
439                 }
440
441                 page->headcnt++;
442                 vec = bio_iter_iovec(bio, page->iter);
443                 bio_advance_iter(bio, &page->iter, vec.bv_len);
444
445                 if (!page->iter.bi_size) {
446                         page->bio = bio->bi_next;
447                         if (page->bio)
448                                 page->iter = page->bio->bi_iter;
449                 }
450
451                 pci_unmap_page(card->dev, desc->data_dma_handle,
452                                vec.bv_len,
453                                  (control & DMASCR_TRANSFER_READ) ?
454                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
455                 if (control & DMASCR_HARD_ERROR) {
456                         /* error */
457                         bio->bi_error = -EIO;
458                         dev_printk(KERN_WARNING, &card->dev->dev,
459                                 "I/O error on sector %d/%d\n",
460                                 le32_to_cpu(desc->local_addr)>>9,
461                                 le32_to_cpu(desc->transfer_size));
462                         dump_dmastat(card, control);
463                 } else if (op_is_write(bio_op(bio)) &&
464                            le32_to_cpu(desc->local_addr) >> 9 ==
465                                 card->init_size) {
466                         card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
467                         if (card->init_size >> 1 >= card->mm_size) {
468                                 dev_printk(KERN_INFO, &card->dev->dev,
469                                         "memory now initialised\n");
470                                 set_userbit(card, MEMORY_INITIALIZED, 1);
471                         }
472                 }
473                 if (bio != page->bio) {
474                         bio->bi_next = return_bio;
475                         return_bio = bio;
476                 }
477
478                 if (last)
479                         break;
480         }
481
482         if (debug & DEBUG_LED_ON_TRANSFER)
483                 set_led(card, LED_REMOVE, LED_OFF);
484
485         if (card->check_batteries) {
486                 card->check_batteries = 0;
487                 check_batteries(card);
488         }
489         if (page->headcnt >= page->cnt) {
490                 reset_page(page);
491                 card->Active = -1;
492                 activate(card);
493         } else {
494                 /* haven't finished with this one yet */
495                 pr_debug("do some more\n");
496                 mm_start_io(card);
497         }
498  out_unlock:
499         spin_unlock_bh(&card->lock);
500
501         while (return_bio) {
502                 struct bio *bio = return_bio;
503
504                 return_bio = bio->bi_next;
505                 bio->bi_next = NULL;
506                 bio_endio(bio);
507         }
508 }
509
510 static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
511 {
512         struct cardinfo *card = cb->data;
513
514         spin_lock_irq(&card->lock);
515         activate(card);
516         spin_unlock_irq(&card->lock);
517         kfree(cb);
518 }
519
520 static int mm_check_plugged(struct cardinfo *card)
521 {
522         return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
523 }
524
525 static blk_qc_t mm_make_request(struct request_queue *q, struct bio *bio)
526 {
527         struct cardinfo *card = q->queuedata;
528         pr_debug("mm_make_request %llu %u\n",
529                  (unsigned long long)bio->bi_iter.bi_sector,
530                  bio->bi_iter.bi_size);
531
532         blk_queue_split(q, &bio, q->bio_split);
533
534         spin_lock_irq(&card->lock);
535         *card->biotail = bio;
536         bio->bi_next = NULL;
537         card->biotail = &bio->bi_next;
538         if (bio->bi_opf & REQ_SYNC || !mm_check_plugged(card))
539                 activate(card);
540         spin_unlock_irq(&card->lock);
541
542         return BLK_QC_T_NONE;
543 }
544
545 static irqreturn_t mm_interrupt(int irq, void *__card)
546 {
547         struct cardinfo *card = (struct cardinfo *) __card;
548         unsigned int dma_status;
549         unsigned short cfg_status;
550
551 HW_TRACE(0x30);
552
553         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
554
555         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
556                 /* interrupt wasn't for me ... */
557                 return IRQ_NONE;
558         }
559
560         /* clear COMPLETION interrupts */
561         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
562                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
563                        card->csr_remap + DMA_STATUS_CTRL);
564         else
565                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
566                        card->csr_remap + DMA_STATUS_CTRL + 2);
567
568         /* log errors and clear interrupt status */
569         if (dma_status & DMASCR_ANY_ERR) {
570                 unsigned int    data_log1, data_log2;
571                 unsigned int    addr_log1, addr_log2;
572                 unsigned char   stat, count, syndrome, check;
573
574                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
575
576                 data_log1 = le32_to_cpu(readl(card->csr_remap +
577                                                 ERROR_DATA_LOG));
578                 data_log2 = le32_to_cpu(readl(card->csr_remap +
579                                                 ERROR_DATA_LOG + 4));
580                 addr_log1 = le32_to_cpu(readl(card->csr_remap +
581                                                 ERROR_ADDR_LOG));
582                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
583
584                 count = readb(card->csr_remap + ERROR_COUNT);
585                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
586                 check = readb(card->csr_remap + ERROR_CHECK);
587
588                 dump_dmastat(card, dma_status);
589
590                 if (stat & 0x01)
591                         dev_printk(KERN_ERR, &card->dev->dev,
592                                 "Memory access error detected (err count %d)\n",
593                                 count);
594                 if (stat & 0x02)
595                         dev_printk(KERN_ERR, &card->dev->dev,
596                                 "Multi-bit EDC error\n");
597
598                 dev_printk(KERN_ERR, &card->dev->dev,
599                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
600                         addr_log2, addr_log1, data_log2, data_log1);
601                 dev_printk(KERN_ERR, &card->dev->dev,
602                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
603                         check, syndrome);
604
605                 writeb(0, card->csr_remap + ERROR_COUNT);
606         }
607
608         if (dma_status & DMASCR_PARITY_ERR_REP) {
609                 dev_printk(KERN_ERR, &card->dev->dev,
610                         "PARITY ERROR REPORTED\n");
611                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
612                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
613         }
614
615         if (dma_status & DMASCR_PARITY_ERR_DET) {
616                 dev_printk(KERN_ERR, &card->dev->dev,
617                         "PARITY ERROR DETECTED\n");
618                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
619                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
620         }
621
622         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
623                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
624                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
625                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
626         }
627
628         if (dma_status & DMASCR_TARGET_ABT) {
629                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
630                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
631                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
632         }
633
634         if (dma_status & DMASCR_MASTER_ABT) {
635                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
636                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
637                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
638         }
639
640         /* and process the DMA descriptors */
641         card->dma_status = dma_status;
642         tasklet_schedule(&card->tasklet);
643
644 HW_TRACE(0x36);
645
646         return IRQ_HANDLED;
647 }
648
649 /*
650  * If both batteries are good, no LED
651  * If either battery has been warned, solid LED
652  * If both batteries are bad, flash the LED quickly
653  * If either battery is bad, flash the LED semi quickly
654  */
655 static void set_fault_to_battery_status(struct cardinfo *card)
656 {
657         if (card->battery[0].good && card->battery[1].good)
658                 set_led(card, LED_FAULT, LED_OFF);
659         else if (card->battery[0].warned || card->battery[1].warned)
660                 set_led(card, LED_FAULT, LED_ON);
661         else if (!card->battery[0].good && !card->battery[1].good)
662                 set_led(card, LED_FAULT, LED_FLASH_7_0);
663         else
664                 set_led(card, LED_FAULT, LED_FLASH_3_5);
665 }
666
667 static void init_battery_timer(void);
668
669 static int check_battery(struct cardinfo *card, int battery, int status)
670 {
671         if (status != card->battery[battery].good) {
672                 card->battery[battery].good = !card->battery[battery].good;
673                 card->battery[battery].last_change = jiffies;
674
675                 if (card->battery[battery].good) {
676                         dev_printk(KERN_ERR, &card->dev->dev,
677                                 "Battery %d now good\n", battery + 1);
678                         card->battery[battery].warned = 0;
679                 } else
680                         dev_printk(KERN_ERR, &card->dev->dev,
681                                 "Battery %d now FAILED\n", battery + 1);
682
683                 return 1;
684         } else if (!card->battery[battery].good &&
685                    !card->battery[battery].warned &&
686                    time_after_eq(jiffies, card->battery[battery].last_change +
687                                  (HZ * 60 * 60 * 5))) {
688                 dev_printk(KERN_ERR, &card->dev->dev,
689                         "Battery %d still FAILED after 5 hours\n", battery + 1);
690                 card->battery[battery].warned = 1;
691
692                 return 1;
693         }
694
695         return 0;
696 }
697
698 static void check_batteries(struct cardinfo *card)
699 {
700         /* NOTE: this must *never* be called while the card
701          * is doing (bus-to-card) DMA, or you will need the
702          * reset switch
703          */
704         unsigned char status;
705         int ret1, ret2;
706
707         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
708         if (debug & DEBUG_BATTERY_POLLING)
709                 dev_printk(KERN_DEBUG, &card->dev->dev,
710                         "checking battery status, 1 = %s, 2 = %s\n",
711                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
712                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
713
714         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
715         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
716
717         if (ret1 || ret2)
718                 set_fault_to_battery_status(card);
719 }
720
721 static void check_all_batteries(unsigned long ptr)
722 {
723         int i;
724
725         for (i = 0; i < num_cards; i++)
726                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
727                         struct cardinfo *card = &cards[i];
728                         spin_lock_bh(&card->lock);
729                         if (card->Active >= 0)
730                                 card->check_batteries = 1;
731                         else
732                                 check_batteries(card);
733                         spin_unlock_bh(&card->lock);
734                 }
735
736         init_battery_timer();
737 }
738
739 static void init_battery_timer(void)
740 {
741         init_timer(&battery_timer);
742         battery_timer.function = check_all_batteries;
743         battery_timer.expires = jiffies + (HZ * 60);
744         add_timer(&battery_timer);
745 }
746
747 static void del_battery_timer(void)
748 {
749         del_timer(&battery_timer);
750 }
751
752 /*
753  * Note no locks taken out here.  In a worst case scenario, we could drop
754  * a chunk of system memory.  But that should never happen, since validation
755  * happens at open or mount time, when locks are held.
756  *
757  *      That's crap, since doing that while some partitions are opened
758  * or mounted will give you really nasty results.
759  */
760 static int mm_revalidate(struct gendisk *disk)
761 {
762         struct cardinfo *card = disk->private_data;
763         set_capacity(disk, card->mm_size << 1);
764         return 0;
765 }
766
767 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
768 {
769         struct cardinfo *card = bdev->bd_disk->private_data;
770         int size = card->mm_size * (1024 / MM_HARDSECT);
771
772         /*
773          * get geometry: we have to fake one...  trim the size to a
774          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
775          * whatever cylinders.
776          */
777         geo->heads     = 64;
778         geo->sectors   = 32;
779         geo->cylinders = size / (geo->heads * geo->sectors);
780         return 0;
781 }
782
783 static const struct block_device_operations mm_fops = {
784         .owner          = THIS_MODULE,
785         .getgeo         = mm_getgeo,
786         .revalidate_disk = mm_revalidate,
787 };
788
789 static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
790 {
791         int ret = -ENODEV;
792         struct cardinfo *card = &cards[num_cards];
793         unsigned char   mem_present;
794         unsigned char   batt_status;
795         unsigned int    saved_bar, data;
796         unsigned long   csr_base;
797         unsigned long   csr_len;
798         int             magic_number;
799         static int      printed_version;
800
801         if (!printed_version++)
802                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
803
804         ret = pci_enable_device(dev);
805         if (ret)
806                 return ret;
807
808         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
809         pci_set_master(dev);
810
811         card->dev         = dev;
812
813         csr_base = pci_resource_start(dev, 0);
814         csr_len  = pci_resource_len(dev, 0);
815         if (!csr_base || !csr_len)
816                 return -ENODEV;
817
818         dev_printk(KERN_INFO, &dev->dev,
819           "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
820
821         if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
822             pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
823                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
824                 return  -ENOMEM;
825         }
826
827         ret = pci_request_regions(dev, DRIVER_NAME);
828         if (ret) {
829                 dev_printk(KERN_ERR, &card->dev->dev,
830                         "Unable to request memory region\n");
831                 goto failed_req_csr;
832         }
833
834         card->csr_remap = ioremap_nocache(csr_base, csr_len);
835         if (!card->csr_remap) {
836                 dev_printk(KERN_ERR, &card->dev->dev,
837                         "Unable to remap memory region\n");
838                 ret = -ENOMEM;
839
840                 goto failed_remap_csr;
841         }
842
843         dev_printk(KERN_INFO, &card->dev->dev,
844                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
845                csr_base, card->csr_remap, csr_len);
846
847         switch (card->dev->device) {
848         case 0x5415:
849                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
850                 magic_number = 0x59;
851                 break;
852
853         case 0x5425:
854                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
855                 magic_number = 0x5C;
856                 break;
857
858         case 0x6155:
859                 card->flags |= UM_FLAG_NO_BYTE_STATUS |
860                                 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
861                 magic_number = 0x99;
862                 break;
863
864         default:
865                 magic_number = 0x100;
866                 break;
867         }
868
869         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
870                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
871                 ret = -ENOMEM;
872                 goto failed_magic;
873         }
874
875         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
876                                                 PAGE_SIZE * 2,
877                                                 &card->mm_pages[0].page_dma);
878         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
879                                                 PAGE_SIZE * 2,
880                                                 &card->mm_pages[1].page_dma);
881         if (card->mm_pages[0].desc == NULL ||
882             card->mm_pages[1].desc == NULL) {
883                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
884                 goto failed_alloc;
885         }
886         reset_page(&card->mm_pages[0]);
887         reset_page(&card->mm_pages[1]);
888         card->Ready = 0;        /* page 0 is ready */
889         card->Active = -1;      /* no page is active */
890         card->bio = NULL;
891         card->biotail = &card->bio;
892
893         card->queue = blk_alloc_queue(GFP_KERNEL);
894         if (!card->queue)
895                 goto failed_alloc;
896
897         blk_queue_make_request(card->queue, mm_make_request);
898         card->queue->queue_lock = &card->lock;
899         card->queue->queuedata = card;
900
901         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
902
903         card->check_batteries = 0;
904
905         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
906         switch (mem_present) {
907         case MEM_128_MB:
908                 card->mm_size = 1024 * 128;
909                 break;
910         case MEM_256_MB:
911                 card->mm_size = 1024 * 256;
912                 break;
913         case MEM_512_MB:
914                 card->mm_size = 1024 * 512;
915                 break;
916         case MEM_1_GB:
917                 card->mm_size = 1024 * 1024;
918                 break;
919         case MEM_2_GB:
920                 card->mm_size = 1024 * 2048;
921                 break;
922         default:
923                 card->mm_size = 0;
924                 break;
925         }
926
927         /* Clear the LED's we control */
928         set_led(card, LED_REMOVE, LED_OFF);
929         set_led(card, LED_FAULT, LED_OFF);
930
931         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
932
933         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
934         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
935         card->battery[0].last_change = card->battery[1].last_change = jiffies;
936
937         if (card->flags & UM_FLAG_NO_BATT)
938                 dev_printk(KERN_INFO, &card->dev->dev,
939                         "Size %d KB\n", card->mm_size);
940         else {
941                 dev_printk(KERN_INFO, &card->dev->dev,
942                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
943                        card->mm_size,
944                        batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
945                        card->battery[0].good ? "OK" : "FAILURE",
946                        batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
947                        card->battery[1].good ? "OK" : "FAILURE");
948
949                 set_fault_to_battery_status(card);
950         }
951
952         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
953         data = 0xffffffff;
954         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
955         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
956         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
957         data &= 0xfffffff0;
958         data = ~data;
959         data += 1;
960
961         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
962                         card)) {
963                 dev_printk(KERN_ERR, &card->dev->dev,
964                         "Unable to allocate IRQ\n");
965                 ret = -ENODEV;
966                 goto failed_req_irq;
967         }
968
969         dev_printk(KERN_INFO, &card->dev->dev,
970                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
971
972         spin_lock_init(&card->lock);
973
974         pci_set_drvdata(dev, card);
975
976         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
977                 pci_write_cmd = 0x07;   /* then Memory Write command */
978
979         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
980                 unsigned short cfg_command;
981                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
982                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
983                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
984         }
985         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
986
987         num_cards++;
988
989         if (!get_userbit(card, MEMORY_INITIALIZED)) {
990                 dev_printk(KERN_INFO, &card->dev->dev,
991                   "memory NOT initialized. Consider over-writing whole device.\n");
992                 card->init_size = 0;
993         } else {
994                 dev_printk(KERN_INFO, &card->dev->dev,
995                         "memory already initialized\n");
996                 card->init_size = card->mm_size;
997         }
998
999         /* Enable ECC */
1000         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1001
1002         return 0;
1003
1004  failed_req_irq:
1005  failed_alloc:
1006         if (card->mm_pages[0].desc)
1007                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1008                                     card->mm_pages[0].desc,
1009                                     card->mm_pages[0].page_dma);
1010         if (card->mm_pages[1].desc)
1011                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1012                                     card->mm_pages[1].desc,
1013                                     card->mm_pages[1].page_dma);
1014  failed_magic:
1015         iounmap(card->csr_remap);
1016  failed_remap_csr:
1017         pci_release_regions(dev);
1018  failed_req_csr:
1019
1020         return ret;
1021 }
1022
1023 static void mm_pci_remove(struct pci_dev *dev)
1024 {
1025         struct cardinfo *card = pci_get_drvdata(dev);
1026
1027         tasklet_kill(&card->tasklet);
1028         free_irq(dev->irq, card);
1029         iounmap(card->csr_remap);
1030
1031         if (card->mm_pages[0].desc)
1032                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1033                                     card->mm_pages[0].desc,
1034                                     card->mm_pages[0].page_dma);
1035         if (card->mm_pages[1].desc)
1036                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1037                                     card->mm_pages[1].desc,
1038                                     card->mm_pages[1].page_dma);
1039         blk_cleanup_queue(card->queue);
1040
1041         pci_release_regions(dev);
1042         pci_disable_device(dev);
1043 }
1044
1045 static const struct pci_device_id mm_pci_ids[] = {
1046     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1047     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1048     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1049     {
1050         .vendor =       0x8086,
1051         .device =       0xB555,
1052         .subvendor =    0x1332,
1053         .subdevice =    0x5460,
1054         .class =        0x050000,
1055         .class_mask =   0,
1056     }, { /* end: all zeroes */ }
1057 };
1058
1059 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1060
1061 static struct pci_driver mm_pci_driver = {
1062         .name           = DRIVER_NAME,
1063         .id_table       = mm_pci_ids,
1064         .probe          = mm_pci_probe,
1065         .remove         = mm_pci_remove,
1066 };
1067
1068 static int __init mm_init(void)
1069 {
1070         int retval, i;
1071         int err;
1072
1073         retval = pci_register_driver(&mm_pci_driver);
1074         if (retval)
1075                 return -ENOMEM;
1076
1077         err = major_nr = register_blkdev(0, DRIVER_NAME);
1078         if (err < 0) {
1079                 pci_unregister_driver(&mm_pci_driver);
1080                 return -EIO;
1081         }
1082
1083         for (i = 0; i < num_cards; i++) {
1084                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1085                 if (!mm_gendisk[i])
1086                         goto out;
1087         }
1088
1089         for (i = 0; i < num_cards; i++) {
1090                 struct gendisk *disk = mm_gendisk[i];
1091                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1092                 spin_lock_init(&cards[i].lock);
1093                 disk->major = major_nr;
1094                 disk->first_minor  = i << MM_SHIFT;
1095                 disk->fops = &mm_fops;
1096                 disk->private_data = &cards[i];
1097                 disk->queue = cards[i].queue;
1098                 set_capacity(disk, cards[i].mm_size << 1);
1099                 add_disk(disk);
1100         }
1101
1102         init_battery_timer();
1103         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1104 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1105         return 0;
1106
1107 out:
1108         pci_unregister_driver(&mm_pci_driver);
1109         unregister_blkdev(major_nr, DRIVER_NAME);
1110         while (i--)
1111                 put_disk(mm_gendisk[i]);
1112         return -ENOMEM;
1113 }
1114
1115 static void __exit mm_cleanup(void)
1116 {
1117         int i;
1118
1119         del_battery_timer();
1120
1121         for (i = 0; i < num_cards ; i++) {
1122                 del_gendisk(mm_gendisk[i]);
1123                 put_disk(mm_gendisk[i]);
1124         }
1125
1126         pci_unregister_driver(&mm_pci_driver);
1127
1128         unregister_blkdev(major_nr, DRIVER_NAME);
1129 }
1130
1131 module_init(mm_init);
1132 module_exit(mm_cleanup);
1133
1134 MODULE_AUTHOR(DRIVER_AUTHOR);
1135 MODULE_DESCRIPTION(DRIVER_DESC);
1136 MODULE_LICENSE("GPL");