ASoC: tegra: Add control for the Mic Jack pin
[cascardo/linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name)                                              \
47 static ssize_t name##_show(struct device *d,            \
48                                 struct device_attribute *attr, char *b) \
49 {                                                                       \
50         struct zram *zram = dev_to_zram(d);                             \
51         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
52                 (u64)atomic64_read(&zram->stats.name));                 \
53 }                                                                       \
54 static DEVICE_ATTR_RO(name);
55
56 static inline bool init_done(struct zram *zram)
57 {
58         return zram->disksize;
59 }
60
61 static inline struct zram *dev_to_zram(struct device *dev)
62 {
63         return (struct zram *)dev_to_disk(dev)->private_data;
64 }
65
66 static ssize_t disksize_show(struct device *dev,
67                 struct device_attribute *attr, char *buf)
68 {
69         struct zram *zram = dev_to_zram(dev);
70
71         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
72 }
73
74 static ssize_t initstate_show(struct device *dev,
75                 struct device_attribute *attr, char *buf)
76 {
77         u32 val;
78         struct zram *zram = dev_to_zram(dev);
79
80         down_read(&zram->init_lock);
81         val = init_done(zram);
82         up_read(&zram->init_lock);
83
84         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
85 }
86
87 static ssize_t orig_data_size_show(struct device *dev,
88                 struct device_attribute *attr, char *buf)
89 {
90         struct zram *zram = dev_to_zram(dev);
91
92         return scnprintf(buf, PAGE_SIZE, "%llu\n",
93                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
94 }
95
96 static ssize_t mem_used_total_show(struct device *dev,
97                 struct device_attribute *attr, char *buf)
98 {
99         u64 val = 0;
100         struct zram *zram = dev_to_zram(dev);
101
102         down_read(&zram->init_lock);
103         if (init_done(zram)) {
104                 struct zram_meta *meta = zram->meta;
105                 val = zs_get_total_pages(meta->mem_pool);
106         }
107         up_read(&zram->init_lock);
108
109         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
110 }
111
112 static ssize_t max_comp_streams_show(struct device *dev,
113                 struct device_attribute *attr, char *buf)
114 {
115         int val;
116         struct zram *zram = dev_to_zram(dev);
117
118         down_read(&zram->init_lock);
119         val = zram->max_comp_streams;
120         up_read(&zram->init_lock);
121
122         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124
125 static ssize_t mem_limit_show(struct device *dev,
126                 struct device_attribute *attr, char *buf)
127 {
128         u64 val;
129         struct zram *zram = dev_to_zram(dev);
130
131         down_read(&zram->init_lock);
132         val = zram->limit_pages;
133         up_read(&zram->init_lock);
134
135         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136 }
137
138 static ssize_t mem_limit_store(struct device *dev,
139                 struct device_attribute *attr, const char *buf, size_t len)
140 {
141         u64 limit;
142         char *tmp;
143         struct zram *zram = dev_to_zram(dev);
144
145         limit = memparse(buf, &tmp);
146         if (buf == tmp) /* no chars parsed, invalid input */
147                 return -EINVAL;
148
149         down_write(&zram->init_lock);
150         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151         up_write(&zram->init_lock);
152
153         return len;
154 }
155
156 static ssize_t mem_used_max_show(struct device *dev,
157                 struct device_attribute *attr, char *buf)
158 {
159         u64 val = 0;
160         struct zram *zram = dev_to_zram(dev);
161
162         down_read(&zram->init_lock);
163         if (init_done(zram))
164                 val = atomic_long_read(&zram->stats.max_used_pages);
165         up_read(&zram->init_lock);
166
167         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168 }
169
170 static ssize_t mem_used_max_store(struct device *dev,
171                 struct device_attribute *attr, const char *buf, size_t len)
172 {
173         int err;
174         unsigned long val;
175         struct zram *zram = dev_to_zram(dev);
176
177         err = kstrtoul(buf, 10, &val);
178         if (err || val != 0)
179                 return -EINVAL;
180
181         down_read(&zram->init_lock);
182         if (init_done(zram)) {
183                 struct zram_meta *meta = zram->meta;
184                 atomic_long_set(&zram->stats.max_used_pages,
185                                 zs_get_total_pages(meta->mem_pool));
186         }
187         up_read(&zram->init_lock);
188
189         return len;
190 }
191
192 static ssize_t max_comp_streams_store(struct device *dev,
193                 struct device_attribute *attr, const char *buf, size_t len)
194 {
195         int num;
196         struct zram *zram = dev_to_zram(dev);
197         int ret;
198
199         ret = kstrtoint(buf, 0, &num);
200         if (ret < 0)
201                 return ret;
202         if (num < 1)
203                 return -EINVAL;
204
205         down_write(&zram->init_lock);
206         if (init_done(zram)) {
207                 if (!zcomp_set_max_streams(zram->comp, num)) {
208                         pr_info("Cannot change max compression streams\n");
209                         ret = -EINVAL;
210                         goto out;
211                 }
212         }
213
214         zram->max_comp_streams = num;
215         ret = len;
216 out:
217         up_write(&zram->init_lock);
218         return ret;
219 }
220
221 static ssize_t comp_algorithm_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         size_t sz;
225         struct zram *zram = dev_to_zram(dev);
226
227         down_read(&zram->init_lock);
228         sz = zcomp_available_show(zram->compressor, buf);
229         up_read(&zram->init_lock);
230
231         return sz;
232 }
233
234 static ssize_t comp_algorithm_store(struct device *dev,
235                 struct device_attribute *attr, const char *buf, size_t len)
236 {
237         struct zram *zram = dev_to_zram(dev);
238         down_write(&zram->init_lock);
239         if (init_done(zram)) {
240                 up_write(&zram->init_lock);
241                 pr_info("Can't change algorithm for initialized device\n");
242                 return -EBUSY;
243         }
244         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245         up_write(&zram->init_lock);
246         return len;
247 }
248
249 /* flag operations needs meta->tb_lock */
250 static int zram_test_flag(struct zram_meta *meta, u32 index,
251                         enum zram_pageflags flag)
252 {
253         return meta->table[index].value & BIT(flag);
254 }
255
256 static void zram_set_flag(struct zram_meta *meta, u32 index,
257                         enum zram_pageflags flag)
258 {
259         meta->table[index].value |= BIT(flag);
260 }
261
262 static void zram_clear_flag(struct zram_meta *meta, u32 index,
263                         enum zram_pageflags flag)
264 {
265         meta->table[index].value &= ~BIT(flag);
266 }
267
268 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269 {
270         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271 }
272
273 static void zram_set_obj_size(struct zram_meta *meta,
274                                         u32 index, size_t size)
275 {
276         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
279 }
280
281 static inline int is_partial_io(struct bio_vec *bvec)
282 {
283         return bvec->bv_len != PAGE_SIZE;
284 }
285
286 /*
287  * Check if request is within bounds and aligned on zram logical blocks.
288  */
289 static inline int valid_io_request(struct zram *zram,
290                 sector_t start, unsigned int size)
291 {
292         u64 end, bound;
293
294         /* unaligned request */
295         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
296                 return 0;
297         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
298                 return 0;
299
300         end = start + (size >> SECTOR_SHIFT);
301         bound = zram->disksize >> SECTOR_SHIFT;
302         /* out of range range */
303         if (unlikely(start >= bound || end > bound || start > end))
304                 return 0;
305
306         /* I/O request is valid */
307         return 1;
308 }
309
310 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
311 {
312         size_t num_pages = disksize >> PAGE_SHIFT;
313         size_t index;
314
315         /* Free all pages that are still in this zram device */
316         for (index = 0; index < num_pages; index++) {
317                 unsigned long handle = meta->table[index].handle;
318
319                 if (!handle)
320                         continue;
321
322                 zs_free(meta->mem_pool, handle);
323         }
324
325         zs_destroy_pool(meta->mem_pool);
326         vfree(meta->table);
327         kfree(meta);
328 }
329
330 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
331 {
332         size_t num_pages;
333         char pool_name[8];
334         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
335
336         if (!meta)
337                 return NULL;
338
339         num_pages = disksize >> PAGE_SHIFT;
340         meta->table = vzalloc(num_pages * sizeof(*meta->table));
341         if (!meta->table) {
342                 pr_err("Error allocating zram address table\n");
343                 goto out_error;
344         }
345
346         snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
347         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
348         if (!meta->mem_pool) {
349                 pr_err("Error creating memory pool\n");
350                 goto out_error;
351         }
352
353         return meta;
354
355 out_error:
356         vfree(meta->table);
357         kfree(meta);
358         return NULL;
359 }
360
361 static inline bool zram_meta_get(struct zram *zram)
362 {
363         if (atomic_inc_not_zero(&zram->refcount))
364                 return true;
365         return false;
366 }
367
368 static inline void zram_meta_put(struct zram *zram)
369 {
370         atomic_dec(&zram->refcount);
371 }
372
373 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
374 {
375         if (*offset + bvec->bv_len >= PAGE_SIZE)
376                 (*index)++;
377         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
378 }
379
380 static int page_zero_filled(void *ptr)
381 {
382         unsigned int pos;
383         unsigned long *page;
384
385         page = (unsigned long *)ptr;
386
387         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
388                 if (page[pos])
389                         return 0;
390         }
391
392         return 1;
393 }
394
395 static void handle_zero_page(struct bio_vec *bvec)
396 {
397         struct page *page = bvec->bv_page;
398         void *user_mem;
399
400         user_mem = kmap_atomic(page);
401         if (is_partial_io(bvec))
402                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
403         else
404                 clear_page(user_mem);
405         kunmap_atomic(user_mem);
406
407         flush_dcache_page(page);
408 }
409
410
411 /*
412  * To protect concurrent access to the same index entry,
413  * caller should hold this table index entry's bit_spinlock to
414  * indicate this index entry is accessing.
415  */
416 static void zram_free_page(struct zram *zram, size_t index)
417 {
418         struct zram_meta *meta = zram->meta;
419         unsigned long handle = meta->table[index].handle;
420
421         if (unlikely(!handle)) {
422                 /*
423                  * No memory is allocated for zero filled pages.
424                  * Simply clear zero page flag.
425                  */
426                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
427                         zram_clear_flag(meta, index, ZRAM_ZERO);
428                         atomic64_dec(&zram->stats.zero_pages);
429                 }
430                 return;
431         }
432
433         zs_free(meta->mem_pool, handle);
434
435         atomic64_sub(zram_get_obj_size(meta, index),
436                         &zram->stats.compr_data_size);
437         atomic64_dec(&zram->stats.pages_stored);
438
439         meta->table[index].handle = 0;
440         zram_set_obj_size(meta, index, 0);
441 }
442
443 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
444 {
445         int ret = 0;
446         unsigned char *cmem;
447         struct zram_meta *meta = zram->meta;
448         unsigned long handle;
449         size_t size;
450
451         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
452         handle = meta->table[index].handle;
453         size = zram_get_obj_size(meta, index);
454
455         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
456                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
457                 clear_page(mem);
458                 return 0;
459         }
460
461         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
462         if (size == PAGE_SIZE)
463                 copy_page(mem, cmem);
464         else
465                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
466         zs_unmap_object(meta->mem_pool, handle);
467         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
468
469         /* Should NEVER happen. Return bio error if it does. */
470         if (unlikely(ret)) {
471                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
472                 return ret;
473         }
474
475         return 0;
476 }
477
478 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
479                           u32 index, int offset)
480 {
481         int ret;
482         struct page *page;
483         unsigned char *user_mem, *uncmem = NULL;
484         struct zram_meta *meta = zram->meta;
485         page = bvec->bv_page;
486
487         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
488         if (unlikely(!meta->table[index].handle) ||
489                         zram_test_flag(meta, index, ZRAM_ZERO)) {
490                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
491                 handle_zero_page(bvec);
492                 return 0;
493         }
494         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
495
496         if (is_partial_io(bvec))
497                 /* Use  a temporary buffer to decompress the page */
498                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
499
500         user_mem = kmap_atomic(page);
501         if (!is_partial_io(bvec))
502                 uncmem = user_mem;
503
504         if (!uncmem) {
505                 pr_info("Unable to allocate temp memory\n");
506                 ret = -ENOMEM;
507                 goto out_cleanup;
508         }
509
510         ret = zram_decompress_page(zram, uncmem, index);
511         /* Should NEVER happen. Return bio error if it does. */
512         if (unlikely(ret))
513                 goto out_cleanup;
514
515         if (is_partial_io(bvec))
516                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
517                                 bvec->bv_len);
518
519         flush_dcache_page(page);
520         ret = 0;
521 out_cleanup:
522         kunmap_atomic(user_mem);
523         if (is_partial_io(bvec))
524                 kfree(uncmem);
525         return ret;
526 }
527
528 static inline void update_used_max(struct zram *zram,
529                                         const unsigned long pages)
530 {
531         int old_max, cur_max;
532
533         old_max = atomic_long_read(&zram->stats.max_used_pages);
534
535         do {
536                 cur_max = old_max;
537                 if (pages > cur_max)
538                         old_max = atomic_long_cmpxchg(
539                                 &zram->stats.max_used_pages, cur_max, pages);
540         } while (old_max != cur_max);
541 }
542
543 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
544                            int offset)
545 {
546         int ret = 0;
547         size_t clen;
548         unsigned long handle;
549         struct page *page;
550         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
551         struct zram_meta *meta = zram->meta;
552         struct zcomp_strm *zstrm;
553         bool locked = false;
554         unsigned long alloced_pages;
555
556         page = bvec->bv_page;
557         if (is_partial_io(bvec)) {
558                 /*
559                  * This is a partial IO. We need to read the full page
560                  * before to write the changes.
561                  */
562                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
563                 if (!uncmem) {
564                         ret = -ENOMEM;
565                         goto out;
566                 }
567                 ret = zram_decompress_page(zram, uncmem, index);
568                 if (ret)
569                         goto out;
570         }
571
572         zstrm = zcomp_strm_find(zram->comp);
573         locked = true;
574         user_mem = kmap_atomic(page);
575
576         if (is_partial_io(bvec)) {
577                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
578                        bvec->bv_len);
579                 kunmap_atomic(user_mem);
580                 user_mem = NULL;
581         } else {
582                 uncmem = user_mem;
583         }
584
585         if (page_zero_filled(uncmem)) {
586                 if (user_mem)
587                         kunmap_atomic(user_mem);
588                 /* Free memory associated with this sector now. */
589                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
590                 zram_free_page(zram, index);
591                 zram_set_flag(meta, index, ZRAM_ZERO);
592                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
593
594                 atomic64_inc(&zram->stats.zero_pages);
595                 ret = 0;
596                 goto out;
597         }
598
599         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
600         if (!is_partial_io(bvec)) {
601                 kunmap_atomic(user_mem);
602                 user_mem = NULL;
603                 uncmem = NULL;
604         }
605
606         if (unlikely(ret)) {
607                 pr_err("Compression failed! err=%d\n", ret);
608                 goto out;
609         }
610         src = zstrm->buffer;
611         if (unlikely(clen > max_zpage_size)) {
612                 clen = PAGE_SIZE;
613                 if (is_partial_io(bvec))
614                         src = uncmem;
615         }
616
617         handle = zs_malloc(meta->mem_pool, clen);
618         if (!handle) {
619                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
620                         index, clen);
621                 ret = -ENOMEM;
622                 goto out;
623         }
624
625         alloced_pages = zs_get_total_pages(meta->mem_pool);
626         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
627                 zs_free(meta->mem_pool, handle);
628                 ret = -ENOMEM;
629                 goto out;
630         }
631
632         update_used_max(zram, alloced_pages);
633
634         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
635
636         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
637                 src = kmap_atomic(page);
638                 copy_page(cmem, src);
639                 kunmap_atomic(src);
640         } else {
641                 memcpy(cmem, src, clen);
642         }
643
644         zcomp_strm_release(zram->comp, zstrm);
645         locked = false;
646         zs_unmap_object(meta->mem_pool, handle);
647
648         /*
649          * Free memory associated with this sector
650          * before overwriting unused sectors.
651          */
652         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
653         zram_free_page(zram, index);
654
655         meta->table[index].handle = handle;
656         zram_set_obj_size(meta, index, clen);
657         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
658
659         /* Update stats */
660         atomic64_add(clen, &zram->stats.compr_data_size);
661         atomic64_inc(&zram->stats.pages_stored);
662 out:
663         if (locked)
664                 zcomp_strm_release(zram->comp, zstrm);
665         if (is_partial_io(bvec))
666                 kfree(uncmem);
667         return ret;
668 }
669
670 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
671                         int offset, int rw)
672 {
673         int ret;
674
675         if (rw == READ) {
676                 atomic64_inc(&zram->stats.num_reads);
677                 ret = zram_bvec_read(zram, bvec, index, offset);
678         } else {
679                 atomic64_inc(&zram->stats.num_writes);
680                 ret = zram_bvec_write(zram, bvec, index, offset);
681         }
682
683         if (unlikely(ret)) {
684                 if (rw == READ)
685                         atomic64_inc(&zram->stats.failed_reads);
686                 else
687                         atomic64_inc(&zram->stats.failed_writes);
688         }
689
690         return ret;
691 }
692
693 /*
694  * zram_bio_discard - handler on discard request
695  * @index: physical block index in PAGE_SIZE units
696  * @offset: byte offset within physical block
697  */
698 static void zram_bio_discard(struct zram *zram, u32 index,
699                              int offset, struct bio *bio)
700 {
701         size_t n = bio->bi_iter.bi_size;
702         struct zram_meta *meta = zram->meta;
703
704         /*
705          * zram manages data in physical block size units. Because logical block
706          * size isn't identical with physical block size on some arch, we
707          * could get a discard request pointing to a specific offset within a
708          * certain physical block.  Although we can handle this request by
709          * reading that physiclal block and decompressing and partially zeroing
710          * and re-compressing and then re-storing it, this isn't reasonable
711          * because our intent with a discard request is to save memory.  So
712          * skipping this logical block is appropriate here.
713          */
714         if (offset) {
715                 if (n <= (PAGE_SIZE - offset))
716                         return;
717
718                 n -= (PAGE_SIZE - offset);
719                 index++;
720         }
721
722         while (n >= PAGE_SIZE) {
723                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
724                 zram_free_page(zram, index);
725                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
726                 atomic64_inc(&zram->stats.notify_free);
727                 index++;
728                 n -= PAGE_SIZE;
729         }
730 }
731
732 static void zram_reset_device(struct zram *zram)
733 {
734         struct zram_meta *meta;
735         struct zcomp *comp;
736         u64 disksize;
737
738         down_write(&zram->init_lock);
739
740         zram->limit_pages = 0;
741
742         if (!init_done(zram)) {
743                 up_write(&zram->init_lock);
744                 return;
745         }
746
747         meta = zram->meta;
748         comp = zram->comp;
749         disksize = zram->disksize;
750         /*
751          * Refcount will go down to 0 eventually and r/w handler
752          * cannot handle further I/O so it will bail out by
753          * check zram_meta_get.
754          */
755         zram_meta_put(zram);
756         /*
757          * We want to free zram_meta in process context to avoid
758          * deadlock between reclaim path and any other locks.
759          */
760         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
761
762         /* Reset stats */
763         memset(&zram->stats, 0, sizeof(zram->stats));
764         zram->disksize = 0;
765         zram->max_comp_streams = 1;
766         set_capacity(zram->disk, 0);
767
768         up_write(&zram->init_lock);
769         /* I/O operation under all of CPU are done so let's free */
770         zram_meta_free(meta, disksize);
771         zcomp_destroy(comp);
772 }
773
774 static ssize_t disksize_store(struct device *dev,
775                 struct device_attribute *attr, const char *buf, size_t len)
776 {
777         u64 disksize;
778         struct zcomp *comp;
779         struct zram_meta *meta;
780         struct zram *zram = dev_to_zram(dev);
781         int err;
782
783         disksize = memparse(buf, NULL);
784         if (!disksize)
785                 return -EINVAL;
786
787         disksize = PAGE_ALIGN(disksize);
788         meta = zram_meta_alloc(zram->disk->first_minor, disksize);
789         if (!meta)
790                 return -ENOMEM;
791
792         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
793         if (IS_ERR(comp)) {
794                 pr_info("Cannot initialise %s compressing backend\n",
795                                 zram->compressor);
796                 err = PTR_ERR(comp);
797                 goto out_free_meta;
798         }
799
800         down_write(&zram->init_lock);
801         if (init_done(zram)) {
802                 pr_info("Cannot change disksize for initialized device\n");
803                 err = -EBUSY;
804                 goto out_destroy_comp;
805         }
806
807         init_waitqueue_head(&zram->io_done);
808         atomic_set(&zram->refcount, 1);
809         zram->meta = meta;
810         zram->comp = comp;
811         zram->disksize = disksize;
812         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
813         up_write(&zram->init_lock);
814
815         /*
816          * Revalidate disk out of the init_lock to avoid lockdep splat.
817          * It's okay because disk's capacity is protected by init_lock
818          * so that revalidate_disk always sees up-to-date capacity.
819          */
820         revalidate_disk(zram->disk);
821
822         return len;
823
824 out_destroy_comp:
825         up_write(&zram->init_lock);
826         zcomp_destroy(comp);
827 out_free_meta:
828         zram_meta_free(meta, disksize);
829         return err;
830 }
831
832 static ssize_t reset_store(struct device *dev,
833                 struct device_attribute *attr, const char *buf, size_t len)
834 {
835         int ret;
836         unsigned short do_reset;
837         struct zram *zram;
838         struct block_device *bdev;
839
840         zram = dev_to_zram(dev);
841         bdev = bdget_disk(zram->disk, 0);
842
843         if (!bdev)
844                 return -ENOMEM;
845
846         mutex_lock(&bdev->bd_mutex);
847         /* Do not reset an active device! */
848         if (bdev->bd_openers) {
849                 ret = -EBUSY;
850                 goto out;
851         }
852
853         ret = kstrtou16(buf, 10, &do_reset);
854         if (ret)
855                 goto out;
856
857         if (!do_reset) {
858                 ret = -EINVAL;
859                 goto out;
860         }
861
862         /* Make sure all pending I/O is finished */
863         fsync_bdev(bdev);
864         zram_reset_device(zram);
865
866         mutex_unlock(&bdev->bd_mutex);
867         revalidate_disk(zram->disk);
868         bdput(bdev);
869
870         return len;
871
872 out:
873         mutex_unlock(&bdev->bd_mutex);
874         bdput(bdev);
875         return ret;
876 }
877
878 static void __zram_make_request(struct zram *zram, struct bio *bio)
879 {
880         int offset, rw;
881         u32 index;
882         struct bio_vec bvec;
883         struct bvec_iter iter;
884
885         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
886         offset = (bio->bi_iter.bi_sector &
887                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
888
889         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
890                 zram_bio_discard(zram, index, offset, bio);
891                 bio_endio(bio, 0);
892                 return;
893         }
894
895         rw = bio_data_dir(bio);
896         bio_for_each_segment(bvec, bio, iter) {
897                 int max_transfer_size = PAGE_SIZE - offset;
898
899                 if (bvec.bv_len > max_transfer_size) {
900                         /*
901                          * zram_bvec_rw() can only make operation on a single
902                          * zram page. Split the bio vector.
903                          */
904                         struct bio_vec bv;
905
906                         bv.bv_page = bvec.bv_page;
907                         bv.bv_len = max_transfer_size;
908                         bv.bv_offset = bvec.bv_offset;
909
910                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
911                                 goto out;
912
913                         bv.bv_len = bvec.bv_len - max_transfer_size;
914                         bv.bv_offset += max_transfer_size;
915                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
916                                 goto out;
917                 } else
918                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
919                                 goto out;
920
921                 update_position(&index, &offset, &bvec);
922         }
923
924         set_bit(BIO_UPTODATE, &bio->bi_flags);
925         bio_endio(bio, 0);
926         return;
927
928 out:
929         bio_io_error(bio);
930 }
931
932 /*
933  * Handler function for all zram I/O requests.
934  */
935 static void zram_make_request(struct request_queue *queue, struct bio *bio)
936 {
937         struct zram *zram = queue->queuedata;
938
939         if (unlikely(!zram_meta_get(zram)))
940                 goto error;
941
942         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
943                                         bio->bi_iter.bi_size)) {
944                 atomic64_inc(&zram->stats.invalid_io);
945                 goto put_zram;
946         }
947
948         __zram_make_request(zram, bio);
949         zram_meta_put(zram);
950         return;
951 put_zram:
952         zram_meta_put(zram);
953 error:
954         bio_io_error(bio);
955 }
956
957 static void zram_slot_free_notify(struct block_device *bdev,
958                                 unsigned long index)
959 {
960         struct zram *zram;
961         struct zram_meta *meta;
962
963         zram = bdev->bd_disk->private_data;
964         meta = zram->meta;
965
966         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
967         zram_free_page(zram, index);
968         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
969         atomic64_inc(&zram->stats.notify_free);
970 }
971
972 static int zram_rw_page(struct block_device *bdev, sector_t sector,
973                        struct page *page, int rw)
974 {
975         int offset, err = -EIO;
976         u32 index;
977         struct zram *zram;
978         struct bio_vec bv;
979
980         zram = bdev->bd_disk->private_data;
981         if (unlikely(!zram_meta_get(zram)))
982                 goto out;
983
984         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
985                 atomic64_inc(&zram->stats.invalid_io);
986                 err = -EINVAL;
987                 goto put_zram;
988         }
989
990         index = sector >> SECTORS_PER_PAGE_SHIFT;
991         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
992
993         bv.bv_page = page;
994         bv.bv_len = PAGE_SIZE;
995         bv.bv_offset = 0;
996
997         err = zram_bvec_rw(zram, &bv, index, offset, rw);
998 put_zram:
999         zram_meta_put(zram);
1000 out:
1001         /*
1002          * If I/O fails, just return error(ie, non-zero) without
1003          * calling page_endio.
1004          * It causes resubmit the I/O with bio request by upper functions
1005          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1006          * bio->bi_end_io does things to handle the error
1007          * (e.g., SetPageError, set_page_dirty and extra works).
1008          */
1009         if (err == 0)
1010                 page_endio(page, rw, 0);
1011         return err;
1012 }
1013
1014 static const struct block_device_operations zram_devops = {
1015         .swap_slot_free_notify = zram_slot_free_notify,
1016         .rw_page = zram_rw_page,
1017         .owner = THIS_MODULE
1018 };
1019
1020 static DEVICE_ATTR_RW(disksize);
1021 static DEVICE_ATTR_RO(initstate);
1022 static DEVICE_ATTR_WO(reset);
1023 static DEVICE_ATTR_RO(orig_data_size);
1024 static DEVICE_ATTR_RO(mem_used_total);
1025 static DEVICE_ATTR_RW(mem_limit);
1026 static DEVICE_ATTR_RW(mem_used_max);
1027 static DEVICE_ATTR_RW(max_comp_streams);
1028 static DEVICE_ATTR_RW(comp_algorithm);
1029
1030 ZRAM_ATTR_RO(num_reads);
1031 ZRAM_ATTR_RO(num_writes);
1032 ZRAM_ATTR_RO(failed_reads);
1033 ZRAM_ATTR_RO(failed_writes);
1034 ZRAM_ATTR_RO(invalid_io);
1035 ZRAM_ATTR_RO(notify_free);
1036 ZRAM_ATTR_RO(zero_pages);
1037 ZRAM_ATTR_RO(compr_data_size);
1038
1039 static struct attribute *zram_disk_attrs[] = {
1040         &dev_attr_disksize.attr,
1041         &dev_attr_initstate.attr,
1042         &dev_attr_reset.attr,
1043         &dev_attr_num_reads.attr,
1044         &dev_attr_num_writes.attr,
1045         &dev_attr_failed_reads.attr,
1046         &dev_attr_failed_writes.attr,
1047         &dev_attr_invalid_io.attr,
1048         &dev_attr_notify_free.attr,
1049         &dev_attr_zero_pages.attr,
1050         &dev_attr_orig_data_size.attr,
1051         &dev_attr_compr_data_size.attr,
1052         &dev_attr_mem_used_total.attr,
1053         &dev_attr_mem_limit.attr,
1054         &dev_attr_mem_used_max.attr,
1055         &dev_attr_max_comp_streams.attr,
1056         &dev_attr_comp_algorithm.attr,
1057         NULL,
1058 };
1059
1060 static struct attribute_group zram_disk_attr_group = {
1061         .attrs = zram_disk_attrs,
1062 };
1063
1064 static int create_device(struct zram *zram, int device_id)
1065 {
1066         struct request_queue *queue;
1067         int ret = -ENOMEM;
1068
1069         init_rwsem(&zram->init_lock);
1070
1071         queue = blk_alloc_queue(GFP_KERNEL);
1072         if (!queue) {
1073                 pr_err("Error allocating disk queue for device %d\n",
1074                         device_id);
1075                 goto out;
1076         }
1077
1078         blk_queue_make_request(queue, zram_make_request);
1079
1080          /* gendisk structure */
1081         zram->disk = alloc_disk(1);
1082         if (!zram->disk) {
1083                 pr_warn("Error allocating disk structure for device %d\n",
1084                         device_id);
1085                 goto out_free_queue;
1086         }
1087
1088         zram->disk->major = zram_major;
1089         zram->disk->first_minor = device_id;
1090         zram->disk->fops = &zram_devops;
1091         zram->disk->queue = queue;
1092         zram->disk->queue->queuedata = zram;
1093         zram->disk->private_data = zram;
1094         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1095
1096         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1097         set_capacity(zram->disk, 0);
1098         /* zram devices sort of resembles non-rotational disks */
1099         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1100         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1101         /*
1102          * To ensure that we always get PAGE_SIZE aligned
1103          * and n*PAGE_SIZED sized I/O requests.
1104          */
1105         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1106         blk_queue_logical_block_size(zram->disk->queue,
1107                                         ZRAM_LOGICAL_BLOCK_SIZE);
1108         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1109         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1110         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1111         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1112         /*
1113          * zram_bio_discard() will clear all logical blocks if logical block
1114          * size is identical with physical block size(PAGE_SIZE). But if it is
1115          * different, we will skip discarding some parts of logical blocks in
1116          * the part of the request range which isn't aligned to physical block
1117          * size.  So we can't ensure that all discarded logical blocks are
1118          * zeroed.
1119          */
1120         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1121                 zram->disk->queue->limits.discard_zeroes_data = 1;
1122         else
1123                 zram->disk->queue->limits.discard_zeroes_data = 0;
1124         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1125
1126         add_disk(zram->disk);
1127
1128         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1129                                 &zram_disk_attr_group);
1130         if (ret < 0) {
1131                 pr_warn("Error creating sysfs group");
1132                 goto out_free_disk;
1133         }
1134         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1135         zram->meta = NULL;
1136         zram->max_comp_streams = 1;
1137         return 0;
1138
1139 out_free_disk:
1140         del_gendisk(zram->disk);
1141         put_disk(zram->disk);
1142 out_free_queue:
1143         blk_cleanup_queue(queue);
1144 out:
1145         return ret;
1146 }
1147
1148 static void destroy_devices(unsigned int nr)
1149 {
1150         struct zram *zram;
1151         unsigned int i;
1152
1153         for (i = 0; i < nr; i++) {
1154                 zram = &zram_devices[i];
1155                 /*
1156                  * Remove sysfs first, so no one will perform a disksize
1157                  * store while we destroy the devices
1158                  */
1159                 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1160                                 &zram_disk_attr_group);
1161
1162                 zram_reset_device(zram);
1163
1164                 blk_cleanup_queue(zram->disk->queue);
1165                 del_gendisk(zram->disk);
1166                 put_disk(zram->disk);
1167         }
1168
1169         kfree(zram_devices);
1170         unregister_blkdev(zram_major, "zram");
1171         pr_info("Destroyed %u device(s)\n", nr);
1172 }
1173
1174 static int __init zram_init(void)
1175 {
1176         int ret, dev_id;
1177
1178         if (num_devices > max_num_devices) {
1179                 pr_warn("Invalid value for num_devices: %u\n",
1180                                 num_devices);
1181                 return -EINVAL;
1182         }
1183
1184         zram_major = register_blkdev(0, "zram");
1185         if (zram_major <= 0) {
1186                 pr_warn("Unable to get major number\n");
1187                 return -EBUSY;
1188         }
1189
1190         /* Allocate the device array and initialize each one */
1191         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1192         if (!zram_devices) {
1193                 unregister_blkdev(zram_major, "zram");
1194                 return -ENOMEM;
1195         }
1196
1197         for (dev_id = 0; dev_id < num_devices; dev_id++) {
1198                 ret = create_device(&zram_devices[dev_id], dev_id);
1199                 if (ret)
1200                         goto out_error;
1201         }
1202
1203         pr_info("Created %u device(s)\n", num_devices);
1204         return 0;
1205
1206 out_error:
1207         destroy_devices(dev_id);
1208         return ret;
1209 }
1210
1211 static void __exit zram_exit(void)
1212 {
1213         destroy_devices(num_devices);
1214 }
1215
1216 module_init(zram_init);
1217 module_exit(zram_exit);
1218
1219 module_param(num_devices, uint, 0);
1220 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1221
1222 MODULE_LICENSE("Dual BSD/GPL");
1223 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1224 MODULE_DESCRIPTION("Compressed RAM Block Device");