9fa15bb9d118ee5ad2d9f34e23aab6777d09d105
[cascardo/linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,                            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79                         enum zram_pageflags flag)
80 {
81         return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85                         enum zram_pageflags flag)
86 {
87         meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91                         enum zram_pageflags flag)
92 {
93         meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102                                         u32 index, size_t size)
103 {
104         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline int is_partial_io(struct bio_vec *bvec)
110 {
111         return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline int valid_io_request(struct zram *zram,
118                 sector_t start, unsigned int size)
119 {
120         u64 end, bound;
121
122         /* unaligned request */
123         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124                 return 0;
125         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126                 return 0;
127
128         end = start + (size >> SECTOR_SHIFT);
129         bound = zram->disksize >> SECTOR_SHIFT;
130         /* out of range range */
131         if (unlikely(start >= bound || end > bound || start > end))
132                 return 0;
133
134         /* I/O request is valid */
135         return 1;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140         if (*offset + bvec->bv_len >= PAGE_SIZE)
141                 (*index)++;
142         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146                                         const unsigned long pages)
147 {
148         unsigned long old_max, cur_max;
149
150         old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152         do {
153                 cur_max = old_max;
154                 if (pages > cur_max)
155                         old_max = atomic_long_cmpxchg(
156                                 &zram->stats.max_used_pages, cur_max, pages);
157         } while (old_max != cur_max);
158 }
159
160 static int page_zero_filled(void *ptr)
161 {
162         unsigned int pos;
163         unsigned long *page;
164
165         page = (unsigned long *)ptr;
166
167         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168                 if (page[pos])
169                         return 0;
170         }
171
172         return 1;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177         struct page *page = bvec->bv_page;
178         void *user_mem;
179
180         user_mem = kmap_atomic(page);
181         if (is_partial_io(bvec))
182                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183         else
184                 clear_page(user_mem);
185         kunmap_atomic(user_mem);
186
187         flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191                 struct device_attribute *attr, char *buf)
192 {
193         u32 val;
194         struct zram *zram = dev_to_zram(dev);
195
196         down_read(&zram->init_lock);
197         val = init_done(zram);
198         up_read(&zram->init_lock);
199
200         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204                 struct device_attribute *attr, char *buf)
205 {
206         struct zram *zram = dev_to_zram(dev);
207
208         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212                 struct device_attribute *attr, char *buf)
213 {
214         struct zram *zram = dev_to_zram(dev);
215
216         deprecated_attr_warn("orig_data_size");
217         return scnprintf(buf, PAGE_SIZE, "%llu\n",
218                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         u64 val = 0;
225         struct zram *zram = dev_to_zram(dev);
226
227         deprecated_attr_warn("mem_used_total");
228         down_read(&zram->init_lock);
229         if (init_done(zram)) {
230                 struct zram_meta *meta = zram->meta;
231                 val = zs_get_total_pages(meta->mem_pool);
232         }
233         up_read(&zram->init_lock);
234
235         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239                 struct device_attribute *attr, char *buf)
240 {
241         u64 val;
242         struct zram *zram = dev_to_zram(dev);
243
244         deprecated_attr_warn("mem_limit");
245         down_read(&zram->init_lock);
246         val = zram->limit_pages;
247         up_read(&zram->init_lock);
248
249         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         u64 limit;
256         char *tmp;
257         struct zram *zram = dev_to_zram(dev);
258
259         limit = memparse(buf, &tmp);
260         if (buf == tmp) /* no chars parsed, invalid input */
261                 return -EINVAL;
262
263         down_write(&zram->init_lock);
264         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265         up_write(&zram->init_lock);
266
267         return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         u64 val = 0;
274         struct zram *zram = dev_to_zram(dev);
275
276         deprecated_attr_warn("mem_used_max");
277         down_read(&zram->init_lock);
278         if (init_done(zram))
279                 val = atomic_long_read(&zram->stats.max_used_pages);
280         up_read(&zram->init_lock);
281
282         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286                 struct device_attribute *attr, const char *buf, size_t len)
287 {
288         int err;
289         unsigned long val;
290         struct zram *zram = dev_to_zram(dev);
291
292         err = kstrtoul(buf, 10, &val);
293         if (err || val != 0)
294                 return -EINVAL;
295
296         down_read(&zram->init_lock);
297         if (init_done(zram)) {
298                 struct zram_meta *meta = zram->meta;
299                 atomic_long_set(&zram->stats.max_used_pages,
300                                 zs_get_total_pages(meta->mem_pool));
301         }
302         up_read(&zram->init_lock);
303
304         return len;
305 }
306
307 static ssize_t max_comp_streams_show(struct device *dev,
308                 struct device_attribute *attr, char *buf)
309 {
310         int val;
311         struct zram *zram = dev_to_zram(dev);
312
313         down_read(&zram->init_lock);
314         val = zram->max_comp_streams;
315         up_read(&zram->init_lock);
316
317         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318 }
319
320 static ssize_t max_comp_streams_store(struct device *dev,
321                 struct device_attribute *attr, const char *buf, size_t len)
322 {
323         int num;
324         struct zram *zram = dev_to_zram(dev);
325         int ret;
326
327         ret = kstrtoint(buf, 0, &num);
328         if (ret < 0)
329                 return ret;
330         if (num < 1)
331                 return -EINVAL;
332
333         down_write(&zram->init_lock);
334         if (init_done(zram)) {
335                 if (!zcomp_set_max_streams(zram->comp, num)) {
336                         pr_info("Cannot change max compression streams\n");
337                         ret = -EINVAL;
338                         goto out;
339                 }
340         }
341
342         zram->max_comp_streams = num;
343         ret = len;
344 out:
345         up_write(&zram->init_lock);
346         return ret;
347 }
348
349 static ssize_t comp_algorithm_show(struct device *dev,
350                 struct device_attribute *attr, char *buf)
351 {
352         size_t sz;
353         struct zram *zram = dev_to_zram(dev);
354
355         down_read(&zram->init_lock);
356         sz = zcomp_available_show(zram->compressor, buf);
357         up_read(&zram->init_lock);
358
359         return sz;
360 }
361
362 static ssize_t comp_algorithm_store(struct device *dev,
363                 struct device_attribute *attr, const char *buf, size_t len)
364 {
365         struct zram *zram = dev_to_zram(dev);
366         size_t sz;
367
368         down_write(&zram->init_lock);
369         if (init_done(zram)) {
370                 up_write(&zram->init_lock);
371                 pr_info("Can't change algorithm for initialized device\n");
372                 return -EBUSY;
373         }
374         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
375
376         /* ignore trailing newline */
377         sz = strlen(zram->compressor);
378         if (sz > 0 && zram->compressor[sz - 1] == '\n')
379                 zram->compressor[sz - 1] = 0x00;
380
381         if (!zcomp_available_algorithm(zram->compressor))
382                 len = -EINVAL;
383
384         up_write(&zram->init_lock);
385         return len;
386 }
387
388 static ssize_t compact_store(struct device *dev,
389                 struct device_attribute *attr, const char *buf, size_t len)
390 {
391         struct zram *zram = dev_to_zram(dev);
392         struct zram_meta *meta;
393
394         down_read(&zram->init_lock);
395         if (!init_done(zram)) {
396                 up_read(&zram->init_lock);
397                 return -EINVAL;
398         }
399
400         meta = zram->meta;
401         zs_compact(meta->mem_pool);
402         up_read(&zram->init_lock);
403
404         return len;
405 }
406
407 static ssize_t io_stat_show(struct device *dev,
408                 struct device_attribute *attr, char *buf)
409 {
410         struct zram *zram = dev_to_zram(dev);
411         ssize_t ret;
412
413         down_read(&zram->init_lock);
414         ret = scnprintf(buf, PAGE_SIZE,
415                         "%8llu %8llu %8llu %8llu\n",
416                         (u64)atomic64_read(&zram->stats.failed_reads),
417                         (u64)atomic64_read(&zram->stats.failed_writes),
418                         (u64)atomic64_read(&zram->stats.invalid_io),
419                         (u64)atomic64_read(&zram->stats.notify_free));
420         up_read(&zram->init_lock);
421
422         return ret;
423 }
424
425 static ssize_t mm_stat_show(struct device *dev,
426                 struct device_attribute *attr, char *buf)
427 {
428         struct zram *zram = dev_to_zram(dev);
429         struct zs_pool_stats pool_stats;
430         u64 orig_size, mem_used = 0;
431         long max_used;
432         ssize_t ret;
433
434         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
435
436         down_read(&zram->init_lock);
437         if (init_done(zram)) {
438                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
439                 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
440         }
441
442         orig_size = atomic64_read(&zram->stats.pages_stored);
443         max_used = atomic_long_read(&zram->stats.max_used_pages);
444
445         ret = scnprintf(buf, PAGE_SIZE,
446                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
447                         orig_size << PAGE_SHIFT,
448                         (u64)atomic64_read(&zram->stats.compr_data_size),
449                         mem_used << PAGE_SHIFT,
450                         zram->limit_pages << PAGE_SHIFT,
451                         max_used << PAGE_SHIFT,
452                         (u64)atomic64_read(&zram->stats.zero_pages),
453                         pool_stats.pages_compacted);
454         up_read(&zram->init_lock);
455
456         return ret;
457 }
458
459 static DEVICE_ATTR_RO(io_stat);
460 static DEVICE_ATTR_RO(mm_stat);
461 ZRAM_ATTR_RO(num_reads);
462 ZRAM_ATTR_RO(num_writes);
463 ZRAM_ATTR_RO(failed_reads);
464 ZRAM_ATTR_RO(failed_writes);
465 ZRAM_ATTR_RO(invalid_io);
466 ZRAM_ATTR_RO(notify_free);
467 ZRAM_ATTR_RO(zero_pages);
468 ZRAM_ATTR_RO(compr_data_size);
469
470 static inline bool zram_meta_get(struct zram *zram)
471 {
472         if (atomic_inc_not_zero(&zram->refcount))
473                 return true;
474         return false;
475 }
476
477 static inline void zram_meta_put(struct zram *zram)
478 {
479         atomic_dec(&zram->refcount);
480 }
481
482 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
483 {
484         size_t num_pages = disksize >> PAGE_SHIFT;
485         size_t index;
486
487         /* Free all pages that are still in this zram device */
488         for (index = 0; index < num_pages; index++) {
489                 unsigned long handle = meta->table[index].handle;
490
491                 if (!handle)
492                         continue;
493
494                 zs_free(meta->mem_pool, handle);
495         }
496
497         zs_destroy_pool(meta->mem_pool);
498         vfree(meta->table);
499         kfree(meta);
500 }
501
502 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
503 {
504         size_t num_pages;
505         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
506
507         if (!meta)
508                 return NULL;
509
510         num_pages = disksize >> PAGE_SHIFT;
511         meta->table = vzalloc(num_pages * sizeof(*meta->table));
512         if (!meta->table) {
513                 pr_err("Error allocating zram address table\n");
514                 goto out_error;
515         }
516
517         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
518         if (!meta->mem_pool) {
519                 pr_err("Error creating memory pool\n");
520                 goto out_error;
521         }
522
523         return meta;
524
525 out_error:
526         vfree(meta->table);
527         kfree(meta);
528         return NULL;
529 }
530
531 /*
532  * To protect concurrent access to the same index entry,
533  * caller should hold this table index entry's bit_spinlock to
534  * indicate this index entry is accessing.
535  */
536 static void zram_free_page(struct zram *zram, size_t index)
537 {
538         struct zram_meta *meta = zram->meta;
539         unsigned long handle = meta->table[index].handle;
540
541         if (unlikely(!handle)) {
542                 /*
543                  * No memory is allocated for zero filled pages.
544                  * Simply clear zero page flag.
545                  */
546                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
547                         zram_clear_flag(meta, index, ZRAM_ZERO);
548                         atomic64_dec(&zram->stats.zero_pages);
549                 }
550                 return;
551         }
552
553         zs_free(meta->mem_pool, handle);
554
555         atomic64_sub(zram_get_obj_size(meta, index),
556                         &zram->stats.compr_data_size);
557         atomic64_dec(&zram->stats.pages_stored);
558
559         meta->table[index].handle = 0;
560         zram_set_obj_size(meta, index, 0);
561 }
562
563 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
564 {
565         int ret = 0;
566         unsigned char *cmem;
567         struct zram_meta *meta = zram->meta;
568         unsigned long handle;
569         size_t size;
570
571         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
572         handle = meta->table[index].handle;
573         size = zram_get_obj_size(meta, index);
574
575         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
576                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
577                 clear_page(mem);
578                 return 0;
579         }
580
581         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
582         if (size == PAGE_SIZE)
583                 copy_page(mem, cmem);
584         else
585                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
586         zs_unmap_object(meta->mem_pool, handle);
587         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
588
589         /* Should NEVER happen. Return bio error if it does. */
590         if (unlikely(ret)) {
591                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
592                 return ret;
593         }
594
595         return 0;
596 }
597
598 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
599                           u32 index, int offset)
600 {
601         int ret;
602         struct page *page;
603         unsigned char *user_mem, *uncmem = NULL;
604         struct zram_meta *meta = zram->meta;
605         page = bvec->bv_page;
606
607         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
608         if (unlikely(!meta->table[index].handle) ||
609                         zram_test_flag(meta, index, ZRAM_ZERO)) {
610                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
611                 handle_zero_page(bvec);
612                 return 0;
613         }
614         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
615
616         if (is_partial_io(bvec))
617                 /* Use  a temporary buffer to decompress the page */
618                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
619
620         user_mem = kmap_atomic(page);
621         if (!is_partial_io(bvec))
622                 uncmem = user_mem;
623
624         if (!uncmem) {
625                 pr_err("Unable to allocate temp memory\n");
626                 ret = -ENOMEM;
627                 goto out_cleanup;
628         }
629
630         ret = zram_decompress_page(zram, uncmem, index);
631         /* Should NEVER happen. Return bio error if it does. */
632         if (unlikely(ret))
633                 goto out_cleanup;
634
635         if (is_partial_io(bvec))
636                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
637                                 bvec->bv_len);
638
639         flush_dcache_page(page);
640         ret = 0;
641 out_cleanup:
642         kunmap_atomic(user_mem);
643         if (is_partial_io(bvec))
644                 kfree(uncmem);
645         return ret;
646 }
647
648 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
649                            int offset)
650 {
651         int ret = 0;
652         size_t clen;
653         unsigned long handle;
654         struct page *page;
655         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
656         struct zram_meta *meta = zram->meta;
657         struct zcomp_strm *zstrm = NULL;
658         unsigned long alloced_pages;
659
660         page = bvec->bv_page;
661         if (is_partial_io(bvec)) {
662                 /*
663                  * This is a partial IO. We need to read the full page
664                  * before to write the changes.
665                  */
666                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
667                 if (!uncmem) {
668                         ret = -ENOMEM;
669                         goto out;
670                 }
671                 ret = zram_decompress_page(zram, uncmem, index);
672                 if (ret)
673                         goto out;
674         }
675
676         zstrm = zcomp_strm_find(zram->comp);
677         user_mem = kmap_atomic(page);
678
679         if (is_partial_io(bvec)) {
680                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
681                        bvec->bv_len);
682                 kunmap_atomic(user_mem);
683                 user_mem = NULL;
684         } else {
685                 uncmem = user_mem;
686         }
687
688         if (page_zero_filled(uncmem)) {
689                 if (user_mem)
690                         kunmap_atomic(user_mem);
691                 /* Free memory associated with this sector now. */
692                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
693                 zram_free_page(zram, index);
694                 zram_set_flag(meta, index, ZRAM_ZERO);
695                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
696
697                 atomic64_inc(&zram->stats.zero_pages);
698                 ret = 0;
699                 goto out;
700         }
701
702         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
703         if (!is_partial_io(bvec)) {
704                 kunmap_atomic(user_mem);
705                 user_mem = NULL;
706                 uncmem = NULL;
707         }
708
709         if (unlikely(ret)) {
710                 pr_err("Compression failed! err=%d\n", ret);
711                 goto out;
712         }
713         src = zstrm->buffer;
714         if (unlikely(clen > max_zpage_size)) {
715                 clen = PAGE_SIZE;
716                 if (is_partial_io(bvec))
717                         src = uncmem;
718         }
719
720         handle = zs_malloc(meta->mem_pool, clen);
721         if (!handle) {
722                 pr_err("Error allocating memory for compressed page: %u, size=%zu\n",
723                         index, clen);
724                 ret = -ENOMEM;
725                 goto out;
726         }
727
728         alloced_pages = zs_get_total_pages(meta->mem_pool);
729         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
730                 zs_free(meta->mem_pool, handle);
731                 ret = -ENOMEM;
732                 goto out;
733         }
734
735         update_used_max(zram, alloced_pages);
736
737         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
738
739         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
740                 src = kmap_atomic(page);
741                 copy_page(cmem, src);
742                 kunmap_atomic(src);
743         } else {
744                 memcpy(cmem, src, clen);
745         }
746
747         zcomp_strm_release(zram->comp, zstrm);
748         zstrm = NULL;
749         zs_unmap_object(meta->mem_pool, handle);
750
751         /*
752          * Free memory associated with this sector
753          * before overwriting unused sectors.
754          */
755         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
756         zram_free_page(zram, index);
757
758         meta->table[index].handle = handle;
759         zram_set_obj_size(meta, index, clen);
760         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
761
762         /* Update stats */
763         atomic64_add(clen, &zram->stats.compr_data_size);
764         atomic64_inc(&zram->stats.pages_stored);
765 out:
766         if (zstrm)
767                 zcomp_strm_release(zram->comp, zstrm);
768         if (is_partial_io(bvec))
769                 kfree(uncmem);
770         return ret;
771 }
772
773 /*
774  * zram_bio_discard - handler on discard request
775  * @index: physical block index in PAGE_SIZE units
776  * @offset: byte offset within physical block
777  */
778 static void zram_bio_discard(struct zram *zram, u32 index,
779                              int offset, struct bio *bio)
780 {
781         size_t n = bio->bi_iter.bi_size;
782         struct zram_meta *meta = zram->meta;
783
784         /*
785          * zram manages data in physical block size units. Because logical block
786          * size isn't identical with physical block size on some arch, we
787          * could get a discard request pointing to a specific offset within a
788          * certain physical block.  Although we can handle this request by
789          * reading that physiclal block and decompressing and partially zeroing
790          * and re-compressing and then re-storing it, this isn't reasonable
791          * because our intent with a discard request is to save memory.  So
792          * skipping this logical block is appropriate here.
793          */
794         if (offset) {
795                 if (n <= (PAGE_SIZE - offset))
796                         return;
797
798                 n -= (PAGE_SIZE - offset);
799                 index++;
800         }
801
802         while (n >= PAGE_SIZE) {
803                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
804                 zram_free_page(zram, index);
805                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
806                 atomic64_inc(&zram->stats.notify_free);
807                 index++;
808                 n -= PAGE_SIZE;
809         }
810 }
811
812 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
813                         int offset, int rw)
814 {
815         unsigned long start_time = jiffies;
816         int ret;
817
818         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
819                         &zram->disk->part0);
820
821         if (rw == READ) {
822                 atomic64_inc(&zram->stats.num_reads);
823                 ret = zram_bvec_read(zram, bvec, index, offset);
824         } else {
825                 atomic64_inc(&zram->stats.num_writes);
826                 ret = zram_bvec_write(zram, bvec, index, offset);
827         }
828
829         generic_end_io_acct(rw, &zram->disk->part0, start_time);
830
831         if (unlikely(ret)) {
832                 if (rw == READ)
833                         atomic64_inc(&zram->stats.failed_reads);
834                 else
835                         atomic64_inc(&zram->stats.failed_writes);
836         }
837
838         return ret;
839 }
840
841 static void __zram_make_request(struct zram *zram, struct bio *bio)
842 {
843         int offset, rw;
844         u32 index;
845         struct bio_vec bvec;
846         struct bvec_iter iter;
847
848         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
849         offset = (bio->bi_iter.bi_sector &
850                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
851
852         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
853                 zram_bio_discard(zram, index, offset, bio);
854                 bio_endio(bio);
855                 return;
856         }
857
858         rw = bio_data_dir(bio);
859         bio_for_each_segment(bvec, bio, iter) {
860                 int max_transfer_size = PAGE_SIZE - offset;
861
862                 if (bvec.bv_len > max_transfer_size) {
863                         /*
864                          * zram_bvec_rw() can only make operation on a single
865                          * zram page. Split the bio vector.
866                          */
867                         struct bio_vec bv;
868
869                         bv.bv_page = bvec.bv_page;
870                         bv.bv_len = max_transfer_size;
871                         bv.bv_offset = bvec.bv_offset;
872
873                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
874                                 goto out;
875
876                         bv.bv_len = bvec.bv_len - max_transfer_size;
877                         bv.bv_offset += max_transfer_size;
878                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
879                                 goto out;
880                 } else
881                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
882                                 goto out;
883
884                 update_position(&index, &offset, &bvec);
885         }
886
887         bio_endio(bio);
888         return;
889
890 out:
891         bio_io_error(bio);
892 }
893
894 /*
895  * Handler function for all zram I/O requests.
896  */
897 static void zram_make_request(struct request_queue *queue, struct bio *bio)
898 {
899         struct zram *zram = queue->queuedata;
900
901         if (unlikely(!zram_meta_get(zram)))
902                 goto error;
903
904         blk_queue_split(queue, &bio, queue->bio_split);
905
906         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
907                                         bio->bi_iter.bi_size)) {
908                 atomic64_inc(&zram->stats.invalid_io);
909                 goto put_zram;
910         }
911
912         __zram_make_request(zram, bio);
913         zram_meta_put(zram);
914         return;
915 put_zram:
916         zram_meta_put(zram);
917 error:
918         bio_io_error(bio);
919 }
920
921 static void zram_slot_free_notify(struct block_device *bdev,
922                                 unsigned long index)
923 {
924         struct zram *zram;
925         struct zram_meta *meta;
926
927         zram = bdev->bd_disk->private_data;
928         meta = zram->meta;
929
930         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
931         zram_free_page(zram, index);
932         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
933         atomic64_inc(&zram->stats.notify_free);
934 }
935
936 static int zram_rw_page(struct block_device *bdev, sector_t sector,
937                        struct page *page, int rw)
938 {
939         int offset, err = -EIO;
940         u32 index;
941         struct zram *zram;
942         struct bio_vec bv;
943
944         zram = bdev->bd_disk->private_data;
945         if (unlikely(!zram_meta_get(zram)))
946                 goto out;
947
948         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
949                 atomic64_inc(&zram->stats.invalid_io);
950                 err = -EINVAL;
951                 goto put_zram;
952         }
953
954         index = sector >> SECTORS_PER_PAGE_SHIFT;
955         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
956
957         bv.bv_page = page;
958         bv.bv_len = PAGE_SIZE;
959         bv.bv_offset = 0;
960
961         err = zram_bvec_rw(zram, &bv, index, offset, rw);
962 put_zram:
963         zram_meta_put(zram);
964 out:
965         /*
966          * If I/O fails, just return error(ie, non-zero) without
967          * calling page_endio.
968          * It causes resubmit the I/O with bio request by upper functions
969          * of rw_page(e.g., swap_readpage, __swap_writepage) and
970          * bio->bi_end_io does things to handle the error
971          * (e.g., SetPageError, set_page_dirty and extra works).
972          */
973         if (err == 0)
974                 page_endio(page, rw, 0);
975         return err;
976 }
977
978 static void zram_reset_device(struct zram *zram)
979 {
980         struct zram_meta *meta;
981         struct zcomp *comp;
982         u64 disksize;
983
984         down_write(&zram->init_lock);
985
986         zram->limit_pages = 0;
987
988         if (!init_done(zram)) {
989                 up_write(&zram->init_lock);
990                 return;
991         }
992
993         meta = zram->meta;
994         comp = zram->comp;
995         disksize = zram->disksize;
996         /*
997          * Refcount will go down to 0 eventually and r/w handler
998          * cannot handle further I/O so it will bail out by
999          * check zram_meta_get.
1000          */
1001         zram_meta_put(zram);
1002         /*
1003          * We want to free zram_meta in process context to avoid
1004          * deadlock between reclaim path and any other locks.
1005          */
1006         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1007
1008         /* Reset stats */
1009         memset(&zram->stats, 0, sizeof(zram->stats));
1010         zram->disksize = 0;
1011         zram->max_comp_streams = 1;
1012
1013         set_capacity(zram->disk, 0);
1014         part_stat_set_all(&zram->disk->part0, 0);
1015
1016         up_write(&zram->init_lock);
1017         /* I/O operation under all of CPU are done so let's free */
1018         zram_meta_free(meta, disksize);
1019         zcomp_destroy(comp);
1020 }
1021
1022 static ssize_t disksize_store(struct device *dev,
1023                 struct device_attribute *attr, const char *buf, size_t len)
1024 {
1025         u64 disksize;
1026         struct zcomp *comp;
1027         struct zram_meta *meta;
1028         struct zram *zram = dev_to_zram(dev);
1029         int err;
1030
1031         disksize = memparse(buf, NULL);
1032         if (!disksize)
1033                 return -EINVAL;
1034
1035         disksize = PAGE_ALIGN(disksize);
1036         meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1037         if (!meta)
1038                 return -ENOMEM;
1039
1040         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1041         if (IS_ERR(comp)) {
1042                 pr_err("Cannot initialise %s compressing backend\n",
1043                                 zram->compressor);
1044                 err = PTR_ERR(comp);
1045                 goto out_free_meta;
1046         }
1047
1048         down_write(&zram->init_lock);
1049         if (init_done(zram)) {
1050                 pr_info("Cannot change disksize for initialized device\n");
1051                 err = -EBUSY;
1052                 goto out_destroy_comp;
1053         }
1054
1055         init_waitqueue_head(&zram->io_done);
1056         atomic_set(&zram->refcount, 1);
1057         zram->meta = meta;
1058         zram->comp = comp;
1059         zram->disksize = disksize;
1060         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1061         up_write(&zram->init_lock);
1062
1063         /*
1064          * Revalidate disk out of the init_lock to avoid lockdep splat.
1065          * It's okay because disk's capacity is protected by init_lock
1066          * so that revalidate_disk always sees up-to-date capacity.
1067          */
1068         revalidate_disk(zram->disk);
1069
1070         return len;
1071
1072 out_destroy_comp:
1073         up_write(&zram->init_lock);
1074         zcomp_destroy(comp);
1075 out_free_meta:
1076         zram_meta_free(meta, disksize);
1077         return err;
1078 }
1079
1080 static ssize_t reset_store(struct device *dev,
1081                 struct device_attribute *attr, const char *buf, size_t len)
1082 {
1083         int ret;
1084         unsigned short do_reset;
1085         struct zram *zram;
1086         struct block_device *bdev;
1087
1088         ret = kstrtou16(buf, 10, &do_reset);
1089         if (ret)
1090                 return ret;
1091
1092         if (!do_reset)
1093                 return -EINVAL;
1094
1095         zram = dev_to_zram(dev);
1096         bdev = bdget_disk(zram->disk, 0);
1097         if (!bdev)
1098                 return -ENOMEM;
1099
1100         mutex_lock(&bdev->bd_mutex);
1101         /* Do not reset an active device or claimed device */
1102         if (bdev->bd_openers || zram->claim) {
1103                 mutex_unlock(&bdev->bd_mutex);
1104                 bdput(bdev);
1105                 return -EBUSY;
1106         }
1107
1108         /* From now on, anyone can't open /dev/zram[0-9] */
1109         zram->claim = true;
1110         mutex_unlock(&bdev->bd_mutex);
1111
1112         /* Make sure all the pending I/O are finished */
1113         fsync_bdev(bdev);
1114         zram_reset_device(zram);
1115         revalidate_disk(zram->disk);
1116         bdput(bdev);
1117
1118         mutex_lock(&bdev->bd_mutex);
1119         zram->claim = false;
1120         mutex_unlock(&bdev->bd_mutex);
1121
1122         return len;
1123 }
1124
1125 static int zram_open(struct block_device *bdev, fmode_t mode)
1126 {
1127         int ret = 0;
1128         struct zram *zram;
1129
1130         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1131
1132         zram = bdev->bd_disk->private_data;
1133         /* zram was claimed to reset so open request fails */
1134         if (zram->claim)
1135                 ret = -EBUSY;
1136
1137         return ret;
1138 }
1139
1140 static const struct block_device_operations zram_devops = {
1141         .open = zram_open,
1142         .swap_slot_free_notify = zram_slot_free_notify,
1143         .rw_page = zram_rw_page,
1144         .owner = THIS_MODULE
1145 };
1146
1147 static DEVICE_ATTR_WO(compact);
1148 static DEVICE_ATTR_RW(disksize);
1149 static DEVICE_ATTR_RO(initstate);
1150 static DEVICE_ATTR_WO(reset);
1151 static DEVICE_ATTR_RO(orig_data_size);
1152 static DEVICE_ATTR_RO(mem_used_total);
1153 static DEVICE_ATTR_RW(mem_limit);
1154 static DEVICE_ATTR_RW(mem_used_max);
1155 static DEVICE_ATTR_RW(max_comp_streams);
1156 static DEVICE_ATTR_RW(comp_algorithm);
1157
1158 static struct attribute *zram_disk_attrs[] = {
1159         &dev_attr_disksize.attr,
1160         &dev_attr_initstate.attr,
1161         &dev_attr_reset.attr,
1162         &dev_attr_num_reads.attr,
1163         &dev_attr_num_writes.attr,
1164         &dev_attr_failed_reads.attr,
1165         &dev_attr_failed_writes.attr,
1166         &dev_attr_compact.attr,
1167         &dev_attr_invalid_io.attr,
1168         &dev_attr_notify_free.attr,
1169         &dev_attr_zero_pages.attr,
1170         &dev_attr_orig_data_size.attr,
1171         &dev_attr_compr_data_size.attr,
1172         &dev_attr_mem_used_total.attr,
1173         &dev_attr_mem_limit.attr,
1174         &dev_attr_mem_used_max.attr,
1175         &dev_attr_max_comp_streams.attr,
1176         &dev_attr_comp_algorithm.attr,
1177         &dev_attr_io_stat.attr,
1178         &dev_attr_mm_stat.attr,
1179         NULL,
1180 };
1181
1182 static struct attribute_group zram_disk_attr_group = {
1183         .attrs = zram_disk_attrs,
1184 };
1185
1186 /*
1187  * Allocate and initialize new zram device. the function returns
1188  * '>= 0' device_id upon success, and negative value otherwise.
1189  */
1190 static int zram_add(void)
1191 {
1192         struct zram *zram;
1193         struct request_queue *queue;
1194         int ret, device_id;
1195
1196         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1197         if (!zram)
1198                 return -ENOMEM;
1199
1200         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1201         if (ret < 0)
1202                 goto out_free_dev;
1203         device_id = ret;
1204
1205         init_rwsem(&zram->init_lock);
1206
1207         queue = blk_alloc_queue(GFP_KERNEL);
1208         if (!queue) {
1209                 pr_err("Error allocating disk queue for device %d\n",
1210                         device_id);
1211                 ret = -ENOMEM;
1212                 goto out_free_idr;
1213         }
1214
1215         blk_queue_make_request(queue, zram_make_request);
1216
1217         /* gendisk structure */
1218         zram->disk = alloc_disk(1);
1219         if (!zram->disk) {
1220                 pr_err("Error allocating disk structure for device %d\n",
1221                         device_id);
1222                 ret = -ENOMEM;
1223                 goto out_free_queue;
1224         }
1225
1226         zram->disk->major = zram_major;
1227         zram->disk->first_minor = device_id;
1228         zram->disk->fops = &zram_devops;
1229         zram->disk->queue = queue;
1230         zram->disk->queue->queuedata = zram;
1231         zram->disk->private_data = zram;
1232         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1233
1234         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1235         set_capacity(zram->disk, 0);
1236         /* zram devices sort of resembles non-rotational disks */
1237         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1238         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1239         /*
1240          * To ensure that we always get PAGE_SIZE aligned
1241          * and n*PAGE_SIZED sized I/O requests.
1242          */
1243         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1244         blk_queue_logical_block_size(zram->disk->queue,
1245                                         ZRAM_LOGICAL_BLOCK_SIZE);
1246         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1247         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1248         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1249         blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1250         /*
1251          * zram_bio_discard() will clear all logical blocks if logical block
1252          * size is identical with physical block size(PAGE_SIZE). But if it is
1253          * different, we will skip discarding some parts of logical blocks in
1254          * the part of the request range which isn't aligned to physical block
1255          * size.  So we can't ensure that all discarded logical blocks are
1256          * zeroed.
1257          */
1258         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1259                 zram->disk->queue->limits.discard_zeroes_data = 1;
1260         else
1261                 zram->disk->queue->limits.discard_zeroes_data = 0;
1262         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1263
1264         add_disk(zram->disk);
1265
1266         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1267                                 &zram_disk_attr_group);
1268         if (ret < 0) {
1269                 pr_err("Error creating sysfs group for device %d\n",
1270                                 device_id);
1271                 goto out_free_disk;
1272         }
1273         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1274         zram->meta = NULL;
1275         zram->max_comp_streams = 1;
1276
1277         pr_info("Added device: %s\n", zram->disk->disk_name);
1278         return device_id;
1279
1280 out_free_disk:
1281         del_gendisk(zram->disk);
1282         put_disk(zram->disk);
1283 out_free_queue:
1284         blk_cleanup_queue(queue);
1285 out_free_idr:
1286         idr_remove(&zram_index_idr, device_id);
1287 out_free_dev:
1288         kfree(zram);
1289         return ret;
1290 }
1291
1292 static int zram_remove(struct zram *zram)
1293 {
1294         struct block_device *bdev;
1295
1296         bdev = bdget_disk(zram->disk, 0);
1297         if (!bdev)
1298                 return -ENOMEM;
1299
1300         mutex_lock(&bdev->bd_mutex);
1301         if (bdev->bd_openers || zram->claim) {
1302                 mutex_unlock(&bdev->bd_mutex);
1303                 bdput(bdev);
1304                 return -EBUSY;
1305         }
1306
1307         zram->claim = true;
1308         mutex_unlock(&bdev->bd_mutex);
1309
1310         /*
1311          * Remove sysfs first, so no one will perform a disksize
1312          * store while we destroy the devices. This also helps during
1313          * hot_remove -- zram_reset_device() is the last holder of
1314          * ->init_lock, no later/concurrent disksize_store() or any
1315          * other sysfs handlers are possible.
1316          */
1317         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1318                         &zram_disk_attr_group);
1319
1320         /* Make sure all the pending I/O are finished */
1321         fsync_bdev(bdev);
1322         zram_reset_device(zram);
1323         bdput(bdev);
1324
1325         pr_info("Removed device: %s\n", zram->disk->disk_name);
1326
1327         idr_remove(&zram_index_idr, zram->disk->first_minor);
1328         blk_cleanup_queue(zram->disk->queue);
1329         del_gendisk(zram->disk);
1330         put_disk(zram->disk);
1331         kfree(zram);
1332         return 0;
1333 }
1334
1335 /* zram-control sysfs attributes */
1336 static ssize_t hot_add_show(struct class *class,
1337                         struct class_attribute *attr,
1338                         char *buf)
1339 {
1340         int ret;
1341
1342         mutex_lock(&zram_index_mutex);
1343         ret = zram_add();
1344         mutex_unlock(&zram_index_mutex);
1345
1346         if (ret < 0)
1347                 return ret;
1348         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1349 }
1350
1351 static ssize_t hot_remove_store(struct class *class,
1352                         struct class_attribute *attr,
1353                         const char *buf,
1354                         size_t count)
1355 {
1356         struct zram *zram;
1357         int ret, dev_id;
1358
1359         /* dev_id is gendisk->first_minor, which is `int' */
1360         ret = kstrtoint(buf, 10, &dev_id);
1361         if (ret)
1362                 return ret;
1363         if (dev_id < 0)
1364                 return -EINVAL;
1365
1366         mutex_lock(&zram_index_mutex);
1367
1368         zram = idr_find(&zram_index_idr, dev_id);
1369         if (zram)
1370                 ret = zram_remove(zram);
1371         else
1372                 ret = -ENODEV;
1373
1374         mutex_unlock(&zram_index_mutex);
1375         return ret ? ret : count;
1376 }
1377
1378 static struct class_attribute zram_control_class_attrs[] = {
1379         __ATTR_RO(hot_add),
1380         __ATTR_WO(hot_remove),
1381         __ATTR_NULL,
1382 };
1383
1384 static struct class zram_control_class = {
1385         .name           = "zram-control",
1386         .owner          = THIS_MODULE,
1387         .class_attrs    = zram_control_class_attrs,
1388 };
1389
1390 static int zram_remove_cb(int id, void *ptr, void *data)
1391 {
1392         zram_remove(ptr);
1393         return 0;
1394 }
1395
1396 static void destroy_devices(void)
1397 {
1398         class_unregister(&zram_control_class);
1399         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1400         idr_destroy(&zram_index_idr);
1401         unregister_blkdev(zram_major, "zram");
1402 }
1403
1404 static int __init zram_init(void)
1405 {
1406         int ret;
1407
1408         ret = class_register(&zram_control_class);
1409         if (ret) {
1410                 pr_err("Unable to register zram-control class\n");
1411                 return ret;
1412         }
1413
1414         zram_major = register_blkdev(0, "zram");
1415         if (zram_major <= 0) {
1416                 pr_err("Unable to get major number\n");
1417                 class_unregister(&zram_control_class);
1418                 return -EBUSY;
1419         }
1420
1421         while (num_devices != 0) {
1422                 mutex_lock(&zram_index_mutex);
1423                 ret = zram_add();
1424                 mutex_unlock(&zram_index_mutex);
1425                 if (ret < 0)
1426                         goto out_error;
1427                 num_devices--;
1428         }
1429
1430         return 0;
1431
1432 out_error:
1433         destroy_devices();
1434         return ret;
1435 }
1436
1437 static void __exit zram_exit(void)
1438 {
1439         destroy_devices();
1440 }
1441
1442 module_init(zram_init);
1443 module_exit(zram_exit);
1444
1445 module_param(num_devices, uint, 0);
1446 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1447
1448 MODULE_LICENSE("Dual BSD/GPL");
1449 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1450 MODULE_DESCRIPTION("Compressed RAM Block Device");