Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[cascardo/linux.git] / drivers / bluetooth / hci_intel.c
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER        0
44 #define STATE_DOWNLOADING       1
45 #define STATE_FIRMWARE_LOADED   2
46 #define STATE_FIRMWARE_FAILED   3
47 #define STATE_BOOTING           4
48 #define STATE_LPM_ENABLED       5
49 #define STATE_TX_ACTIVE         6
50 #define STATE_SUSPENDED         7
51 #define STATE_LPM_TRANSACTION   8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65         __u8 opcode;
66         __u8 dlen;
67         __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71         struct list_head list;
72         struct platform_device *pdev;
73         struct gpio_desc *reset;
74         struct hci_uart *hu;
75         struct mutex hu_lock;
76         int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83         struct sk_buff *rx_skb;
84         struct sk_buff_head txq;
85         struct work_struct busy_work;
86         struct hci_uart *hu;
87         unsigned long flags;
88 };
89
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92         switch (speed) {
93         case 9600:
94                 return 0x00;
95         case 19200:
96                 return 0x01;
97         case 38400:
98                 return 0x02;
99         case 57600:
100                 return 0x03;
101         case 115200:
102                 return 0x04;
103         case 230400:
104                 return 0x05;
105         case 460800:
106                 return 0x06;
107         case 921600:
108                 return 0x07;
109         case 1843200:
110                 return 0x08;
111         case 3250000:
112                 return 0x09;
113         case 2000000:
114                 return 0x0a;
115         case 3000000:
116                 return 0x0b;
117         default:
118                 return 0xff;
119         }
120 }
121
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124         struct intel_data *intel = hu->priv;
125         int err;
126
127         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128                                   TASK_INTERRUPTIBLE,
129                                   msecs_to_jiffies(1000));
130
131         if (err == -EINTR) {
132                 bt_dev_err(hu->hdev, "Device boot interrupted");
133                 return -EINTR;
134         }
135
136         if (err) {
137                 bt_dev_err(hu->hdev, "Device boot timeout");
138                 return -ETIMEDOUT;
139         }
140
141         return err;
142 }
143
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147         struct intel_data *intel = hu->priv;
148         int err;
149
150         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151                                   TASK_INTERRUPTIBLE,
152                                   msecs_to_jiffies(1000));
153
154         if (err == -EINTR) {
155                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156                 return -EINTR;
157         }
158
159         if (err) {
160                 bt_dev_err(hu->hdev, "LPM transaction timeout");
161                 return -ETIMEDOUT;
162         }
163
164         return err;
165 }
166
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170         struct intel_data *intel = hu->priv;
171         struct sk_buff *skb;
172
173         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174             test_bit(STATE_SUSPENDED, &intel->flags))
175                 return 0;
176
177         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178                 return -EAGAIN;
179
180         bt_dev_dbg(hu->hdev, "Suspending");
181
182         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183         if (!skb) {
184                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185                 return -ENOMEM;
186         }
187
188         memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193         /* LPM flow is a priority, enqueue packet at list head */
194         skb_queue_head(&intel->txq, skb);
195         hci_uart_tx_wakeup(hu);
196
197         intel_wait_lpm_transaction(hu);
198         /* Even in case of failure, continue and test the suspended flag */
199
200         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203                 bt_dev_err(hu->hdev, "Device suspend error");
204                 return -EINVAL;
205         }
206
207         bt_dev_dbg(hu->hdev, "Suspended");
208
209         hci_uart_set_flow_control(hu, true);
210
211         return 0;
212 }
213
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216         struct intel_data *intel = hu->priv;
217         struct sk_buff *skb;
218
219         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220             !test_bit(STATE_SUSPENDED, &intel->flags))
221                 return 0;
222
223         bt_dev_dbg(hu->hdev, "Resuming");
224
225         hci_uart_set_flow_control(hu, false);
226
227         skb = bt_skb_alloc(0, GFP_KERNEL);
228         if (!skb) {
229                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230                 return -ENOMEM;
231         }
232
233         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237         /* LPM flow is a priority, enqueue packet at list head */
238         skb_queue_head(&intel->txq, skb);
239         hci_uart_tx_wakeup(hu);
240
241         intel_wait_lpm_transaction(hu);
242         /* Even in case of failure, continue and test the suspended flag */
243
244         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247                 bt_dev_err(hu->hdev, "Device resume error");
248                 return -EINVAL;
249         }
250
251         bt_dev_dbg(hu->hdev, "Resumed");
252
253         return 0;
254 }
255 #endif /* CONFIG_PM */
256
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260         struct intel_data *intel = hu->priv;
261         struct sk_buff *skb;
262
263         hci_uart_set_flow_control(hu, false);
264
265         clear_bit(STATE_SUSPENDED, &intel->flags);
266
267         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268         if (!skb) {
269                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270                 return -ENOMEM;
271         }
272
273         memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274                sizeof(lpm_resume_ack));
275         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276
277         /* LPM flow is a priority, enqueue packet at list head */
278         skb_queue_head(&intel->txq, skb);
279         hci_uart_tx_wakeup(hu);
280
281         bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283         return 0;
284 }
285
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288         struct intel_device *idev = dev_id;
289
290         dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292         mutex_lock(&idev->hu_lock);
293         if (idev->hu)
294                 intel_lpm_host_wake(idev->hu);
295         mutex_unlock(&idev->hu_lock);
296
297         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298         pm_runtime_get(&idev->pdev->dev);
299         pm_runtime_mark_last_busy(&idev->pdev->dev);
300         pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302         return IRQ_HANDLED;
303 }
304
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307         struct list_head *p;
308         int err = -ENODEV;
309
310         mutex_lock(&intel_device_list_lock);
311
312         list_for_each(p, &intel_device_list) {
313                 struct intel_device *idev = list_entry(p, struct intel_device,
314                                                        list);
315
316                 /* tty device and pdev device should share the same parent
317                  * which is the UART port.
318                  */
319                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
320                         continue;
321
322                 if (!idev->reset) {
323                         err = -ENOTSUPP;
324                         break;
325                 }
326
327                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
328                         hu, dev_name(&idev->pdev->dev), powered);
329
330                 gpiod_set_value(idev->reset, powered);
331
332                 /* Provide to idev a hu reference which is used to run LPM
333                  * transactions (lpm suspend/resume) from PM callbacks.
334                  * hu needs to be protected against concurrent removing during
335                  * these PM ops.
336                  */
337                 mutex_lock(&idev->hu_lock);
338                 idev->hu = powered ? hu : NULL;
339                 mutex_unlock(&idev->hu_lock);
340
341                 if (idev->irq < 0)
342                         break;
343
344                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
345                         err = devm_request_threaded_irq(&idev->pdev->dev,
346                                                         idev->irq, NULL,
347                                                         intel_irq,
348                                                         IRQF_ONESHOT,
349                                                         "bt-host-wake", idev);
350                         if (err) {
351                                 BT_ERR("hu %p, unable to allocate irq-%d",
352                                        hu, idev->irq);
353                                 break;
354                         }
355
356                         device_wakeup_enable(&idev->pdev->dev);
357
358                         pm_runtime_set_active(&idev->pdev->dev);
359                         pm_runtime_use_autosuspend(&idev->pdev->dev);
360                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
361                                                          LPM_SUSPEND_DELAY_MS);
362                         pm_runtime_enable(&idev->pdev->dev);
363                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
364                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
365                         device_wakeup_disable(&idev->pdev->dev);
366
367                         pm_runtime_disable(&idev->pdev->dev);
368                 }
369         }
370
371         mutex_unlock(&intel_device_list_lock);
372
373         return err;
374 }
375
376 static void intel_busy_work(struct work_struct *work)
377 {
378         struct list_head *p;
379         struct intel_data *intel = container_of(work, struct intel_data,
380                                                 busy_work);
381
382         /* Link is busy, delay the suspend */
383         mutex_lock(&intel_device_list_lock);
384         list_for_each(p, &intel_device_list) {
385                 struct intel_device *idev = list_entry(p, struct intel_device,
386                                                        list);
387
388                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
389                         pm_runtime_get(&idev->pdev->dev);
390                         pm_runtime_mark_last_busy(&idev->pdev->dev);
391                         pm_runtime_put_autosuspend(&idev->pdev->dev);
392                         break;
393                 }
394         }
395         mutex_unlock(&intel_device_list_lock);
396 }
397
398 static int intel_open(struct hci_uart *hu)
399 {
400         struct intel_data *intel;
401
402         BT_DBG("hu %p", hu);
403
404         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
405         if (!intel)
406                 return -ENOMEM;
407
408         skb_queue_head_init(&intel->txq);
409         INIT_WORK(&intel->busy_work, intel_busy_work);
410
411         intel->hu = hu;
412
413         hu->priv = intel;
414
415         if (!intel_set_power(hu, true))
416                 set_bit(STATE_BOOTING, &intel->flags);
417
418         return 0;
419 }
420
421 static int intel_close(struct hci_uart *hu)
422 {
423         struct intel_data *intel = hu->priv;
424
425         BT_DBG("hu %p", hu);
426
427         cancel_work_sync(&intel->busy_work);
428
429         intel_set_power(hu, false);
430
431         skb_queue_purge(&intel->txq);
432         kfree_skb(intel->rx_skb);
433         kfree(intel);
434
435         hu->priv = NULL;
436         return 0;
437 }
438
439 static int intel_flush(struct hci_uart *hu)
440 {
441         struct intel_data *intel = hu->priv;
442
443         BT_DBG("hu %p", hu);
444
445         skb_queue_purge(&intel->txq);
446
447         return 0;
448 }
449
450 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
451 {
452         struct sk_buff *skb;
453         struct hci_event_hdr *hdr;
454         struct hci_ev_cmd_complete *evt;
455
456         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
457         if (!skb)
458                 return -ENOMEM;
459
460         hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
461         hdr->evt = HCI_EV_CMD_COMPLETE;
462         hdr->plen = sizeof(*evt) + 1;
463
464         evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
465         evt->ncmd = 0x01;
466         evt->opcode = cpu_to_le16(opcode);
467
468         *skb_put(skb, 1) = 0x00;
469
470         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
471
472         return hci_recv_frame(hdev, skb);
473 }
474
475 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
476 {
477         struct intel_data *intel = hu->priv;
478         struct hci_dev *hdev = hu->hdev;
479         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
480         struct sk_buff *skb;
481         int err;
482
483         /* This can be the first command sent to the chip, check
484          * that the controller is ready.
485          */
486         err = intel_wait_booting(hu);
487
488         clear_bit(STATE_BOOTING, &intel->flags);
489
490         /* In case of timeout, try to continue anyway */
491         if (err && err != -ETIMEDOUT)
492                 return err;
493
494         bt_dev_info(hdev, "Change controller speed to %d", speed);
495
496         speed_cmd[3] = intel_convert_speed(speed);
497         if (speed_cmd[3] == 0xff) {
498                 bt_dev_err(hdev, "Unsupported speed");
499                 return -EINVAL;
500         }
501
502         /* Device will not accept speed change if Intel version has not been
503          * previously requested.
504          */
505         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
506         if (IS_ERR(skb)) {
507                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
508                            PTR_ERR(skb));
509                 return PTR_ERR(skb);
510         }
511         kfree_skb(skb);
512
513         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
514         if (!skb) {
515                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
516                 return -ENOMEM;
517         }
518
519         memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
520         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
521
522         hci_uart_set_flow_control(hu, true);
523
524         skb_queue_tail(&intel->txq, skb);
525         hci_uart_tx_wakeup(hu);
526
527         /* wait 100ms to change baudrate on controller side */
528         msleep(100);
529
530         hci_uart_set_baudrate(hu, speed);
531         hci_uart_set_flow_control(hu, false);
532
533         return 0;
534 }
535
536 static int intel_setup(struct hci_uart *hu)
537 {
538         static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
539                                           0x00, 0x08, 0x04, 0x00 };
540         struct intel_data *intel = hu->priv;
541         struct hci_dev *hdev = hu->hdev;
542         struct sk_buff *skb;
543         struct intel_version ver;
544         struct intel_boot_params *params;
545         struct list_head *p;
546         const struct firmware *fw;
547         const u8 *fw_ptr;
548         char fwname[64];
549         u32 frag_len;
550         ktime_t calltime, delta, rettime;
551         unsigned long long duration;
552         unsigned int init_speed, oper_speed;
553         int speed_change = 0;
554         int err;
555
556         bt_dev_dbg(hdev, "start intel_setup");
557
558         hu->hdev->set_diag = btintel_set_diag;
559         hu->hdev->set_bdaddr = btintel_set_bdaddr;
560
561         calltime = ktime_get();
562
563         if (hu->init_speed)
564                 init_speed = hu->init_speed;
565         else
566                 init_speed = hu->proto->init_speed;
567
568         if (hu->oper_speed)
569                 oper_speed = hu->oper_speed;
570         else
571                 oper_speed = hu->proto->oper_speed;
572
573         if (oper_speed && init_speed && oper_speed != init_speed)
574                 speed_change = 1;
575
576         /* Check that the controller is ready */
577         err = intel_wait_booting(hu);
578
579         clear_bit(STATE_BOOTING, &intel->flags);
580
581         /* In case of timeout, try to continue anyway */
582         if (err && err != -ETIMEDOUT)
583                 return err;
584
585         set_bit(STATE_BOOTLOADER, &intel->flags);
586
587         /* Read the Intel version information to determine if the device
588          * is in bootloader mode or if it already has operational firmware
589          * loaded.
590          */
591          err = btintel_read_version(hdev, &ver);
592          if (err)
593                 return err;
594
595         /* The hardware platform number has a fixed value of 0x37 and
596          * for now only accept this single value.
597          */
598         if (ver.hw_platform != 0x37) {
599                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
600                            ver.hw_platform);
601                 return -EINVAL;
602         }
603
604         /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
605          * supported by this firmware loading method. This check has been
606          * put in place to ensure correct forward compatibility options
607          * when newer hardware variants come along.
608          */
609         if (ver.hw_variant != 0x0b) {
610                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
611                            ver.hw_variant);
612                 return -EINVAL;
613         }
614
615         btintel_version_info(hdev, &ver);
616
617         /* The firmware variant determines if the device is in bootloader
618          * mode or is running operational firmware. The value 0x06 identifies
619          * the bootloader and the value 0x23 identifies the operational
620          * firmware.
621          *
622          * When the operational firmware is already present, then only
623          * the check for valid Bluetooth device address is needed. This
624          * determines if the device will be added as configured or
625          * unconfigured controller.
626          *
627          * It is not possible to use the Secure Boot Parameters in this
628          * case since that command is only available in bootloader mode.
629          */
630         if (ver.fw_variant == 0x23) {
631                 clear_bit(STATE_BOOTLOADER, &intel->flags);
632                 btintel_check_bdaddr(hdev);
633                 return 0;
634         }
635
636         /* If the device is not in bootloader mode, then the only possible
637          * choice is to return an error and abort the device initialization.
638          */
639         if (ver.fw_variant != 0x06) {
640                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
641                            ver.fw_variant);
642                 return -ENODEV;
643         }
644
645         /* Read the secure boot parameters to identify the operating
646          * details of the bootloader.
647          */
648         skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
649         if (IS_ERR(skb)) {
650                 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
651                            PTR_ERR(skb));
652                 return PTR_ERR(skb);
653         }
654
655         if (skb->len != sizeof(*params)) {
656                 bt_dev_err(hdev, "Intel boot parameters size mismatch");
657                 kfree_skb(skb);
658                 return -EILSEQ;
659         }
660
661         params = (struct intel_boot_params *)skb->data;
662         if (params->status) {
663                 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
664                            params->status);
665                 err = -bt_to_errno(params->status);
666                 kfree_skb(skb);
667                 return err;
668         }
669
670         bt_dev_info(hdev, "Device revision is %u",
671                     le16_to_cpu(params->dev_revid));
672
673         bt_dev_info(hdev, "Secure boot is %s",
674                     params->secure_boot ? "enabled" : "disabled");
675
676         bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
677                 params->min_fw_build_nn, params->min_fw_build_cw,
678                 2000 + params->min_fw_build_yy);
679
680         /* It is required that every single firmware fragment is acknowledged
681          * with a command complete event. If the boot parameters indicate
682          * that this bootloader does not send them, then abort the setup.
683          */
684         if (params->limited_cce != 0x00) {
685                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
686                            params->limited_cce);
687                 kfree_skb(skb);
688                 return -EINVAL;
689         }
690
691         /* If the OTP has no valid Bluetooth device address, then there will
692          * also be no valid address for the operational firmware.
693          */
694         if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
695                 bt_dev_info(hdev, "No device address configured");
696                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
697         }
698
699         /* With this Intel bootloader only the hardware variant and device
700          * revision information are used to select the right firmware.
701          *
702          * Currently this bootloader support is limited to hardware variant
703          * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
704          */
705         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
706                  le16_to_cpu(params->dev_revid));
707
708         err = request_firmware(&fw, fwname, &hdev->dev);
709         if (err < 0) {
710                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
711                            err);
712                 kfree_skb(skb);
713                 return err;
714         }
715
716         bt_dev_info(hdev, "Found device firmware: %s", fwname);
717
718         /* Save the DDC file name for later */
719         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
720                  le16_to_cpu(params->dev_revid));
721
722         kfree_skb(skb);
723
724         if (fw->size < 644) {
725                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
726                            fw->size);
727                 err = -EBADF;
728                 goto done;
729         }
730
731         set_bit(STATE_DOWNLOADING, &intel->flags);
732
733         /* Start the firmware download transaction with the Init fragment
734          * represented by the 128 bytes of CSS header.
735          */
736         err = btintel_secure_send(hdev, 0x00, 128, fw->data);
737         if (err < 0) {
738                 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
739                 goto done;
740         }
741
742         /* Send the 256 bytes of public key information from the firmware
743          * as the PKey fragment.
744          */
745         err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
746         if (err < 0) {
747                 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
748                            err);
749                 goto done;
750         }
751
752         /* Send the 256 bytes of signature information from the firmware
753          * as the Sign fragment.
754          */
755         err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
756         if (err < 0) {
757                 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
758                            err);
759                 goto done;
760         }
761
762         fw_ptr = fw->data + 644;
763         frag_len = 0;
764
765         while (fw_ptr - fw->data < fw->size) {
766                 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
767
768                 frag_len += sizeof(*cmd) + cmd->plen;
769
770                 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
771                            fw->size);
772
773                 /* The parameter length of the secure send command requires
774                  * a 4 byte alignment. It happens so that the firmware file
775                  * contains proper Intel_NOP commands to align the fragments
776                  * as needed.
777                  *
778                  * Send set of commands with 4 byte alignment from the
779                  * firmware data buffer as a single Data fragement.
780                  */
781                 if (frag_len % 4)
782                         continue;
783
784                 /* Send each command from the firmware data buffer as
785                  * a single Data fragment.
786                  */
787                 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
788                 if (err < 0) {
789                         bt_dev_err(hdev, "Failed to send firmware data (%d)",
790                                    err);
791                         goto done;
792                 }
793
794                 fw_ptr += frag_len;
795                 frag_len = 0;
796         }
797
798         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
799
800         bt_dev_info(hdev, "Waiting for firmware download to complete");
801
802         /* Before switching the device into operational mode and with that
803          * booting the loaded firmware, wait for the bootloader notification
804          * that all fragments have been successfully received.
805          *
806          * When the event processing receives the notification, then the
807          * STATE_DOWNLOADING flag will be cleared.
808          *
809          * The firmware loading should not take longer than 5 seconds
810          * and thus just timeout if that happens and fail the setup
811          * of this device.
812          */
813         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
814                                   TASK_INTERRUPTIBLE,
815                                   msecs_to_jiffies(5000));
816         if (err == -EINTR) {
817                 bt_dev_err(hdev, "Firmware loading interrupted");
818                 err = -EINTR;
819                 goto done;
820         }
821
822         if (err) {
823                 bt_dev_err(hdev, "Firmware loading timeout");
824                 err = -ETIMEDOUT;
825                 goto done;
826         }
827
828         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
829                 bt_dev_err(hdev, "Firmware loading failed");
830                 err = -ENOEXEC;
831                 goto done;
832         }
833
834         rettime = ktime_get();
835         delta = ktime_sub(rettime, calltime);
836         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
837
838         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
839
840 done:
841         release_firmware(fw);
842
843         if (err < 0)
844                 return err;
845
846         /* We need to restore the default speed before Intel reset */
847         if (speed_change) {
848                 err = intel_set_baudrate(hu, init_speed);
849                 if (err)
850                         return err;
851         }
852
853         calltime = ktime_get();
854
855         set_bit(STATE_BOOTING, &intel->flags);
856
857         skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
858                              HCI_CMD_TIMEOUT);
859         if (IS_ERR(skb))
860                 return PTR_ERR(skb);
861
862         kfree_skb(skb);
863
864         /* The bootloader will not indicate when the device is ready. This
865          * is done by the operational firmware sending bootup notification.
866          *
867          * Booting into operational firmware should not take longer than
868          * 1 second. However if that happens, then just fail the setup
869          * since something went wrong.
870          */
871         bt_dev_info(hdev, "Waiting for device to boot");
872
873         err = intel_wait_booting(hu);
874         if (err)
875                 return err;
876
877         clear_bit(STATE_BOOTING, &intel->flags);
878
879         rettime = ktime_get();
880         delta = ktime_sub(rettime, calltime);
881         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
882
883         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
884
885         /* Enable LPM if matching pdev with wakeup enabled, set TX active
886          * until further LPM TX notification.
887          */
888         mutex_lock(&intel_device_list_lock);
889         list_for_each(p, &intel_device_list) {
890                 struct intel_device *dev = list_entry(p, struct intel_device,
891                                                       list);
892                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
893                         if (device_may_wakeup(&dev->pdev->dev)) {
894                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
895                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
896                         }
897                         break;
898                 }
899         }
900         mutex_unlock(&intel_device_list_lock);
901
902         /* Ignore errors, device can work without DDC parameters */
903         btintel_load_ddc_config(hdev, fwname);
904
905         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
906         if (IS_ERR(skb))
907                 return PTR_ERR(skb);
908         kfree_skb(skb);
909
910         if (speed_change) {
911                 err = intel_set_baudrate(hu, oper_speed);
912                 if (err)
913                         return err;
914         }
915
916         bt_dev_info(hdev, "Setup complete");
917
918         clear_bit(STATE_BOOTLOADER, &intel->flags);
919
920         return 0;
921 }
922
923 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
924 {
925         struct hci_uart *hu = hci_get_drvdata(hdev);
926         struct intel_data *intel = hu->priv;
927         struct hci_event_hdr *hdr;
928
929         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
930             !test_bit(STATE_BOOTING, &intel->flags))
931                 goto recv;
932
933         hdr = (void *)skb->data;
934
935         /* When the firmware loading completes the device sends
936          * out a vendor specific event indicating the result of
937          * the firmware loading.
938          */
939         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
940             skb->data[2] == 0x06) {
941                 if (skb->data[3] != 0x00)
942                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
943
944                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
945                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
946                         smp_mb__after_atomic();
947                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
948                 }
949
950         /* When switching to the operational firmware the device
951          * sends a vendor specific event indicating that the bootup
952          * completed.
953          */
954         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
955                    skb->data[2] == 0x02) {
956                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
957                         smp_mb__after_atomic();
958                         wake_up_bit(&intel->flags, STATE_BOOTING);
959                 }
960         }
961 recv:
962         return hci_recv_frame(hdev, skb);
963 }
964
965 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
966 {
967         struct hci_uart *hu = hci_get_drvdata(hdev);
968         struct intel_data *intel = hu->priv;
969
970         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
971
972         if (value) {
973                 set_bit(STATE_TX_ACTIVE, &intel->flags);
974                 schedule_work(&intel->busy_work);
975         } else {
976                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
977         }
978 }
979
980 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
981 {
982         struct hci_lpm_pkt *lpm = (void *)skb->data;
983         struct hci_uart *hu = hci_get_drvdata(hdev);
984         struct intel_data *intel = hu->priv;
985
986         switch (lpm->opcode) {
987         case LPM_OP_TX_NOTIFY:
988                 if (lpm->dlen < 1) {
989                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
990                         break;
991                 }
992                 intel_recv_lpm_notify(hdev, lpm->data[0]);
993                 break;
994         case LPM_OP_SUSPEND_ACK:
995                 set_bit(STATE_SUSPENDED, &intel->flags);
996                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
997                         smp_mb__after_atomic();
998                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
999                 }
1000                 break;
1001         case LPM_OP_RESUME_ACK:
1002                 clear_bit(STATE_SUSPENDED, &intel->flags);
1003                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1004                         smp_mb__after_atomic();
1005                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1006                 }
1007                 break;
1008         default:
1009                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1010                 break;
1011         }
1012
1013         kfree_skb(skb);
1014
1015         return 0;
1016 }
1017
1018 #define INTEL_RECV_LPM \
1019         .type = HCI_LPM_PKT, \
1020         .hlen = HCI_LPM_HDR_SIZE, \
1021         .loff = 1, \
1022         .lsize = 1, \
1023         .maxlen = HCI_LPM_MAX_SIZE
1024
1025 static const struct h4_recv_pkt intel_recv_pkts[] = {
1026         { H4_RECV_ACL,    .recv = hci_recv_frame   },
1027         { H4_RECV_SCO,    .recv = hci_recv_frame   },
1028         { H4_RECV_EVENT,  .recv = intel_recv_event },
1029         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1030 };
1031
1032 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1033 {
1034         struct intel_data *intel = hu->priv;
1035
1036         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1037                 return -EUNATCH;
1038
1039         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1040                                     intel_recv_pkts,
1041                                     ARRAY_SIZE(intel_recv_pkts));
1042         if (IS_ERR(intel->rx_skb)) {
1043                 int err = PTR_ERR(intel->rx_skb);
1044                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1045                 intel->rx_skb = NULL;
1046                 return err;
1047         }
1048
1049         return count;
1050 }
1051
1052 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1053 {
1054         struct intel_data *intel = hu->priv;
1055         struct list_head *p;
1056
1057         BT_DBG("hu %p skb %p", hu, skb);
1058
1059         /* Be sure our controller is resumed and potential LPM transaction
1060          * completed before enqueuing any packet.
1061          */
1062         mutex_lock(&intel_device_list_lock);
1063         list_for_each(p, &intel_device_list) {
1064                 struct intel_device *idev = list_entry(p, struct intel_device,
1065                                                        list);
1066
1067                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1068                         pm_runtime_get_sync(&idev->pdev->dev);
1069                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1070                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1071                         break;
1072                 }
1073         }
1074         mutex_unlock(&intel_device_list_lock);
1075
1076         skb_queue_tail(&intel->txq, skb);
1077
1078         return 0;
1079 }
1080
1081 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1082 {
1083         struct intel_data *intel = hu->priv;
1084         struct sk_buff *skb;
1085
1086         skb = skb_dequeue(&intel->txq);
1087         if (!skb)
1088                 return skb;
1089
1090         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1091             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1092                 struct hci_command_hdr *cmd = (void *)skb->data;
1093                 __u16 opcode = le16_to_cpu(cmd->opcode);
1094
1095                 /* When the 0xfc01 command is issued to boot into
1096                  * the operational firmware, it will actually not
1097                  * send a command complete event. To keep the flow
1098                  * control working inject that event here.
1099                  */
1100                 if (opcode == 0xfc01)
1101                         inject_cmd_complete(hu->hdev, opcode);
1102         }
1103
1104         /* Prepend skb with frame type */
1105         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1106
1107         return skb;
1108 }
1109
1110 static const struct hci_uart_proto intel_proto = {
1111         .id             = HCI_UART_INTEL,
1112         .name           = "Intel",
1113         .manufacturer   = 2,
1114         .init_speed     = 115200,
1115         .oper_speed     = 3000000,
1116         .open           = intel_open,
1117         .close          = intel_close,
1118         .flush          = intel_flush,
1119         .setup          = intel_setup,
1120         .set_baudrate   = intel_set_baudrate,
1121         .recv           = intel_recv,
1122         .enqueue        = intel_enqueue,
1123         .dequeue        = intel_dequeue,
1124 };
1125
1126 #ifdef CONFIG_ACPI
1127 static const struct acpi_device_id intel_acpi_match[] = {
1128         { "INT33E1", 0 },
1129         { },
1130 };
1131 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1132 #endif
1133
1134 #ifdef CONFIG_PM
1135 static int intel_suspend_device(struct device *dev)
1136 {
1137         struct intel_device *idev = dev_get_drvdata(dev);
1138
1139         mutex_lock(&idev->hu_lock);
1140         if (idev->hu)
1141                 intel_lpm_suspend(idev->hu);
1142         mutex_unlock(&idev->hu_lock);
1143
1144         return 0;
1145 }
1146
1147 static int intel_resume_device(struct device *dev)
1148 {
1149         struct intel_device *idev = dev_get_drvdata(dev);
1150
1151         mutex_lock(&idev->hu_lock);
1152         if (idev->hu)
1153                 intel_lpm_resume(idev->hu);
1154         mutex_unlock(&idev->hu_lock);
1155
1156         return 0;
1157 }
1158 #endif
1159
1160 #ifdef CONFIG_PM_SLEEP
1161 static int intel_suspend(struct device *dev)
1162 {
1163         struct intel_device *idev = dev_get_drvdata(dev);
1164
1165         if (device_may_wakeup(dev))
1166                 enable_irq_wake(idev->irq);
1167
1168         return intel_suspend_device(dev);
1169 }
1170
1171 static int intel_resume(struct device *dev)
1172 {
1173         struct intel_device *idev = dev_get_drvdata(dev);
1174
1175         if (device_may_wakeup(dev))
1176                 disable_irq_wake(idev->irq);
1177
1178         return intel_resume_device(dev);
1179 }
1180 #endif
1181
1182 static const struct dev_pm_ops intel_pm_ops = {
1183         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1184         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1185 };
1186
1187 static int intel_probe(struct platform_device *pdev)
1188 {
1189         struct intel_device *idev;
1190
1191         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1192         if (!idev)
1193                 return -ENOMEM;
1194
1195         mutex_init(&idev->hu_lock);
1196
1197         idev->pdev = pdev;
1198
1199         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1200         if (IS_ERR(idev->reset)) {
1201                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1202                 return PTR_ERR(idev->reset);
1203         }
1204
1205         idev->irq = platform_get_irq(pdev, 0);
1206         if (idev->irq < 0) {
1207                 struct gpio_desc *host_wake;
1208
1209                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1210
1211                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1212                 if (IS_ERR(host_wake)) {
1213                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1214                         goto no_irq;
1215                 }
1216
1217                 idev->irq = gpiod_to_irq(host_wake);
1218                 if (idev->irq < 0) {
1219                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1220                         goto no_irq;
1221                 }
1222         }
1223
1224         /* Only enable wake-up/irq when controller is powered */
1225         device_set_wakeup_capable(&pdev->dev, true);
1226         device_wakeup_disable(&pdev->dev);
1227
1228 no_irq:
1229         platform_set_drvdata(pdev, idev);
1230
1231         /* Place this instance on the device list */
1232         mutex_lock(&intel_device_list_lock);
1233         list_add_tail(&idev->list, &intel_device_list);
1234         mutex_unlock(&intel_device_list_lock);
1235
1236         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1237                  desc_to_gpio(idev->reset), idev->irq);
1238
1239         return 0;
1240 }
1241
1242 static int intel_remove(struct platform_device *pdev)
1243 {
1244         struct intel_device *idev = platform_get_drvdata(pdev);
1245
1246         device_wakeup_disable(&pdev->dev);
1247
1248         mutex_lock(&intel_device_list_lock);
1249         list_del(&idev->list);
1250         mutex_unlock(&intel_device_list_lock);
1251
1252         dev_info(&pdev->dev, "unregistered.\n");
1253
1254         return 0;
1255 }
1256
1257 static struct platform_driver intel_driver = {
1258         .probe = intel_probe,
1259         .remove = intel_remove,
1260         .driver = {
1261                 .name = "hci_intel",
1262                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1263                 .pm = &intel_pm_ops,
1264         },
1265 };
1266
1267 int __init intel_init(void)
1268 {
1269         platform_driver_register(&intel_driver);
1270
1271         return hci_uart_register_proto(&intel_proto);
1272 }
1273
1274 int __exit intel_deinit(void)
1275 {
1276         platform_driver_unregister(&intel_driver);
1277
1278         return hci_uart_unregister_proto(&intel_proto);
1279 }