Merge tag 'for-linus-2' of git://git.code.sf.net/p/openipmi/linux-ipmi
[cascardo/linux.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60                                struct ipmi_smi_msg *msg);
61
62 static int initialized;
63
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71 #define MAX_EVENTS_IN_QUEUE     25
72
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT         60000
78
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME       1000
81
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
92
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97         struct list_head link;
98
99         /* Set to false when the user is destroyed. */
100         bool valid;
101
102         struct kref refcount;
103
104         /* The upper layer that handles receive messages. */
105         struct ipmi_user_hndl *handler;
106         void             *handler_data;
107
108         /* The interface this user is bound to. */
109         ipmi_smi_t intf;
110
111         /* Does this interface receive IPMI events? */
112         bool gets_events;
113 };
114
115 struct cmd_rcvr {
116         struct list_head link;
117
118         ipmi_user_t   user;
119         unsigned char netfn;
120         unsigned char cmd;
121         unsigned int  chans;
122
123         /*
124          * This is used to form a linked lised during mass deletion.
125          * Since this is in an RCU list, we cannot use the link above
126          * or change any data until the RCU period completes.  So we
127          * use this next variable during mass deletion so we can have
128          * a list and don't have to wait and restart the search on
129          * every individual deletion of a command.
130          */
131         struct cmd_rcvr *next;
132 };
133
134 struct seq_table {
135         unsigned int         inuse : 1;
136         unsigned int         broadcast : 1;
137
138         unsigned long        timeout;
139         unsigned long        orig_timeout;
140         unsigned int         retries_left;
141
142         /*
143          * To verify on an incoming send message response that this is
144          * the message that the response is for, we keep a sequence id
145          * and increment it every time we send a message.
146          */
147         long                 seqid;
148
149         /*
150          * This is held so we can properly respond to the message on a
151          * timeout, and it is used to hold the temporary data for
152          * retransmission, too.
153          */
154         struct ipmi_recv_msg *recv_msg;
155 };
156
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164         do {                                                            \
165                 seq = ((msgid >> 26) & 0x3f);                           \
166                 seqid = (msgid & 0x3fffff);                             \
167         } while (0)
168
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170
171 struct ipmi_channel {
172         unsigned char medium;
173         unsigned char protocol;
174
175         /*
176          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177          * but may be changed by the user.
178          */
179         unsigned char address;
180
181         /*
182          * My LUN.  This should generally stay the SMS LUN, but just in
183          * case...
184          */
185         unsigned char lun;
186 };
187
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190         char                   *name;
191         struct ipmi_proc_entry *next;
192 };
193 #endif
194
195 struct bmc_device {
196         struct platform_device pdev;
197         struct ipmi_device_id  id;
198         unsigned char          guid[16];
199         int                    guid_set;
200         char                   name[16];
201         struct kref            usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210         /* Commands we got from the user that were invalid. */
211         IPMI_STAT_sent_invalid_commands = 0,
212
213         /* Commands we sent to the MC. */
214         IPMI_STAT_sent_local_commands,
215
216         /* Responses from the MC that were delivered to a user. */
217         IPMI_STAT_handled_local_responses,
218
219         /* Responses from the MC that were not delivered to a user. */
220         IPMI_STAT_unhandled_local_responses,
221
222         /* Commands we sent out to the IPMB bus. */
223         IPMI_STAT_sent_ipmb_commands,
224
225         /* Commands sent on the IPMB that had errors on the SEND CMD */
226         IPMI_STAT_sent_ipmb_command_errs,
227
228         /* Each retransmit increments this count. */
229         IPMI_STAT_retransmitted_ipmb_commands,
230
231         /*
232          * When a message times out (runs out of retransmits) this is
233          * incremented.
234          */
235         IPMI_STAT_timed_out_ipmb_commands,
236
237         /*
238          * This is like above, but for broadcasts.  Broadcasts are
239          * *not* included in the above count (they are expected to
240          * time out).
241          */
242         IPMI_STAT_timed_out_ipmb_broadcasts,
243
244         /* Responses I have sent to the IPMB bus. */
245         IPMI_STAT_sent_ipmb_responses,
246
247         /* The response was delivered to the user. */
248         IPMI_STAT_handled_ipmb_responses,
249
250         /* The response had invalid data in it. */
251         IPMI_STAT_invalid_ipmb_responses,
252
253         /* The response didn't have anyone waiting for it. */
254         IPMI_STAT_unhandled_ipmb_responses,
255
256         /* Commands we sent out to the IPMB bus. */
257         IPMI_STAT_sent_lan_commands,
258
259         /* Commands sent on the IPMB that had errors on the SEND CMD */
260         IPMI_STAT_sent_lan_command_errs,
261
262         /* Each retransmit increments this count. */
263         IPMI_STAT_retransmitted_lan_commands,
264
265         /*
266          * When a message times out (runs out of retransmits) this is
267          * incremented.
268          */
269         IPMI_STAT_timed_out_lan_commands,
270
271         /* Responses I have sent to the IPMB bus. */
272         IPMI_STAT_sent_lan_responses,
273
274         /* The response was delivered to the user. */
275         IPMI_STAT_handled_lan_responses,
276
277         /* The response had invalid data in it. */
278         IPMI_STAT_invalid_lan_responses,
279
280         /* The response didn't have anyone waiting for it. */
281         IPMI_STAT_unhandled_lan_responses,
282
283         /* The command was delivered to the user. */
284         IPMI_STAT_handled_commands,
285
286         /* The command had invalid data in it. */
287         IPMI_STAT_invalid_commands,
288
289         /* The command didn't have anyone waiting for it. */
290         IPMI_STAT_unhandled_commands,
291
292         /* Invalid data in an event. */
293         IPMI_STAT_invalid_events,
294
295         /* Events that were received with the proper format. */
296         IPMI_STAT_events,
297
298         /* Retransmissions on IPMB that failed. */
299         IPMI_STAT_dropped_rexmit_ipmb_commands,
300
301         /* Retransmissions on LAN that failed. */
302         IPMI_STAT_dropped_rexmit_lan_commands,
303
304         /* This *must* remain last, add new values above this. */
305         IPMI_NUM_STATS
306 };
307
308
309 #define IPMI_IPMB_NUM_SEQ       64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312         /* What interface number are we? */
313         int intf_num;
314
315         struct kref refcount;
316
317         /* Set when the interface is being unregistered. */
318         bool in_shutdown;
319
320         /* Used for a list of interfaces. */
321         struct list_head link;
322
323         /*
324          * The list of upper layers that are using me.  seq_lock
325          * protects this.
326          */
327         struct list_head users;
328
329         /* Information to supply to users. */
330         unsigned char ipmi_version_major;
331         unsigned char ipmi_version_minor;
332
333         /* Used for wake ups at startup. */
334         wait_queue_head_t waitq;
335
336         struct bmc_device *bmc;
337         char *my_dev_name;
338
339         /*
340          * This is the lower-layer's sender routine.  Note that you
341          * must either be holding the ipmi_interfaces_mutex or be in
342          * an umpreemptible region to use this.  You must fetch the
343          * value into a local variable and make sure it is not NULL.
344          */
345         struct ipmi_smi_handlers *handlers;
346         void                     *send_info;
347
348 #ifdef CONFIG_PROC_FS
349         /* A list of proc entries for this interface. */
350         struct mutex           proc_entry_lock;
351         struct ipmi_proc_entry *proc_entries;
352 #endif
353
354         /* Driver-model device for the system interface. */
355         struct device          *si_dev;
356
357         /*
358          * A table of sequence numbers for this interface.  We use the
359          * sequence numbers for IPMB messages that go out of the
360          * interface to match them up with their responses.  A routine
361          * is called periodically to time the items in this list.
362          */
363         spinlock_t       seq_lock;
364         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365         int curr_seq;
366
367         /*
368          * Messages queued for delivery.  If delivery fails (out of memory
369          * for instance), They will stay in here to be processed later in a
370          * periodic timer interrupt.  The tasklet is for handling received
371          * messages directly from the handler.
372          */
373         spinlock_t       waiting_rcv_msgs_lock;
374         struct list_head waiting_rcv_msgs;
375         atomic_t         watchdog_pretimeouts_to_deliver;
376         struct tasklet_struct recv_tasklet;
377
378         spinlock_t             xmit_msgs_lock;
379         struct list_head       xmit_msgs;
380         struct ipmi_smi_msg    *curr_msg;
381         struct list_head       hp_xmit_msgs;
382
383         /*
384          * The list of command receivers that are registered for commands
385          * on this interface.
386          */
387         struct mutex     cmd_rcvrs_mutex;
388         struct list_head cmd_rcvrs;
389
390         /*
391          * Events that were queues because no one was there to receive
392          * them.
393          */
394         spinlock_t       events_lock; /* For dealing with event stuff. */
395         struct list_head waiting_events;
396         unsigned int     waiting_events_count; /* How many events in queue? */
397         char             delivering_events;
398         char             event_msg_printed;
399         atomic_t         event_waiters;
400         unsigned int     ticks_to_req_ev;
401         int              last_needs_timer;
402
403         /*
404          * The event receiver for my BMC, only really used at panic
405          * shutdown as a place to store this.
406          */
407         unsigned char event_receiver;
408         unsigned char event_receiver_lun;
409         unsigned char local_sel_device;
410         unsigned char local_event_generator;
411
412         /* For handling of maintenance mode. */
413         int maintenance_mode;
414         bool maintenance_mode_enable;
415         int auto_maintenance_timeout;
416         spinlock_t maintenance_mode_lock; /* Used in a timer... */
417
418         /*
419          * A cheap hack, if this is non-null and a message to an
420          * interface comes in with a NULL user, call this routine with
421          * it.  Note that the message will still be freed by the
422          * caller.  This only works on the system interface.
423          */
424         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425
426         /*
427          * When we are scanning the channels for an SMI, this will
428          * tell which channel we are scanning.
429          */
430         int curr_channel;
431
432         /* Channel information */
433         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434
435         /* Proc FS stuff. */
436         struct proc_dir_entry *proc_dir;
437         char                  proc_dir_name[10];
438
439         atomic_t stats[IPMI_NUM_STATS];
440
441         /*
442          * run_to_completion duplicate of smb_info, smi_info
443          * and ipmi_serial_info structures. Used to decrease numbers of
444          * parameters passed by "low" level IPMI code.
445          */
446         int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454         .driver = {
455                 .name = "ipmi",
456                 .bus = &platform_bus_type
457         }
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469
470 #define ipmi_inc_stat(intf, stat) \
471         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474
475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476                                    "ACPI", "SMBIOS", "PCI",
477                                    "device-tree", "default" };
478
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480 {
481         if (src > SI_DEFAULT)
482                 src = 0; /* Invalid */
483         return addr_src_to_str[src];
484 }
485 EXPORT_SYMBOL(ipmi_addr_src_to_str);
486
487 static int is_lan_addr(struct ipmi_addr *addr)
488 {
489         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490 }
491
492 static int is_ipmb_addr(struct ipmi_addr *addr)
493 {
494         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495 }
496
497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498 {
499         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500 }
501
502 static void free_recv_msg_list(struct list_head *q)
503 {
504         struct ipmi_recv_msg *msg, *msg2;
505
506         list_for_each_entry_safe(msg, msg2, q, link) {
507                 list_del(&msg->link);
508                 ipmi_free_recv_msg(msg);
509         }
510 }
511
512 static void free_smi_msg_list(struct list_head *q)
513 {
514         struct ipmi_smi_msg *msg, *msg2;
515
516         list_for_each_entry_safe(msg, msg2, q, link) {
517                 list_del(&msg->link);
518                 ipmi_free_smi_msg(msg);
519         }
520 }
521
522 static void clean_up_interface_data(ipmi_smi_t intf)
523 {
524         int              i;
525         struct cmd_rcvr  *rcvr, *rcvr2;
526         struct list_head list;
527
528         tasklet_kill(&intf->recv_tasklet);
529
530         free_smi_msg_list(&intf->waiting_rcv_msgs);
531         free_recv_msg_list(&intf->waiting_events);
532
533         /*
534          * Wholesale remove all the entries from the list in the
535          * interface and wait for RCU to know that none are in use.
536          */
537         mutex_lock(&intf->cmd_rcvrs_mutex);
538         INIT_LIST_HEAD(&list);
539         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540         mutex_unlock(&intf->cmd_rcvrs_mutex);
541
542         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543                 kfree(rcvr);
544
545         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546                 if ((intf->seq_table[i].inuse)
547                                         && (intf->seq_table[i].recv_msg))
548                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549         }
550 }
551
552 static void intf_free(struct kref *ref)
553 {
554         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555
556         clean_up_interface_data(intf);
557         kfree(intf);
558 }
559
560 struct watcher_entry {
561         int              intf_num;
562         ipmi_smi_t       intf;
563         struct list_head link;
564 };
565
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567 {
568         ipmi_smi_t intf;
569         LIST_HEAD(to_deliver);
570         struct watcher_entry *e, *e2;
571
572         mutex_lock(&smi_watchers_mutex);
573
574         mutex_lock(&ipmi_interfaces_mutex);
575
576         /* Build a list of things to deliver. */
577         list_for_each_entry(intf, &ipmi_interfaces, link) {
578                 if (intf->intf_num == -1)
579                         continue;
580                 e = kmalloc(sizeof(*e), GFP_KERNEL);
581                 if (!e)
582                         goto out_err;
583                 kref_get(&intf->refcount);
584                 e->intf = intf;
585                 e->intf_num = intf->intf_num;
586                 list_add_tail(&e->link, &to_deliver);
587         }
588
589         /* We will succeed, so add it to the list. */
590         list_add(&watcher->link, &smi_watchers);
591
592         mutex_unlock(&ipmi_interfaces_mutex);
593
594         list_for_each_entry_safe(e, e2, &to_deliver, link) {
595                 list_del(&e->link);
596                 watcher->new_smi(e->intf_num, e->intf->si_dev);
597                 kref_put(&e->intf->refcount, intf_free);
598                 kfree(e);
599         }
600
601         mutex_unlock(&smi_watchers_mutex);
602
603         return 0;
604
605  out_err:
606         mutex_unlock(&ipmi_interfaces_mutex);
607         mutex_unlock(&smi_watchers_mutex);
608         list_for_each_entry_safe(e, e2, &to_deliver, link) {
609                 list_del(&e->link);
610                 kref_put(&e->intf->refcount, intf_free);
611                 kfree(e);
612         }
613         return -ENOMEM;
614 }
615 EXPORT_SYMBOL(ipmi_smi_watcher_register);
616
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618 {
619         mutex_lock(&smi_watchers_mutex);
620         list_del(&(watcher->link));
621         mutex_unlock(&smi_watchers_mutex);
622         return 0;
623 }
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625
626 /*
627  * Must be called with smi_watchers_mutex held.
628  */
629 static void
630 call_smi_watchers(int i, struct device *dev)
631 {
632         struct ipmi_smi_watcher *w;
633
634         list_for_each_entry(w, &smi_watchers, link) {
635                 if (try_module_get(w->owner)) {
636                         w->new_smi(i, dev);
637                         module_put(w->owner);
638                 }
639         }
640 }
641
642 static int
643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644 {
645         if (addr1->addr_type != addr2->addr_type)
646                 return 0;
647
648         if (addr1->channel != addr2->channel)
649                 return 0;
650
651         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652                 struct ipmi_system_interface_addr *smi_addr1
653                     = (struct ipmi_system_interface_addr *) addr1;
654                 struct ipmi_system_interface_addr *smi_addr2
655                     = (struct ipmi_system_interface_addr *) addr2;
656                 return (smi_addr1->lun == smi_addr2->lun);
657         }
658
659         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660                 struct ipmi_ipmb_addr *ipmb_addr1
661                     = (struct ipmi_ipmb_addr *) addr1;
662                 struct ipmi_ipmb_addr *ipmb_addr2
663                     = (struct ipmi_ipmb_addr *) addr2;
664
665                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666                         && (ipmb_addr1->lun == ipmb_addr2->lun));
667         }
668
669         if (is_lan_addr(addr1)) {
670                 struct ipmi_lan_addr *lan_addr1
671                         = (struct ipmi_lan_addr *) addr1;
672                 struct ipmi_lan_addr *lan_addr2
673                     = (struct ipmi_lan_addr *) addr2;
674
675                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
677                         && (lan_addr1->session_handle
678                             == lan_addr2->session_handle)
679                         && (lan_addr1->lun == lan_addr2->lun));
680         }
681
682         return 1;
683 }
684
685 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686 {
687         if (len < sizeof(struct ipmi_system_interface_addr))
688                 return -EINVAL;
689
690         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691                 if (addr->channel != IPMI_BMC_CHANNEL)
692                         return -EINVAL;
693                 return 0;
694         }
695
696         if ((addr->channel == IPMI_BMC_CHANNEL)
697             || (addr->channel >= IPMI_MAX_CHANNELS)
698             || (addr->channel < 0))
699                 return -EINVAL;
700
701         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702                 if (len < sizeof(struct ipmi_ipmb_addr))
703                         return -EINVAL;
704                 return 0;
705         }
706
707         if (is_lan_addr(addr)) {
708                 if (len < sizeof(struct ipmi_lan_addr))
709                         return -EINVAL;
710                 return 0;
711         }
712
713         return -EINVAL;
714 }
715 EXPORT_SYMBOL(ipmi_validate_addr);
716
717 unsigned int ipmi_addr_length(int addr_type)
718 {
719         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720                 return sizeof(struct ipmi_system_interface_addr);
721
722         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724                 return sizeof(struct ipmi_ipmb_addr);
725
726         if (addr_type == IPMI_LAN_ADDR_TYPE)
727                 return sizeof(struct ipmi_lan_addr);
728
729         return 0;
730 }
731 EXPORT_SYMBOL(ipmi_addr_length);
732
733 static void deliver_response(struct ipmi_recv_msg *msg)
734 {
735         if (!msg->user) {
736                 ipmi_smi_t    intf = msg->user_msg_data;
737
738                 /* Special handling for NULL users. */
739                 if (intf->null_user_handler) {
740                         intf->null_user_handler(intf, msg);
741                         ipmi_inc_stat(intf, handled_local_responses);
742                 } else {
743                         /* No handler, so give up. */
744                         ipmi_inc_stat(intf, unhandled_local_responses);
745                 }
746                 ipmi_free_recv_msg(msg);
747         } else {
748                 ipmi_user_t user = msg->user;
749                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
750         }
751 }
752
753 static void
754 deliver_err_response(struct ipmi_recv_msg *msg, int err)
755 {
756         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
757         msg->msg_data[0] = err;
758         msg->msg.netfn |= 1; /* Convert to a response. */
759         msg->msg.data_len = 1;
760         msg->msg.data = msg->msg_data;
761         deliver_response(msg);
762 }
763
764 /*
765  * Find the next sequence number not being used and add the given
766  * message with the given timeout to the sequence table.  This must be
767  * called with the interface's seq_lock held.
768  */
769 static int intf_next_seq(ipmi_smi_t           intf,
770                          struct ipmi_recv_msg *recv_msg,
771                          unsigned long        timeout,
772                          int                  retries,
773                          int                  broadcast,
774                          unsigned char        *seq,
775                          long                 *seqid)
776 {
777         int          rv = 0;
778         unsigned int i;
779
780         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
781                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
782                 if (!intf->seq_table[i].inuse)
783                         break;
784         }
785
786         if (!intf->seq_table[i].inuse) {
787                 intf->seq_table[i].recv_msg = recv_msg;
788
789                 /*
790                  * Start with the maximum timeout, when the send response
791                  * comes in we will start the real timer.
792                  */
793                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
794                 intf->seq_table[i].orig_timeout = timeout;
795                 intf->seq_table[i].retries_left = retries;
796                 intf->seq_table[i].broadcast = broadcast;
797                 intf->seq_table[i].inuse = 1;
798                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
799                 *seq = i;
800                 *seqid = intf->seq_table[i].seqid;
801                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
802                 need_waiter(intf);
803         } else {
804                 rv = -EAGAIN;
805         }
806
807         return rv;
808 }
809
810 /*
811  * Return the receive message for the given sequence number and
812  * release the sequence number so it can be reused.  Some other data
813  * is passed in to be sure the message matches up correctly (to help
814  * guard against message coming in after their timeout and the
815  * sequence number being reused).
816  */
817 static int intf_find_seq(ipmi_smi_t           intf,
818                          unsigned char        seq,
819                          short                channel,
820                          unsigned char        cmd,
821                          unsigned char        netfn,
822                          struct ipmi_addr     *addr,
823                          struct ipmi_recv_msg **recv_msg)
824 {
825         int           rv = -ENODEV;
826         unsigned long flags;
827
828         if (seq >= IPMI_IPMB_NUM_SEQ)
829                 return -EINVAL;
830
831         spin_lock_irqsave(&(intf->seq_lock), flags);
832         if (intf->seq_table[seq].inuse) {
833                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
834
835                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
836                                 && (msg->msg.netfn == netfn)
837                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
838                         *recv_msg = msg;
839                         intf->seq_table[seq].inuse = 0;
840                         rv = 0;
841                 }
842         }
843         spin_unlock_irqrestore(&(intf->seq_lock), flags);
844
845         return rv;
846 }
847
848
849 /* Start the timer for a specific sequence table entry. */
850 static int intf_start_seq_timer(ipmi_smi_t intf,
851                                 long       msgid)
852 {
853         int           rv = -ENODEV;
854         unsigned long flags;
855         unsigned char seq;
856         unsigned long seqid;
857
858
859         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
860
861         spin_lock_irqsave(&(intf->seq_lock), flags);
862         /*
863          * We do this verification because the user can be deleted
864          * while a message is outstanding.
865          */
866         if ((intf->seq_table[seq].inuse)
867                                 && (intf->seq_table[seq].seqid == seqid)) {
868                 struct seq_table *ent = &(intf->seq_table[seq]);
869                 ent->timeout = ent->orig_timeout;
870                 rv = 0;
871         }
872         spin_unlock_irqrestore(&(intf->seq_lock), flags);
873
874         return rv;
875 }
876
877 /* Got an error for the send message for a specific sequence number. */
878 static int intf_err_seq(ipmi_smi_t   intf,
879                         long         msgid,
880                         unsigned int err)
881 {
882         int                  rv = -ENODEV;
883         unsigned long        flags;
884         unsigned char        seq;
885         unsigned long        seqid;
886         struct ipmi_recv_msg *msg = NULL;
887
888
889         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
890
891         spin_lock_irqsave(&(intf->seq_lock), flags);
892         /*
893          * We do this verification because the user can be deleted
894          * while a message is outstanding.
895          */
896         if ((intf->seq_table[seq].inuse)
897                                 && (intf->seq_table[seq].seqid == seqid)) {
898                 struct seq_table *ent = &(intf->seq_table[seq]);
899
900                 ent->inuse = 0;
901                 msg = ent->recv_msg;
902                 rv = 0;
903         }
904         spin_unlock_irqrestore(&(intf->seq_lock), flags);
905
906         if (msg)
907                 deliver_err_response(msg, err);
908
909         return rv;
910 }
911
912
913 int ipmi_create_user(unsigned int          if_num,
914                      struct ipmi_user_hndl *handler,
915                      void                  *handler_data,
916                      ipmi_user_t           *user)
917 {
918         unsigned long flags;
919         ipmi_user_t   new_user;
920         int           rv = 0;
921         ipmi_smi_t    intf;
922
923         /*
924          * There is no module usecount here, because it's not
925          * required.  Since this can only be used by and called from
926          * other modules, they will implicitly use this module, and
927          * thus this can't be removed unless the other modules are
928          * removed.
929          */
930
931         if (handler == NULL)
932                 return -EINVAL;
933
934         /*
935          * Make sure the driver is actually initialized, this handles
936          * problems with initialization order.
937          */
938         if (!initialized) {
939                 rv = ipmi_init_msghandler();
940                 if (rv)
941                         return rv;
942
943                 /*
944                  * The init code doesn't return an error if it was turned
945                  * off, but it won't initialize.  Check that.
946                  */
947                 if (!initialized)
948                         return -ENODEV;
949         }
950
951         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
952         if (!new_user)
953                 return -ENOMEM;
954
955         mutex_lock(&ipmi_interfaces_mutex);
956         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
957                 if (intf->intf_num == if_num)
958                         goto found;
959         }
960         /* Not found, return an error */
961         rv = -EINVAL;
962         goto out_kfree;
963
964  found:
965         /* Note that each existing user holds a refcount to the interface. */
966         kref_get(&intf->refcount);
967
968         kref_init(&new_user->refcount);
969         new_user->handler = handler;
970         new_user->handler_data = handler_data;
971         new_user->intf = intf;
972         new_user->gets_events = false;
973
974         if (!try_module_get(intf->handlers->owner)) {
975                 rv = -ENODEV;
976                 goto out_kref;
977         }
978
979         if (intf->handlers->inc_usecount) {
980                 rv = intf->handlers->inc_usecount(intf->send_info);
981                 if (rv) {
982                         module_put(intf->handlers->owner);
983                         goto out_kref;
984                 }
985         }
986
987         /*
988          * Hold the lock so intf->handlers is guaranteed to be good
989          * until now
990          */
991         mutex_unlock(&ipmi_interfaces_mutex);
992
993         new_user->valid = true;
994         spin_lock_irqsave(&intf->seq_lock, flags);
995         list_add_rcu(&new_user->link, &intf->users);
996         spin_unlock_irqrestore(&intf->seq_lock, flags);
997         if (handler->ipmi_watchdog_pretimeout) {
998                 /* User wants pretimeouts, so make sure to watch for them. */
999                 if (atomic_inc_return(&intf->event_waiters) == 1)
1000                         need_waiter(intf);
1001         }
1002         *user = new_user;
1003         return 0;
1004
1005 out_kref:
1006         kref_put(&intf->refcount, intf_free);
1007 out_kfree:
1008         mutex_unlock(&ipmi_interfaces_mutex);
1009         kfree(new_user);
1010         return rv;
1011 }
1012 EXPORT_SYMBOL(ipmi_create_user);
1013
1014 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015 {
1016         int           rv = 0;
1017         ipmi_smi_t    intf;
1018         struct ipmi_smi_handlers *handlers;
1019
1020         mutex_lock(&ipmi_interfaces_mutex);
1021         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022                 if (intf->intf_num == if_num)
1023                         goto found;
1024         }
1025         /* Not found, return an error */
1026         rv = -EINVAL;
1027         mutex_unlock(&ipmi_interfaces_mutex);
1028         return rv;
1029
1030 found:
1031         handlers = intf->handlers;
1032         rv = -ENOSYS;
1033         if (handlers->get_smi_info)
1034                 rv = handlers->get_smi_info(intf->send_info, data);
1035         mutex_unlock(&ipmi_interfaces_mutex);
1036
1037         return rv;
1038 }
1039 EXPORT_SYMBOL(ipmi_get_smi_info);
1040
1041 static void free_user(struct kref *ref)
1042 {
1043         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044         kfree(user);
1045 }
1046
1047 int ipmi_destroy_user(ipmi_user_t user)
1048 {
1049         ipmi_smi_t       intf = user->intf;
1050         int              i;
1051         unsigned long    flags;
1052         struct cmd_rcvr  *rcvr;
1053         struct cmd_rcvr  *rcvrs = NULL;
1054
1055         user->valid = false;
1056
1057         if (user->handler->ipmi_watchdog_pretimeout)
1058                 atomic_dec(&intf->event_waiters);
1059
1060         if (user->gets_events)
1061                 atomic_dec(&intf->event_waiters);
1062
1063         /* Remove the user from the interface's sequence table. */
1064         spin_lock_irqsave(&intf->seq_lock, flags);
1065         list_del_rcu(&user->link);
1066
1067         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068                 if (intf->seq_table[i].inuse
1069                     && (intf->seq_table[i].recv_msg->user == user)) {
1070                         intf->seq_table[i].inuse = 0;
1071                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072                 }
1073         }
1074         spin_unlock_irqrestore(&intf->seq_lock, flags);
1075
1076         /*
1077          * Remove the user from the command receiver's table.  First
1078          * we build a list of everything (not using the standard link,
1079          * since other things may be using it till we do
1080          * synchronize_rcu()) then free everything in that list.
1081          */
1082         mutex_lock(&intf->cmd_rcvrs_mutex);
1083         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084                 if (rcvr->user == user) {
1085                         list_del_rcu(&rcvr->link);
1086                         rcvr->next = rcvrs;
1087                         rcvrs = rcvr;
1088                 }
1089         }
1090         mutex_unlock(&intf->cmd_rcvrs_mutex);
1091         synchronize_rcu();
1092         while (rcvrs) {
1093                 rcvr = rcvrs;
1094                 rcvrs = rcvr->next;
1095                 kfree(rcvr);
1096         }
1097
1098         mutex_lock(&ipmi_interfaces_mutex);
1099         if (intf->handlers) {
1100                 module_put(intf->handlers->owner);
1101                 if (intf->handlers->dec_usecount)
1102                         intf->handlers->dec_usecount(intf->send_info);
1103         }
1104         mutex_unlock(&ipmi_interfaces_mutex);
1105
1106         kref_put(&intf->refcount, intf_free);
1107
1108         kref_put(&user->refcount, free_user);
1109
1110         return 0;
1111 }
1112 EXPORT_SYMBOL(ipmi_destroy_user);
1113
1114 void ipmi_get_version(ipmi_user_t   user,
1115                       unsigned char *major,
1116                       unsigned char *minor)
1117 {
1118         *major = user->intf->ipmi_version_major;
1119         *minor = user->intf->ipmi_version_minor;
1120 }
1121 EXPORT_SYMBOL(ipmi_get_version);
1122
1123 int ipmi_set_my_address(ipmi_user_t   user,
1124                         unsigned int  channel,
1125                         unsigned char address)
1126 {
1127         if (channel >= IPMI_MAX_CHANNELS)
1128                 return -EINVAL;
1129         user->intf->channels[channel].address = address;
1130         return 0;
1131 }
1132 EXPORT_SYMBOL(ipmi_set_my_address);
1133
1134 int ipmi_get_my_address(ipmi_user_t   user,
1135                         unsigned int  channel,
1136                         unsigned char *address)
1137 {
1138         if (channel >= IPMI_MAX_CHANNELS)
1139                 return -EINVAL;
1140         *address = user->intf->channels[channel].address;
1141         return 0;
1142 }
1143 EXPORT_SYMBOL(ipmi_get_my_address);
1144
1145 int ipmi_set_my_LUN(ipmi_user_t   user,
1146                     unsigned int  channel,
1147                     unsigned char LUN)
1148 {
1149         if (channel >= IPMI_MAX_CHANNELS)
1150                 return -EINVAL;
1151         user->intf->channels[channel].lun = LUN & 0x3;
1152         return 0;
1153 }
1154 EXPORT_SYMBOL(ipmi_set_my_LUN);
1155
1156 int ipmi_get_my_LUN(ipmi_user_t   user,
1157                     unsigned int  channel,
1158                     unsigned char *address)
1159 {
1160         if (channel >= IPMI_MAX_CHANNELS)
1161                 return -EINVAL;
1162         *address = user->intf->channels[channel].lun;
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(ipmi_get_my_LUN);
1166
1167 int ipmi_get_maintenance_mode(ipmi_user_t user)
1168 {
1169         int           mode;
1170         unsigned long flags;
1171
1172         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173         mode = user->intf->maintenance_mode;
1174         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175
1176         return mode;
1177 }
1178 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179
1180 static void maintenance_mode_update(ipmi_smi_t intf)
1181 {
1182         if (intf->handlers->set_maintenance_mode)
1183                 intf->handlers->set_maintenance_mode(
1184                         intf->send_info, intf->maintenance_mode_enable);
1185 }
1186
1187 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188 {
1189         int           rv = 0;
1190         unsigned long flags;
1191         ipmi_smi_t    intf = user->intf;
1192
1193         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194         if (intf->maintenance_mode != mode) {
1195                 switch (mode) {
1196                 case IPMI_MAINTENANCE_MODE_AUTO:
1197                         intf->maintenance_mode_enable
1198                                 = (intf->auto_maintenance_timeout > 0);
1199                         break;
1200
1201                 case IPMI_MAINTENANCE_MODE_OFF:
1202                         intf->maintenance_mode_enable = false;
1203                         break;
1204
1205                 case IPMI_MAINTENANCE_MODE_ON:
1206                         intf->maintenance_mode_enable = true;
1207                         break;
1208
1209                 default:
1210                         rv = -EINVAL;
1211                         goto out_unlock;
1212                 }
1213                 intf->maintenance_mode = mode;
1214
1215                 maintenance_mode_update(intf);
1216         }
1217  out_unlock:
1218         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219
1220         return rv;
1221 }
1222 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223
1224 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225 {
1226         unsigned long        flags;
1227         ipmi_smi_t           intf = user->intf;
1228         struct ipmi_recv_msg *msg, *msg2;
1229         struct list_head     msgs;
1230
1231         INIT_LIST_HEAD(&msgs);
1232
1233         spin_lock_irqsave(&intf->events_lock, flags);
1234         if (user->gets_events == val)
1235                 goto out;
1236
1237         user->gets_events = val;
1238
1239         if (val) {
1240                 if (atomic_inc_return(&intf->event_waiters) == 1)
1241                         need_waiter(intf);
1242         } else {
1243                 atomic_dec(&intf->event_waiters);
1244         }
1245
1246         if (intf->delivering_events)
1247                 /*
1248                  * Another thread is delivering events for this, so
1249                  * let it handle any new events.
1250                  */
1251                 goto out;
1252
1253         /* Deliver any queued events. */
1254         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256                         list_move_tail(&msg->link, &msgs);
1257                 intf->waiting_events_count = 0;
1258                 if (intf->event_msg_printed) {
1259                         printk(KERN_WARNING PFX "Event queue no longer"
1260                                " full\n");
1261                         intf->event_msg_printed = 0;
1262                 }
1263
1264                 intf->delivering_events = 1;
1265                 spin_unlock_irqrestore(&intf->events_lock, flags);
1266
1267                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268                         msg->user = user;
1269                         kref_get(&user->refcount);
1270                         deliver_response(msg);
1271                 }
1272
1273                 spin_lock_irqsave(&intf->events_lock, flags);
1274                 intf->delivering_events = 0;
1275         }
1276
1277  out:
1278         spin_unlock_irqrestore(&intf->events_lock, flags);
1279
1280         return 0;
1281 }
1282 EXPORT_SYMBOL(ipmi_set_gets_events);
1283
1284 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1285                                       unsigned char netfn,
1286                                       unsigned char cmd,
1287                                       unsigned char chan)
1288 {
1289         struct cmd_rcvr *rcvr;
1290
1291         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293                                         && (rcvr->chans & (1 << chan)))
1294                         return rcvr;
1295         }
1296         return NULL;
1297 }
1298
1299 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1300                                  unsigned char netfn,
1301                                  unsigned char cmd,
1302                                  unsigned int  chans)
1303 {
1304         struct cmd_rcvr *rcvr;
1305
1306         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308                                         && (rcvr->chans & chans))
1309                         return 0;
1310         }
1311         return 1;
1312 }
1313
1314 int ipmi_register_for_cmd(ipmi_user_t   user,
1315                           unsigned char netfn,
1316                           unsigned char cmd,
1317                           unsigned int  chans)
1318 {
1319         ipmi_smi_t      intf = user->intf;
1320         struct cmd_rcvr *rcvr;
1321         int             rv = 0;
1322
1323
1324         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325         if (!rcvr)
1326                 return -ENOMEM;
1327         rcvr->cmd = cmd;
1328         rcvr->netfn = netfn;
1329         rcvr->chans = chans;
1330         rcvr->user = user;
1331
1332         mutex_lock(&intf->cmd_rcvrs_mutex);
1333         /* Make sure the command/netfn is not already registered. */
1334         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335                 rv = -EBUSY;
1336                 goto out_unlock;
1337         }
1338
1339         if (atomic_inc_return(&intf->event_waiters) == 1)
1340                 need_waiter(intf);
1341
1342         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343
1344  out_unlock:
1345         mutex_unlock(&intf->cmd_rcvrs_mutex);
1346         if (rv)
1347                 kfree(rcvr);
1348
1349         return rv;
1350 }
1351 EXPORT_SYMBOL(ipmi_register_for_cmd);
1352
1353 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1354                             unsigned char netfn,
1355                             unsigned char cmd,
1356                             unsigned int  chans)
1357 {
1358         ipmi_smi_t      intf = user->intf;
1359         struct cmd_rcvr *rcvr;
1360         struct cmd_rcvr *rcvrs = NULL;
1361         int i, rv = -ENOENT;
1362
1363         mutex_lock(&intf->cmd_rcvrs_mutex);
1364         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365                 if (((1 << i) & chans) == 0)
1366                         continue;
1367                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368                 if (rcvr == NULL)
1369                         continue;
1370                 if (rcvr->user == user) {
1371                         rv = 0;
1372                         rcvr->chans &= ~chans;
1373                         if (rcvr->chans == 0) {
1374                                 list_del_rcu(&rcvr->link);
1375                                 rcvr->next = rcvrs;
1376                                 rcvrs = rcvr;
1377                         }
1378                 }
1379         }
1380         mutex_unlock(&intf->cmd_rcvrs_mutex);
1381         synchronize_rcu();
1382         while (rcvrs) {
1383                 atomic_dec(&intf->event_waiters);
1384                 rcvr = rcvrs;
1385                 rcvrs = rcvr->next;
1386                 kfree(rcvr);
1387         }
1388         return rv;
1389 }
1390 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391
1392 static unsigned char
1393 ipmb_checksum(unsigned char *data, int size)
1394 {
1395         unsigned char csum = 0;
1396
1397         for (; size > 0; size--, data++)
1398                 csum += *data;
1399
1400         return -csum;
1401 }
1402
1403 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1404                                    struct kernel_ipmi_msg *msg,
1405                                    struct ipmi_ipmb_addr *ipmb_addr,
1406                                    long                  msgid,
1407                                    unsigned char         ipmb_seq,
1408                                    int                   broadcast,
1409                                    unsigned char         source_address,
1410                                    unsigned char         source_lun)
1411 {
1412         int i = broadcast;
1413
1414         /* Format the IPMB header data. */
1415         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417         smi_msg->data[2] = ipmb_addr->channel;
1418         if (broadcast)
1419                 smi_msg->data[3] = 0;
1420         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423         smi_msg->data[i+6] = source_address;
1424         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425         smi_msg->data[i+8] = msg->cmd;
1426
1427         /* Now tack on the data to the message. */
1428         if (msg->data_len > 0)
1429                 memcpy(&(smi_msg->data[i+9]), msg->data,
1430                        msg->data_len);
1431         smi_msg->data_size = msg->data_len + 9;
1432
1433         /* Now calculate the checksum and tack it on. */
1434         smi_msg->data[i+smi_msg->data_size]
1435                 = ipmb_checksum(&(smi_msg->data[i+6]),
1436                                 smi_msg->data_size-6);
1437
1438         /*
1439          * Add on the checksum size and the offset from the
1440          * broadcast.
1441          */
1442         smi_msg->data_size += 1 + i;
1443
1444         smi_msg->msgid = msgid;
1445 }
1446
1447 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1448                                   struct kernel_ipmi_msg *msg,
1449                                   struct ipmi_lan_addr  *lan_addr,
1450                                   long                  msgid,
1451                                   unsigned char         ipmb_seq,
1452                                   unsigned char         source_lun)
1453 {
1454         /* Format the IPMB header data. */
1455         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457         smi_msg->data[2] = lan_addr->channel;
1458         smi_msg->data[3] = lan_addr->session_handle;
1459         smi_msg->data[4] = lan_addr->remote_SWID;
1460         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462         smi_msg->data[7] = lan_addr->local_SWID;
1463         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464         smi_msg->data[9] = msg->cmd;
1465
1466         /* Now tack on the data to the message. */
1467         if (msg->data_len > 0)
1468                 memcpy(&(smi_msg->data[10]), msg->data,
1469                        msg->data_len);
1470         smi_msg->data_size = msg->data_len + 10;
1471
1472         /* Now calculate the checksum and tack it on. */
1473         smi_msg->data[smi_msg->data_size]
1474                 = ipmb_checksum(&(smi_msg->data[7]),
1475                                 smi_msg->data_size-7);
1476
1477         /*
1478          * Add on the checksum size and the offset from the
1479          * broadcast.
1480          */
1481         smi_msg->data_size += 1;
1482
1483         smi_msg->msgid = msgid;
1484 }
1485
1486 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1487                      struct ipmi_smi_msg *smi_msg, int priority)
1488 {
1489         int run_to_completion = intf->run_to_completion;
1490         unsigned long flags;
1491
1492         if (!run_to_completion)
1493                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1494         if (intf->curr_msg) {
1495                 if (priority > 0)
1496                         list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1497                 else
1498                         list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1499                 smi_msg = NULL;
1500         } else {
1501                 intf->curr_msg = smi_msg;
1502         }
1503         if (!run_to_completion)
1504                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1505
1506         if (smi_msg)
1507                 handlers->sender(intf->send_info, smi_msg);
1508 }
1509
1510 /*
1511  * Separate from ipmi_request so that the user does not have to be
1512  * supplied in certain circumstances (mainly at panic time).  If
1513  * messages are supplied, they will be freed, even if an error
1514  * occurs.
1515  */
1516 static int i_ipmi_request(ipmi_user_t          user,
1517                           ipmi_smi_t           intf,
1518                           struct ipmi_addr     *addr,
1519                           long                 msgid,
1520                           struct kernel_ipmi_msg *msg,
1521                           void                 *user_msg_data,
1522                           void                 *supplied_smi,
1523                           struct ipmi_recv_msg *supplied_recv,
1524                           int                  priority,
1525                           unsigned char        source_address,
1526                           unsigned char        source_lun,
1527                           int                  retries,
1528                           unsigned int         retry_time_ms)
1529 {
1530         int                      rv = 0;
1531         struct ipmi_smi_msg      *smi_msg;
1532         struct ipmi_recv_msg     *recv_msg;
1533         unsigned long            flags;
1534
1535
1536         if (supplied_recv)
1537                 recv_msg = supplied_recv;
1538         else {
1539                 recv_msg = ipmi_alloc_recv_msg();
1540                 if (recv_msg == NULL)
1541                         return -ENOMEM;
1542         }
1543         recv_msg->user_msg_data = user_msg_data;
1544
1545         if (supplied_smi)
1546                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1547         else {
1548                 smi_msg = ipmi_alloc_smi_msg();
1549                 if (smi_msg == NULL) {
1550                         ipmi_free_recv_msg(recv_msg);
1551                         return -ENOMEM;
1552                 }
1553         }
1554
1555         rcu_read_lock();
1556         if (intf->in_shutdown) {
1557                 rv = -ENODEV;
1558                 goto out_err;
1559         }
1560
1561         recv_msg->user = user;
1562         if (user)
1563                 kref_get(&user->refcount);
1564         recv_msg->msgid = msgid;
1565         /*
1566          * Store the message to send in the receive message so timeout
1567          * responses can get the proper response data.
1568          */
1569         recv_msg->msg = *msg;
1570
1571         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1572                 struct ipmi_system_interface_addr *smi_addr;
1573
1574                 if (msg->netfn & 1) {
1575                         /* Responses are not allowed to the SMI. */
1576                         rv = -EINVAL;
1577                         goto out_err;
1578                 }
1579
1580                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1581                 if (smi_addr->lun > 3) {
1582                         ipmi_inc_stat(intf, sent_invalid_commands);
1583                         rv = -EINVAL;
1584                         goto out_err;
1585                 }
1586
1587                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1588
1589                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1590                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1591                         || (msg->cmd == IPMI_GET_MSG_CMD)
1592                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1593                         /*
1594                          * We don't let the user do these, since we manage
1595                          * the sequence numbers.
1596                          */
1597                         ipmi_inc_stat(intf, sent_invalid_commands);
1598                         rv = -EINVAL;
1599                         goto out_err;
1600                 }
1601
1602                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1604                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1605                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1606                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1607                         intf->auto_maintenance_timeout
1608                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1609                         if (!intf->maintenance_mode
1610                             && !intf->maintenance_mode_enable) {
1611                                 intf->maintenance_mode_enable = true;
1612                                 maintenance_mode_update(intf);
1613                         }
1614                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1615                                                flags);
1616                 }
1617
1618                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1619                         ipmi_inc_stat(intf, sent_invalid_commands);
1620                         rv = -EMSGSIZE;
1621                         goto out_err;
1622                 }
1623
1624                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1625                 smi_msg->data[1] = msg->cmd;
1626                 smi_msg->msgid = msgid;
1627                 smi_msg->user_data = recv_msg;
1628                 if (msg->data_len > 0)
1629                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1630                 smi_msg->data_size = msg->data_len + 2;
1631                 ipmi_inc_stat(intf, sent_local_commands);
1632         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1633                 struct ipmi_ipmb_addr *ipmb_addr;
1634                 unsigned char         ipmb_seq;
1635                 long                  seqid;
1636                 int                   broadcast = 0;
1637
1638                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1639                         ipmi_inc_stat(intf, sent_invalid_commands);
1640                         rv = -EINVAL;
1641                         goto out_err;
1642                 }
1643
1644                 if (intf->channels[addr->channel].medium
1645                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1646                         ipmi_inc_stat(intf, sent_invalid_commands);
1647                         rv = -EINVAL;
1648                         goto out_err;
1649                 }
1650
1651                 if (retries < 0) {
1652                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1653                         retries = 0; /* Don't retry broadcasts. */
1654                     else
1655                         retries = 4;
1656                 }
1657                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1658                     /*
1659                      * Broadcasts add a zero at the beginning of the
1660                      * message, but otherwise is the same as an IPMB
1661                      * address.
1662                      */
1663                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1664                     broadcast = 1;
1665                 }
1666
1667
1668                 /* Default to 1 second retries. */
1669                 if (retry_time_ms == 0)
1670                     retry_time_ms = 1000;
1671
1672                 /*
1673                  * 9 for the header and 1 for the checksum, plus
1674                  * possibly one for the broadcast.
1675                  */
1676                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1677                         ipmi_inc_stat(intf, sent_invalid_commands);
1678                         rv = -EMSGSIZE;
1679                         goto out_err;
1680                 }
1681
1682                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1683                 if (ipmb_addr->lun > 3) {
1684                         ipmi_inc_stat(intf, sent_invalid_commands);
1685                         rv = -EINVAL;
1686                         goto out_err;
1687                 }
1688
1689                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1690
1691                 if (recv_msg->msg.netfn & 0x1) {
1692                         /*
1693                          * It's a response, so use the user's sequence
1694                          * from msgid.
1695                          */
1696                         ipmi_inc_stat(intf, sent_ipmb_responses);
1697                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1698                                         msgid, broadcast,
1699                                         source_address, source_lun);
1700
1701                         /*
1702                          * Save the receive message so we can use it
1703                          * to deliver the response.
1704                          */
1705                         smi_msg->user_data = recv_msg;
1706                 } else {
1707                         /* It's a command, so get a sequence for it. */
1708
1709                         spin_lock_irqsave(&(intf->seq_lock), flags);
1710
1711                         /*
1712                          * Create a sequence number with a 1 second
1713                          * timeout and 4 retries.
1714                          */
1715                         rv = intf_next_seq(intf,
1716                                            recv_msg,
1717                                            retry_time_ms,
1718                                            retries,
1719                                            broadcast,
1720                                            &ipmb_seq,
1721                                            &seqid);
1722                         if (rv) {
1723                                 /*
1724                                  * We have used up all the sequence numbers,
1725                                  * probably, so abort.
1726                                  */
1727                                 spin_unlock_irqrestore(&(intf->seq_lock),
1728                                                        flags);
1729                                 goto out_err;
1730                         }
1731
1732                         ipmi_inc_stat(intf, sent_ipmb_commands);
1733
1734                         /*
1735                          * Store the sequence number in the message,
1736                          * so that when the send message response
1737                          * comes back we can start the timer.
1738                          */
1739                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1740                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1741                                         ipmb_seq, broadcast,
1742                                         source_address, source_lun);
1743
1744                         /*
1745                          * Copy the message into the recv message data, so we
1746                          * can retransmit it later if necessary.
1747                          */
1748                         memcpy(recv_msg->msg_data, smi_msg->data,
1749                                smi_msg->data_size);
1750                         recv_msg->msg.data = recv_msg->msg_data;
1751                         recv_msg->msg.data_len = smi_msg->data_size;
1752
1753                         /*
1754                          * We don't unlock until here, because we need
1755                          * to copy the completed message into the
1756                          * recv_msg before we release the lock.
1757                          * Otherwise, race conditions may bite us.  I
1758                          * know that's pretty paranoid, but I prefer
1759                          * to be correct.
1760                          */
1761                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1762                 }
1763         } else if (is_lan_addr(addr)) {
1764                 struct ipmi_lan_addr  *lan_addr;
1765                 unsigned char         ipmb_seq;
1766                 long                  seqid;
1767
1768                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1769                         ipmi_inc_stat(intf, sent_invalid_commands);
1770                         rv = -EINVAL;
1771                         goto out_err;
1772                 }
1773
1774                 if ((intf->channels[addr->channel].medium
1775                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1776                     && (intf->channels[addr->channel].medium
1777                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1778                         ipmi_inc_stat(intf, sent_invalid_commands);
1779                         rv = -EINVAL;
1780                         goto out_err;
1781                 }
1782
1783                 retries = 4;
1784
1785                 /* Default to 1 second retries. */
1786                 if (retry_time_ms == 0)
1787                     retry_time_ms = 1000;
1788
1789                 /* 11 for the header and 1 for the checksum. */
1790                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1791                         ipmi_inc_stat(intf, sent_invalid_commands);
1792                         rv = -EMSGSIZE;
1793                         goto out_err;
1794                 }
1795
1796                 lan_addr = (struct ipmi_lan_addr *) addr;
1797                 if (lan_addr->lun > 3) {
1798                         ipmi_inc_stat(intf, sent_invalid_commands);
1799                         rv = -EINVAL;
1800                         goto out_err;
1801                 }
1802
1803                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1804
1805                 if (recv_msg->msg.netfn & 0x1) {
1806                         /*
1807                          * It's a response, so use the user's sequence
1808                          * from msgid.
1809                          */
1810                         ipmi_inc_stat(intf, sent_lan_responses);
1811                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1812                                        msgid, source_lun);
1813
1814                         /*
1815                          * Save the receive message so we can use it
1816                          * to deliver the response.
1817                          */
1818                         smi_msg->user_data = recv_msg;
1819                 } else {
1820                         /* It's a command, so get a sequence for it. */
1821
1822                         spin_lock_irqsave(&(intf->seq_lock), flags);
1823
1824                         /*
1825                          * Create a sequence number with a 1 second
1826                          * timeout and 4 retries.
1827                          */
1828                         rv = intf_next_seq(intf,
1829                                            recv_msg,
1830                                            retry_time_ms,
1831                                            retries,
1832                                            0,
1833                                            &ipmb_seq,
1834                                            &seqid);
1835                         if (rv) {
1836                                 /*
1837                                  * We have used up all the sequence numbers,
1838                                  * probably, so abort.
1839                                  */
1840                                 spin_unlock_irqrestore(&(intf->seq_lock),
1841                                                        flags);
1842                                 goto out_err;
1843                         }
1844
1845                         ipmi_inc_stat(intf, sent_lan_commands);
1846
1847                         /*
1848                          * Store the sequence number in the message,
1849                          * so that when the send message response
1850                          * comes back we can start the timer.
1851                          */
1852                         format_lan_msg(smi_msg, msg, lan_addr,
1853                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1854                                        ipmb_seq, source_lun);
1855
1856                         /*
1857                          * Copy the message into the recv message data, so we
1858                          * can retransmit it later if necessary.
1859                          */
1860                         memcpy(recv_msg->msg_data, smi_msg->data,
1861                                smi_msg->data_size);
1862                         recv_msg->msg.data = recv_msg->msg_data;
1863                         recv_msg->msg.data_len = smi_msg->data_size;
1864
1865                         /*
1866                          * We don't unlock until here, because we need
1867                          * to copy the completed message into the
1868                          * recv_msg before we release the lock.
1869                          * Otherwise, race conditions may bite us.  I
1870                          * know that's pretty paranoid, but I prefer
1871                          * to be correct.
1872                          */
1873                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1874                 }
1875         } else {
1876             /* Unknown address type. */
1877                 ipmi_inc_stat(intf, sent_invalid_commands);
1878                 rv = -EINVAL;
1879                 goto out_err;
1880         }
1881
1882 #ifdef DEBUG_MSGING
1883         {
1884                 int m;
1885                 for (m = 0; m < smi_msg->data_size; m++)
1886                         printk(" %2.2x", smi_msg->data[m]);
1887                 printk("\n");
1888         }
1889 #endif
1890
1891         smi_send(intf, intf->handlers, smi_msg, priority);
1892         rcu_read_unlock();
1893
1894         return 0;
1895
1896  out_err:
1897         rcu_read_unlock();
1898         ipmi_free_smi_msg(smi_msg);
1899         ipmi_free_recv_msg(recv_msg);
1900         return rv;
1901 }
1902
1903 static int check_addr(ipmi_smi_t       intf,
1904                       struct ipmi_addr *addr,
1905                       unsigned char    *saddr,
1906                       unsigned char    *lun)
1907 {
1908         if (addr->channel >= IPMI_MAX_CHANNELS)
1909                 return -EINVAL;
1910         *lun = intf->channels[addr->channel].lun;
1911         *saddr = intf->channels[addr->channel].address;
1912         return 0;
1913 }
1914
1915 int ipmi_request_settime(ipmi_user_t      user,
1916                          struct ipmi_addr *addr,
1917                          long             msgid,
1918                          struct kernel_ipmi_msg  *msg,
1919                          void             *user_msg_data,
1920                          int              priority,
1921                          int              retries,
1922                          unsigned int     retry_time_ms)
1923 {
1924         unsigned char saddr = 0, lun = 0;
1925         int           rv;
1926
1927         if (!user)
1928                 return -EINVAL;
1929         rv = check_addr(user->intf, addr, &saddr, &lun);
1930         if (rv)
1931                 return rv;
1932         return i_ipmi_request(user,
1933                               user->intf,
1934                               addr,
1935                               msgid,
1936                               msg,
1937                               user_msg_data,
1938                               NULL, NULL,
1939                               priority,
1940                               saddr,
1941                               lun,
1942                               retries,
1943                               retry_time_ms);
1944 }
1945 EXPORT_SYMBOL(ipmi_request_settime);
1946
1947 int ipmi_request_supply_msgs(ipmi_user_t          user,
1948                              struct ipmi_addr     *addr,
1949                              long                 msgid,
1950                              struct kernel_ipmi_msg *msg,
1951                              void                 *user_msg_data,
1952                              void                 *supplied_smi,
1953                              struct ipmi_recv_msg *supplied_recv,
1954                              int                  priority)
1955 {
1956         unsigned char saddr = 0, lun = 0;
1957         int           rv;
1958
1959         if (!user)
1960                 return -EINVAL;
1961         rv = check_addr(user->intf, addr, &saddr, &lun);
1962         if (rv)
1963                 return rv;
1964         return i_ipmi_request(user,
1965                               user->intf,
1966                               addr,
1967                               msgid,
1968                               msg,
1969                               user_msg_data,
1970                               supplied_smi,
1971                               supplied_recv,
1972                               priority,
1973                               saddr,
1974                               lun,
1975                               -1, 0);
1976 }
1977 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1978
1979 #ifdef CONFIG_PROC_FS
1980 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1981 {
1982         ipmi_smi_t intf = m->private;
1983         int        i;
1984
1985         seq_printf(m, "%x", intf->channels[0].address);
1986         for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1987                 seq_printf(m, " %x", intf->channels[i].address);
1988         return seq_putc(m, '\n');
1989 }
1990
1991 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1992 {
1993         return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1994 }
1995
1996 static const struct file_operations smi_ipmb_proc_ops = {
1997         .open           = smi_ipmb_proc_open,
1998         .read           = seq_read,
1999         .llseek         = seq_lseek,
2000         .release        = single_release,
2001 };
2002
2003 static int smi_version_proc_show(struct seq_file *m, void *v)
2004 {
2005         ipmi_smi_t intf = m->private;
2006
2007         return seq_printf(m, "%u.%u\n",
2008                        ipmi_version_major(&intf->bmc->id),
2009                        ipmi_version_minor(&intf->bmc->id));
2010 }
2011
2012 static int smi_version_proc_open(struct inode *inode, struct file *file)
2013 {
2014         return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2015 }
2016
2017 static const struct file_operations smi_version_proc_ops = {
2018         .open           = smi_version_proc_open,
2019         .read           = seq_read,
2020         .llseek         = seq_lseek,
2021         .release        = single_release,
2022 };
2023
2024 static int smi_stats_proc_show(struct seq_file *m, void *v)
2025 {
2026         ipmi_smi_t intf = m->private;
2027
2028         seq_printf(m, "sent_invalid_commands:       %u\n",
2029                        ipmi_get_stat(intf, sent_invalid_commands));
2030         seq_printf(m, "sent_local_commands:         %u\n",
2031                        ipmi_get_stat(intf, sent_local_commands));
2032         seq_printf(m, "handled_local_responses:     %u\n",
2033                        ipmi_get_stat(intf, handled_local_responses));
2034         seq_printf(m, "unhandled_local_responses:   %u\n",
2035                        ipmi_get_stat(intf, unhandled_local_responses));
2036         seq_printf(m, "sent_ipmb_commands:          %u\n",
2037                        ipmi_get_stat(intf, sent_ipmb_commands));
2038         seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2039                        ipmi_get_stat(intf, sent_ipmb_command_errs));
2040         seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2041                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
2042         seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2043                        ipmi_get_stat(intf, timed_out_ipmb_commands));
2044         seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2045                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2046         seq_printf(m, "sent_ipmb_responses:         %u\n",
2047                        ipmi_get_stat(intf, sent_ipmb_responses));
2048         seq_printf(m, "handled_ipmb_responses:      %u\n",
2049                        ipmi_get_stat(intf, handled_ipmb_responses));
2050         seq_printf(m, "invalid_ipmb_responses:      %u\n",
2051                        ipmi_get_stat(intf, invalid_ipmb_responses));
2052         seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2053                        ipmi_get_stat(intf, unhandled_ipmb_responses));
2054         seq_printf(m, "sent_lan_commands:           %u\n",
2055                        ipmi_get_stat(intf, sent_lan_commands));
2056         seq_printf(m, "sent_lan_command_errs:       %u\n",
2057                        ipmi_get_stat(intf, sent_lan_command_errs));
2058         seq_printf(m, "retransmitted_lan_commands:  %u\n",
2059                        ipmi_get_stat(intf, retransmitted_lan_commands));
2060         seq_printf(m, "timed_out_lan_commands:      %u\n",
2061                        ipmi_get_stat(intf, timed_out_lan_commands));
2062         seq_printf(m, "sent_lan_responses:          %u\n",
2063                        ipmi_get_stat(intf, sent_lan_responses));
2064         seq_printf(m, "handled_lan_responses:       %u\n",
2065                        ipmi_get_stat(intf, handled_lan_responses));
2066         seq_printf(m, "invalid_lan_responses:       %u\n",
2067                        ipmi_get_stat(intf, invalid_lan_responses));
2068         seq_printf(m, "unhandled_lan_responses:     %u\n",
2069                        ipmi_get_stat(intf, unhandled_lan_responses));
2070         seq_printf(m, "handled_commands:            %u\n",
2071                        ipmi_get_stat(intf, handled_commands));
2072         seq_printf(m, "invalid_commands:            %u\n",
2073                        ipmi_get_stat(intf, invalid_commands));
2074         seq_printf(m, "unhandled_commands:          %u\n",
2075                        ipmi_get_stat(intf, unhandled_commands));
2076         seq_printf(m, "invalid_events:              %u\n",
2077                        ipmi_get_stat(intf, invalid_events));
2078         seq_printf(m, "events:                      %u\n",
2079                        ipmi_get_stat(intf, events));
2080         seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2081                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2082         seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2083                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2084         return 0;
2085 }
2086
2087 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2088 {
2089         return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2090 }
2091
2092 static const struct file_operations smi_stats_proc_ops = {
2093         .open           = smi_stats_proc_open,
2094         .read           = seq_read,
2095         .llseek         = seq_lseek,
2096         .release        = single_release,
2097 };
2098 #endif /* CONFIG_PROC_FS */
2099
2100 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2101                             const struct file_operations *proc_ops,
2102                             void *data)
2103 {
2104         int                    rv = 0;
2105 #ifdef CONFIG_PROC_FS
2106         struct proc_dir_entry  *file;
2107         struct ipmi_proc_entry *entry;
2108
2109         /* Create a list element. */
2110         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2111         if (!entry)
2112                 return -ENOMEM;
2113         entry->name = kstrdup(name, GFP_KERNEL);
2114         if (!entry->name) {
2115                 kfree(entry);
2116                 return -ENOMEM;
2117         }
2118
2119         file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2120         if (!file) {
2121                 kfree(entry->name);
2122                 kfree(entry);
2123                 rv = -ENOMEM;
2124         } else {
2125                 mutex_lock(&smi->proc_entry_lock);
2126                 /* Stick it on the list. */
2127                 entry->next = smi->proc_entries;
2128                 smi->proc_entries = entry;
2129                 mutex_unlock(&smi->proc_entry_lock);
2130         }
2131 #endif /* CONFIG_PROC_FS */
2132
2133         return rv;
2134 }
2135 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2136
2137 static int add_proc_entries(ipmi_smi_t smi, int num)
2138 {
2139         int rv = 0;
2140
2141 #ifdef CONFIG_PROC_FS
2142         sprintf(smi->proc_dir_name, "%d", num);
2143         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2144         if (!smi->proc_dir)
2145                 rv = -ENOMEM;
2146
2147         if (rv == 0)
2148                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2149                                              &smi_stats_proc_ops,
2150                                              smi);
2151
2152         if (rv == 0)
2153                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2154                                              &smi_ipmb_proc_ops,
2155                                              smi);
2156
2157         if (rv == 0)
2158                 rv = ipmi_smi_add_proc_entry(smi, "version",
2159                                              &smi_version_proc_ops,
2160                                              smi);
2161 #endif /* CONFIG_PROC_FS */
2162
2163         return rv;
2164 }
2165
2166 static void remove_proc_entries(ipmi_smi_t smi)
2167 {
2168 #ifdef CONFIG_PROC_FS
2169         struct ipmi_proc_entry *entry;
2170
2171         mutex_lock(&smi->proc_entry_lock);
2172         while (smi->proc_entries) {
2173                 entry = smi->proc_entries;
2174                 smi->proc_entries = entry->next;
2175
2176                 remove_proc_entry(entry->name, smi->proc_dir);
2177                 kfree(entry->name);
2178                 kfree(entry);
2179         }
2180         mutex_unlock(&smi->proc_entry_lock);
2181         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2182 #endif /* CONFIG_PROC_FS */
2183 }
2184
2185 static int __find_bmc_guid(struct device *dev, void *data)
2186 {
2187         unsigned char *id = data;
2188         struct bmc_device *bmc = to_bmc_device(dev);
2189         return memcmp(bmc->guid, id, 16) == 0;
2190 }
2191
2192 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2193                                              unsigned char *guid)
2194 {
2195         struct device *dev;
2196
2197         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2198         if (dev)
2199                 return to_bmc_device(dev);
2200         else
2201                 return NULL;
2202 }
2203
2204 struct prod_dev_id {
2205         unsigned int  product_id;
2206         unsigned char device_id;
2207 };
2208
2209 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2210 {
2211         struct prod_dev_id *id = data;
2212         struct bmc_device *bmc = to_bmc_device(dev);
2213
2214         return (bmc->id.product_id == id->product_id
2215                 && bmc->id.device_id == id->device_id);
2216 }
2217
2218 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2219         struct device_driver *drv,
2220         unsigned int product_id, unsigned char device_id)
2221 {
2222         struct prod_dev_id id = {
2223                 .product_id = product_id,
2224                 .device_id = device_id,
2225         };
2226         struct device *dev;
2227
2228         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2229         if (dev)
2230                 return to_bmc_device(dev);
2231         else
2232                 return NULL;
2233 }
2234
2235 static ssize_t device_id_show(struct device *dev,
2236                               struct device_attribute *attr,
2237                               char *buf)
2238 {
2239         struct bmc_device *bmc = to_bmc_device(dev);
2240
2241         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2242 }
2243 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2244
2245 static ssize_t provides_device_sdrs_show(struct device *dev,
2246                                          struct device_attribute *attr,
2247                                          char *buf)
2248 {
2249         struct bmc_device *bmc = to_bmc_device(dev);
2250
2251         return snprintf(buf, 10, "%u\n",
2252                         (bmc->id.device_revision & 0x80) >> 7);
2253 }
2254 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2255                    NULL);
2256
2257 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2258                              char *buf)
2259 {
2260         struct bmc_device *bmc = to_bmc_device(dev);
2261
2262         return snprintf(buf, 20, "%u\n",
2263                         bmc->id.device_revision & 0x0F);
2264 }
2265 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2266
2267 static ssize_t firmware_revision_show(struct device *dev,
2268                                       struct device_attribute *attr,
2269                                       char *buf)
2270 {
2271         struct bmc_device *bmc = to_bmc_device(dev);
2272
2273         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2274                         bmc->id.firmware_revision_2);
2275 }
2276 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2277
2278 static ssize_t ipmi_version_show(struct device *dev,
2279                                  struct device_attribute *attr,
2280                                  char *buf)
2281 {
2282         struct bmc_device *bmc = to_bmc_device(dev);
2283
2284         return snprintf(buf, 20, "%u.%u\n",
2285                         ipmi_version_major(&bmc->id),
2286                         ipmi_version_minor(&bmc->id));
2287 }
2288 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2289
2290 static ssize_t add_dev_support_show(struct device *dev,
2291                                     struct device_attribute *attr,
2292                                     char *buf)
2293 {
2294         struct bmc_device *bmc = to_bmc_device(dev);
2295
2296         return snprintf(buf, 10, "0x%02x\n",
2297                         bmc->id.additional_device_support);
2298 }
2299 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2300                    NULL);
2301
2302 static ssize_t manufacturer_id_show(struct device *dev,
2303                                     struct device_attribute *attr,
2304                                     char *buf)
2305 {
2306         struct bmc_device *bmc = to_bmc_device(dev);
2307
2308         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2309 }
2310 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2311
2312 static ssize_t product_id_show(struct device *dev,
2313                                struct device_attribute *attr,
2314                                char *buf)
2315 {
2316         struct bmc_device *bmc = to_bmc_device(dev);
2317
2318         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2319 }
2320 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2321
2322 static ssize_t aux_firmware_rev_show(struct device *dev,
2323                                      struct device_attribute *attr,
2324                                      char *buf)
2325 {
2326         struct bmc_device *bmc = to_bmc_device(dev);
2327
2328         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2329                         bmc->id.aux_firmware_revision[3],
2330                         bmc->id.aux_firmware_revision[2],
2331                         bmc->id.aux_firmware_revision[1],
2332                         bmc->id.aux_firmware_revision[0]);
2333 }
2334 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2335
2336 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2337                          char *buf)
2338 {
2339         struct bmc_device *bmc = to_bmc_device(dev);
2340
2341         return snprintf(buf, 100, "%Lx%Lx\n",
2342                         (long long) bmc->guid[0],
2343                         (long long) bmc->guid[8]);
2344 }
2345 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2346
2347 static struct attribute *bmc_dev_attrs[] = {
2348         &dev_attr_device_id.attr,
2349         &dev_attr_provides_device_sdrs.attr,
2350         &dev_attr_revision.attr,
2351         &dev_attr_firmware_revision.attr,
2352         &dev_attr_ipmi_version.attr,
2353         &dev_attr_additional_device_support.attr,
2354         &dev_attr_manufacturer_id.attr,
2355         &dev_attr_product_id.attr,
2356         NULL
2357 };
2358
2359 static struct attribute_group bmc_dev_attr_group = {
2360         .attrs          = bmc_dev_attrs,
2361 };
2362
2363 static const struct attribute_group *bmc_dev_attr_groups[] = {
2364         &bmc_dev_attr_group,
2365         NULL
2366 };
2367
2368 static struct device_type bmc_device_type = {
2369         .groups         = bmc_dev_attr_groups,
2370 };
2371
2372 static void
2373 release_bmc_device(struct device *dev)
2374 {
2375         kfree(to_bmc_device(dev));
2376 }
2377
2378 static void
2379 cleanup_bmc_device(struct kref *ref)
2380 {
2381         struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2382
2383         if (bmc->id.aux_firmware_revision_set)
2384                 device_remove_file(&bmc->pdev.dev,
2385                                    &dev_attr_aux_firmware_revision);
2386         if (bmc->guid_set)
2387                 device_remove_file(&bmc->pdev.dev,
2388                                    &dev_attr_guid);
2389
2390         platform_device_unregister(&bmc->pdev);
2391 }
2392
2393 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2394 {
2395         struct bmc_device *bmc = intf->bmc;
2396
2397         sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2398         if (intf->my_dev_name) {
2399                 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2400                 kfree(intf->my_dev_name);
2401                 intf->my_dev_name = NULL;
2402         }
2403
2404         mutex_lock(&ipmidriver_mutex);
2405         kref_put(&bmc->usecount, cleanup_bmc_device);
2406         intf->bmc = NULL;
2407         mutex_unlock(&ipmidriver_mutex);
2408 }
2409
2410 static int create_bmc_files(struct bmc_device *bmc)
2411 {
2412         int err;
2413
2414         if (bmc->id.aux_firmware_revision_set) {
2415                 err = device_create_file(&bmc->pdev.dev,
2416                                          &dev_attr_aux_firmware_revision);
2417                 if (err)
2418                         goto out;
2419         }
2420         if (bmc->guid_set) {
2421                 err = device_create_file(&bmc->pdev.dev,
2422                                          &dev_attr_guid);
2423                 if (err)
2424                         goto out_aux_firm;
2425         }
2426
2427         return 0;
2428
2429 out_aux_firm:
2430         if (bmc->id.aux_firmware_revision_set)
2431                 device_remove_file(&bmc->pdev.dev,
2432                                    &dev_attr_aux_firmware_revision);
2433 out:
2434         return err;
2435 }
2436
2437 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438 {
2439         int               rv;
2440         struct bmc_device *bmc = intf->bmc;
2441         struct bmc_device *old_bmc;
2442
2443         mutex_lock(&ipmidriver_mutex);
2444
2445         /*
2446          * Try to find if there is an bmc_device struct
2447          * representing the interfaced BMC already
2448          */
2449         if (bmc->guid_set)
2450                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451         else
2452                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453                                                     bmc->id.product_id,
2454                                                     bmc->id.device_id);
2455
2456         /*
2457          * If there is already an bmc_device, free the new one,
2458          * otherwise register the new BMC device
2459          */
2460         if (old_bmc) {
2461                 kfree(bmc);
2462                 intf->bmc = old_bmc;
2463                 bmc = old_bmc;
2464
2465                 kref_get(&bmc->usecount);
2466                 mutex_unlock(&ipmidriver_mutex);
2467
2468                 printk(KERN_INFO
2469                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471                        bmc->id.manufacturer_id,
2472                        bmc->id.product_id,
2473                        bmc->id.device_id);
2474         } else {
2475                 unsigned char orig_dev_id = bmc->id.device_id;
2476                 int warn_printed = 0;
2477
2478                 snprintf(bmc->name, sizeof(bmc->name),
2479                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2480                 bmc->pdev.name = bmc->name;
2481
2482                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483                                                  bmc->id.product_id,
2484                                                  bmc->id.device_id)) {
2485                         if (!warn_printed) {
2486                                 printk(KERN_WARNING PFX
2487                                        "This machine has two different BMCs"
2488                                        " with the same product id and device"
2489                                        " id.  This is an error in the"
2490                                        " firmware, but incrementing the"
2491                                        " device id to work around the problem."
2492                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493                                        bmc->id.product_id, bmc->id.device_id);
2494                                 warn_printed = 1;
2495                         }
2496                         bmc->id.device_id++; /* Wraps at 255 */
2497                         if (bmc->id.device_id == orig_dev_id) {
2498                                 printk(KERN_ERR PFX
2499                                        "Out of device ids!\n");
2500                                 break;
2501                         }
2502                 }
2503
2504                 bmc->pdev.dev.driver = &ipmidriver.driver;
2505                 bmc->pdev.id = bmc->id.device_id;
2506                 bmc->pdev.dev.release = release_bmc_device;
2507                 bmc->pdev.dev.type = &bmc_device_type;
2508                 kref_init(&bmc->usecount);
2509
2510                 rv = platform_device_register(&bmc->pdev);
2511                 mutex_unlock(&ipmidriver_mutex);
2512                 if (rv) {
2513                         put_device(&bmc->pdev.dev);
2514                         printk(KERN_ERR
2515                                "ipmi_msghandler:"
2516                                " Unable to register bmc device: %d\n",
2517                                rv);
2518                         /*
2519                          * Don't go to out_err, you can only do that if
2520                          * the device is registered already.
2521                          */
2522                         return rv;
2523                 }
2524
2525                 rv = create_bmc_files(bmc);
2526                 if (rv) {
2527                         mutex_lock(&ipmidriver_mutex);
2528                         platform_device_unregister(&bmc->pdev);
2529                         mutex_unlock(&ipmidriver_mutex);
2530
2531                         return rv;
2532                 }
2533
2534                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2535                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2536                          bmc->id.manufacturer_id,
2537                          bmc->id.product_id,
2538                          bmc->id.device_id);
2539         }
2540
2541         /*
2542          * create symlink from system interface device to bmc device
2543          * and back.
2544          */
2545         rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2546         if (rv) {
2547                 printk(KERN_ERR
2548                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2549                        rv);
2550                 goto out_err;
2551         }
2552
2553         intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2554         if (!intf->my_dev_name) {
2555                 rv = -ENOMEM;
2556                 printk(KERN_ERR
2557                        "ipmi_msghandler: allocate link from BMC: %d\n",
2558                        rv);
2559                 goto out_err;
2560         }
2561
2562         rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2563                                intf->my_dev_name);
2564         if (rv) {
2565                 kfree(intf->my_dev_name);
2566                 intf->my_dev_name = NULL;
2567                 printk(KERN_ERR
2568                        "ipmi_msghandler:"
2569                        " Unable to create symlink to bmc: %d\n",
2570                        rv);
2571                 goto out_err;
2572         }
2573
2574         return 0;
2575
2576 out_err:
2577         ipmi_bmc_unregister(intf);
2578         return rv;
2579 }
2580
2581 static int
2582 send_guid_cmd(ipmi_smi_t intf, int chan)
2583 {
2584         struct kernel_ipmi_msg            msg;
2585         struct ipmi_system_interface_addr si;
2586
2587         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2588         si.channel = IPMI_BMC_CHANNEL;
2589         si.lun = 0;
2590
2591         msg.netfn = IPMI_NETFN_APP_REQUEST;
2592         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2593         msg.data = NULL;
2594         msg.data_len = 0;
2595         return i_ipmi_request(NULL,
2596                               intf,
2597                               (struct ipmi_addr *) &si,
2598                               0,
2599                               &msg,
2600                               intf,
2601                               NULL,
2602                               NULL,
2603                               0,
2604                               intf->channels[0].address,
2605                               intf->channels[0].lun,
2606                               -1, 0);
2607 }
2608
2609 static void
2610 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2611 {
2612         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2613             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2614             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2615                 /* Not for me */
2616                 return;
2617
2618         if (msg->msg.data[0] != 0) {
2619                 /* Error from getting the GUID, the BMC doesn't have one. */
2620                 intf->bmc->guid_set = 0;
2621                 goto out;
2622         }
2623
2624         if (msg->msg.data_len < 17) {
2625                 intf->bmc->guid_set = 0;
2626                 printk(KERN_WARNING PFX
2627                        "guid_handler: The GUID response from the BMC was too"
2628                        " short, it was %d but should have been 17.  Assuming"
2629                        " GUID is not available.\n",
2630                        msg->msg.data_len);
2631                 goto out;
2632         }
2633
2634         memcpy(intf->bmc->guid, msg->msg.data, 16);
2635         intf->bmc->guid_set = 1;
2636  out:
2637         wake_up(&intf->waitq);
2638 }
2639
2640 static void
2641 get_guid(ipmi_smi_t intf)
2642 {
2643         int rv;
2644
2645         intf->bmc->guid_set = 0x2;
2646         intf->null_user_handler = guid_handler;
2647         rv = send_guid_cmd(intf, 0);
2648         if (rv)
2649                 /* Send failed, no GUID available. */
2650                 intf->bmc->guid_set = 0;
2651         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2652         intf->null_user_handler = NULL;
2653 }
2654
2655 static int
2656 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2657 {
2658         struct kernel_ipmi_msg            msg;
2659         unsigned char                     data[1];
2660         struct ipmi_system_interface_addr si;
2661
2662         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2663         si.channel = IPMI_BMC_CHANNEL;
2664         si.lun = 0;
2665
2666         msg.netfn = IPMI_NETFN_APP_REQUEST;
2667         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2668         msg.data = data;
2669         msg.data_len = 1;
2670         data[0] = chan;
2671         return i_ipmi_request(NULL,
2672                               intf,
2673                               (struct ipmi_addr *) &si,
2674                               0,
2675                               &msg,
2676                               intf,
2677                               NULL,
2678                               NULL,
2679                               0,
2680                               intf->channels[0].address,
2681                               intf->channels[0].lun,
2682                               -1, 0);
2683 }
2684
2685 static void
2686 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2687 {
2688         int rv = 0;
2689         int chan;
2690
2691         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2692             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2693             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2694                 /* It's the one we want */
2695                 if (msg->msg.data[0] != 0) {
2696                         /* Got an error from the channel, just go on. */
2697
2698                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2699                                 /*
2700                                  * If the MC does not support this
2701                                  * command, that is legal.  We just
2702                                  * assume it has one IPMB at channel
2703                                  * zero.
2704                                  */
2705                                 intf->channels[0].medium
2706                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2707                                 intf->channels[0].protocol
2708                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2709
2710                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2711                                 wake_up(&intf->waitq);
2712                                 goto out;
2713                         }
2714                         goto next_channel;
2715                 }
2716                 if (msg->msg.data_len < 4) {
2717                         /* Message not big enough, just go on. */
2718                         goto next_channel;
2719                 }
2720                 chan = intf->curr_channel;
2721                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2722                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2723
2724  next_channel:
2725                 intf->curr_channel++;
2726                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2727                         wake_up(&intf->waitq);
2728                 else
2729                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2730
2731                 if (rv) {
2732                         /* Got an error somehow, just give up. */
2733                         printk(KERN_WARNING PFX
2734                                "Error sending channel information for channel"
2735                                " %d: %d\n", intf->curr_channel, rv);
2736
2737                         intf->curr_channel = IPMI_MAX_CHANNELS;
2738                         wake_up(&intf->waitq);
2739                 }
2740         }
2741  out:
2742         return;
2743 }
2744
2745 static void ipmi_poll(ipmi_smi_t intf)
2746 {
2747         if (intf->handlers->poll)
2748                 intf->handlers->poll(intf->send_info);
2749         /* In case something came in */
2750         handle_new_recv_msgs(intf);
2751 }
2752
2753 void ipmi_poll_interface(ipmi_user_t user)
2754 {
2755         ipmi_poll(user->intf);
2756 }
2757 EXPORT_SYMBOL(ipmi_poll_interface);
2758
2759 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2760                       void                     *send_info,
2761                       struct ipmi_device_id    *device_id,
2762                       struct device            *si_dev,
2763                       unsigned char            slave_addr)
2764 {
2765         int              i, j;
2766         int              rv;
2767         ipmi_smi_t       intf;
2768         ipmi_smi_t       tintf;
2769         struct list_head *link;
2770
2771         /*
2772          * Make sure the driver is actually initialized, this handles
2773          * problems with initialization order.
2774          */
2775         if (!initialized) {
2776                 rv = ipmi_init_msghandler();
2777                 if (rv)
2778                         return rv;
2779                 /*
2780                  * The init code doesn't return an error if it was turned
2781                  * off, but it won't initialize.  Check that.
2782                  */
2783                 if (!initialized)
2784                         return -ENODEV;
2785         }
2786
2787         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2788         if (!intf)
2789                 return -ENOMEM;
2790
2791         intf->ipmi_version_major = ipmi_version_major(device_id);
2792         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2793
2794         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2795         if (!intf->bmc) {
2796                 kfree(intf);
2797                 return -ENOMEM;
2798         }
2799         intf->intf_num = -1; /* Mark it invalid for now. */
2800         kref_init(&intf->refcount);
2801         intf->bmc->id = *device_id;
2802         intf->si_dev = si_dev;
2803         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2804                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2805                 intf->channels[j].lun = 2;
2806         }
2807         if (slave_addr != 0)
2808                 intf->channels[0].address = slave_addr;
2809         INIT_LIST_HEAD(&intf->users);
2810         intf->handlers = handlers;
2811         intf->send_info = send_info;
2812         spin_lock_init(&intf->seq_lock);
2813         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2814                 intf->seq_table[j].inuse = 0;
2815                 intf->seq_table[j].seqid = 0;
2816         }
2817         intf->curr_seq = 0;
2818 #ifdef CONFIG_PROC_FS
2819         mutex_init(&intf->proc_entry_lock);
2820 #endif
2821         spin_lock_init(&intf->waiting_rcv_msgs_lock);
2822         INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2823         tasklet_init(&intf->recv_tasklet,
2824                      smi_recv_tasklet,
2825                      (unsigned long) intf);
2826         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2827         spin_lock_init(&intf->xmit_msgs_lock);
2828         INIT_LIST_HEAD(&intf->xmit_msgs);
2829         INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2830         spin_lock_init(&intf->events_lock);
2831         atomic_set(&intf->event_waiters, 0);
2832         intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2833         INIT_LIST_HEAD(&intf->waiting_events);
2834         intf->waiting_events_count = 0;
2835         mutex_init(&intf->cmd_rcvrs_mutex);
2836         spin_lock_init(&intf->maintenance_mode_lock);
2837         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2838         init_waitqueue_head(&intf->waitq);
2839         for (i = 0; i < IPMI_NUM_STATS; i++)
2840                 atomic_set(&intf->stats[i], 0);
2841
2842         intf->proc_dir = NULL;
2843
2844         mutex_lock(&smi_watchers_mutex);
2845         mutex_lock(&ipmi_interfaces_mutex);
2846         /* Look for a hole in the numbers. */
2847         i = 0;
2848         link = &ipmi_interfaces;
2849         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2850                 if (tintf->intf_num != i) {
2851                         link = &tintf->link;
2852                         break;
2853                 }
2854                 i++;
2855         }
2856         /* Add the new interface in numeric order. */
2857         if (i == 0)
2858                 list_add_rcu(&intf->link, &ipmi_interfaces);
2859         else
2860                 list_add_tail_rcu(&intf->link, link);
2861
2862         rv = handlers->start_processing(send_info, intf);
2863         if (rv)
2864                 goto out;
2865
2866         get_guid(intf);
2867
2868         if ((intf->ipmi_version_major > 1)
2869                         || ((intf->ipmi_version_major == 1)
2870                             && (intf->ipmi_version_minor >= 5))) {
2871                 /*
2872                  * Start scanning the channels to see what is
2873                  * available.
2874                  */
2875                 intf->null_user_handler = channel_handler;
2876                 intf->curr_channel = 0;
2877                 rv = send_channel_info_cmd(intf, 0);
2878                 if (rv) {
2879                         printk(KERN_WARNING PFX
2880                                "Error sending channel information for channel"
2881                                " 0, %d\n", rv);
2882                         goto out;
2883                 }
2884
2885                 /* Wait for the channel info to be read. */
2886                 wait_event(intf->waitq,
2887                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2888                 intf->null_user_handler = NULL;
2889         } else {
2890                 /* Assume a single IPMB channel at zero. */
2891                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2892                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2893                 intf->curr_channel = IPMI_MAX_CHANNELS;
2894         }
2895
2896         if (rv == 0)
2897                 rv = add_proc_entries(intf, i);
2898
2899         rv = ipmi_bmc_register(intf, i);
2900
2901  out:
2902         if (rv) {
2903                 if (intf->proc_dir)
2904                         remove_proc_entries(intf);
2905                 intf->handlers = NULL;
2906                 list_del_rcu(&intf->link);
2907                 mutex_unlock(&ipmi_interfaces_mutex);
2908                 mutex_unlock(&smi_watchers_mutex);
2909                 synchronize_rcu();
2910                 kref_put(&intf->refcount, intf_free);
2911         } else {
2912                 /*
2913                  * Keep memory order straight for RCU readers.  Make
2914                  * sure everything else is committed to memory before
2915                  * setting intf_num to mark the interface valid.
2916                  */
2917                 smp_wmb();
2918                 intf->intf_num = i;
2919                 mutex_unlock(&ipmi_interfaces_mutex);
2920                 /* After this point the interface is legal to use. */
2921                 call_smi_watchers(i, intf->si_dev);
2922                 mutex_unlock(&smi_watchers_mutex);
2923         }
2924
2925         return rv;
2926 }
2927 EXPORT_SYMBOL(ipmi_register_smi);
2928
2929 static void deliver_smi_err_response(ipmi_smi_t intf,
2930                                      struct ipmi_smi_msg *msg,
2931                                      unsigned char err)
2932 {
2933         msg->rsp[0] = msg->data[0] | 4;
2934         msg->rsp[1] = msg->data[1];
2935         msg->rsp[2] = err;
2936         msg->rsp_size = 3;
2937         /* It's an error, so it will never requeue, no need to check return. */
2938         handle_one_recv_msg(intf, msg);
2939 }
2940
2941 static void cleanup_smi_msgs(ipmi_smi_t intf)
2942 {
2943         int              i;
2944         struct seq_table *ent;
2945         struct ipmi_smi_msg *msg;
2946         struct list_head *entry;
2947         struct list_head tmplist;
2948
2949         /* Clear out our transmit queues and hold the messages. */
2950         INIT_LIST_HEAD(&tmplist);
2951         list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2952         list_splice_tail(&intf->xmit_msgs, &tmplist);
2953
2954         /* Current message first, to preserve order */
2955         while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2956                 /* Wait for the message to clear out. */
2957                 schedule_timeout(1);
2958         }
2959
2960         /* No need for locks, the interface is down. */
2961
2962         /*
2963          * Return errors for all pending messages in queue and in the
2964          * tables waiting for remote responses.
2965          */
2966         while (!list_empty(&tmplist)) {
2967                 entry = tmplist.next;
2968                 list_del(entry);
2969                 msg = list_entry(entry, struct ipmi_smi_msg, link);
2970                 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2971         }
2972
2973         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2974                 ent = &(intf->seq_table[i]);
2975                 if (!ent->inuse)
2976                         continue;
2977                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2978         }
2979 }
2980
2981 int ipmi_unregister_smi(ipmi_smi_t intf)
2982 {
2983         struct ipmi_smi_watcher *w;
2984         int intf_num = intf->intf_num;
2985         ipmi_user_t user;
2986
2987         ipmi_bmc_unregister(intf);
2988
2989         mutex_lock(&smi_watchers_mutex);
2990         mutex_lock(&ipmi_interfaces_mutex);
2991         intf->intf_num = -1;
2992         intf->in_shutdown = true;
2993         list_del_rcu(&intf->link);
2994         mutex_unlock(&ipmi_interfaces_mutex);
2995         synchronize_rcu();
2996
2997         cleanup_smi_msgs(intf);
2998
2999         /* Clean up the effects of users on the lower-level software. */
3000         mutex_lock(&ipmi_interfaces_mutex);
3001         rcu_read_lock();
3002         list_for_each_entry_rcu(user, &intf->users, link) {
3003                 module_put(intf->handlers->owner);
3004                 if (intf->handlers->dec_usecount)
3005                         intf->handlers->dec_usecount(intf->send_info);
3006         }
3007         rcu_read_unlock();
3008         intf->handlers = NULL;
3009         mutex_unlock(&ipmi_interfaces_mutex);
3010
3011         remove_proc_entries(intf);
3012
3013         /*
3014          * Call all the watcher interfaces to tell them that
3015          * an interface is gone.
3016          */
3017         list_for_each_entry(w, &smi_watchers, link)
3018                 w->smi_gone(intf_num);
3019         mutex_unlock(&smi_watchers_mutex);
3020
3021         kref_put(&intf->refcount, intf_free);
3022         return 0;
3023 }
3024 EXPORT_SYMBOL(ipmi_unregister_smi);
3025
3026 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3027                                    struct ipmi_smi_msg *msg)
3028 {
3029         struct ipmi_ipmb_addr ipmb_addr;
3030         struct ipmi_recv_msg  *recv_msg;
3031
3032         /*
3033          * This is 11, not 10, because the response must contain a
3034          * completion code.
3035          */
3036         if (msg->rsp_size < 11) {
3037                 /* Message not big enough, just ignore it. */
3038                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3039                 return 0;
3040         }
3041
3042         if (msg->rsp[2] != 0) {
3043                 /* An error getting the response, just ignore it. */
3044                 return 0;
3045         }
3046
3047         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3048         ipmb_addr.slave_addr = msg->rsp[6];
3049         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3050         ipmb_addr.lun = msg->rsp[7] & 3;
3051
3052         /*
3053          * It's a response from a remote entity.  Look up the sequence
3054          * number and handle the response.
3055          */
3056         if (intf_find_seq(intf,
3057                           msg->rsp[7] >> 2,
3058                           msg->rsp[3] & 0x0f,
3059                           msg->rsp[8],
3060                           (msg->rsp[4] >> 2) & (~1),
3061                           (struct ipmi_addr *) &(ipmb_addr),
3062                           &recv_msg)) {
3063                 /*
3064                  * We were unable to find the sequence number,
3065                  * so just nuke the message.
3066                  */
3067                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3068                 return 0;
3069         }
3070
3071         memcpy(recv_msg->msg_data,
3072                &(msg->rsp[9]),
3073                msg->rsp_size - 9);
3074         /*
3075          * The other fields matched, so no need to set them, except
3076          * for netfn, which needs to be the response that was
3077          * returned, not the request value.
3078          */
3079         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3080         recv_msg->msg.data = recv_msg->msg_data;
3081         recv_msg->msg.data_len = msg->rsp_size - 10;
3082         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3083         ipmi_inc_stat(intf, handled_ipmb_responses);
3084         deliver_response(recv_msg);
3085
3086         return 0;
3087 }
3088
3089 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3090                                    struct ipmi_smi_msg *msg)
3091 {
3092         struct cmd_rcvr          *rcvr;
3093         int                      rv = 0;
3094         unsigned char            netfn;
3095         unsigned char            cmd;
3096         unsigned char            chan;
3097         ipmi_user_t              user = NULL;
3098         struct ipmi_ipmb_addr    *ipmb_addr;
3099         struct ipmi_recv_msg     *recv_msg;
3100
3101         if (msg->rsp_size < 10) {
3102                 /* Message not big enough, just ignore it. */
3103                 ipmi_inc_stat(intf, invalid_commands);
3104                 return 0;
3105         }
3106
3107         if (msg->rsp[2] != 0) {
3108                 /* An error getting the response, just ignore it. */
3109                 return 0;
3110         }
3111
3112         netfn = msg->rsp[4] >> 2;
3113         cmd = msg->rsp[8];
3114         chan = msg->rsp[3] & 0xf;
3115
3116         rcu_read_lock();
3117         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3118         if (rcvr) {
3119                 user = rcvr->user;
3120                 kref_get(&user->refcount);
3121         } else
3122                 user = NULL;
3123         rcu_read_unlock();
3124
3125         if (user == NULL) {
3126                 /* We didn't find a user, deliver an error response. */
3127                 ipmi_inc_stat(intf, unhandled_commands);
3128
3129                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3130                 msg->data[1] = IPMI_SEND_MSG_CMD;
3131                 msg->data[2] = msg->rsp[3];
3132                 msg->data[3] = msg->rsp[6];
3133                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3134                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3135                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3136                 /* rqseq/lun */
3137                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3138                 msg->data[8] = msg->rsp[8]; /* cmd */
3139                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3140                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3141                 msg->data_size = 11;
3142
3143 #ifdef DEBUG_MSGING
3144         {
3145                 int m;
3146                 printk("Invalid command:");
3147                 for (m = 0; m < msg->data_size; m++)
3148                         printk(" %2.2x", msg->data[m]);
3149                 printk("\n");
3150         }
3151 #endif
3152                 rcu_read_lock();
3153                 if (!intf->in_shutdown) {
3154                         smi_send(intf, intf->handlers, msg, 0);
3155                         /*
3156                          * We used the message, so return the value
3157                          * that causes it to not be freed or
3158                          * queued.
3159                          */
3160                         rv = -1;
3161                 }
3162                 rcu_read_unlock();
3163         } else {
3164                 /* Deliver the message to the user. */
3165                 ipmi_inc_stat(intf, handled_commands);
3166
3167                 recv_msg = ipmi_alloc_recv_msg();
3168                 if (!recv_msg) {
3169                         /*
3170                          * We couldn't allocate memory for the
3171                          * message, so requeue it for handling
3172                          * later.
3173                          */
3174                         rv = 1;
3175                         kref_put(&user->refcount, free_user);
3176                 } else {
3177                         /* Extract the source address from the data. */
3178                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3179                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3180                         ipmb_addr->slave_addr = msg->rsp[6];
3181                         ipmb_addr->lun = msg->rsp[7] & 3;
3182                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3183
3184                         /*
3185                          * Extract the rest of the message information
3186                          * from the IPMB header.
3187                          */
3188                         recv_msg->user = user;
3189                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3190                         recv_msg->msgid = msg->rsp[7] >> 2;
3191                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3192                         recv_msg->msg.cmd = msg->rsp[8];
3193                         recv_msg->msg.data = recv_msg->msg_data;
3194
3195                         /*
3196                          * We chop off 10, not 9 bytes because the checksum
3197                          * at the end also needs to be removed.
3198                          */
3199                         recv_msg->msg.data_len = msg->rsp_size - 10;
3200                         memcpy(recv_msg->msg_data,
3201                                &(msg->rsp[9]),
3202                                msg->rsp_size - 10);
3203                         deliver_response(recv_msg);
3204                 }
3205         }
3206
3207         return rv;
3208 }
3209
3210 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3211                                   struct ipmi_smi_msg *msg)
3212 {
3213         struct ipmi_lan_addr  lan_addr;
3214         struct ipmi_recv_msg  *recv_msg;
3215
3216
3217         /*
3218          * This is 13, not 12, because the response must contain a
3219          * completion code.
3220          */
3221         if (msg->rsp_size < 13) {
3222                 /* Message not big enough, just ignore it. */
3223                 ipmi_inc_stat(intf, invalid_lan_responses);
3224                 return 0;
3225         }
3226
3227         if (msg->rsp[2] != 0) {
3228                 /* An error getting the response, just ignore it. */
3229                 return 0;
3230         }
3231
3232         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3233         lan_addr.session_handle = msg->rsp[4];
3234         lan_addr.remote_SWID = msg->rsp[8];
3235         lan_addr.local_SWID = msg->rsp[5];
3236         lan_addr.channel = msg->rsp[3] & 0x0f;
3237         lan_addr.privilege = msg->rsp[3] >> 4;
3238         lan_addr.lun = msg->rsp[9] & 3;
3239
3240         /*
3241          * It's a response from a remote entity.  Look up the sequence
3242          * number and handle the response.
3243          */
3244         if (intf_find_seq(intf,
3245                           msg->rsp[9] >> 2,
3246                           msg->rsp[3] & 0x0f,
3247                           msg->rsp[10],
3248                           (msg->rsp[6] >> 2) & (~1),
3249                           (struct ipmi_addr *) &(lan_addr),
3250                           &recv_msg)) {
3251                 /*
3252                  * We were unable to find the sequence number,
3253                  * so just nuke the message.
3254                  */
3255                 ipmi_inc_stat(intf, unhandled_lan_responses);
3256                 return 0;
3257         }
3258
3259         memcpy(recv_msg->msg_data,
3260                &(msg->rsp[11]),
3261                msg->rsp_size - 11);
3262         /*
3263          * The other fields matched, so no need to set them, except
3264          * for netfn, which needs to be the response that was
3265          * returned, not the request value.
3266          */
3267         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3268         recv_msg->msg.data = recv_msg->msg_data;
3269         recv_msg->msg.data_len = msg->rsp_size - 12;
3270         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3271         ipmi_inc_stat(intf, handled_lan_responses);
3272         deliver_response(recv_msg);
3273
3274         return 0;
3275 }
3276
3277 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3278                                   struct ipmi_smi_msg *msg)
3279 {
3280         struct cmd_rcvr          *rcvr;
3281         int                      rv = 0;
3282         unsigned char            netfn;
3283         unsigned char            cmd;
3284         unsigned char            chan;
3285         ipmi_user_t              user = NULL;
3286         struct ipmi_lan_addr     *lan_addr;
3287         struct ipmi_recv_msg     *recv_msg;
3288
3289         if (msg->rsp_size < 12) {
3290                 /* Message not big enough, just ignore it. */
3291                 ipmi_inc_stat(intf, invalid_commands);
3292                 return 0;
3293         }
3294
3295         if (msg->rsp[2] != 0) {
3296                 /* An error getting the response, just ignore it. */
3297                 return 0;
3298         }
3299
3300         netfn = msg->rsp[6] >> 2;
3301         cmd = msg->rsp[10];
3302         chan = msg->rsp[3] & 0xf;
3303
3304         rcu_read_lock();
3305         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3306         if (rcvr) {
3307                 user = rcvr->user;
3308                 kref_get(&user->refcount);
3309         } else
3310                 user = NULL;
3311         rcu_read_unlock();
3312
3313         if (user == NULL) {
3314                 /* We didn't find a user, just give up. */
3315                 ipmi_inc_stat(intf, unhandled_commands);
3316
3317                 /*
3318                  * Don't do anything with these messages, just allow
3319                  * them to be freed.
3320                  */
3321                 rv = 0;
3322         } else {
3323                 /* Deliver the message to the user. */
3324                 ipmi_inc_stat(intf, handled_commands);
3325
3326                 recv_msg = ipmi_alloc_recv_msg();
3327                 if (!recv_msg) {
3328                         /*
3329                          * We couldn't allocate memory for the
3330                          * message, so requeue it for handling later.
3331                          */
3332                         rv = 1;
3333                         kref_put(&user->refcount, free_user);
3334                 } else {
3335                         /* Extract the source address from the data. */
3336                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3337                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3338                         lan_addr->session_handle = msg->rsp[4];
3339                         lan_addr->remote_SWID = msg->rsp[8];
3340                         lan_addr->local_SWID = msg->rsp[5];
3341                         lan_addr->lun = msg->rsp[9] & 3;
3342                         lan_addr->channel = msg->rsp[3] & 0xf;
3343                         lan_addr->privilege = msg->rsp[3] >> 4;
3344
3345                         /*
3346                          * Extract the rest of the message information
3347                          * from the IPMB header.
3348                          */
3349                         recv_msg->user = user;
3350                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3351                         recv_msg->msgid = msg->rsp[9] >> 2;
3352                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3353                         recv_msg->msg.cmd = msg->rsp[10];
3354                         recv_msg->msg.data = recv_msg->msg_data;
3355
3356                         /*
3357                          * We chop off 12, not 11 bytes because the checksum
3358                          * at the end also needs to be removed.
3359                          */
3360                         recv_msg->msg.data_len = msg->rsp_size - 12;
3361                         memcpy(recv_msg->msg_data,
3362                                &(msg->rsp[11]),
3363                                msg->rsp_size - 12);
3364                         deliver_response(recv_msg);
3365                 }
3366         }
3367
3368         return rv;
3369 }
3370
3371 /*
3372  * This routine will handle "Get Message" command responses with
3373  * channels that use an OEM Medium. The message format belongs to
3374  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3375  * Chapter 22, sections 22.6 and 22.24 for more details.
3376  */
3377 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3378                                   struct ipmi_smi_msg *msg)
3379 {
3380         struct cmd_rcvr       *rcvr;
3381         int                   rv = 0;
3382         unsigned char         netfn;
3383         unsigned char         cmd;
3384         unsigned char         chan;
3385         ipmi_user_t           user = NULL;
3386         struct ipmi_system_interface_addr *smi_addr;
3387         struct ipmi_recv_msg  *recv_msg;
3388
3389         /*
3390          * We expect the OEM SW to perform error checking
3391          * so we just do some basic sanity checks
3392          */
3393         if (msg->rsp_size < 4) {
3394                 /* Message not big enough, just ignore it. */
3395                 ipmi_inc_stat(intf, invalid_commands);
3396                 return 0;
3397         }
3398
3399         if (msg->rsp[2] != 0) {
3400                 /* An error getting the response, just ignore it. */
3401                 return 0;
3402         }
3403
3404         /*
3405          * This is an OEM Message so the OEM needs to know how
3406          * handle the message. We do no interpretation.
3407          */
3408         netfn = msg->rsp[0] >> 2;
3409         cmd = msg->rsp[1];
3410         chan = msg->rsp[3] & 0xf;
3411
3412         rcu_read_lock();
3413         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3414         if (rcvr) {
3415                 user = rcvr->user;
3416                 kref_get(&user->refcount);
3417         } else
3418                 user = NULL;
3419         rcu_read_unlock();
3420
3421         if (user == NULL) {
3422                 /* We didn't find a user, just give up. */
3423                 ipmi_inc_stat(intf, unhandled_commands);
3424
3425                 /*
3426                  * Don't do anything with these messages, just allow
3427                  * them to be freed.
3428                  */
3429
3430                 rv = 0;
3431         } else {
3432                 /* Deliver the message to the user. */
3433                 ipmi_inc_stat(intf, handled_commands);
3434
3435                 recv_msg = ipmi_alloc_recv_msg();
3436                 if (!recv_msg) {
3437                         /*
3438                          * We couldn't allocate memory for the
3439                          * message, so requeue it for handling
3440                          * later.
3441                          */
3442                         rv = 1;
3443                         kref_put(&user->refcount, free_user);
3444                 } else {
3445                         /*
3446                          * OEM Messages are expected to be delivered via
3447                          * the system interface to SMS software.  We might
3448                          * need to visit this again depending on OEM
3449                          * requirements
3450                          */
3451                         smi_addr = ((struct ipmi_system_interface_addr *)
3452                                     &(recv_msg->addr));
3453                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3454                         smi_addr->channel = IPMI_BMC_CHANNEL;
3455                         smi_addr->lun = msg->rsp[0] & 3;
3456
3457                         recv_msg->user = user;
3458                         recv_msg->user_msg_data = NULL;
3459                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3460                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3461                         recv_msg->msg.cmd = msg->rsp[1];
3462                         recv_msg->msg.data = recv_msg->msg_data;
3463
3464                         /*
3465                          * The message starts at byte 4 which follows the
3466                          * the Channel Byte in the "GET MESSAGE" command
3467                          */
3468                         recv_msg->msg.data_len = msg->rsp_size - 4;
3469                         memcpy(recv_msg->msg_data,
3470                                &(msg->rsp[4]),
3471                                msg->rsp_size - 4);
3472                         deliver_response(recv_msg);
3473                 }
3474         }
3475
3476         return rv;
3477 }
3478
3479 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3480                                      struct ipmi_smi_msg  *msg)
3481 {
3482         struct ipmi_system_interface_addr *smi_addr;
3483
3484         recv_msg->msgid = 0;
3485         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3486         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3487         smi_addr->channel = IPMI_BMC_CHANNEL;
3488         smi_addr->lun = msg->rsp[0] & 3;
3489         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3490         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3491         recv_msg->msg.cmd = msg->rsp[1];
3492         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3493         recv_msg->msg.data = recv_msg->msg_data;
3494         recv_msg->msg.data_len = msg->rsp_size - 3;
3495 }
3496
3497 static int handle_read_event_rsp(ipmi_smi_t          intf,
3498                                  struct ipmi_smi_msg *msg)
3499 {
3500         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3501         struct list_head     msgs;
3502         ipmi_user_t          user;
3503         int                  rv = 0;
3504         int                  deliver_count = 0;
3505         unsigned long        flags;
3506
3507         if (msg->rsp_size < 19) {
3508                 /* Message is too small to be an IPMB event. */
3509                 ipmi_inc_stat(intf, invalid_events);
3510                 return 0;
3511         }
3512
3513         if (msg->rsp[2] != 0) {
3514                 /* An error getting the event, just ignore it. */
3515                 return 0;
3516         }
3517
3518         INIT_LIST_HEAD(&msgs);
3519
3520         spin_lock_irqsave(&intf->events_lock, flags);
3521
3522         ipmi_inc_stat(intf, events);
3523
3524         /*
3525          * Allocate and fill in one message for every user that is
3526          * getting events.
3527          */
3528         rcu_read_lock();
3529         list_for_each_entry_rcu(user, &intf->users, link) {
3530                 if (!user->gets_events)
3531                         continue;
3532
3533                 recv_msg = ipmi_alloc_recv_msg();
3534                 if (!recv_msg) {
3535                         rcu_read_unlock();
3536                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3537                                                  link) {
3538                                 list_del(&recv_msg->link);
3539                                 ipmi_free_recv_msg(recv_msg);
3540                         }
3541                         /*
3542                          * We couldn't allocate memory for the
3543                          * message, so requeue it for handling
3544                          * later.
3545                          */
3546                         rv = 1;
3547                         goto out;
3548                 }
3549
3550                 deliver_count++;
3551
3552                 copy_event_into_recv_msg(recv_msg, msg);
3553                 recv_msg->user = user;
3554                 kref_get(&user->refcount);
3555                 list_add_tail(&(recv_msg->link), &msgs);
3556         }
3557         rcu_read_unlock();
3558
3559         if (deliver_count) {
3560                 /* Now deliver all the messages. */
3561                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3562                         list_del(&recv_msg->link);
3563                         deliver_response(recv_msg);
3564                 }
3565         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3566                 /*
3567                  * No one to receive the message, put it in queue if there's
3568                  * not already too many things in the queue.
3569                  */
3570                 recv_msg = ipmi_alloc_recv_msg();
3571                 if (!recv_msg) {
3572                         /*
3573                          * We couldn't allocate memory for the
3574                          * message, so requeue it for handling
3575                          * later.
3576                          */
3577                         rv = 1;
3578                         goto out;
3579                 }
3580
3581                 copy_event_into_recv_msg(recv_msg, msg);
3582                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3583                 intf->waiting_events_count++;
3584         } else if (!intf->event_msg_printed) {
3585                 /*
3586                  * There's too many things in the queue, discard this
3587                  * message.
3588                  */
3589                 printk(KERN_WARNING PFX "Event queue full, discarding"
3590                        " incoming events\n");
3591                 intf->event_msg_printed = 1;
3592         }
3593
3594  out:
3595         spin_unlock_irqrestore(&(intf->events_lock), flags);
3596
3597         return rv;
3598 }
3599
3600 static int handle_bmc_rsp(ipmi_smi_t          intf,
3601                           struct ipmi_smi_msg *msg)
3602 {
3603         struct ipmi_recv_msg *recv_msg;
3604         struct ipmi_user     *user;
3605
3606         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3607         if (recv_msg == NULL) {
3608                 printk(KERN_WARNING
3609                        "IPMI message received with no owner. This\n"
3610                        "could be because of a malformed message, or\n"
3611                        "because of a hardware error.  Contact your\n"
3612                        "hardware vender for assistance\n");
3613                 return 0;
3614         }
3615
3616         user = recv_msg->user;
3617         /* Make sure the user still exists. */
3618         if (user && !user->valid) {
3619                 /* The user for the message went away, so give up. */
3620                 ipmi_inc_stat(intf, unhandled_local_responses);
3621                 ipmi_free_recv_msg(recv_msg);
3622         } else {
3623                 struct ipmi_system_interface_addr *smi_addr;
3624
3625                 ipmi_inc_stat(intf, handled_local_responses);
3626                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3627                 recv_msg->msgid = msg->msgid;
3628                 smi_addr = ((struct ipmi_system_interface_addr *)
3629                             &(recv_msg->addr));
3630                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3631                 smi_addr->channel = IPMI_BMC_CHANNEL;
3632                 smi_addr->lun = msg->rsp[0] & 3;
3633                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3634                 recv_msg->msg.cmd = msg->rsp[1];
3635                 memcpy(recv_msg->msg_data,
3636                        &(msg->rsp[2]),
3637                        msg->rsp_size - 2);
3638                 recv_msg->msg.data = recv_msg->msg_data;
3639                 recv_msg->msg.data_len = msg->rsp_size - 2;
3640                 deliver_response(recv_msg);
3641         }
3642
3643         return 0;
3644 }
3645
3646 /*
3647  * Handle a received message.  Return 1 if the message should be requeued,
3648  * 0 if the message should be freed, or -1 if the message should not
3649  * be freed or requeued.
3650  */
3651 static int handle_one_recv_msg(ipmi_smi_t          intf,
3652                                struct ipmi_smi_msg *msg)
3653 {
3654         int requeue;
3655         int chan;
3656
3657 #ifdef DEBUG_MSGING
3658         int m;
3659         printk("Recv:");
3660         for (m = 0; m < msg->rsp_size; m++)
3661                 printk(" %2.2x", msg->rsp[m]);
3662         printk("\n");
3663 #endif
3664         if (msg->rsp_size < 2) {
3665                 /* Message is too small to be correct. */
3666                 printk(KERN_WARNING PFX "BMC returned to small a message"
3667                        " for netfn %x cmd %x, got %d bytes\n",
3668                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3669
3670                 /* Generate an error response for the message. */
3671                 msg->rsp[0] = msg->data[0] | (1 << 2);
3672                 msg->rsp[1] = msg->data[1];
3673                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3674                 msg->rsp_size = 3;
3675         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3676                    || (msg->rsp[1] != msg->data[1])) {
3677                 /*
3678                  * The NetFN and Command in the response is not even
3679                  * marginally correct.
3680                  */
3681                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3682                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3683                        (msg->data[0] >> 2) | 1, msg->data[1],
3684                        msg->rsp[0] >> 2, msg->rsp[1]);
3685
3686                 /* Generate an error response for the message. */
3687                 msg->rsp[0] = msg->data[0] | (1 << 2);
3688                 msg->rsp[1] = msg->data[1];
3689                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3690                 msg->rsp_size = 3;
3691         }
3692
3693         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3694             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3695             && (msg->user_data != NULL)) {
3696                 /*
3697                  * It's a response to a response we sent.  For this we
3698                  * deliver a send message response to the user.
3699                  */
3700                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3701
3702                 requeue = 0;
3703                 if (msg->rsp_size < 2)
3704                         /* Message is too small to be correct. */
3705                         goto out;
3706
3707                 chan = msg->data[2] & 0x0f;
3708                 if (chan >= IPMI_MAX_CHANNELS)
3709                         /* Invalid channel number */
3710                         goto out;
3711
3712                 if (!recv_msg)
3713                         goto out;
3714
3715                 /* Make sure the user still exists. */
3716                 if (!recv_msg->user || !recv_msg->user->valid)
3717                         goto out;
3718
3719                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3720                 recv_msg->msg.data = recv_msg->msg_data;
3721                 recv_msg->msg.data_len = 1;
3722                 recv_msg->msg_data[0] = msg->rsp[2];
3723                 deliver_response(recv_msg);
3724         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3725                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3726                 /* It's from the receive queue. */
3727                 chan = msg->rsp[3] & 0xf;
3728                 if (chan >= IPMI_MAX_CHANNELS) {
3729                         /* Invalid channel number */
3730                         requeue = 0;
3731                         goto out;
3732                 }
3733
3734                 /*
3735                  * We need to make sure the channels have been initialized.
3736                  * The channel_handler routine will set the "curr_channel"
3737                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3738                  * channels for this interface have been initialized.
3739                  */
3740                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3741                         requeue = 0; /* Throw the message away */
3742                         goto out;
3743                 }
3744
3745                 switch (intf->channels[chan].medium) {
3746                 case IPMI_CHANNEL_MEDIUM_IPMB:
3747                         if (msg->rsp[4] & 0x04) {
3748                                 /*
3749                                  * It's a response, so find the
3750                                  * requesting message and send it up.
3751                                  */
3752                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3753                         } else {
3754                                 /*
3755                                  * It's a command to the SMS from some other
3756                                  * entity.  Handle that.
3757                                  */
3758                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3759                         }
3760                         break;
3761
3762                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3763                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3764                         if (msg->rsp[6] & 0x04) {
3765                                 /*
3766                                  * It's a response, so find the
3767                                  * requesting message and send it up.
3768                                  */
3769                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3770                         } else {
3771                                 /*
3772                                  * It's a command to the SMS from some other
3773                                  * entity.  Handle that.
3774                                  */
3775                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3776                         }
3777                         break;
3778
3779                 default:
3780                         /* Check for OEM Channels.  Clients had better
3781                            register for these commands. */
3782                         if ((intf->channels[chan].medium
3783                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3784                             && (intf->channels[chan].medium
3785                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3786                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3787                         } else {
3788                                 /*
3789                                  * We don't handle the channel type, so just
3790                                  * free the message.
3791                                  */
3792                                 requeue = 0;
3793                         }
3794                 }
3795
3796         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3797                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3798                 /* It's an asynchronous event. */
3799                 requeue = handle_read_event_rsp(intf, msg);
3800         } else {
3801                 /* It's a response from the local BMC. */
3802                 requeue = handle_bmc_rsp(intf, msg);
3803         }
3804
3805  out:
3806         return requeue;
3807 }
3808
3809 /*
3810  * If there are messages in the queue or pretimeouts, handle them.
3811  */
3812 static void handle_new_recv_msgs(ipmi_smi_t intf)
3813 {
3814         struct ipmi_smi_msg  *smi_msg;
3815         unsigned long        flags = 0;
3816         int                  rv;
3817         int                  run_to_completion = intf->run_to_completion;
3818
3819         /* See if any waiting messages need to be processed. */
3820         if (!run_to_completion)
3821                 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822         while (!list_empty(&intf->waiting_rcv_msgs)) {
3823                 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3824                                      struct ipmi_smi_msg, link);
3825                 if (!run_to_completion)
3826                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3827                                                flags);
3828                 rv = handle_one_recv_msg(intf, smi_msg);
3829                 if (!run_to_completion)
3830                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3831                 if (rv > 0) {
3832                         /*
3833                          * To preserve message order, quit if we
3834                          * can't handle a message.
3835                          */
3836                         break;
3837                 } else {
3838                         list_del(&smi_msg->link);
3839                         if (rv == 0)
3840                                 /* Message handled */
3841                                 ipmi_free_smi_msg(smi_msg);
3842                         /* If rv < 0, fatal error, del but don't free. */
3843                 }
3844         }
3845         if (!run_to_completion)
3846                 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3847
3848         /*
3849          * If the pretimout count is non-zero, decrement one from it and
3850          * deliver pretimeouts to all the users.
3851          */
3852         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3853                 ipmi_user_t user;
3854
3855                 rcu_read_lock();
3856                 list_for_each_entry_rcu(user, &intf->users, link) {
3857                         if (user->handler->ipmi_watchdog_pretimeout)
3858                                 user->handler->ipmi_watchdog_pretimeout(
3859                                         user->handler_data);
3860                 }
3861                 rcu_read_unlock();
3862         }
3863 }
3864
3865 static void smi_recv_tasklet(unsigned long val)
3866 {
3867         unsigned long flags = 0; /* keep us warning-free. */
3868         ipmi_smi_t intf = (ipmi_smi_t) val;
3869         int run_to_completion = intf->run_to_completion;
3870         struct ipmi_smi_msg *newmsg = NULL;
3871
3872         /*
3873          * Start the next message if available.
3874          *
3875          * Do this here, not in the actual receiver, because we may deadlock
3876          * because the lower layer is allowed to hold locks while calling
3877          * message delivery.
3878          */
3879         if (!run_to_completion)
3880                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3881         if (intf->curr_msg == NULL && !intf->in_shutdown) {
3882                 struct list_head *entry = NULL;
3883
3884                 /* Pick the high priority queue first. */
3885                 if (!list_empty(&intf->hp_xmit_msgs))
3886                         entry = intf->hp_xmit_msgs.next;
3887                 else if (!list_empty(&intf->xmit_msgs))
3888                         entry = intf->xmit_msgs.next;
3889
3890                 if (entry) {
3891                         list_del(entry);
3892                         newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3893                         intf->curr_msg = newmsg;
3894                 }
3895         }
3896         if (!run_to_completion)
3897                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3898         if (newmsg)
3899                 intf->handlers->sender(intf->send_info, newmsg);
3900
3901         handle_new_recv_msgs(intf);
3902 }
3903
3904 /* Handle a new message from the lower layer. */
3905 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3906                            struct ipmi_smi_msg *msg)
3907 {
3908         unsigned long flags = 0; /* keep us warning-free. */
3909         int run_to_completion = intf->run_to_completion;
3910
3911         if ((msg->data_size >= 2)
3912             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3913             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3914             && (msg->user_data == NULL)) {
3915
3916                 if (intf->in_shutdown)
3917                         goto free_msg;
3918
3919                 /*
3920                  * This is the local response to a command send, start
3921                  * the timer for these.  The user_data will not be
3922                  * NULL if this is a response send, and we will let
3923                  * response sends just go through.
3924                  */
3925
3926                 /*
3927                  * Check for errors, if we get certain errors (ones
3928                  * that mean basically we can try again later), we
3929                  * ignore them and start the timer.  Otherwise we
3930                  * report the error immediately.
3931                  */
3932                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3933                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3934                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3935                     && (msg->rsp[2] != IPMI_BUS_ERR)
3936                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3937                         int chan = msg->rsp[3] & 0xf;
3938
3939                         /* Got an error sending the message, handle it. */
3940                         if (chan >= IPMI_MAX_CHANNELS)
3941                                 ; /* This shouldn't happen */
3942                         else if ((intf->channels[chan].medium
3943                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3944                                  || (intf->channels[chan].medium
3945                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3946                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3947                         else
3948                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3949                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3950                 } else
3951                         /* The message was sent, start the timer. */
3952                         intf_start_seq_timer(intf, msg->msgid);
3953
3954 free_msg:
3955                 ipmi_free_smi_msg(msg);
3956         } else {
3957                 /*
3958                  * To preserve message order, we keep a queue and deliver from
3959                  * a tasklet.
3960                  */
3961                 if (!run_to_completion)
3962                         spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3963                 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3964                 if (!run_to_completion)
3965                         spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3966                                                flags);
3967         }
3968
3969         if (!run_to_completion)
3970                 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3971         if (msg == intf->curr_msg)
3972                 intf->curr_msg = NULL;
3973         if (!run_to_completion)
3974                 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3975
3976         if (run_to_completion)
3977                 smi_recv_tasklet((unsigned long) intf);
3978         else
3979                 tasklet_schedule(&intf->recv_tasklet);
3980 }
3981 EXPORT_SYMBOL(ipmi_smi_msg_received);
3982
3983 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3984 {
3985         if (intf->in_shutdown)
3986                 return;
3987
3988         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3989         tasklet_schedule(&intf->recv_tasklet);
3990 }
3991 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3992
3993 static struct ipmi_smi_msg *
3994 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3995                   unsigned char seq, long seqid)
3996 {
3997         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3998         if (!smi_msg)
3999                 /*
4000                  * If we can't allocate the message, then just return, we
4001                  * get 4 retries, so this should be ok.
4002                  */
4003                 return NULL;
4004
4005         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4006         smi_msg->data_size = recv_msg->msg.data_len;
4007         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4008
4009 #ifdef DEBUG_MSGING
4010         {
4011                 int m;
4012                 printk("Resend: ");
4013                 for (m = 0; m < smi_msg->data_size; m++)
4014                         printk(" %2.2x", smi_msg->data[m]);
4015                 printk("\n");
4016         }
4017 #endif
4018         return smi_msg;
4019 }
4020
4021 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4022                               struct list_head *timeouts, long timeout_period,
4023                               int slot, unsigned long *flags,
4024                               unsigned int *waiting_msgs)
4025 {
4026         struct ipmi_recv_msg     *msg;
4027         struct ipmi_smi_handlers *handlers;
4028
4029         if (intf->in_shutdown)
4030                 return;
4031
4032         if (!ent->inuse)
4033                 return;
4034
4035         ent->timeout -= timeout_period;
4036         if (ent->timeout > 0) {
4037                 (*waiting_msgs)++;
4038                 return;
4039         }
4040
4041         if (ent->retries_left == 0) {
4042                 /* The message has used all its retries. */
4043                 ent->inuse = 0;
4044                 msg = ent->recv_msg;
4045                 list_add_tail(&msg->link, timeouts);
4046                 if (ent->broadcast)
4047                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4048                 else if (is_lan_addr(&ent->recv_msg->addr))
4049                         ipmi_inc_stat(intf, timed_out_lan_commands);
4050                 else
4051                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
4052         } else {
4053                 struct ipmi_smi_msg *smi_msg;
4054                 /* More retries, send again. */
4055
4056                 (*waiting_msgs)++;
4057
4058                 /*
4059                  * Start with the max timer, set to normal timer after
4060                  * the message is sent.
4061                  */
4062                 ent->timeout = MAX_MSG_TIMEOUT;
4063                 ent->retries_left--;
4064                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4065                                             ent->seqid);
4066                 if (!smi_msg) {
4067                         if (is_lan_addr(&ent->recv_msg->addr))
4068                                 ipmi_inc_stat(intf,
4069                                               dropped_rexmit_lan_commands);
4070                         else
4071                                 ipmi_inc_stat(intf,
4072                                               dropped_rexmit_ipmb_commands);
4073                         return;
4074                 }
4075
4076                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4077
4078                 /*
4079                  * Send the new message.  We send with a zero
4080                  * priority.  It timed out, I doubt time is that
4081                  * critical now, and high priority messages are really
4082                  * only for messages to the local MC, which don't get
4083                  * resent.
4084                  */
4085                 handlers = intf->handlers;
4086                 if (handlers) {
4087                         if (is_lan_addr(&ent->recv_msg->addr))
4088                                 ipmi_inc_stat(intf,
4089                                               retransmitted_lan_commands);
4090                         else
4091                                 ipmi_inc_stat(intf,
4092                                               retransmitted_ipmb_commands);
4093
4094                         smi_send(intf, intf->handlers, smi_msg, 0);
4095                 } else
4096                         ipmi_free_smi_msg(smi_msg);
4097
4098                 spin_lock_irqsave(&intf->seq_lock, *flags);
4099         }
4100 }
4101
4102 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4103 {
4104         struct list_head     timeouts;
4105         struct ipmi_recv_msg *msg, *msg2;
4106         unsigned long        flags;
4107         int                  i;
4108         unsigned int         waiting_msgs = 0;
4109
4110         /*
4111          * Go through the seq table and find any messages that
4112          * have timed out, putting them in the timeouts
4113          * list.
4114          */
4115         INIT_LIST_HEAD(&timeouts);
4116         spin_lock_irqsave(&intf->seq_lock, flags);
4117         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4118                 check_msg_timeout(intf, &(intf->seq_table[i]),
4119                                   &timeouts, timeout_period, i,
4120                                   &flags, &waiting_msgs);
4121         spin_unlock_irqrestore(&intf->seq_lock, flags);
4122
4123         list_for_each_entry_safe(msg, msg2, &timeouts, link)
4124                 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4125
4126         /*
4127          * Maintenance mode handling.  Check the timeout
4128          * optimistically before we claim the lock.  It may
4129          * mean a timeout gets missed occasionally, but that
4130          * only means the timeout gets extended by one period
4131          * in that case.  No big deal, and it avoids the lock
4132          * most of the time.
4133          */
4134         if (intf->auto_maintenance_timeout > 0) {
4135                 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4136                 if (intf->auto_maintenance_timeout > 0) {
4137                         intf->auto_maintenance_timeout
4138                                 -= timeout_period;
4139                         if (!intf->maintenance_mode
4140                             && (intf->auto_maintenance_timeout <= 0)) {
4141                                 intf->maintenance_mode_enable = false;
4142                                 maintenance_mode_update(intf);
4143                         }
4144                 }
4145                 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4146                                        flags);
4147         }
4148
4149         tasklet_schedule(&intf->recv_tasklet);
4150
4151         return waiting_msgs;
4152 }
4153
4154 static void ipmi_request_event(ipmi_smi_t intf)
4155 {
4156         /* No event requests when in maintenance mode. */
4157         if (intf->maintenance_mode_enable)
4158                 return;
4159
4160         if (!intf->in_shutdown)
4161                 intf->handlers->request_events(intf->send_info);
4162 }
4163
4164 static struct timer_list ipmi_timer;
4165
4166 static atomic_t stop_operation;
4167
4168 static void ipmi_timeout(unsigned long data)
4169 {
4170         ipmi_smi_t intf;
4171         int nt = 0;
4172
4173         if (atomic_read(&stop_operation))
4174                 return;
4175
4176         rcu_read_lock();
4177         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4178                 int lnt = 0;
4179
4180                 if (atomic_read(&intf->event_waiters)) {
4181                         intf->ticks_to_req_ev--;
4182                         if (intf->ticks_to_req_ev == 0) {
4183                                 ipmi_request_event(intf);
4184                                 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4185                         }
4186                         lnt++;
4187                 }
4188
4189                 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4190
4191                 lnt = !!lnt;
4192                 if (lnt != intf->last_needs_timer &&
4193                                         intf->handlers->set_need_watch)
4194                         intf->handlers->set_need_watch(intf->send_info, lnt);
4195                 intf->last_needs_timer = lnt;
4196
4197                 nt += lnt;
4198         }
4199         rcu_read_unlock();
4200
4201         if (nt)
4202                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4203 }
4204
4205 static void need_waiter(ipmi_smi_t intf)
4206 {
4207         /* Racy, but worst case we start the timer twice. */
4208         if (!timer_pending(&ipmi_timer))
4209                 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4210 }
4211
4212 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4213 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4214
4215 /* FIXME - convert these to slabs. */
4216 static void free_smi_msg(struct ipmi_smi_msg *msg)
4217 {
4218         atomic_dec(&smi_msg_inuse_count);
4219         kfree(msg);
4220 }
4221
4222 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4223 {
4224         struct ipmi_smi_msg *rv;
4225         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4226         if (rv) {
4227                 rv->done = free_smi_msg;
4228                 rv->user_data = NULL;
4229                 atomic_inc(&smi_msg_inuse_count);
4230         }
4231         return rv;
4232 }
4233 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4234
4235 static void free_recv_msg(struct ipmi_recv_msg *msg)
4236 {
4237         atomic_dec(&recv_msg_inuse_count);
4238         kfree(msg);
4239 }
4240
4241 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4242 {
4243         struct ipmi_recv_msg *rv;
4244
4245         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4246         if (rv) {
4247                 rv->user = NULL;
4248                 rv->done = free_recv_msg;
4249                 atomic_inc(&recv_msg_inuse_count);
4250         }
4251         return rv;
4252 }
4253
4254 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4255 {
4256         if (msg->user)
4257                 kref_put(&msg->user->refcount, free_user);
4258         msg->done(msg);
4259 }
4260 EXPORT_SYMBOL(ipmi_free_recv_msg);
4261
4262 #ifdef CONFIG_IPMI_PANIC_EVENT
4263
4264 static atomic_t panic_done_count = ATOMIC_INIT(0);
4265
4266 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4267 {
4268         atomic_dec(&panic_done_count);
4269 }
4270
4271 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4272 {
4273         atomic_dec(&panic_done_count);
4274 }
4275
4276 /*
4277  * Inside a panic, send a message and wait for a response.
4278  */
4279 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4280                                         struct ipmi_addr     *addr,
4281                                         struct kernel_ipmi_msg *msg)
4282 {
4283         struct ipmi_smi_msg  smi_msg;
4284         struct ipmi_recv_msg recv_msg;
4285         int rv;
4286
4287         smi_msg.done = dummy_smi_done_handler;
4288         recv_msg.done = dummy_recv_done_handler;
4289         atomic_add(2, &panic_done_count);
4290         rv = i_ipmi_request(NULL,
4291                             intf,
4292                             addr,
4293                             0,
4294                             msg,
4295                             intf,
4296                             &smi_msg,
4297                             &recv_msg,
4298                             0,
4299                             intf->channels[0].address,
4300                             intf->channels[0].lun,
4301                             0, 1); /* Don't retry, and don't wait. */
4302         if (rv)
4303                 atomic_sub(2, &panic_done_count);
4304         while (atomic_read(&panic_done_count) != 0)
4305                 ipmi_poll(intf);
4306 }
4307
4308 #ifdef CONFIG_IPMI_PANIC_STRING
4309 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4310 {
4311         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4312             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4313             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4314             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4315                 /* A get event receiver command, save it. */
4316                 intf->event_receiver = msg->msg.data[1];
4317                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4318         }
4319 }
4320
4321 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4322 {
4323         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4324             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4325             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4326             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4327                 /*
4328                  * A get device id command, save if we are an event
4329                  * receiver or generator.
4330                  */
4331                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4332                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4333         }
4334 }
4335 #endif
4336
4337 static void send_panic_events(char *str)
4338 {
4339         struct kernel_ipmi_msg            msg;
4340         ipmi_smi_t                        intf;
4341         unsigned char                     data[16];
4342         struct ipmi_system_interface_addr *si;
4343         struct ipmi_addr                  addr;
4344
4345         si = (struct ipmi_system_interface_addr *) &addr;
4346         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4347         si->channel = IPMI_BMC_CHANNEL;
4348         si->lun = 0;
4349
4350         /* Fill in an event telling that we have failed. */
4351         msg.netfn = 0x04; /* Sensor or Event. */
4352         msg.cmd = 2; /* Platform event command. */
4353         msg.data = data;
4354         msg.data_len = 8;
4355         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4356         data[1] = 0x03; /* This is for IPMI 1.0. */
4357         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4358         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4359         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4360
4361         /*
4362          * Put a few breadcrumbs in.  Hopefully later we can add more things
4363          * to make the panic events more useful.
4364          */
4365         if (str) {
4366                 data[3] = str[0];
4367                 data[6] = str[1];
4368                 data[7] = str[2];
4369         }
4370
4371         /* For every registered interface, send the event. */
4372         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4373                 if (!intf->handlers)
4374                         /* Interface is not ready. */
4375                         continue;
4376
4377                 intf->run_to_completion = 1;
4378                 /* Send the event announcing the panic. */
4379                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4380                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4381         }
4382
4383 #ifdef CONFIG_IPMI_PANIC_STRING
4384         /*
4385          * On every interface, dump a bunch of OEM event holding the
4386          * string.
4387          */
4388         if (!str)
4389                 return;
4390
4391         /* For every registered interface, send the event. */
4392         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4393                 char                  *p = str;
4394                 struct ipmi_ipmb_addr *ipmb;
4395                 int                   j;
4396
4397                 if (intf->intf_num == -1)
4398                         /* Interface was not ready yet. */
4399                         continue;
4400
4401                 /*
4402                  * intf_num is used as an marker to tell if the
4403                  * interface is valid.  Thus we need a read barrier to
4404                  * make sure data fetched before checking intf_num
4405                  * won't be used.
4406                  */
4407                 smp_rmb();
4408
4409                 /*
4410                  * First job here is to figure out where to send the
4411                  * OEM events.  There's no way in IPMI to send OEM
4412                  * events using an event send command, so we have to
4413                  * find the SEL to put them in and stick them in
4414                  * there.
4415                  */
4416
4417                 /* Get capabilities from the get device id. */
4418                 intf->local_sel_device = 0;
4419                 intf->local_event_generator = 0;
4420                 intf->event_receiver = 0;
4421
4422                 /* Request the device info from the local MC. */
4423                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4424                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4425                 msg.data = NULL;
4426                 msg.data_len = 0;
4427                 intf->null_user_handler = device_id_fetcher;
4428                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4429
4430                 if (intf->local_event_generator) {
4431                         /* Request the event receiver from the local MC. */
4432                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4433                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4434                         msg.data = NULL;
4435                         msg.data_len = 0;
4436                         intf->null_user_handler = event_receiver_fetcher;
4437                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4438                 }
4439                 intf->null_user_handler = NULL;
4440
4441                 /*
4442                  * Validate the event receiver.  The low bit must not
4443                  * be 1 (it must be a valid IPMB address), it cannot
4444                  * be zero, and it must not be my address.
4445                  */
4446                 if (((intf->event_receiver & 1) == 0)
4447                     && (intf->event_receiver != 0)
4448                     && (intf->event_receiver != intf->channels[0].address)) {
4449                         /*
4450                          * The event receiver is valid, send an IPMB
4451                          * message.
4452                          */
4453                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4454                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4455                         ipmb->channel = 0; /* FIXME - is this right? */
4456                         ipmb->lun = intf->event_receiver_lun;
4457                         ipmb->slave_addr = intf->event_receiver;
4458                 } else if (intf->local_sel_device) {
4459                         /*
4460                          * The event receiver was not valid (or was
4461                          * me), but I am an SEL device, just dump it
4462                          * in my SEL.
4463                          */
4464                         si = (struct ipmi_system_interface_addr *) &addr;
4465                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4466                         si->channel = IPMI_BMC_CHANNEL;
4467                         si->lun = 0;
4468                 } else
4469                         continue; /* No where to send the event. */
4470
4471                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4472                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4473                 msg.data = data;
4474                 msg.data_len = 16;
4475
4476                 j = 0;
4477                 while (*p) {
4478                         int size = strlen(p);
4479
4480                         if (size > 11)
4481                                 size = 11;
4482                         data[0] = 0;
4483                         data[1] = 0;
4484                         data[2] = 0xf0; /* OEM event without timestamp. */
4485                         data[3] = intf->channels[0].address;
4486                         data[4] = j++; /* sequence # */
4487                         /*
4488                          * Always give 11 bytes, so strncpy will fill
4489                          * it with zeroes for me.
4490                          */
4491                         strncpy(data+5, p, 11);
4492                         p += size;
4493
4494                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4495                 }
4496         }
4497 #endif /* CONFIG_IPMI_PANIC_STRING */
4498 }
4499 #endif /* CONFIG_IPMI_PANIC_EVENT */
4500
4501 static int has_panicked;
4502
4503 static int panic_event(struct notifier_block *this,
4504                        unsigned long         event,
4505                        void                  *ptr)
4506 {
4507         ipmi_smi_t intf;
4508
4509         if (has_panicked)
4510                 return NOTIFY_DONE;
4511         has_panicked = 1;
4512
4513         /* For every registered interface, set it to run to completion. */
4514         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4515                 if (!intf->handlers)
4516                         /* Interface is not ready. */
4517                         continue;
4518
4519                 intf->run_to_completion = 1;
4520                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4521         }
4522
4523 #ifdef CONFIG_IPMI_PANIC_EVENT
4524         send_panic_events(ptr);
4525 #endif
4526
4527         return NOTIFY_DONE;
4528 }
4529
4530 static struct notifier_block panic_block = {
4531         .notifier_call  = panic_event,
4532         .next           = NULL,
4533         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4534 };
4535
4536 static int ipmi_init_msghandler(void)
4537 {
4538         int rv;
4539
4540         if (initialized)
4541                 return 0;
4542
4543         rv = driver_register(&ipmidriver.driver);
4544         if (rv) {
4545                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4546                 return rv;
4547         }
4548
4549         printk(KERN_INFO "ipmi message handler version "
4550                IPMI_DRIVER_VERSION "\n");
4551
4552 #ifdef CONFIG_PROC_FS
4553         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4554         if (!proc_ipmi_root) {
4555             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4556             driver_unregister(&ipmidriver.driver);
4557             return -ENOMEM;
4558         }
4559
4560 #endif /* CONFIG_PROC_FS */
4561
4562         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4563         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4564
4565         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4566
4567         initialized = 1;
4568
4569         return 0;
4570 }
4571
4572 static int __init ipmi_init_msghandler_mod(void)
4573 {
4574         ipmi_init_msghandler();
4575         return 0;
4576 }
4577
4578 static void __exit cleanup_ipmi(void)
4579 {
4580         int count;
4581
4582         if (!initialized)
4583                 return;
4584
4585         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4586
4587         /*
4588          * This can't be called if any interfaces exist, so no worry
4589          * about shutting down the interfaces.
4590          */
4591
4592         /*
4593          * Tell the timer to stop, then wait for it to stop.  This
4594          * avoids problems with race conditions removing the timer
4595          * here.
4596          */
4597         atomic_inc(&stop_operation);
4598         del_timer_sync(&ipmi_timer);
4599
4600 #ifdef CONFIG_PROC_FS
4601         proc_remove(proc_ipmi_root);
4602 #endif /* CONFIG_PROC_FS */
4603
4604         driver_unregister(&ipmidriver.driver);
4605
4606         initialized = 0;
4607
4608         /* Check for buffer leaks. */
4609         count = atomic_read(&smi_msg_inuse_count);
4610         if (count != 0)
4611                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4612                        count);
4613         count = atomic_read(&recv_msg_inuse_count);
4614         if (count != 0)
4615                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4616                        count);
4617 }
4618 module_exit(cleanup_ipmi);
4619
4620 module_init(ipmi_init_msghandler_mod);
4621 MODULE_LICENSE("GPL");
4622 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4623 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4624                    " interface.");
4625 MODULE_VERSION(IPMI_DRIVER_VERSION);