2969c3fdc7c2c8f6c0fb225dac05f0932b9068c9
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119         /*
120          * Number of times the driver requested a timer while an operation
121          * was in progress.
122          */
123         SI_STAT_short_timeouts = 0,
124
125         /*
126          * Number of times the driver requested a timer while nothing was in
127          * progress.
128          */
129         SI_STAT_long_timeouts,
130
131         /* Number of times the interface was idle while being polled. */
132         SI_STAT_idles,
133
134         /* Number of interrupts the driver handled. */
135         SI_STAT_interrupts,
136
137         /* Number of time the driver got an ATTN from the hardware. */
138         SI_STAT_attentions,
139
140         /* Number of times the driver requested flags from the hardware. */
141         SI_STAT_flag_fetches,
142
143         /* Number of times the hardware didn't follow the state machine. */
144         SI_STAT_hosed_count,
145
146         /* Number of completed messages. */
147         SI_STAT_complete_transactions,
148
149         /* Number of IPMI events received from the hardware. */
150         SI_STAT_events,
151
152         /* Number of watchdog pretimeouts. */
153         SI_STAT_watchdog_pretimeouts,
154
155         /* Number of asynchronous messages received. */
156         SI_STAT_incoming_messages,
157
158
159         /* This *must* remain last, add new values above this. */
160         SI_NUM_STATS
161 };
162
163 struct smi_info {
164         int                    intf_num;
165         ipmi_smi_t             intf;
166         struct si_sm_data      *si_sm;
167         struct si_sm_handlers  *handlers;
168         enum si_type           si_type;
169         spinlock_t             si_lock;
170         struct ipmi_smi_msg    *waiting_msg;
171         struct ipmi_smi_msg    *curr_msg;
172         enum si_intf_state     si_state;
173
174         /*
175          * Used to handle the various types of I/O that can occur with
176          * IPMI
177          */
178         struct si_sm_io io;
179         int (*io_setup)(struct smi_info *info);
180         void (*io_cleanup)(struct smi_info *info);
181         int (*irq_setup)(struct smi_info *info);
182         void (*irq_cleanup)(struct smi_info *info);
183         unsigned int io_size;
184         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185         void (*addr_source_cleanup)(struct smi_info *info);
186         void *addr_source_data;
187
188         /*
189          * Per-OEM handler, called from handle_flags().  Returns 1
190          * when handle_flags() needs to be re-run or 0 indicating it
191          * set si_state itself.
192          */
193         int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195         /*
196          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197          * is set to hold the flags until we are done handling everything
198          * from the flags.
199          */
200 #define RECEIVE_MSG_AVAIL       0x01
201 #define EVENT_MSG_BUFFER_FULL   0x02
202 #define WDT_PRE_TIMEOUT_INT     0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207                              OEM1_DATA_AVAIL | \
208                              OEM2_DATA_AVAIL)
209         unsigned char       msg_flags;
210
211         /* Does the BMC have an event buffer? */
212         bool                has_event_buffer;
213
214         /*
215          * If set to true, this will request events the next time the
216          * state machine is idle.
217          */
218         atomic_t            req_events;
219
220         /*
221          * If true, run the state machine to completion on every send
222          * call.  Generally used after a panic to make sure stuff goes
223          * out.
224          */
225         bool                run_to_completion;
226
227         /* The I/O port of an SI interface. */
228         int                 port;
229
230         /*
231          * The space between start addresses of the two ports.  For
232          * instance, if the first port is 0xca2 and the spacing is 4, then
233          * the second port is 0xca6.
234          */
235         unsigned int        spacing;
236
237         /* zero if no irq; */
238         int                 irq;
239
240         /* The timer for this si. */
241         struct timer_list   si_timer;
242
243         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244         bool                timer_running;
245
246         /* The time (in jiffies) the last timeout occurred at. */
247         unsigned long       last_timeout_jiffies;
248
249         /* Are we waiting for the events, pretimeouts, received msgs? */
250         atomic_t            need_watch;
251
252         /*
253          * The driver will disable interrupts when it gets into a
254          * situation where it cannot handle messages due to lack of
255          * memory.  Once that situation clears up, it will re-enable
256          * interrupts.
257          */
258         bool interrupt_disabled;
259
260         /*
261          * Does the BMC support events?
262          */
263         bool supports_event_msg_buff;
264
265         /*
266          * Did we get an attention that we did not handle?
267          */
268         bool got_attn;
269
270         /* From the get device id response... */
271         struct ipmi_device_id device_id;
272
273         /* Driver model stuff. */
274         struct device *dev;
275         struct platform_device *pdev;
276
277         /*
278          * True if we allocated the device, false if it came from
279          * someplace else (like PCI).
280          */
281         bool dev_registered;
282
283         /* Slave address, could be reported from DMI. */
284         unsigned char slave_addr;
285
286         /* Counters and things for the proc filesystem. */
287         atomic_t stats[SI_NUM_STATS];
288
289         struct task_struct *thread;
290
291         struct list_head link;
292         union ipmi_smi_info_union addr_info;
293 };
294
295 #define smi_inc_stat(smi, stat) \
296         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
299
300 #define SI_MAX_PARMS 4
301
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
313
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
316
317 static bool unload_when_empty = true;
318
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
323
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
326 {
327         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
328 }
329
330 static void deliver_recv_msg(struct smi_info *smi_info,
331                              struct ipmi_smi_msg *msg)
332 {
333         /* Deliver the message to the upper layer. */
334         if (smi_info->intf)
335                 ipmi_smi_msg_received(smi_info->intf, msg);
336         else
337                 ipmi_free_smi_msg(msg);
338 }
339
340 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
341 {
342         struct ipmi_smi_msg *msg = smi_info->curr_msg;
343
344         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
345                 cCode = IPMI_ERR_UNSPECIFIED;
346         /* else use it as is */
347
348         /* Make it a response */
349         msg->rsp[0] = msg->data[0] | 4;
350         msg->rsp[1] = msg->data[1];
351         msg->rsp[2] = cCode;
352         msg->rsp_size = 3;
353
354         smi_info->curr_msg = NULL;
355         deliver_recv_msg(smi_info, msg);
356 }
357
358 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
359 {
360         int              rv;
361 #ifdef DEBUG_TIMING
362         struct timeval t;
363 #endif
364
365         if (!smi_info->waiting_msg) {
366                 smi_info->curr_msg = NULL;
367                 rv = SI_SM_IDLE;
368         } else {
369                 int err;
370
371                 smi_info->curr_msg = smi_info->waiting_msg;
372                 smi_info->waiting_msg = NULL;
373 #ifdef DEBUG_TIMING
374                 do_gettimeofday(&t);
375                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
376 #endif
377                 err = atomic_notifier_call_chain(&xaction_notifier_list,
378                                 0, smi_info);
379                 if (err & NOTIFY_STOP_MASK) {
380                         rv = SI_SM_CALL_WITHOUT_DELAY;
381                         goto out;
382                 }
383                 err = smi_info->handlers->start_transaction(
384                         smi_info->si_sm,
385                         smi_info->curr_msg->data,
386                         smi_info->curr_msg->data_size);
387                 if (err)
388                         return_hosed_msg(smi_info, err);
389
390                 rv = SI_SM_CALL_WITHOUT_DELAY;
391         }
392  out:
393         return rv;
394 }
395
396 static void start_check_enables(struct smi_info *smi_info)
397 {
398         unsigned char msg[2];
399
400         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
401         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
402
403         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
404         smi_info->si_state = SI_CHECKING_ENABLES;
405 }
406
407 static void start_clear_flags(struct smi_info *smi_info)
408 {
409         unsigned char msg[3];
410
411         /* Make sure the watchdog pre-timeout flag is not set at startup. */
412         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
413         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
414         msg[2] = WDT_PRE_TIMEOUT_INT;
415
416         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
417         smi_info->si_state = SI_CLEARING_FLAGS;
418 }
419
420 static void start_getting_msg_queue(struct smi_info *smi_info)
421 {
422         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
423         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
424         smi_info->curr_msg->data_size = 2;
425
426         smi_info->handlers->start_transaction(
427                 smi_info->si_sm,
428                 smi_info->curr_msg->data,
429                 smi_info->curr_msg->data_size);
430         smi_info->si_state = SI_GETTING_MESSAGES;
431 }
432
433 static void start_getting_events(struct smi_info *smi_info)
434 {
435         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
436         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
437         smi_info->curr_msg->data_size = 2;
438
439         smi_info->handlers->start_transaction(
440                 smi_info->si_sm,
441                 smi_info->curr_msg->data,
442                 smi_info->curr_msg->data_size);
443         smi_info->si_state = SI_GETTING_EVENTS;
444 }
445
446 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
447 {
448         smi_info->last_timeout_jiffies = jiffies;
449         mod_timer(&smi_info->si_timer, new_val);
450         smi_info->timer_running = true;
451 }
452
453 /*
454  * When we have a situtaion where we run out of memory and cannot
455  * allocate messages, we just leave them in the BMC and run the system
456  * polled until we can allocate some memory.  Once we have some
457  * memory, we will re-enable the interrupt.
458  */
459 static inline bool disable_si_irq(struct smi_info *smi_info)
460 {
461         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
462                 smi_info->interrupt_disabled = true;
463                 start_check_enables(smi_info);
464                 return true;
465         }
466         return false;
467 }
468
469 static inline bool enable_si_irq(struct smi_info *smi_info)
470 {
471         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
472                 smi_info->interrupt_disabled = false;
473                 start_check_enables(smi_info);
474                 return true;
475         }
476         return false;
477 }
478
479 /*
480  * Allocate a message.  If unable to allocate, start the interrupt
481  * disable process and return NULL.  If able to allocate but
482  * interrupts are disabled, free the message and return NULL after
483  * starting the interrupt enable process.
484  */
485 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
486 {
487         struct ipmi_smi_msg *msg;
488
489         msg = ipmi_alloc_smi_msg();
490         if (!msg) {
491                 if (!disable_si_irq(smi_info))
492                         smi_info->si_state = SI_NORMAL;
493         } else if (enable_si_irq(smi_info)) {
494                 ipmi_free_smi_msg(msg);
495                 msg = NULL;
496         }
497         return msg;
498 }
499
500 static void handle_flags(struct smi_info *smi_info)
501 {
502  retry:
503         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
504                 /* Watchdog pre-timeout */
505                 smi_inc_stat(smi_info, watchdog_pretimeouts);
506
507                 start_clear_flags(smi_info);
508                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
509                 if (smi_info->intf)
510                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
511         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
512                 /* Messages available. */
513                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
514                 if (!smi_info->curr_msg)
515                         return;
516
517                 start_getting_msg_queue(smi_info);
518         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
519                 /* Events available. */
520                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
521                 if (!smi_info->curr_msg)
522                         return;
523
524                 start_getting_events(smi_info);
525         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
526                    smi_info->oem_data_avail_handler) {
527                 if (smi_info->oem_data_avail_handler(smi_info))
528                         goto retry;
529         } else
530                 smi_info->si_state = SI_NORMAL;
531 }
532
533 /*
534  * Global enables we care about.
535  */
536 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
537                              IPMI_BMC_EVT_MSG_INTR)
538
539 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
540                                  bool *irq_on)
541 {
542         u8 enables = 0;
543
544         if (smi_info->supports_event_msg_buff)
545                 enables |= IPMI_BMC_EVT_MSG_BUFF;
546         else
547                 enables &= ~IPMI_BMC_EVT_MSG_BUFF;
548
549         if (smi_info->irq && !smi_info->interrupt_disabled)
550                 enables |= IPMI_BMC_RCV_MSG_INTR;
551         else
552                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
553
554         if (smi_info->supports_event_msg_buff &&
555             smi_info->irq && !smi_info->interrupt_disabled)
556
557                 enables |= IPMI_BMC_EVT_MSG_INTR;
558         else
559                 enables &= ~IPMI_BMC_EVT_MSG_INTR;
560
561         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
562
563         return enables;
564 }
565
566 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
567 {
568         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
569
570         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
571
572         if ((bool)irqstate == irq_on)
573                 return;
574
575         if (irq_on)
576                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
577                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
578         else
579                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
580 }
581
582 static void handle_transaction_done(struct smi_info *smi_info)
583 {
584         struct ipmi_smi_msg *msg;
585 #ifdef DEBUG_TIMING
586         struct timeval t;
587
588         do_gettimeofday(&t);
589         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
590 #endif
591         switch (smi_info->si_state) {
592         case SI_NORMAL:
593                 if (!smi_info->curr_msg)
594                         break;
595
596                 smi_info->curr_msg->rsp_size
597                         = smi_info->handlers->get_result(
598                                 smi_info->si_sm,
599                                 smi_info->curr_msg->rsp,
600                                 IPMI_MAX_MSG_LENGTH);
601
602                 /*
603                  * Do this here becase deliver_recv_msg() releases the
604                  * lock, and a new message can be put in during the
605                  * time the lock is released.
606                  */
607                 msg = smi_info->curr_msg;
608                 smi_info->curr_msg = NULL;
609                 deliver_recv_msg(smi_info, msg);
610                 break;
611
612         case SI_GETTING_FLAGS:
613         {
614                 unsigned char msg[4];
615                 unsigned int  len;
616
617                 /* We got the flags from the SMI, now handle them. */
618                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
619                 if (msg[2] != 0) {
620                         /* Error fetching flags, just give up for now. */
621                         smi_info->si_state = SI_NORMAL;
622                 } else if (len < 4) {
623                         /*
624                          * Hmm, no flags.  That's technically illegal, but
625                          * don't use uninitialized data.
626                          */
627                         smi_info->si_state = SI_NORMAL;
628                 } else {
629                         smi_info->msg_flags = msg[3];
630                         handle_flags(smi_info);
631                 }
632                 break;
633         }
634
635         case SI_CLEARING_FLAGS:
636         {
637                 unsigned char msg[3];
638
639                 /* We cleared the flags. */
640                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
641                 if (msg[2] != 0) {
642                         /* Error clearing flags */
643                         dev_warn(smi_info->dev,
644                                  "Error clearing flags: %2.2x\n", msg[2]);
645                 }
646                 smi_info->si_state = SI_NORMAL;
647                 break;
648         }
649
650         case SI_GETTING_EVENTS:
651         {
652                 smi_info->curr_msg->rsp_size
653                         = smi_info->handlers->get_result(
654                                 smi_info->si_sm,
655                                 smi_info->curr_msg->rsp,
656                                 IPMI_MAX_MSG_LENGTH);
657
658                 /*
659                  * Do this here becase deliver_recv_msg() releases the
660                  * lock, and a new message can be put in during the
661                  * time the lock is released.
662                  */
663                 msg = smi_info->curr_msg;
664                 smi_info->curr_msg = NULL;
665                 if (msg->rsp[2] != 0) {
666                         /* Error getting event, probably done. */
667                         msg->done(msg);
668
669                         /* Take off the event flag. */
670                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
671                         handle_flags(smi_info);
672                 } else {
673                         smi_inc_stat(smi_info, events);
674
675                         /*
676                          * Do this before we deliver the message
677                          * because delivering the message releases the
678                          * lock and something else can mess with the
679                          * state.
680                          */
681                         handle_flags(smi_info);
682
683                         deliver_recv_msg(smi_info, msg);
684                 }
685                 break;
686         }
687
688         case SI_GETTING_MESSAGES:
689         {
690                 smi_info->curr_msg->rsp_size
691                         = smi_info->handlers->get_result(
692                                 smi_info->si_sm,
693                                 smi_info->curr_msg->rsp,
694                                 IPMI_MAX_MSG_LENGTH);
695
696                 /*
697                  * Do this here becase deliver_recv_msg() releases the
698                  * lock, and a new message can be put in during the
699                  * time the lock is released.
700                  */
701                 msg = smi_info->curr_msg;
702                 smi_info->curr_msg = NULL;
703                 if (msg->rsp[2] != 0) {
704                         /* Error getting event, probably done. */
705                         msg->done(msg);
706
707                         /* Take off the msg flag. */
708                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
709                         handle_flags(smi_info);
710                 } else {
711                         smi_inc_stat(smi_info, incoming_messages);
712
713                         /*
714                          * Do this before we deliver the message
715                          * because delivering the message releases the
716                          * lock and something else can mess with the
717                          * state.
718                          */
719                         handle_flags(smi_info);
720
721                         deliver_recv_msg(smi_info, msg);
722                 }
723                 break;
724         }
725
726         case SI_CHECKING_ENABLES:
727         {
728                 unsigned char msg[4];
729                 u8 enables;
730                 bool irq_on;
731
732                 /* We got the flags from the SMI, now handle them. */
733                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
734                 if (msg[2] != 0) {
735                         dev_warn(smi_info->dev,
736                                  "Couldn't get irq info: %x.\n", msg[2]);
737                         dev_warn(smi_info->dev,
738                                  "Maybe ok, but ipmi might run very slowly.\n");
739                         smi_info->si_state = SI_NORMAL;
740                         break;
741                 }
742                 enables = current_global_enables(smi_info, 0, &irq_on);
743                 if (smi_info->si_type == SI_BT)
744                         /* BT has its own interrupt enable bit. */
745                         check_bt_irq(smi_info, irq_on);
746                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
747                         /* Enables are not correct, fix them. */
748                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
749                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
750                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
751                         smi_info->handlers->start_transaction(
752                                 smi_info->si_sm, msg, 3);
753                         smi_info->si_state = SI_SETTING_ENABLES;
754                 } else if (smi_info->supports_event_msg_buff) {
755                         smi_info->curr_msg = ipmi_alloc_smi_msg();
756                         if (!smi_info->curr_msg) {
757                                 smi_info->si_state = SI_NORMAL;
758                                 break;
759                         }
760                         start_getting_msg_queue(smi_info);
761                 } else {
762                         smi_info->si_state = SI_NORMAL;
763                 }
764                 break;
765         }
766
767         case SI_SETTING_ENABLES:
768         {
769                 unsigned char msg[4];
770
771                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
772                 if (msg[2] != 0)
773                         dev_warn(smi_info->dev,
774                                  "Could not set the global enables: 0x%x.\n",
775                                  msg[2]);
776
777                 if (smi_info->supports_event_msg_buff) {
778                         smi_info->curr_msg = ipmi_alloc_smi_msg();
779                         if (!smi_info->curr_msg) {
780                                 smi_info->si_state = SI_NORMAL;
781                                 break;
782                         }
783                         start_getting_msg_queue(smi_info);
784                 } else {
785                         smi_info->si_state = SI_NORMAL;
786                 }
787                 break;
788         }
789         }
790 }
791
792 /*
793  * Called on timeouts and events.  Timeouts should pass the elapsed
794  * time, interrupts should pass in zero.  Must be called with
795  * si_lock held and interrupts disabled.
796  */
797 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
798                                            int time)
799 {
800         enum si_sm_result si_sm_result;
801
802  restart:
803         /*
804          * There used to be a loop here that waited a little while
805          * (around 25us) before giving up.  That turned out to be
806          * pointless, the minimum delays I was seeing were in the 300us
807          * range, which is far too long to wait in an interrupt.  So
808          * we just run until the state machine tells us something
809          * happened or it needs a delay.
810          */
811         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
812         time = 0;
813         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
814                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
815
816         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
817                 smi_inc_stat(smi_info, complete_transactions);
818
819                 handle_transaction_done(smi_info);
820                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
821         } else if (si_sm_result == SI_SM_HOSED) {
822                 smi_inc_stat(smi_info, hosed_count);
823
824                 /*
825                  * Do the before return_hosed_msg, because that
826                  * releases the lock.
827                  */
828                 smi_info->si_state = SI_NORMAL;
829                 if (smi_info->curr_msg != NULL) {
830                         /*
831                          * If we were handling a user message, format
832                          * a response to send to the upper layer to
833                          * tell it about the error.
834                          */
835                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
836                 }
837                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
838         }
839
840         /*
841          * We prefer handling attn over new messages.  But don't do
842          * this if there is not yet an upper layer to handle anything.
843          */
844         if (likely(smi_info->intf) &&
845             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
846                 unsigned char msg[2];
847
848                 if (smi_info->si_state != SI_NORMAL) {
849                         /*
850                          * We got an ATTN, but we are doing something else.
851                          * Handle the ATTN later.
852                          */
853                         smi_info->got_attn = true;
854                 } else {
855                         smi_info->got_attn = false;
856                         smi_inc_stat(smi_info, attentions);
857
858                         /*
859                          * Got a attn, send down a get message flags to see
860                          * what's causing it.  It would be better to handle
861                          * this in the upper layer, but due to the way
862                          * interrupts work with the SMI, that's not really
863                          * possible.
864                          */
865                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
866                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
867
868                         smi_info->handlers->start_transaction(
869                                 smi_info->si_sm, msg, 2);
870                         smi_info->si_state = SI_GETTING_FLAGS;
871                         goto restart;
872                 }
873         }
874
875         /* If we are currently idle, try to start the next message. */
876         if (si_sm_result == SI_SM_IDLE) {
877                 smi_inc_stat(smi_info, idles);
878
879                 si_sm_result = start_next_msg(smi_info);
880                 if (si_sm_result != SI_SM_IDLE)
881                         goto restart;
882         }
883
884         if ((si_sm_result == SI_SM_IDLE)
885             && (atomic_read(&smi_info->req_events))) {
886                 /*
887                  * We are idle and the upper layer requested that I fetch
888                  * events, so do so.
889                  */
890                 atomic_set(&smi_info->req_events, 0);
891
892                 /*
893                  * Take this opportunity to check the interrupt and
894                  * message enable state for the BMC.  The BMC can be
895                  * asynchronously reset, and may thus get interrupts
896                  * disable and messages disabled.
897                  */
898                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
899                         start_check_enables(smi_info);
900                 } else {
901                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
902                         if (!smi_info->curr_msg)
903                                 goto out;
904
905                         start_getting_events(smi_info);
906                 }
907                 goto restart;
908         }
909  out:
910         return si_sm_result;
911 }
912
913 static void check_start_timer_thread(struct smi_info *smi_info)
914 {
915         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
916                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
917
918                 if (smi_info->thread)
919                         wake_up_process(smi_info->thread);
920
921                 start_next_msg(smi_info);
922                 smi_event_handler(smi_info, 0);
923         }
924 }
925
926 static void sender(void                *send_info,
927                    struct ipmi_smi_msg *msg)
928 {
929         struct smi_info   *smi_info = send_info;
930         enum si_sm_result result;
931         unsigned long     flags;
932 #ifdef DEBUG_TIMING
933         struct timeval    t;
934 #endif
935
936         BUG_ON(smi_info->waiting_msg);
937         smi_info->waiting_msg = msg;
938
939 #ifdef DEBUG_TIMING
940         do_gettimeofday(&t);
941         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
942 #endif
943
944         if (smi_info->run_to_completion) {
945                 /*
946                  * If we are running to completion, start it and run
947                  * transactions until everything is clear.
948                  */
949                 smi_info->curr_msg = smi_info->waiting_msg;
950                 smi_info->waiting_msg = NULL;
951
952                 /*
953                  * Run to completion means we are single-threaded, no
954                  * need for locks.
955                  */
956
957                 result = smi_event_handler(smi_info, 0);
958                 while (result != SI_SM_IDLE) {
959                         udelay(SI_SHORT_TIMEOUT_USEC);
960                         result = smi_event_handler(smi_info,
961                                                    SI_SHORT_TIMEOUT_USEC);
962                 }
963                 return;
964         }
965
966         spin_lock_irqsave(&smi_info->si_lock, flags);
967         check_start_timer_thread(smi_info);
968         spin_unlock_irqrestore(&smi_info->si_lock, flags);
969 }
970
971 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
972 {
973         struct smi_info   *smi_info = send_info;
974         enum si_sm_result result;
975
976         smi_info->run_to_completion = i_run_to_completion;
977         if (i_run_to_completion) {
978                 result = smi_event_handler(smi_info, 0);
979                 while (result != SI_SM_IDLE) {
980                         udelay(SI_SHORT_TIMEOUT_USEC);
981                         result = smi_event_handler(smi_info,
982                                                    SI_SHORT_TIMEOUT_USEC);
983                 }
984         }
985 }
986
987 /*
988  * Use -1 in the nsec value of the busy waiting timespec to tell that
989  * we are spinning in kipmid looking for something and not delaying
990  * between checks
991  */
992 static inline void ipmi_si_set_not_busy(struct timespec *ts)
993 {
994         ts->tv_nsec = -1;
995 }
996 static inline int ipmi_si_is_busy(struct timespec *ts)
997 {
998         return ts->tv_nsec != -1;
999 }
1000
1001 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1002                                         const struct smi_info *smi_info,
1003                                         struct timespec *busy_until)
1004 {
1005         unsigned int max_busy_us = 0;
1006
1007         if (smi_info->intf_num < num_max_busy_us)
1008                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1009         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1010                 ipmi_si_set_not_busy(busy_until);
1011         else if (!ipmi_si_is_busy(busy_until)) {
1012                 getnstimeofday(busy_until);
1013                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1014         } else {
1015                 struct timespec now;
1016                 getnstimeofday(&now);
1017                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
1018                         ipmi_si_set_not_busy(busy_until);
1019                         return 0;
1020                 }
1021         }
1022         return 1;
1023 }
1024
1025
1026 /*
1027  * A busy-waiting loop for speeding up IPMI operation.
1028  *
1029  * Lousy hardware makes this hard.  This is only enabled for systems
1030  * that are not BT and do not have interrupts.  It starts spinning
1031  * when an operation is complete or until max_busy tells it to stop
1032  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1033  * Documentation/IPMI.txt for details.
1034  */
1035 static int ipmi_thread(void *data)
1036 {
1037         struct smi_info *smi_info = data;
1038         unsigned long flags;
1039         enum si_sm_result smi_result;
1040         struct timespec busy_until;
1041
1042         ipmi_si_set_not_busy(&busy_until);
1043         set_user_nice(current, MAX_NICE);
1044         while (!kthread_should_stop()) {
1045                 int busy_wait;
1046
1047                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1048                 smi_result = smi_event_handler(smi_info, 0);
1049
1050                 /*
1051                  * If the driver is doing something, there is a possible
1052                  * race with the timer.  If the timer handler see idle,
1053                  * and the thread here sees something else, the timer
1054                  * handler won't restart the timer even though it is
1055                  * required.  So start it here if necessary.
1056                  */
1057                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1058                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1059
1060                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1061                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1062                                                   &busy_until);
1063                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1064                         ; /* do nothing */
1065                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1066                         schedule();
1067                 else if (smi_result == SI_SM_IDLE) {
1068                         if (atomic_read(&smi_info->need_watch)) {
1069                                 schedule_timeout_interruptible(100);
1070                         } else {
1071                                 /* Wait to be woken up when we are needed. */
1072                                 __set_current_state(TASK_INTERRUPTIBLE);
1073                                 schedule();
1074                         }
1075                 } else
1076                         schedule_timeout_interruptible(1);
1077         }
1078         return 0;
1079 }
1080
1081
1082 static void poll(void *send_info)
1083 {
1084         struct smi_info *smi_info = send_info;
1085         unsigned long flags = 0;
1086         bool run_to_completion = smi_info->run_to_completion;
1087
1088         /*
1089          * Make sure there is some delay in the poll loop so we can
1090          * drive time forward and timeout things.
1091          */
1092         udelay(10);
1093         if (!run_to_completion)
1094                 spin_lock_irqsave(&smi_info->si_lock, flags);
1095         smi_event_handler(smi_info, 10);
1096         if (!run_to_completion)
1097                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1098 }
1099
1100 static void request_events(void *send_info)
1101 {
1102         struct smi_info *smi_info = send_info;
1103
1104         if (!smi_info->has_event_buffer)
1105                 return;
1106
1107         atomic_set(&smi_info->req_events, 1);
1108 }
1109
1110 static void set_need_watch(void *send_info, bool enable)
1111 {
1112         struct smi_info *smi_info = send_info;
1113         unsigned long flags;
1114
1115         atomic_set(&smi_info->need_watch, enable);
1116         spin_lock_irqsave(&smi_info->si_lock, flags);
1117         check_start_timer_thread(smi_info);
1118         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1119 }
1120
1121 static int initialized;
1122
1123 static void smi_timeout(unsigned long data)
1124 {
1125         struct smi_info   *smi_info = (struct smi_info *) data;
1126         enum si_sm_result smi_result;
1127         unsigned long     flags;
1128         unsigned long     jiffies_now;
1129         long              time_diff;
1130         long              timeout;
1131 #ifdef DEBUG_TIMING
1132         struct timeval    t;
1133 #endif
1134
1135         spin_lock_irqsave(&(smi_info->si_lock), flags);
1136 #ifdef DEBUG_TIMING
1137         do_gettimeofday(&t);
1138         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1139 #endif
1140         jiffies_now = jiffies;
1141         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1142                      * SI_USEC_PER_JIFFY);
1143         smi_result = smi_event_handler(smi_info, time_diff);
1144
1145         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1146                 /* Running with interrupts, only do long timeouts. */
1147                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1148                 smi_inc_stat(smi_info, long_timeouts);
1149                 goto do_mod_timer;
1150         }
1151
1152         /*
1153          * If the state machine asks for a short delay, then shorten
1154          * the timer timeout.
1155          */
1156         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1157                 smi_inc_stat(smi_info, short_timeouts);
1158                 timeout = jiffies + 1;
1159         } else {
1160                 smi_inc_stat(smi_info, long_timeouts);
1161                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1162         }
1163
1164  do_mod_timer:
1165         if (smi_result != SI_SM_IDLE)
1166                 smi_mod_timer(smi_info, timeout);
1167         else
1168                 smi_info->timer_running = false;
1169         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1170 }
1171
1172 static irqreturn_t si_irq_handler(int irq, void *data)
1173 {
1174         struct smi_info *smi_info = data;
1175         unsigned long   flags;
1176 #ifdef DEBUG_TIMING
1177         struct timeval  t;
1178 #endif
1179
1180         spin_lock_irqsave(&(smi_info->si_lock), flags);
1181
1182         smi_inc_stat(smi_info, interrupts);
1183
1184 #ifdef DEBUG_TIMING
1185         do_gettimeofday(&t);
1186         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1187 #endif
1188         smi_event_handler(smi_info, 0);
1189         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1190         return IRQ_HANDLED;
1191 }
1192
1193 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1194 {
1195         struct smi_info *smi_info = data;
1196         /* We need to clear the IRQ flag for the BT interface. */
1197         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1198                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1199                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1200         return si_irq_handler(irq, data);
1201 }
1202
1203 static int smi_start_processing(void       *send_info,
1204                                 ipmi_smi_t intf)
1205 {
1206         struct smi_info *new_smi = send_info;
1207         int             enable = 0;
1208
1209         new_smi->intf = intf;
1210
1211         /* Try to claim any interrupts. */
1212         if (new_smi->irq_setup)
1213                 new_smi->irq_setup(new_smi);
1214
1215         /* Set up the timer that drives the interface. */
1216         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1217         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1218
1219         /*
1220          * Check if the user forcefully enabled the daemon.
1221          */
1222         if (new_smi->intf_num < num_force_kipmid)
1223                 enable = force_kipmid[new_smi->intf_num];
1224         /*
1225          * The BT interface is efficient enough to not need a thread,
1226          * and there is no need for a thread if we have interrupts.
1227          */
1228         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1229                 enable = 1;
1230
1231         if (enable) {
1232                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1233                                               "kipmi%d", new_smi->intf_num);
1234                 if (IS_ERR(new_smi->thread)) {
1235                         dev_notice(new_smi->dev, "Could not start"
1236                                    " kernel thread due to error %ld, only using"
1237                                    " timers to drive the interface\n",
1238                                    PTR_ERR(new_smi->thread));
1239                         new_smi->thread = NULL;
1240                 }
1241         }
1242
1243         return 0;
1244 }
1245
1246 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1247 {
1248         struct smi_info *smi = send_info;
1249
1250         data->addr_src = smi->addr_source;
1251         data->dev = smi->dev;
1252         data->addr_info = smi->addr_info;
1253         get_device(smi->dev);
1254
1255         return 0;
1256 }
1257
1258 static void set_maintenance_mode(void *send_info, bool enable)
1259 {
1260         struct smi_info   *smi_info = send_info;
1261
1262         if (!enable)
1263                 atomic_set(&smi_info->req_events, 0);
1264 }
1265
1266 static struct ipmi_smi_handlers handlers = {
1267         .owner                  = THIS_MODULE,
1268         .start_processing       = smi_start_processing,
1269         .get_smi_info           = get_smi_info,
1270         .sender                 = sender,
1271         .request_events         = request_events,
1272         .set_need_watch         = set_need_watch,
1273         .set_maintenance_mode   = set_maintenance_mode,
1274         .set_run_to_completion  = set_run_to_completion,
1275         .poll                   = poll,
1276 };
1277
1278 /*
1279  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1280  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1281  */
1282
1283 static LIST_HEAD(smi_infos);
1284 static DEFINE_MUTEX(smi_infos_lock);
1285 static int smi_num; /* Used to sequence the SMIs */
1286
1287 #define DEFAULT_REGSPACING      1
1288 #define DEFAULT_REGSIZE         1
1289
1290 #ifdef CONFIG_ACPI
1291 static bool          si_tryacpi = 1;
1292 #endif
1293 #ifdef CONFIG_DMI
1294 static bool          si_trydmi = 1;
1295 #endif
1296 static bool          si_tryplatform = 1;
1297 #ifdef CONFIG_PCI
1298 static bool          si_trypci = 1;
1299 #endif
1300 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1301 static char          *si_type[SI_MAX_PARMS];
1302 #define MAX_SI_TYPE_STR 30
1303 static char          si_type_str[MAX_SI_TYPE_STR];
1304 static unsigned long addrs[SI_MAX_PARMS];
1305 static unsigned int num_addrs;
1306 static unsigned int  ports[SI_MAX_PARMS];
1307 static unsigned int num_ports;
1308 static int           irqs[SI_MAX_PARMS];
1309 static unsigned int num_irqs;
1310 static int           regspacings[SI_MAX_PARMS];
1311 static unsigned int num_regspacings;
1312 static int           regsizes[SI_MAX_PARMS];
1313 static unsigned int num_regsizes;
1314 static int           regshifts[SI_MAX_PARMS];
1315 static unsigned int num_regshifts;
1316 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1317 static unsigned int num_slave_addrs;
1318
1319 #define IPMI_IO_ADDR_SPACE  0
1320 #define IPMI_MEM_ADDR_SPACE 1
1321 static char *addr_space_to_str[] = { "i/o", "mem" };
1322
1323 static int hotmod_handler(const char *val, struct kernel_param *kp);
1324
1325 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1326 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1327                  " Documentation/IPMI.txt in the kernel sources for the"
1328                  " gory details.");
1329
1330 #ifdef CONFIG_ACPI
1331 module_param_named(tryacpi, si_tryacpi, bool, 0);
1332 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1333                  " default scan of the interfaces identified via ACPI");
1334 #endif
1335 #ifdef CONFIG_DMI
1336 module_param_named(trydmi, si_trydmi, bool, 0);
1337 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1338                  " default scan of the interfaces identified via DMI");
1339 #endif
1340 module_param_named(tryplatform, si_tryplatform, bool, 0);
1341 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1342                  " default scan of the interfaces identified via platform"
1343                  " interfaces like openfirmware");
1344 #ifdef CONFIG_PCI
1345 module_param_named(trypci, si_trypci, bool, 0);
1346 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1347                  " default scan of the interfaces identified via pci");
1348 #endif
1349 module_param_named(trydefaults, si_trydefaults, bool, 0);
1350 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1351                  " default scan of the KCS and SMIC interface at the standard"
1352                  " address");
1353 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1354 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1355                  " interface separated by commas.  The types are 'kcs',"
1356                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1357                  " the first interface to kcs and the second to bt");
1358 module_param_array(addrs, ulong, &num_addrs, 0);
1359 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1360                  " addresses separated by commas.  Only use if an interface"
1361                  " is in memory.  Otherwise, set it to zero or leave"
1362                  " it blank.");
1363 module_param_array(ports, uint, &num_ports, 0);
1364 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1365                  " addresses separated by commas.  Only use if an interface"
1366                  " is a port.  Otherwise, set it to zero or leave"
1367                  " it blank.");
1368 module_param_array(irqs, int, &num_irqs, 0);
1369 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1370                  " addresses separated by commas.  Only use if an interface"
1371                  " has an interrupt.  Otherwise, set it to zero or leave"
1372                  " it blank.");
1373 module_param_array(regspacings, int, &num_regspacings, 0);
1374 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1375                  " and each successive register used by the interface.  For"
1376                  " instance, if the start address is 0xca2 and the spacing"
1377                  " is 2, then the second address is at 0xca4.  Defaults"
1378                  " to 1.");
1379 module_param_array(regsizes, int, &num_regsizes, 0);
1380 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1381                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1382                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1383                  " the 8-bit IPMI register has to be read from a larger"
1384                  " register.");
1385 module_param_array(regshifts, int, &num_regshifts, 0);
1386 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1387                  " IPMI register, in bits.  For instance, if the data"
1388                  " is read from a 32-bit word and the IPMI data is in"
1389                  " bit 8-15, then the shift would be 8");
1390 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1391 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1392                  " the controller.  Normally this is 0x20, but can be"
1393                  " overridden by this parm.  This is an array indexed"
1394                  " by interface number.");
1395 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1396 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1397                  " disabled(0).  Normally the IPMI driver auto-detects"
1398                  " this, but the value may be overridden by this parm.");
1399 module_param(unload_when_empty, bool, 0);
1400 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1401                  " specified or found, default is 1.  Setting to 0"
1402                  " is useful for hot add of devices using hotmod.");
1403 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1404 MODULE_PARM_DESC(kipmid_max_busy_us,
1405                  "Max time (in microseconds) to busy-wait for IPMI data before"
1406                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1407                  " if kipmid is using up a lot of CPU time.");
1408
1409
1410 static void std_irq_cleanup(struct smi_info *info)
1411 {
1412         if (info->si_type == SI_BT)
1413                 /* Disable the interrupt in the BT interface. */
1414                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1415         free_irq(info->irq, info);
1416 }
1417
1418 static int std_irq_setup(struct smi_info *info)
1419 {
1420         int rv;
1421
1422         if (!info->irq)
1423                 return 0;
1424
1425         if (info->si_type == SI_BT) {
1426                 rv = request_irq(info->irq,
1427                                  si_bt_irq_handler,
1428                                  IRQF_SHARED,
1429                                  DEVICE_NAME,
1430                                  info);
1431                 if (!rv)
1432                         /* Enable the interrupt in the BT interface. */
1433                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1434                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1435         } else
1436                 rv = request_irq(info->irq,
1437                                  si_irq_handler,
1438                                  IRQF_SHARED,
1439                                  DEVICE_NAME,
1440                                  info);
1441         if (rv) {
1442                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1443                          " running polled\n",
1444                          DEVICE_NAME, info->irq);
1445                 info->irq = 0;
1446         } else {
1447                 info->irq_cleanup = std_irq_cleanup;
1448                 dev_info(info->dev, "Using irq %d\n", info->irq);
1449         }
1450
1451         return rv;
1452 }
1453
1454 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1455 {
1456         unsigned int addr = io->addr_data;
1457
1458         return inb(addr + (offset * io->regspacing));
1459 }
1460
1461 static void port_outb(struct si_sm_io *io, unsigned int offset,
1462                       unsigned char b)
1463 {
1464         unsigned int addr = io->addr_data;
1465
1466         outb(b, addr + (offset * io->regspacing));
1467 }
1468
1469 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1470 {
1471         unsigned int addr = io->addr_data;
1472
1473         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1474 }
1475
1476 static void port_outw(struct si_sm_io *io, unsigned int offset,
1477                       unsigned char b)
1478 {
1479         unsigned int addr = io->addr_data;
1480
1481         outw(b << io->regshift, addr + (offset * io->regspacing));
1482 }
1483
1484 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1485 {
1486         unsigned int addr = io->addr_data;
1487
1488         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1489 }
1490
1491 static void port_outl(struct si_sm_io *io, unsigned int offset,
1492                       unsigned char b)
1493 {
1494         unsigned int addr = io->addr_data;
1495
1496         outl(b << io->regshift, addr+(offset * io->regspacing));
1497 }
1498
1499 static void port_cleanup(struct smi_info *info)
1500 {
1501         unsigned int addr = info->io.addr_data;
1502         int          idx;
1503
1504         if (addr) {
1505                 for (idx = 0; idx < info->io_size; idx++)
1506                         release_region(addr + idx * info->io.regspacing,
1507                                        info->io.regsize);
1508         }
1509 }
1510
1511 static int port_setup(struct smi_info *info)
1512 {
1513         unsigned int addr = info->io.addr_data;
1514         int          idx;
1515
1516         if (!addr)
1517                 return -ENODEV;
1518
1519         info->io_cleanup = port_cleanup;
1520
1521         /*
1522          * Figure out the actual inb/inw/inl/etc routine to use based
1523          * upon the register size.
1524          */
1525         switch (info->io.regsize) {
1526         case 1:
1527                 info->io.inputb = port_inb;
1528                 info->io.outputb = port_outb;
1529                 break;
1530         case 2:
1531                 info->io.inputb = port_inw;
1532                 info->io.outputb = port_outw;
1533                 break;
1534         case 4:
1535                 info->io.inputb = port_inl;
1536                 info->io.outputb = port_outl;
1537                 break;
1538         default:
1539                 dev_warn(info->dev, "Invalid register size: %d\n",
1540                          info->io.regsize);
1541                 return -EINVAL;
1542         }
1543
1544         /*
1545          * Some BIOSes reserve disjoint I/O regions in their ACPI
1546          * tables.  This causes problems when trying to register the
1547          * entire I/O region.  Therefore we must register each I/O
1548          * port separately.
1549          */
1550         for (idx = 0; idx < info->io_size; idx++) {
1551                 if (request_region(addr + idx * info->io.regspacing,
1552                                    info->io.regsize, DEVICE_NAME) == NULL) {
1553                         /* Undo allocations */
1554                         while (idx--) {
1555                                 release_region(addr + idx * info->io.regspacing,
1556                                                info->io.regsize);
1557                         }
1558                         return -EIO;
1559                 }
1560         }
1561         return 0;
1562 }
1563
1564 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1565 {
1566         return readb((io->addr)+(offset * io->regspacing));
1567 }
1568
1569 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1570                      unsigned char b)
1571 {
1572         writeb(b, (io->addr)+(offset * io->regspacing));
1573 }
1574
1575 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1576 {
1577         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1578                 & 0xff;
1579 }
1580
1581 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1582                      unsigned char b)
1583 {
1584         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1585 }
1586
1587 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1588 {
1589         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1590                 & 0xff;
1591 }
1592
1593 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1594                      unsigned char b)
1595 {
1596         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1597 }
1598
1599 #ifdef readq
1600 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1601 {
1602         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1603                 & 0xff;
1604 }
1605
1606 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1607                      unsigned char b)
1608 {
1609         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1610 }
1611 #endif
1612
1613 static void mem_cleanup(struct smi_info *info)
1614 {
1615         unsigned long addr = info->io.addr_data;
1616         int           mapsize;
1617
1618         if (info->io.addr) {
1619                 iounmap(info->io.addr);
1620
1621                 mapsize = ((info->io_size * info->io.regspacing)
1622                            - (info->io.regspacing - info->io.regsize));
1623
1624                 release_mem_region(addr, mapsize);
1625         }
1626 }
1627
1628 static int mem_setup(struct smi_info *info)
1629 {
1630         unsigned long addr = info->io.addr_data;
1631         int           mapsize;
1632
1633         if (!addr)
1634                 return -ENODEV;
1635
1636         info->io_cleanup = mem_cleanup;
1637
1638         /*
1639          * Figure out the actual readb/readw/readl/etc routine to use based
1640          * upon the register size.
1641          */
1642         switch (info->io.regsize) {
1643         case 1:
1644                 info->io.inputb = intf_mem_inb;
1645                 info->io.outputb = intf_mem_outb;
1646                 break;
1647         case 2:
1648                 info->io.inputb = intf_mem_inw;
1649                 info->io.outputb = intf_mem_outw;
1650                 break;
1651         case 4:
1652                 info->io.inputb = intf_mem_inl;
1653                 info->io.outputb = intf_mem_outl;
1654                 break;
1655 #ifdef readq
1656         case 8:
1657                 info->io.inputb = mem_inq;
1658                 info->io.outputb = mem_outq;
1659                 break;
1660 #endif
1661         default:
1662                 dev_warn(info->dev, "Invalid register size: %d\n",
1663                          info->io.regsize);
1664                 return -EINVAL;
1665         }
1666
1667         /*
1668          * Calculate the total amount of memory to claim.  This is an
1669          * unusual looking calculation, but it avoids claiming any
1670          * more memory than it has to.  It will claim everything
1671          * between the first address to the end of the last full
1672          * register.
1673          */
1674         mapsize = ((info->io_size * info->io.regspacing)
1675                    - (info->io.regspacing - info->io.regsize));
1676
1677         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1678                 return -EIO;
1679
1680         info->io.addr = ioremap(addr, mapsize);
1681         if (info->io.addr == NULL) {
1682                 release_mem_region(addr, mapsize);
1683                 return -EIO;
1684         }
1685         return 0;
1686 }
1687
1688 /*
1689  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1690  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1691  * Options are:
1692  *   rsp=<regspacing>
1693  *   rsi=<regsize>
1694  *   rsh=<regshift>
1695  *   irq=<irq>
1696  *   ipmb=<ipmb addr>
1697  */
1698 enum hotmod_op { HM_ADD, HM_REMOVE };
1699 struct hotmod_vals {
1700         char *name;
1701         int  val;
1702 };
1703 static struct hotmod_vals hotmod_ops[] = {
1704         { "add",        HM_ADD },
1705         { "remove",     HM_REMOVE },
1706         { NULL }
1707 };
1708 static struct hotmod_vals hotmod_si[] = {
1709         { "kcs",        SI_KCS },
1710         { "smic",       SI_SMIC },
1711         { "bt",         SI_BT },
1712         { NULL }
1713 };
1714 static struct hotmod_vals hotmod_as[] = {
1715         { "mem",        IPMI_MEM_ADDR_SPACE },
1716         { "i/o",        IPMI_IO_ADDR_SPACE },
1717         { NULL }
1718 };
1719
1720 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1721 {
1722         char *s;
1723         int  i;
1724
1725         s = strchr(*curr, ',');
1726         if (!s) {
1727                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1728                 return -EINVAL;
1729         }
1730         *s = '\0';
1731         s++;
1732         for (i = 0; v[i].name; i++) {
1733                 if (strcmp(*curr, v[i].name) == 0) {
1734                         *val = v[i].val;
1735                         *curr = s;
1736                         return 0;
1737                 }
1738         }
1739
1740         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1741         return -EINVAL;
1742 }
1743
1744 static int check_hotmod_int_op(const char *curr, const char *option,
1745                                const char *name, int *val)
1746 {
1747         char *n;
1748
1749         if (strcmp(curr, name) == 0) {
1750                 if (!option) {
1751                         printk(KERN_WARNING PFX
1752                                "No option given for '%s'\n",
1753                                curr);
1754                         return -EINVAL;
1755                 }
1756                 *val = simple_strtoul(option, &n, 0);
1757                 if ((*n != '\0') || (*option == '\0')) {
1758                         printk(KERN_WARNING PFX
1759                                "Bad option given for '%s'\n",
1760                                curr);
1761                         return -EINVAL;
1762                 }
1763                 return 1;
1764         }
1765         return 0;
1766 }
1767
1768 static struct smi_info *smi_info_alloc(void)
1769 {
1770         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1771
1772         if (info)
1773                 spin_lock_init(&info->si_lock);
1774         return info;
1775 }
1776
1777 static int hotmod_handler(const char *val, struct kernel_param *kp)
1778 {
1779         char *str = kstrdup(val, GFP_KERNEL);
1780         int  rv;
1781         char *next, *curr, *s, *n, *o;
1782         enum hotmod_op op;
1783         enum si_type si_type;
1784         int  addr_space;
1785         unsigned long addr;
1786         int regspacing;
1787         int regsize;
1788         int regshift;
1789         int irq;
1790         int ipmb;
1791         int ival;
1792         int len;
1793         struct smi_info *info;
1794
1795         if (!str)
1796                 return -ENOMEM;
1797
1798         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1799         len = strlen(str);
1800         ival = len - 1;
1801         while ((ival >= 0) && isspace(str[ival])) {
1802                 str[ival] = '\0';
1803                 ival--;
1804         }
1805
1806         for (curr = str; curr; curr = next) {
1807                 regspacing = 1;
1808                 regsize = 1;
1809                 regshift = 0;
1810                 irq = 0;
1811                 ipmb = 0; /* Choose the default if not specified */
1812
1813                 next = strchr(curr, ':');
1814                 if (next) {
1815                         *next = '\0';
1816                         next++;
1817                 }
1818
1819                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1820                 if (rv)
1821                         break;
1822                 op = ival;
1823
1824                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1825                 if (rv)
1826                         break;
1827                 si_type = ival;
1828
1829                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1830                 if (rv)
1831                         break;
1832
1833                 s = strchr(curr, ',');
1834                 if (s) {
1835                         *s = '\0';
1836                         s++;
1837                 }
1838                 addr = simple_strtoul(curr, &n, 0);
1839                 if ((*n != '\0') || (*curr == '\0')) {
1840                         printk(KERN_WARNING PFX "Invalid hotmod address"
1841                                " '%s'\n", curr);
1842                         break;
1843                 }
1844
1845                 while (s) {
1846                         curr = s;
1847                         s = strchr(curr, ',');
1848                         if (s) {
1849                                 *s = '\0';
1850                                 s++;
1851                         }
1852                         o = strchr(curr, '=');
1853                         if (o) {
1854                                 *o = '\0';
1855                                 o++;
1856                         }
1857                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1858                         if (rv < 0)
1859                                 goto out;
1860                         else if (rv)
1861                                 continue;
1862                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1863                         if (rv < 0)
1864                                 goto out;
1865                         else if (rv)
1866                                 continue;
1867                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1868                         if (rv < 0)
1869                                 goto out;
1870                         else if (rv)
1871                                 continue;
1872                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1873                         if (rv < 0)
1874                                 goto out;
1875                         else if (rv)
1876                                 continue;
1877                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1878                         if (rv < 0)
1879                                 goto out;
1880                         else if (rv)
1881                                 continue;
1882
1883                         rv = -EINVAL;
1884                         printk(KERN_WARNING PFX
1885                                "Invalid hotmod option '%s'\n",
1886                                curr);
1887                         goto out;
1888                 }
1889
1890                 if (op == HM_ADD) {
1891                         info = smi_info_alloc();
1892                         if (!info) {
1893                                 rv = -ENOMEM;
1894                                 goto out;
1895                         }
1896
1897                         info->addr_source = SI_HOTMOD;
1898                         info->si_type = si_type;
1899                         info->io.addr_data = addr;
1900                         info->io.addr_type = addr_space;
1901                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1902                                 info->io_setup = mem_setup;
1903                         else
1904                                 info->io_setup = port_setup;
1905
1906                         info->io.addr = NULL;
1907                         info->io.regspacing = regspacing;
1908                         if (!info->io.regspacing)
1909                                 info->io.regspacing = DEFAULT_REGSPACING;
1910                         info->io.regsize = regsize;
1911                         if (!info->io.regsize)
1912                                 info->io.regsize = DEFAULT_REGSPACING;
1913                         info->io.regshift = regshift;
1914                         info->irq = irq;
1915                         if (info->irq)
1916                                 info->irq_setup = std_irq_setup;
1917                         info->slave_addr = ipmb;
1918
1919                         rv = add_smi(info);
1920                         if (rv) {
1921                                 kfree(info);
1922                                 goto out;
1923                         }
1924                         rv = try_smi_init(info);
1925                         if (rv) {
1926                                 cleanup_one_si(info);
1927                                 goto out;
1928                         }
1929                 } else {
1930                         /* remove */
1931                         struct smi_info *e, *tmp_e;
1932
1933                         mutex_lock(&smi_infos_lock);
1934                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1935                                 if (e->io.addr_type != addr_space)
1936                                         continue;
1937                                 if (e->si_type != si_type)
1938                                         continue;
1939                                 if (e->io.addr_data == addr)
1940                                         cleanup_one_si(e);
1941                         }
1942                         mutex_unlock(&smi_infos_lock);
1943                 }
1944         }
1945         rv = len;
1946  out:
1947         kfree(str);
1948         return rv;
1949 }
1950
1951 static int hardcode_find_bmc(void)
1952 {
1953         int ret = -ENODEV;
1954         int             i;
1955         struct smi_info *info;
1956
1957         for (i = 0; i < SI_MAX_PARMS; i++) {
1958                 if (!ports[i] && !addrs[i])
1959                         continue;
1960
1961                 info = smi_info_alloc();
1962                 if (!info)
1963                         return -ENOMEM;
1964
1965                 info->addr_source = SI_HARDCODED;
1966                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1967
1968                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1969                         info->si_type = SI_KCS;
1970                 } else if (strcmp(si_type[i], "smic") == 0) {
1971                         info->si_type = SI_SMIC;
1972                 } else if (strcmp(si_type[i], "bt") == 0) {
1973                         info->si_type = SI_BT;
1974                 } else {
1975                         printk(KERN_WARNING PFX "Interface type specified "
1976                                "for interface %d, was invalid: %s\n",
1977                                i, si_type[i]);
1978                         kfree(info);
1979                         continue;
1980                 }
1981
1982                 if (ports[i]) {
1983                         /* An I/O port */
1984                         info->io_setup = port_setup;
1985                         info->io.addr_data = ports[i];
1986                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1987                 } else if (addrs[i]) {
1988                         /* A memory port */
1989                         info->io_setup = mem_setup;
1990                         info->io.addr_data = addrs[i];
1991                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1992                 } else {
1993                         printk(KERN_WARNING PFX "Interface type specified "
1994                                "for interface %d, but port and address were "
1995                                "not set or set to zero.\n", i);
1996                         kfree(info);
1997                         continue;
1998                 }
1999
2000                 info->io.addr = NULL;
2001                 info->io.regspacing = regspacings[i];
2002                 if (!info->io.regspacing)
2003                         info->io.regspacing = DEFAULT_REGSPACING;
2004                 info->io.regsize = regsizes[i];
2005                 if (!info->io.regsize)
2006                         info->io.regsize = DEFAULT_REGSPACING;
2007                 info->io.regshift = regshifts[i];
2008                 info->irq = irqs[i];
2009                 if (info->irq)
2010                         info->irq_setup = std_irq_setup;
2011                 info->slave_addr = slave_addrs[i];
2012
2013                 if (!add_smi(info)) {
2014                         if (try_smi_init(info))
2015                                 cleanup_one_si(info);
2016                         ret = 0;
2017                 } else {
2018                         kfree(info);
2019                 }
2020         }
2021         return ret;
2022 }
2023
2024 #ifdef CONFIG_ACPI
2025
2026 #include <linux/acpi.h>
2027
2028 /*
2029  * Once we get an ACPI failure, we don't try any more, because we go
2030  * through the tables sequentially.  Once we don't find a table, there
2031  * are no more.
2032  */
2033 static int acpi_failure;
2034
2035 /* For GPE-type interrupts. */
2036 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2037         u32 gpe_number, void *context)
2038 {
2039         struct smi_info *smi_info = context;
2040         unsigned long   flags;
2041 #ifdef DEBUG_TIMING
2042         struct timeval t;
2043 #endif
2044
2045         spin_lock_irqsave(&(smi_info->si_lock), flags);
2046
2047         smi_inc_stat(smi_info, interrupts);
2048
2049 #ifdef DEBUG_TIMING
2050         do_gettimeofday(&t);
2051         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2052 #endif
2053         smi_event_handler(smi_info, 0);
2054         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2055
2056         return ACPI_INTERRUPT_HANDLED;
2057 }
2058
2059 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2060 {
2061         if (!info->irq)
2062                 return;
2063
2064         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2065 }
2066
2067 static int acpi_gpe_irq_setup(struct smi_info *info)
2068 {
2069         acpi_status status;
2070
2071         if (!info->irq)
2072                 return 0;
2073
2074         status = acpi_install_gpe_handler(NULL,
2075                                           info->irq,
2076                                           ACPI_GPE_LEVEL_TRIGGERED,
2077                                           &ipmi_acpi_gpe,
2078                                           info);
2079         if (status != AE_OK) {
2080                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2081                          " running polled\n", DEVICE_NAME, info->irq);
2082                 info->irq = 0;
2083                 return -EINVAL;
2084         } else {
2085                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2086                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2087                 return 0;
2088         }
2089 }
2090
2091 /*
2092  * Defined at
2093  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2094  */
2095 struct SPMITable {
2096         s8      Signature[4];
2097         u32     Length;
2098         u8      Revision;
2099         u8      Checksum;
2100         s8      OEMID[6];
2101         s8      OEMTableID[8];
2102         s8      OEMRevision[4];
2103         s8      CreatorID[4];
2104         s8      CreatorRevision[4];
2105         u8      InterfaceType;
2106         u8      IPMIlegacy;
2107         s16     SpecificationRevision;
2108
2109         /*
2110          * Bit 0 - SCI interrupt supported
2111          * Bit 1 - I/O APIC/SAPIC
2112          */
2113         u8      InterruptType;
2114
2115         /*
2116          * If bit 0 of InterruptType is set, then this is the SCI
2117          * interrupt in the GPEx_STS register.
2118          */
2119         u8      GPE;
2120
2121         s16     Reserved;
2122
2123         /*
2124          * If bit 1 of InterruptType is set, then this is the I/O
2125          * APIC/SAPIC interrupt.
2126          */
2127         u32     GlobalSystemInterrupt;
2128
2129         /* The actual register address. */
2130         struct acpi_generic_address addr;
2131
2132         u8      UID[4];
2133
2134         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2135 };
2136
2137 static int try_init_spmi(struct SPMITable *spmi)
2138 {
2139         struct smi_info  *info;
2140         int rv;
2141
2142         if (spmi->IPMIlegacy != 1) {
2143                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2144                 return -ENODEV;
2145         }
2146
2147         info = smi_info_alloc();
2148         if (!info) {
2149                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2150                 return -ENOMEM;
2151         }
2152
2153         info->addr_source = SI_SPMI;
2154         printk(KERN_INFO PFX "probing via SPMI\n");
2155
2156         /* Figure out the interface type. */
2157         switch (spmi->InterfaceType) {
2158         case 1: /* KCS */
2159                 info->si_type = SI_KCS;
2160                 break;
2161         case 2: /* SMIC */
2162                 info->si_type = SI_SMIC;
2163                 break;
2164         case 3: /* BT */
2165                 info->si_type = SI_BT;
2166                 break;
2167         case 4: /* SSIF, just ignore */
2168                 kfree(info);
2169                 return -EIO;
2170         default:
2171                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2172                        spmi->InterfaceType);
2173                 kfree(info);
2174                 return -EIO;
2175         }
2176
2177         if (spmi->InterruptType & 1) {
2178                 /* We've got a GPE interrupt. */
2179                 info->irq = spmi->GPE;
2180                 info->irq_setup = acpi_gpe_irq_setup;
2181         } else if (spmi->InterruptType & 2) {
2182                 /* We've got an APIC/SAPIC interrupt. */
2183                 info->irq = spmi->GlobalSystemInterrupt;
2184                 info->irq_setup = std_irq_setup;
2185         } else {
2186                 /* Use the default interrupt setting. */
2187                 info->irq = 0;
2188                 info->irq_setup = NULL;
2189         }
2190
2191         if (spmi->addr.bit_width) {
2192                 /* A (hopefully) properly formed register bit width. */
2193                 info->io.regspacing = spmi->addr.bit_width / 8;
2194         } else {
2195                 info->io.regspacing = DEFAULT_REGSPACING;
2196         }
2197         info->io.regsize = info->io.regspacing;
2198         info->io.regshift = spmi->addr.bit_offset;
2199
2200         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2201                 info->io_setup = mem_setup;
2202                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2203         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2204                 info->io_setup = port_setup;
2205                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2206         } else {
2207                 kfree(info);
2208                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2209                 return -EIO;
2210         }
2211         info->io.addr_data = spmi->addr.address;
2212
2213         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2214                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2215                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2216                  info->irq);
2217
2218         rv = add_smi(info);
2219         if (rv)
2220                 kfree(info);
2221
2222         return rv;
2223 }
2224
2225 static void spmi_find_bmc(void)
2226 {
2227         acpi_status      status;
2228         struct SPMITable *spmi;
2229         int              i;
2230
2231         if (acpi_disabled)
2232                 return;
2233
2234         if (acpi_failure)
2235                 return;
2236
2237         for (i = 0; ; i++) {
2238                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2239                                         (struct acpi_table_header **)&spmi);
2240                 if (status != AE_OK)
2241                         return;
2242
2243                 try_init_spmi(spmi);
2244         }
2245 }
2246
2247 static int ipmi_pnp_probe(struct pnp_dev *dev,
2248                                     const struct pnp_device_id *dev_id)
2249 {
2250         struct acpi_device *acpi_dev;
2251         struct smi_info *info;
2252         struct resource *res, *res_second;
2253         acpi_handle handle;
2254         acpi_status status;
2255         unsigned long long tmp;
2256         int rv;
2257
2258         acpi_dev = pnp_acpi_device(dev);
2259         if (!acpi_dev)
2260                 return -ENODEV;
2261
2262         info = smi_info_alloc();
2263         if (!info)
2264                 return -ENOMEM;
2265
2266         info->addr_source = SI_ACPI;
2267         printk(KERN_INFO PFX "probing via ACPI\n");
2268
2269         handle = acpi_dev->handle;
2270         info->addr_info.acpi_info.acpi_handle = handle;
2271
2272         /* _IFT tells us the interface type: KCS, BT, etc */
2273         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2274         if (ACPI_FAILURE(status))
2275                 goto err_free;
2276
2277         switch (tmp) {
2278         case 1:
2279                 info->si_type = SI_KCS;
2280                 break;
2281         case 2:
2282                 info->si_type = SI_SMIC;
2283                 break;
2284         case 3:
2285                 info->si_type = SI_BT;
2286                 break;
2287         case 4: /* SSIF, just ignore */
2288                 goto err_free;
2289         default:
2290                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2291                 goto err_free;
2292         }
2293
2294         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2295         if (res) {
2296                 info->io_setup = port_setup;
2297                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2298         } else {
2299                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2300                 if (res) {
2301                         info->io_setup = mem_setup;
2302                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2303                 }
2304         }
2305         if (!res) {
2306                 dev_err(&dev->dev, "no I/O or memory address\n");
2307                 goto err_free;
2308         }
2309         info->io.addr_data = res->start;
2310
2311         info->io.regspacing = DEFAULT_REGSPACING;
2312         res_second = pnp_get_resource(dev,
2313                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2314                                         IORESOURCE_IO : IORESOURCE_MEM,
2315                                1);
2316         if (res_second) {
2317                 if (res_second->start > info->io.addr_data)
2318                         info->io.regspacing = res_second->start - info->io.addr_data;
2319         }
2320         info->io.regsize = DEFAULT_REGSPACING;
2321         info->io.regshift = 0;
2322
2323         /* If _GPE exists, use it; otherwise use standard interrupts */
2324         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2325         if (ACPI_SUCCESS(status)) {
2326                 info->irq = tmp;
2327                 info->irq_setup = acpi_gpe_irq_setup;
2328         } else if (pnp_irq_valid(dev, 0)) {
2329                 info->irq = pnp_irq(dev, 0);
2330                 info->irq_setup = std_irq_setup;
2331         }
2332
2333         info->dev = &dev->dev;
2334         pnp_set_drvdata(dev, info);
2335
2336         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2337                  res, info->io.regsize, info->io.regspacing,
2338                  info->irq);
2339
2340         rv = add_smi(info);
2341         if (rv)
2342                 kfree(info);
2343
2344         return rv;
2345
2346 err_free:
2347         kfree(info);
2348         return -EINVAL;
2349 }
2350
2351 static void ipmi_pnp_remove(struct pnp_dev *dev)
2352 {
2353         struct smi_info *info = pnp_get_drvdata(dev);
2354
2355         cleanup_one_si(info);
2356 }
2357
2358 static const struct pnp_device_id pnp_dev_table[] = {
2359         {"IPI0001", 0},
2360         {"", 0},
2361 };
2362
2363 static struct pnp_driver ipmi_pnp_driver = {
2364         .name           = DEVICE_NAME,
2365         .probe          = ipmi_pnp_probe,
2366         .remove         = ipmi_pnp_remove,
2367         .id_table       = pnp_dev_table,
2368 };
2369
2370 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2371 #endif
2372
2373 #ifdef CONFIG_DMI
2374 struct dmi_ipmi_data {
2375         u8              type;
2376         u8              addr_space;
2377         unsigned long   base_addr;
2378         u8              irq;
2379         u8              offset;
2380         u8              slave_addr;
2381 };
2382
2383 static int decode_dmi(const struct dmi_header *dm,
2384                                 struct dmi_ipmi_data *dmi)
2385 {
2386         const u8        *data = (const u8 *)dm;
2387         unsigned long   base_addr;
2388         u8              reg_spacing;
2389         u8              len = dm->length;
2390
2391         dmi->type = data[4];
2392
2393         memcpy(&base_addr, data+8, sizeof(unsigned long));
2394         if (len >= 0x11) {
2395                 if (base_addr & 1) {
2396                         /* I/O */
2397                         base_addr &= 0xFFFE;
2398                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2399                 } else
2400                         /* Memory */
2401                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2402
2403                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2404                    is odd. */
2405                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2406
2407                 dmi->irq = data[0x11];
2408
2409                 /* The top two bits of byte 0x10 hold the register spacing. */
2410                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2411                 switch (reg_spacing) {
2412                 case 0x00: /* Byte boundaries */
2413                     dmi->offset = 1;
2414                     break;
2415                 case 0x01: /* 32-bit boundaries */
2416                     dmi->offset = 4;
2417                     break;
2418                 case 0x02: /* 16-byte boundaries */
2419                     dmi->offset = 16;
2420                     break;
2421                 default:
2422                     /* Some other interface, just ignore it. */
2423                     return -EIO;
2424                 }
2425         } else {
2426                 /* Old DMI spec. */
2427                 /*
2428                  * Note that technically, the lower bit of the base
2429                  * address should be 1 if the address is I/O and 0 if
2430                  * the address is in memory.  So many systems get that
2431                  * wrong (and all that I have seen are I/O) so we just
2432                  * ignore that bit and assume I/O.  Systems that use
2433                  * memory should use the newer spec, anyway.
2434                  */
2435                 dmi->base_addr = base_addr & 0xfffe;
2436                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2437                 dmi->offset = 1;
2438         }
2439
2440         dmi->slave_addr = data[6];
2441
2442         return 0;
2443 }
2444
2445 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2446 {
2447         struct smi_info *info;
2448
2449         info = smi_info_alloc();
2450         if (!info) {
2451                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2452                 return;
2453         }
2454
2455         info->addr_source = SI_SMBIOS;
2456         printk(KERN_INFO PFX "probing via SMBIOS\n");
2457
2458         switch (ipmi_data->type) {
2459         case 0x01: /* KCS */
2460                 info->si_type = SI_KCS;
2461                 break;
2462         case 0x02: /* SMIC */
2463                 info->si_type = SI_SMIC;
2464                 break;
2465         case 0x03: /* BT */
2466                 info->si_type = SI_BT;
2467                 break;
2468         default:
2469                 kfree(info);
2470                 return;
2471         }
2472
2473         switch (ipmi_data->addr_space) {
2474         case IPMI_MEM_ADDR_SPACE:
2475                 info->io_setup = mem_setup;
2476                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2477                 break;
2478
2479         case IPMI_IO_ADDR_SPACE:
2480                 info->io_setup = port_setup;
2481                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2482                 break;
2483
2484         default:
2485                 kfree(info);
2486                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2487                        ipmi_data->addr_space);
2488                 return;
2489         }
2490         info->io.addr_data = ipmi_data->base_addr;
2491
2492         info->io.regspacing = ipmi_data->offset;
2493         if (!info->io.regspacing)
2494                 info->io.regspacing = DEFAULT_REGSPACING;
2495         info->io.regsize = DEFAULT_REGSPACING;
2496         info->io.regshift = 0;
2497
2498         info->slave_addr = ipmi_data->slave_addr;
2499
2500         info->irq = ipmi_data->irq;
2501         if (info->irq)
2502                 info->irq_setup = std_irq_setup;
2503
2504         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2505                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2506                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2507                  info->irq);
2508
2509         if (add_smi(info))
2510                 kfree(info);
2511 }
2512
2513 static void dmi_find_bmc(void)
2514 {
2515         const struct dmi_device *dev = NULL;
2516         struct dmi_ipmi_data data;
2517         int                  rv;
2518
2519         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2520                 memset(&data, 0, sizeof(data));
2521                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2522                                 &data);
2523                 if (!rv)
2524                         try_init_dmi(&data);
2525         }
2526 }
2527 #endif /* CONFIG_DMI */
2528
2529 #ifdef CONFIG_PCI
2530
2531 #define PCI_ERMC_CLASSCODE              0x0C0700
2532 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2533 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2534 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2535 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2536 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2537
2538 #define PCI_HP_VENDOR_ID    0x103C
2539 #define PCI_MMC_DEVICE_ID   0x121A
2540 #define PCI_MMC_ADDR_CW     0x10
2541
2542 static void ipmi_pci_cleanup(struct smi_info *info)
2543 {
2544         struct pci_dev *pdev = info->addr_source_data;
2545
2546         pci_disable_device(pdev);
2547 }
2548
2549 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2550 {
2551         if (info->si_type == SI_KCS) {
2552                 unsigned char   status;
2553                 int             regspacing;
2554
2555                 info->io.regsize = DEFAULT_REGSIZE;
2556                 info->io.regshift = 0;
2557                 info->io_size = 2;
2558                 info->handlers = &kcs_smi_handlers;
2559
2560                 /* detect 1, 4, 16byte spacing */
2561                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2562                         info->io.regspacing = regspacing;
2563                         if (info->io_setup(info)) {
2564                                 dev_err(info->dev,
2565                                         "Could not setup I/O space\n");
2566                                 return DEFAULT_REGSPACING;
2567                         }
2568                         /* write invalid cmd */
2569                         info->io.outputb(&info->io, 1, 0x10);
2570                         /* read status back */
2571                         status = info->io.inputb(&info->io, 1);
2572                         info->io_cleanup(info);
2573                         if (status)
2574                                 return regspacing;
2575                         regspacing *= 4;
2576                 }
2577         }
2578         return DEFAULT_REGSPACING;
2579 }
2580
2581 static int ipmi_pci_probe(struct pci_dev *pdev,
2582                                     const struct pci_device_id *ent)
2583 {
2584         int rv;
2585         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2586         struct smi_info *info;
2587
2588         info = smi_info_alloc();
2589         if (!info)
2590                 return -ENOMEM;
2591
2592         info->addr_source = SI_PCI;
2593         dev_info(&pdev->dev, "probing via PCI");
2594
2595         switch (class_type) {
2596         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2597                 info->si_type = SI_SMIC;
2598                 break;
2599
2600         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2601                 info->si_type = SI_KCS;
2602                 break;
2603
2604         case PCI_ERMC_CLASSCODE_TYPE_BT:
2605                 info->si_type = SI_BT;
2606                 break;
2607
2608         default:
2609                 kfree(info);
2610                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2611                 return -ENOMEM;
2612         }
2613
2614         rv = pci_enable_device(pdev);
2615         if (rv) {
2616                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2617                 kfree(info);
2618                 return rv;
2619         }
2620
2621         info->addr_source_cleanup = ipmi_pci_cleanup;
2622         info->addr_source_data = pdev;
2623
2624         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2625                 info->io_setup = port_setup;
2626                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2627         } else {
2628                 info->io_setup = mem_setup;
2629                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2630         }
2631         info->io.addr_data = pci_resource_start(pdev, 0);
2632
2633         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2634         info->io.regsize = DEFAULT_REGSIZE;
2635         info->io.regshift = 0;
2636
2637         info->irq = pdev->irq;
2638         if (info->irq)
2639                 info->irq_setup = std_irq_setup;
2640
2641         info->dev = &pdev->dev;
2642         pci_set_drvdata(pdev, info);
2643
2644         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2645                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2646                 info->irq);
2647
2648         rv = add_smi(info);
2649         if (rv) {
2650                 kfree(info);
2651                 pci_disable_device(pdev);
2652         }
2653
2654         return rv;
2655 }
2656
2657 static void ipmi_pci_remove(struct pci_dev *pdev)
2658 {
2659         struct smi_info *info = pci_get_drvdata(pdev);
2660         cleanup_one_si(info);
2661         pci_disable_device(pdev);
2662 }
2663
2664 static struct pci_device_id ipmi_pci_devices[] = {
2665         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2666         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2667         { 0, }
2668 };
2669 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2670
2671 static struct pci_driver ipmi_pci_driver = {
2672         .name =         DEVICE_NAME,
2673         .id_table =     ipmi_pci_devices,
2674         .probe =        ipmi_pci_probe,
2675         .remove =       ipmi_pci_remove,
2676 };
2677 #endif /* CONFIG_PCI */
2678
2679 static struct of_device_id ipmi_match[];
2680 static int ipmi_probe(struct platform_device *dev)
2681 {
2682 #ifdef CONFIG_OF
2683         const struct of_device_id *match;
2684         struct smi_info *info;
2685         struct resource resource;
2686         const __be32 *regsize, *regspacing, *regshift;
2687         struct device_node *np = dev->dev.of_node;
2688         int ret;
2689         int proplen;
2690
2691         dev_info(&dev->dev, "probing via device tree\n");
2692
2693         match = of_match_device(ipmi_match, &dev->dev);
2694         if (!match)
2695                 return -EINVAL;
2696
2697         if (!of_device_is_available(np))
2698                 return -EINVAL;
2699
2700         ret = of_address_to_resource(np, 0, &resource);
2701         if (ret) {
2702                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2703                 return ret;
2704         }
2705
2706         regsize = of_get_property(np, "reg-size", &proplen);
2707         if (regsize && proplen != 4) {
2708                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2709                 return -EINVAL;
2710         }
2711
2712         regspacing = of_get_property(np, "reg-spacing", &proplen);
2713         if (regspacing && proplen != 4) {
2714                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2715                 return -EINVAL;
2716         }
2717
2718         regshift = of_get_property(np, "reg-shift", &proplen);
2719         if (regshift && proplen != 4) {
2720                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2721                 return -EINVAL;
2722         }
2723
2724         info = smi_info_alloc();
2725
2726         if (!info) {
2727                 dev_err(&dev->dev,
2728                         "could not allocate memory for OF probe\n");
2729                 return -ENOMEM;
2730         }
2731
2732         info->si_type           = (enum si_type) match->data;
2733         info->addr_source       = SI_DEVICETREE;
2734         info->irq_setup         = std_irq_setup;
2735
2736         if (resource.flags & IORESOURCE_IO) {
2737                 info->io_setup          = port_setup;
2738                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2739         } else {
2740                 info->io_setup          = mem_setup;
2741                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2742         }
2743
2744         info->io.addr_data      = resource.start;
2745
2746         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2747         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2748         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2749
2750         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2751         info->dev               = &dev->dev;
2752
2753         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2754                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2755                 info->irq);
2756
2757         dev_set_drvdata(&dev->dev, info);
2758
2759         ret = add_smi(info);
2760         if (ret) {
2761                 kfree(info);
2762                 return ret;
2763         }
2764 #endif
2765         return 0;
2766 }
2767
2768 static int ipmi_remove(struct platform_device *dev)
2769 {
2770 #ifdef CONFIG_OF
2771         cleanup_one_si(dev_get_drvdata(&dev->dev));
2772 #endif
2773         return 0;
2774 }
2775
2776 static struct of_device_id ipmi_match[] =
2777 {
2778         { .type = "ipmi", .compatible = "ipmi-kcs",
2779           .data = (void *)(unsigned long) SI_KCS },
2780         { .type = "ipmi", .compatible = "ipmi-smic",
2781           .data = (void *)(unsigned long) SI_SMIC },
2782         { .type = "ipmi", .compatible = "ipmi-bt",
2783           .data = (void *)(unsigned long) SI_BT },
2784         {},
2785 };
2786
2787 static struct platform_driver ipmi_driver = {
2788         .driver = {
2789                 .name = DEVICE_NAME,
2790                 .of_match_table = ipmi_match,
2791         },
2792         .probe          = ipmi_probe,
2793         .remove         = ipmi_remove,
2794 };
2795
2796 #ifdef CONFIG_PARISC
2797 static int ipmi_parisc_probe(struct parisc_device *dev)
2798 {
2799         struct smi_info *info;
2800         int rv;
2801
2802         info = smi_info_alloc();
2803
2804         if (!info) {
2805                 dev_err(&dev->dev,
2806                         "could not allocate memory for PARISC probe\n");
2807                 return -ENOMEM;
2808         }
2809
2810         info->si_type           = SI_KCS;
2811         info->addr_source       = SI_DEVICETREE;
2812         info->io_setup          = mem_setup;
2813         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2814         info->io.addr_data      = dev->hpa.start;
2815         info->io.regsize        = 1;
2816         info->io.regspacing     = 1;
2817         info->io.regshift       = 0;
2818         info->irq               = 0; /* no interrupt */
2819         info->irq_setup         = NULL;
2820         info->dev               = &dev->dev;
2821
2822         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2823
2824         dev_set_drvdata(&dev->dev, info);
2825
2826         rv = add_smi(info);
2827         if (rv) {
2828                 kfree(info);
2829                 return rv;
2830         }
2831
2832         return 0;
2833 }
2834
2835 static int ipmi_parisc_remove(struct parisc_device *dev)
2836 {
2837         cleanup_one_si(dev_get_drvdata(&dev->dev));
2838         return 0;
2839 }
2840
2841 static struct parisc_device_id ipmi_parisc_tbl[] = {
2842         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2843         { 0, }
2844 };
2845
2846 static struct parisc_driver ipmi_parisc_driver = {
2847         .name =         "ipmi",
2848         .id_table =     ipmi_parisc_tbl,
2849         .probe =        ipmi_parisc_probe,
2850         .remove =       ipmi_parisc_remove,
2851 };
2852 #endif /* CONFIG_PARISC */
2853
2854 static int wait_for_msg_done(struct smi_info *smi_info)
2855 {
2856         enum si_sm_result     smi_result;
2857
2858         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2859         for (;;) {
2860                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2861                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2862                         schedule_timeout_uninterruptible(1);
2863                         smi_result = smi_info->handlers->event(
2864                                 smi_info->si_sm, jiffies_to_usecs(1));
2865                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2866                         smi_result = smi_info->handlers->event(
2867                                 smi_info->si_sm, 0);
2868                 } else
2869                         break;
2870         }
2871         if (smi_result == SI_SM_HOSED)
2872                 /*
2873                  * We couldn't get the state machine to run, so whatever's at
2874                  * the port is probably not an IPMI SMI interface.
2875                  */
2876                 return -ENODEV;
2877
2878         return 0;
2879 }
2880
2881 static int try_get_dev_id(struct smi_info *smi_info)
2882 {
2883         unsigned char         msg[2];
2884         unsigned char         *resp;
2885         unsigned long         resp_len;
2886         int                   rv = 0;
2887
2888         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2889         if (!resp)
2890                 return -ENOMEM;
2891
2892         /*
2893          * Do a Get Device ID command, since it comes back with some
2894          * useful info.
2895          */
2896         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2897         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2898         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2899
2900         rv = wait_for_msg_done(smi_info);
2901         if (rv)
2902                 goto out;
2903
2904         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2905                                                   resp, IPMI_MAX_MSG_LENGTH);
2906
2907         /* Check and record info from the get device id, in case we need it. */
2908         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2909
2910  out:
2911         kfree(resp);
2912         return rv;
2913 }
2914
2915 static int try_enable_event_buffer(struct smi_info *smi_info)
2916 {
2917         unsigned char         msg[3];
2918         unsigned char         *resp;
2919         unsigned long         resp_len;
2920         int                   rv = 0;
2921
2922         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2923         if (!resp)
2924                 return -ENOMEM;
2925
2926         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2927         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2928         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2929
2930         rv = wait_for_msg_done(smi_info);
2931         if (rv) {
2932                 printk(KERN_WARNING PFX "Error getting response from get"
2933                        " global enables command, the event buffer is not"
2934                        " enabled.\n");
2935                 goto out;
2936         }
2937
2938         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2939                                                   resp, IPMI_MAX_MSG_LENGTH);
2940
2941         if (resp_len < 4 ||
2942                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2943                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2944                         resp[2] != 0) {
2945                 printk(KERN_WARNING PFX "Invalid return from get global"
2946                        " enables command, cannot enable the event buffer.\n");
2947                 rv = -EINVAL;
2948                 goto out;
2949         }
2950
2951         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2952                 /* buffer is already enabled, nothing to do. */
2953                 smi_info->supports_event_msg_buff = true;
2954                 goto out;
2955         }
2956
2957         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2958         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2959         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2960         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2961
2962         rv = wait_for_msg_done(smi_info);
2963         if (rv) {
2964                 printk(KERN_WARNING PFX "Error getting response from set"
2965                        " global, enables command, the event buffer is not"
2966                        " enabled.\n");
2967                 goto out;
2968         }
2969
2970         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2971                                                   resp, IPMI_MAX_MSG_LENGTH);
2972
2973         if (resp_len < 3 ||
2974                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2975                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2976                 printk(KERN_WARNING PFX "Invalid return from get global,"
2977                        "enables command, not enable the event buffer.\n");
2978                 rv = -EINVAL;
2979                 goto out;
2980         }
2981
2982         if (resp[2] != 0)
2983                 /*
2984                  * An error when setting the event buffer bit means
2985                  * that the event buffer is not supported.
2986                  */
2987                 rv = -ENOENT;
2988         else
2989                 smi_info->supports_event_msg_buff = true;
2990
2991  out:
2992         kfree(resp);
2993         return rv;
2994 }
2995
2996 static int smi_type_proc_show(struct seq_file *m, void *v)
2997 {
2998         struct smi_info *smi = m->private;
2999
3000         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3001 }
3002
3003 static int smi_type_proc_open(struct inode *inode, struct file *file)
3004 {
3005         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3006 }
3007
3008 static const struct file_operations smi_type_proc_ops = {
3009         .open           = smi_type_proc_open,
3010         .read           = seq_read,
3011         .llseek         = seq_lseek,
3012         .release        = single_release,
3013 };
3014
3015 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3016 {
3017         struct smi_info *smi = m->private;
3018
3019         seq_printf(m, "interrupts_enabled:    %d\n",
3020                        smi->irq && !smi->interrupt_disabled);
3021         seq_printf(m, "short_timeouts:        %u\n",
3022                        smi_get_stat(smi, short_timeouts));
3023         seq_printf(m, "long_timeouts:         %u\n",
3024                        smi_get_stat(smi, long_timeouts));
3025         seq_printf(m, "idles:                 %u\n",
3026                        smi_get_stat(smi, idles));
3027         seq_printf(m, "interrupts:            %u\n",
3028                        smi_get_stat(smi, interrupts));
3029         seq_printf(m, "attentions:            %u\n",
3030                        smi_get_stat(smi, attentions));
3031         seq_printf(m, "flag_fetches:          %u\n",
3032                        smi_get_stat(smi, flag_fetches));
3033         seq_printf(m, "hosed_count:           %u\n",
3034                        smi_get_stat(smi, hosed_count));
3035         seq_printf(m, "complete_transactions: %u\n",
3036                        smi_get_stat(smi, complete_transactions));
3037         seq_printf(m, "events:                %u\n",
3038                        smi_get_stat(smi, events));
3039         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3040                        smi_get_stat(smi, watchdog_pretimeouts));
3041         seq_printf(m, "incoming_messages:     %u\n",
3042                        smi_get_stat(smi, incoming_messages));
3043         return 0;
3044 }
3045
3046 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3047 {
3048         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3049 }
3050
3051 static const struct file_operations smi_si_stats_proc_ops = {
3052         .open           = smi_si_stats_proc_open,
3053         .read           = seq_read,
3054         .llseek         = seq_lseek,
3055         .release        = single_release,
3056 };
3057
3058 static int smi_params_proc_show(struct seq_file *m, void *v)
3059 {
3060         struct smi_info *smi = m->private;
3061
3062         return seq_printf(m,
3063                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3064                        si_to_str[smi->si_type],
3065                        addr_space_to_str[smi->io.addr_type],
3066                        smi->io.addr_data,
3067                        smi->io.regspacing,
3068                        smi->io.regsize,
3069                        smi->io.regshift,
3070                        smi->irq,
3071                        smi->slave_addr);
3072 }
3073
3074 static int smi_params_proc_open(struct inode *inode, struct file *file)
3075 {
3076         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3077 }
3078
3079 static const struct file_operations smi_params_proc_ops = {
3080         .open           = smi_params_proc_open,
3081         .read           = seq_read,
3082         .llseek         = seq_lseek,
3083         .release        = single_release,
3084 };
3085
3086 /*
3087  * oem_data_avail_to_receive_msg_avail
3088  * @info - smi_info structure with msg_flags set
3089  *
3090  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3091  * Returns 1 indicating need to re-run handle_flags().
3092  */
3093 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3094 {
3095         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3096                                RECEIVE_MSG_AVAIL);
3097         return 1;
3098 }
3099
3100 /*
3101  * setup_dell_poweredge_oem_data_handler
3102  * @info - smi_info.device_id must be populated
3103  *
3104  * Systems that match, but have firmware version < 1.40 may assert
3105  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3106  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3107  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3108  * as RECEIVE_MSG_AVAIL instead.
3109  *
3110  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3111  * assert the OEM[012] bits, and if it did, the driver would have to
3112  * change to handle that properly, we don't actually check for the
3113  * firmware version.
3114  * Device ID = 0x20                BMC on PowerEdge 8G servers
3115  * Device Revision = 0x80
3116  * Firmware Revision1 = 0x01       BMC version 1.40
3117  * Firmware Revision2 = 0x40       BCD encoded
3118  * IPMI Version = 0x51             IPMI 1.5
3119  * Manufacturer ID = A2 02 00      Dell IANA
3120  *
3121  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3122  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3123  *
3124  */
3125 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3126 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3127 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3128 #define DELL_IANA_MFR_ID 0x0002a2
3129 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3130 {
3131         struct ipmi_device_id *id = &smi_info->device_id;
3132         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3133                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3134                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3135                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3136                         smi_info->oem_data_avail_handler =
3137                                 oem_data_avail_to_receive_msg_avail;
3138                 } else if (ipmi_version_major(id) < 1 ||
3139                            (ipmi_version_major(id) == 1 &&
3140                             ipmi_version_minor(id) < 5)) {
3141                         smi_info->oem_data_avail_handler =
3142                                 oem_data_avail_to_receive_msg_avail;
3143                 }
3144         }
3145 }
3146
3147 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3148 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3149 {
3150         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3151
3152         /* Make it a response */
3153         msg->rsp[0] = msg->data[0] | 4;
3154         msg->rsp[1] = msg->data[1];
3155         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3156         msg->rsp_size = 3;
3157         smi_info->curr_msg = NULL;
3158         deliver_recv_msg(smi_info, msg);
3159 }
3160
3161 /*
3162  * dell_poweredge_bt_xaction_handler
3163  * @info - smi_info.device_id must be populated
3164  *
3165  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3166  * not respond to a Get SDR command if the length of the data
3167  * requested is exactly 0x3A, which leads to command timeouts and no
3168  * data returned.  This intercepts such commands, and causes userspace
3169  * callers to try again with a different-sized buffer, which succeeds.
3170  */
3171
3172 #define STORAGE_NETFN 0x0A
3173 #define STORAGE_CMD_GET_SDR 0x23
3174 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3175                                              unsigned long unused,
3176                                              void *in)
3177 {
3178         struct smi_info *smi_info = in;
3179         unsigned char *data = smi_info->curr_msg->data;
3180         unsigned int size   = smi_info->curr_msg->data_size;
3181         if (size >= 8 &&
3182             (data[0]>>2) == STORAGE_NETFN &&
3183             data[1] == STORAGE_CMD_GET_SDR &&
3184             data[7] == 0x3A) {
3185                 return_hosed_msg_badsize(smi_info);
3186                 return NOTIFY_STOP;
3187         }
3188         return NOTIFY_DONE;
3189 }
3190
3191 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3192         .notifier_call  = dell_poweredge_bt_xaction_handler,
3193 };
3194
3195 /*
3196  * setup_dell_poweredge_bt_xaction_handler
3197  * @info - smi_info.device_id must be filled in already
3198  *
3199  * Fills in smi_info.device_id.start_transaction_pre_hook
3200  * when we know what function to use there.
3201  */
3202 static void
3203 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3204 {
3205         struct ipmi_device_id *id = &smi_info->device_id;
3206         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3207             smi_info->si_type == SI_BT)
3208                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3209 }
3210
3211 /*
3212  * setup_oem_data_handler
3213  * @info - smi_info.device_id must be filled in already
3214  *
3215  * Fills in smi_info.device_id.oem_data_available_handler
3216  * when we know what function to use there.
3217  */
3218
3219 static void setup_oem_data_handler(struct smi_info *smi_info)
3220 {
3221         setup_dell_poweredge_oem_data_handler(smi_info);
3222 }
3223
3224 static void setup_xaction_handlers(struct smi_info *smi_info)
3225 {
3226         setup_dell_poweredge_bt_xaction_handler(smi_info);
3227 }
3228
3229 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3230 {
3231         if (smi_info->thread != NULL)
3232                 kthread_stop(smi_info->thread);
3233         if (smi_info->timer_running)
3234                 del_timer_sync(&smi_info->si_timer);
3235 }
3236
3237 static struct ipmi_default_vals
3238 {
3239         int type;
3240         int port;
3241 } ipmi_defaults[] =
3242 {
3243         { .type = SI_KCS, .port = 0xca2 },
3244         { .type = SI_SMIC, .port = 0xca9 },
3245         { .type = SI_BT, .port = 0xe4 },
3246         { .port = 0 }
3247 };
3248
3249 static void default_find_bmc(void)
3250 {
3251         struct smi_info *info;
3252         int             i;
3253
3254         for (i = 0; ; i++) {
3255                 if (!ipmi_defaults[i].port)
3256                         break;
3257 #ifdef CONFIG_PPC
3258                 if (check_legacy_ioport(ipmi_defaults[i].port))
3259                         continue;
3260 #endif
3261                 info = smi_info_alloc();
3262                 if (!info)
3263                         return;
3264
3265                 info->addr_source = SI_DEFAULT;
3266
3267                 info->si_type = ipmi_defaults[i].type;
3268                 info->io_setup = port_setup;
3269                 info->io.addr_data = ipmi_defaults[i].port;
3270                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3271
3272                 info->io.addr = NULL;
3273                 info->io.regspacing = DEFAULT_REGSPACING;
3274                 info->io.regsize = DEFAULT_REGSPACING;
3275                 info->io.regshift = 0;
3276
3277                 if (add_smi(info) == 0) {
3278                         if ((try_smi_init(info)) == 0) {
3279                                 /* Found one... */
3280                                 printk(KERN_INFO PFX "Found default %s"
3281                                 " state machine at %s address 0x%lx\n",
3282                                 si_to_str[info->si_type],
3283                                 addr_space_to_str[info->io.addr_type],
3284                                 info->io.addr_data);
3285                         } else
3286                                 cleanup_one_si(info);
3287                 } else {
3288                         kfree(info);
3289                 }
3290         }
3291 }
3292
3293 static int is_new_interface(struct smi_info *info)
3294 {
3295         struct smi_info *e;
3296
3297         list_for_each_entry(e, &smi_infos, link) {
3298                 if (e->io.addr_type != info->io.addr_type)
3299                         continue;
3300                 if (e->io.addr_data == info->io.addr_data)
3301                         return 0;
3302         }
3303
3304         return 1;
3305 }
3306
3307 static int add_smi(struct smi_info *new_smi)
3308 {
3309         int rv = 0;
3310
3311         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3312                ipmi_addr_src_to_str(new_smi->addr_source),
3313                si_to_str[new_smi->si_type]);
3314         mutex_lock(&smi_infos_lock);
3315         if (!is_new_interface(new_smi)) {
3316                 printk(KERN_CONT " duplicate interface\n");
3317                 rv = -EBUSY;
3318                 goto out_err;
3319         }
3320
3321         printk(KERN_CONT "\n");
3322
3323         /* So we know not to free it unless we have allocated one. */
3324         new_smi->intf = NULL;
3325         new_smi->si_sm = NULL;
3326         new_smi->handlers = NULL;
3327
3328         list_add_tail(&new_smi->link, &smi_infos);
3329
3330 out_err:
3331         mutex_unlock(&smi_infos_lock);
3332         return rv;
3333 }
3334
3335 static int try_smi_init(struct smi_info *new_smi)
3336 {
3337         int rv = 0;
3338         int i;
3339
3340         printk(KERN_INFO PFX "Trying %s-specified %s state"
3341                " machine at %s address 0x%lx, slave address 0x%x,"
3342                " irq %d\n",
3343                ipmi_addr_src_to_str(new_smi->addr_source),
3344                si_to_str[new_smi->si_type],
3345                addr_space_to_str[new_smi->io.addr_type],
3346                new_smi->io.addr_data,
3347                new_smi->slave_addr, new_smi->irq);
3348
3349         switch (new_smi->si_type) {
3350         case SI_KCS:
3351                 new_smi->handlers = &kcs_smi_handlers;
3352                 break;
3353
3354         case SI_SMIC:
3355                 new_smi->handlers = &smic_smi_handlers;
3356                 break;
3357
3358         case SI_BT:
3359                 new_smi->handlers = &bt_smi_handlers;
3360                 break;
3361
3362         default:
3363                 /* No support for anything else yet. */
3364                 rv = -EIO;
3365                 goto out_err;
3366         }
3367
3368         /* Allocate the state machine's data and initialize it. */
3369         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3370         if (!new_smi->si_sm) {
3371                 printk(KERN_ERR PFX
3372                        "Could not allocate state machine memory\n");
3373                 rv = -ENOMEM;
3374                 goto out_err;
3375         }
3376         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3377                                                         &new_smi->io);
3378
3379         /* Now that we know the I/O size, we can set up the I/O. */
3380         rv = new_smi->io_setup(new_smi);
3381         if (rv) {
3382                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3383                 goto out_err;
3384         }
3385
3386         /* Do low-level detection first. */
3387         if (new_smi->handlers->detect(new_smi->si_sm)) {
3388                 if (new_smi->addr_source)
3389                         printk(KERN_INFO PFX "Interface detection failed\n");
3390                 rv = -ENODEV;
3391                 goto out_err;
3392         }
3393
3394         /*
3395          * Attempt a get device id command.  If it fails, we probably
3396          * don't have a BMC here.
3397          */
3398         rv = try_get_dev_id(new_smi);
3399         if (rv) {
3400                 if (new_smi->addr_source)
3401                         printk(KERN_INFO PFX "There appears to be no BMC"
3402                                " at this location\n");
3403                 goto out_err;
3404         }
3405
3406         setup_oem_data_handler(new_smi);
3407         setup_xaction_handlers(new_smi);
3408
3409         new_smi->waiting_msg = NULL;
3410         new_smi->curr_msg = NULL;
3411         atomic_set(&new_smi->req_events, 0);
3412         new_smi->run_to_completion = false;
3413         for (i = 0; i < SI_NUM_STATS; i++)
3414                 atomic_set(&new_smi->stats[i], 0);
3415
3416         new_smi->interrupt_disabled = true;
3417         atomic_set(&new_smi->need_watch, 0);
3418         new_smi->intf_num = smi_num;
3419         smi_num++;
3420
3421         rv = try_enable_event_buffer(new_smi);
3422         if (rv == 0)
3423                 new_smi->has_event_buffer = true;
3424
3425         /*
3426          * Start clearing the flags before we enable interrupts or the
3427          * timer to avoid racing with the timer.
3428          */
3429         start_clear_flags(new_smi);
3430
3431         /*
3432          * IRQ is defined to be set when non-zero.  req_events will
3433          * cause a global flags check that will enable interrupts.
3434          */
3435         if (new_smi->irq) {
3436                 new_smi->interrupt_disabled = false;
3437                 atomic_set(&new_smi->req_events, 1);
3438         }
3439
3440         if (!new_smi->dev) {
3441                 /*
3442                  * If we don't already have a device from something
3443                  * else (like PCI), then register a new one.
3444                  */
3445                 new_smi->pdev = platform_device_alloc("ipmi_si",
3446                                                       new_smi->intf_num);
3447                 if (!new_smi->pdev) {
3448                         printk(KERN_ERR PFX
3449                                "Unable to allocate platform device\n");
3450                         goto out_err;
3451                 }
3452                 new_smi->dev = &new_smi->pdev->dev;
3453                 new_smi->dev->driver = &ipmi_driver.driver;
3454
3455                 rv = platform_device_add(new_smi->pdev);
3456                 if (rv) {
3457                         printk(KERN_ERR PFX
3458                                "Unable to register system interface device:"
3459                                " %d\n",
3460                                rv);
3461                         goto out_err;
3462                 }
3463                 new_smi->dev_registered = true;
3464         }
3465
3466         rv = ipmi_register_smi(&handlers,
3467                                new_smi,
3468                                &new_smi->device_id,
3469                                new_smi->dev,
3470                                new_smi->slave_addr);
3471         if (rv) {
3472                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3473                         rv);
3474                 goto out_err_stop_timer;
3475         }
3476
3477         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3478                                      &smi_type_proc_ops,
3479                                      new_smi);
3480         if (rv) {
3481                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3482                 goto out_err_stop_timer;
3483         }
3484
3485         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3486                                      &smi_si_stats_proc_ops,
3487                                      new_smi);
3488         if (rv) {
3489                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3490                 goto out_err_stop_timer;
3491         }
3492
3493         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3494                                      &smi_params_proc_ops,
3495                                      new_smi);
3496         if (rv) {
3497                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3498                 goto out_err_stop_timer;
3499         }
3500
3501         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3502                  si_to_str[new_smi->si_type]);
3503
3504         return 0;
3505
3506  out_err_stop_timer:
3507         wait_for_timer_and_thread(new_smi);
3508
3509  out_err:
3510         new_smi->interrupt_disabled = true;
3511
3512         if (new_smi->intf) {
3513                 ipmi_smi_t intf = new_smi->intf;
3514                 new_smi->intf = NULL;
3515                 ipmi_unregister_smi(intf);
3516         }
3517
3518         if (new_smi->irq_cleanup) {
3519                 new_smi->irq_cleanup(new_smi);
3520                 new_smi->irq_cleanup = NULL;
3521         }
3522
3523         /*
3524          * Wait until we know that we are out of any interrupt
3525          * handlers might have been running before we freed the
3526          * interrupt.
3527          */
3528         synchronize_sched();
3529
3530         if (new_smi->si_sm) {
3531                 if (new_smi->handlers)
3532                         new_smi->handlers->cleanup(new_smi->si_sm);
3533                 kfree(new_smi->si_sm);
3534                 new_smi->si_sm = NULL;
3535         }
3536         if (new_smi->addr_source_cleanup) {
3537                 new_smi->addr_source_cleanup(new_smi);
3538                 new_smi->addr_source_cleanup = NULL;
3539         }
3540         if (new_smi->io_cleanup) {
3541                 new_smi->io_cleanup(new_smi);
3542                 new_smi->io_cleanup = NULL;
3543         }
3544
3545         if (new_smi->dev_registered) {
3546                 platform_device_unregister(new_smi->pdev);
3547                 new_smi->dev_registered = false;
3548         }
3549
3550         return rv;
3551 }
3552
3553 static int init_ipmi_si(void)
3554 {
3555         int  i;
3556         char *str;
3557         int  rv;
3558         struct smi_info *e;
3559         enum ipmi_addr_src type = SI_INVALID;
3560
3561         if (initialized)
3562                 return 0;
3563         initialized = 1;
3564
3565         if (si_tryplatform) {
3566                 rv = platform_driver_register(&ipmi_driver);
3567                 if (rv) {
3568                         printk(KERN_ERR PFX "Unable to register "
3569                                "driver: %d\n", rv);
3570                         return rv;
3571                 }
3572         }
3573
3574         /* Parse out the si_type string into its components. */
3575         str = si_type_str;
3576         if (*str != '\0') {
3577                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3578                         si_type[i] = str;
3579                         str = strchr(str, ',');
3580                         if (str) {
3581                                 *str = '\0';
3582                                 str++;
3583                         } else {
3584                                 break;
3585                         }
3586                 }
3587         }
3588
3589         printk(KERN_INFO "IPMI System Interface driver.\n");
3590
3591         /* If the user gave us a device, they presumably want us to use it */
3592         if (!hardcode_find_bmc())
3593                 return 0;
3594
3595 #ifdef CONFIG_PCI
3596         if (si_trypci) {
3597                 rv = pci_register_driver(&ipmi_pci_driver);
3598                 if (rv)
3599                         printk(KERN_ERR PFX "Unable to register "
3600                                "PCI driver: %d\n", rv);
3601                 else
3602                         pci_registered = true;
3603         }
3604 #endif
3605
3606 #ifdef CONFIG_ACPI
3607         if (si_tryacpi) {
3608                 pnp_register_driver(&ipmi_pnp_driver);
3609                 pnp_registered = true;
3610         }
3611 #endif
3612
3613 #ifdef CONFIG_DMI
3614         if (si_trydmi)
3615                 dmi_find_bmc();
3616 #endif
3617
3618 #ifdef CONFIG_ACPI
3619         if (si_tryacpi)
3620                 spmi_find_bmc();
3621 #endif
3622
3623 #ifdef CONFIG_PARISC
3624         register_parisc_driver(&ipmi_parisc_driver);
3625         parisc_registered = true;
3626         /* poking PC IO addresses will crash machine, don't do it */
3627         si_trydefaults = 0;
3628 #endif
3629
3630         /* We prefer devices with interrupts, but in the case of a machine
3631            with multiple BMCs we assume that there will be several instances
3632            of a given type so if we succeed in registering a type then also
3633            try to register everything else of the same type */
3634
3635         mutex_lock(&smi_infos_lock);
3636         list_for_each_entry(e, &smi_infos, link) {
3637                 /* Try to register a device if it has an IRQ and we either
3638                    haven't successfully registered a device yet or this
3639                    device has the same type as one we successfully registered */
3640                 if (e->irq && (!type || e->addr_source == type)) {
3641                         if (!try_smi_init(e)) {
3642                                 type = e->addr_source;
3643                         }
3644                 }
3645         }
3646
3647         /* type will only have been set if we successfully registered an si */
3648         if (type) {
3649                 mutex_unlock(&smi_infos_lock);
3650                 return 0;
3651         }
3652
3653         /* Fall back to the preferred device */
3654
3655         list_for_each_entry(e, &smi_infos, link) {
3656                 if (!e->irq && (!type || e->addr_source == type)) {
3657                         if (!try_smi_init(e)) {
3658                                 type = e->addr_source;
3659                         }
3660                 }
3661         }
3662         mutex_unlock(&smi_infos_lock);
3663
3664         if (type)
3665                 return 0;
3666
3667         if (si_trydefaults) {
3668                 mutex_lock(&smi_infos_lock);
3669                 if (list_empty(&smi_infos)) {
3670                         /* No BMC was found, try defaults. */
3671                         mutex_unlock(&smi_infos_lock);
3672                         default_find_bmc();
3673                 } else
3674                         mutex_unlock(&smi_infos_lock);
3675         }
3676
3677         mutex_lock(&smi_infos_lock);
3678         if (unload_when_empty && list_empty(&smi_infos)) {
3679                 mutex_unlock(&smi_infos_lock);
3680                 cleanup_ipmi_si();
3681                 printk(KERN_WARNING PFX
3682                        "Unable to find any System Interface(s)\n");
3683                 return -ENODEV;
3684         } else {
3685                 mutex_unlock(&smi_infos_lock);
3686                 return 0;
3687         }
3688 }
3689 module_init(init_ipmi_si);
3690
3691 static void cleanup_one_si(struct smi_info *to_clean)
3692 {
3693         int           rv = 0;
3694
3695         if (!to_clean)
3696                 return;
3697
3698         if (to_clean->intf) {
3699                 ipmi_smi_t intf = to_clean->intf;
3700
3701                 to_clean->intf = NULL;
3702                 rv = ipmi_unregister_smi(intf);
3703                 if (rv) {
3704                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3705                                rv);
3706                 }
3707         }
3708
3709         if (to_clean->dev)
3710                 dev_set_drvdata(to_clean->dev, NULL);
3711
3712         list_del(&to_clean->link);
3713
3714         /*
3715          * Make sure that interrupts, the timer and the thread are
3716          * stopped and will not run again.
3717          */
3718         if (to_clean->irq_cleanup)
3719                 to_clean->irq_cleanup(to_clean);
3720         wait_for_timer_and_thread(to_clean);
3721
3722         /*
3723          * Timeouts are stopped, now make sure the interrupts are off
3724          * in the BMC.  Note that timers and CPU interrupts are off,
3725          * so no need for locks.
3726          */
3727         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3728                 poll(to_clean);
3729                 schedule_timeout_uninterruptible(1);
3730         }
3731         disable_si_irq(to_clean);
3732         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3733                 poll(to_clean);
3734                 schedule_timeout_uninterruptible(1);
3735         }
3736
3737         if (to_clean->handlers)
3738                 to_clean->handlers->cleanup(to_clean->si_sm);
3739
3740         kfree(to_clean->si_sm);
3741
3742         if (to_clean->addr_source_cleanup)
3743                 to_clean->addr_source_cleanup(to_clean);
3744         if (to_clean->io_cleanup)
3745                 to_clean->io_cleanup(to_clean);
3746
3747         if (to_clean->dev_registered)
3748                 platform_device_unregister(to_clean->pdev);
3749
3750         kfree(to_clean);
3751 }
3752
3753 static void cleanup_ipmi_si(void)
3754 {
3755         struct smi_info *e, *tmp_e;
3756
3757         if (!initialized)
3758                 return;
3759
3760 #ifdef CONFIG_PCI
3761         if (pci_registered)
3762                 pci_unregister_driver(&ipmi_pci_driver);
3763 #endif
3764 #ifdef CONFIG_ACPI
3765         if (pnp_registered)
3766                 pnp_unregister_driver(&ipmi_pnp_driver);
3767 #endif
3768 #ifdef CONFIG_PARISC
3769         if (parisc_registered)
3770                 unregister_parisc_driver(&ipmi_parisc_driver);
3771 #endif
3772
3773         platform_driver_unregister(&ipmi_driver);
3774
3775         mutex_lock(&smi_infos_lock);
3776         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3777                 cleanup_one_si(e);
3778         mutex_unlock(&smi_infos_lock);
3779 }
3780 module_exit(cleanup_ipmi_si);
3781
3782 MODULE_LICENSE("GPL");
3783 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3784 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3785                    " system interfaces.");