ipmi: Cleanup DEBUG_TIMING ifdef usage
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_GETTING_MESSAGES,
96         SI_CHECKING_ENABLES,
97         SI_SETTING_ENABLES
98         /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG             2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
105
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119         /*
120          * Number of times the driver requested a timer while an operation
121          * was in progress.
122          */
123         SI_STAT_short_timeouts = 0,
124
125         /*
126          * Number of times the driver requested a timer while nothing was in
127          * progress.
128          */
129         SI_STAT_long_timeouts,
130
131         /* Number of times the interface was idle while being polled. */
132         SI_STAT_idles,
133
134         /* Number of interrupts the driver handled. */
135         SI_STAT_interrupts,
136
137         /* Number of time the driver got an ATTN from the hardware. */
138         SI_STAT_attentions,
139
140         /* Number of times the driver requested flags from the hardware. */
141         SI_STAT_flag_fetches,
142
143         /* Number of times the hardware didn't follow the state machine. */
144         SI_STAT_hosed_count,
145
146         /* Number of completed messages. */
147         SI_STAT_complete_transactions,
148
149         /* Number of IPMI events received from the hardware. */
150         SI_STAT_events,
151
152         /* Number of watchdog pretimeouts. */
153         SI_STAT_watchdog_pretimeouts,
154
155         /* Number of asynchronous messages received. */
156         SI_STAT_incoming_messages,
157
158
159         /* This *must* remain last, add new values above this. */
160         SI_NUM_STATS
161 };
162
163 struct smi_info {
164         int                    intf_num;
165         ipmi_smi_t             intf;
166         struct si_sm_data      *si_sm;
167         struct si_sm_handlers  *handlers;
168         enum si_type           si_type;
169         spinlock_t             si_lock;
170         struct ipmi_smi_msg    *waiting_msg;
171         struct ipmi_smi_msg    *curr_msg;
172         enum si_intf_state     si_state;
173
174         /*
175          * Used to handle the various types of I/O that can occur with
176          * IPMI
177          */
178         struct si_sm_io io;
179         int (*io_setup)(struct smi_info *info);
180         void (*io_cleanup)(struct smi_info *info);
181         int (*irq_setup)(struct smi_info *info);
182         void (*irq_cleanup)(struct smi_info *info);
183         unsigned int io_size;
184         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185         void (*addr_source_cleanup)(struct smi_info *info);
186         void *addr_source_data;
187
188         /*
189          * Per-OEM handler, called from handle_flags().  Returns 1
190          * when handle_flags() needs to be re-run or 0 indicating it
191          * set si_state itself.
192          */
193         int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195         /*
196          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197          * is set to hold the flags until we are done handling everything
198          * from the flags.
199          */
200 #define RECEIVE_MSG_AVAIL       0x01
201 #define EVENT_MSG_BUFFER_FULL   0x02
202 #define WDT_PRE_TIMEOUT_INT     0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207                              OEM1_DATA_AVAIL | \
208                              OEM2_DATA_AVAIL)
209         unsigned char       msg_flags;
210
211         /* Does the BMC have an event buffer? */
212         bool                has_event_buffer;
213
214         /*
215          * If set to true, this will request events the next time the
216          * state machine is idle.
217          */
218         atomic_t            req_events;
219
220         /*
221          * If true, run the state machine to completion on every send
222          * call.  Generally used after a panic to make sure stuff goes
223          * out.
224          */
225         bool                run_to_completion;
226
227         /* The I/O port of an SI interface. */
228         int                 port;
229
230         /*
231          * The space between start addresses of the two ports.  For
232          * instance, if the first port is 0xca2 and the spacing is 4, then
233          * the second port is 0xca6.
234          */
235         unsigned int        spacing;
236
237         /* zero if no irq; */
238         int                 irq;
239
240         /* The timer for this si. */
241         struct timer_list   si_timer;
242
243         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244         bool                timer_running;
245
246         /* The time (in jiffies) the last timeout occurred at. */
247         unsigned long       last_timeout_jiffies;
248
249         /* Are we waiting for the events, pretimeouts, received msgs? */
250         atomic_t            need_watch;
251
252         /*
253          * The driver will disable interrupts when it gets into a
254          * situation where it cannot handle messages due to lack of
255          * memory.  Once that situation clears up, it will re-enable
256          * interrupts.
257          */
258         bool interrupt_disabled;
259
260         /*
261          * Does the BMC support events?
262          */
263         bool supports_event_msg_buff;
264
265         /*
266          * Did we get an attention that we did not handle?
267          */
268         bool got_attn;
269
270         /* From the get device id response... */
271         struct ipmi_device_id device_id;
272
273         /* Driver model stuff. */
274         struct device *dev;
275         struct platform_device *pdev;
276
277         /*
278          * True if we allocated the device, false if it came from
279          * someplace else (like PCI).
280          */
281         bool dev_registered;
282
283         /* Slave address, could be reported from DMI. */
284         unsigned char slave_addr;
285
286         /* Counters and things for the proc filesystem. */
287         atomic_t stats[SI_NUM_STATS];
288
289         struct task_struct *thread;
290
291         struct list_head link;
292         union ipmi_smi_info_union addr_info;
293 };
294
295 #define smi_inc_stat(smi, stat) \
296         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
299
300 #define SI_MAX_PARMS 4
301
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
313
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
316
317 static bool unload_when_empty = true;
318
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
323
324 #ifdef DEBUG_TIMING
325 void debug_timestamp(char *msg)
326 {
327         struct timeval t;
328
329         do_gettimeofday(&t);
330         pr_debug("**%s: %d.%9.9d\n", msg, t.tv_sec, t.tv_usec);
331 }
332 #else
333 #define debug_timestamp(x)
334 #endif
335
336 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
337 static int register_xaction_notifier(struct notifier_block *nb)
338 {
339         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
340 }
341
342 static void deliver_recv_msg(struct smi_info *smi_info,
343                              struct ipmi_smi_msg *msg)
344 {
345         /* Deliver the message to the upper layer. */
346         if (smi_info->intf)
347                 ipmi_smi_msg_received(smi_info->intf, msg);
348         else
349                 ipmi_free_smi_msg(msg);
350 }
351
352 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
353 {
354         struct ipmi_smi_msg *msg = smi_info->curr_msg;
355
356         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
357                 cCode = IPMI_ERR_UNSPECIFIED;
358         /* else use it as is */
359
360         /* Make it a response */
361         msg->rsp[0] = msg->data[0] | 4;
362         msg->rsp[1] = msg->data[1];
363         msg->rsp[2] = cCode;
364         msg->rsp_size = 3;
365
366         smi_info->curr_msg = NULL;
367         deliver_recv_msg(smi_info, msg);
368 }
369
370 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
371 {
372         int              rv;
373
374         if (!smi_info->waiting_msg) {
375                 smi_info->curr_msg = NULL;
376                 rv = SI_SM_IDLE;
377         } else {
378                 int err;
379
380                 smi_info->curr_msg = smi_info->waiting_msg;
381                 smi_info->waiting_msg = NULL;
382                 debug_timestamp("Start2");
383                 err = atomic_notifier_call_chain(&xaction_notifier_list,
384                                 0, smi_info);
385                 if (err & NOTIFY_STOP_MASK) {
386                         rv = SI_SM_CALL_WITHOUT_DELAY;
387                         goto out;
388                 }
389                 err = smi_info->handlers->start_transaction(
390                         smi_info->si_sm,
391                         smi_info->curr_msg->data,
392                         smi_info->curr_msg->data_size);
393                 if (err)
394                         return_hosed_msg(smi_info, err);
395
396                 rv = SI_SM_CALL_WITHOUT_DELAY;
397         }
398  out:
399         return rv;
400 }
401
402 static void start_check_enables(struct smi_info *smi_info)
403 {
404         unsigned char msg[2];
405
406         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408
409         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410         smi_info->si_state = SI_CHECKING_ENABLES;
411 }
412
413 static void start_clear_flags(struct smi_info *smi_info)
414 {
415         unsigned char msg[3];
416
417         /* Make sure the watchdog pre-timeout flag is not set at startup. */
418         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
420         msg[2] = WDT_PRE_TIMEOUT_INT;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
423         smi_info->si_state = SI_CLEARING_FLAGS;
424 }
425
426 static void start_getting_msg_queue(struct smi_info *smi_info)
427 {
428         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
429         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
430         smi_info->curr_msg->data_size = 2;
431
432         smi_info->handlers->start_transaction(
433                 smi_info->si_sm,
434                 smi_info->curr_msg->data,
435                 smi_info->curr_msg->data_size);
436         smi_info->si_state = SI_GETTING_MESSAGES;
437 }
438
439 static void start_getting_events(struct smi_info *smi_info)
440 {
441         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
443         smi_info->curr_msg->data_size = 2;
444
445         smi_info->handlers->start_transaction(
446                 smi_info->si_sm,
447                 smi_info->curr_msg->data,
448                 smi_info->curr_msg->data_size);
449         smi_info->si_state = SI_GETTING_EVENTS;
450 }
451
452 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
453 {
454         smi_info->last_timeout_jiffies = jiffies;
455         mod_timer(&smi_info->si_timer, new_val);
456         smi_info->timer_running = true;
457 }
458
459 /*
460  * When we have a situtaion where we run out of memory and cannot
461  * allocate messages, we just leave them in the BMC and run the system
462  * polled until we can allocate some memory.  Once we have some
463  * memory, we will re-enable the interrupt.
464  */
465 static inline bool disable_si_irq(struct smi_info *smi_info)
466 {
467         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
468                 smi_info->interrupt_disabled = true;
469                 start_check_enables(smi_info);
470                 return true;
471         }
472         return false;
473 }
474
475 static inline bool enable_si_irq(struct smi_info *smi_info)
476 {
477         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
478                 smi_info->interrupt_disabled = false;
479                 start_check_enables(smi_info);
480                 return true;
481         }
482         return false;
483 }
484
485 /*
486  * Allocate a message.  If unable to allocate, start the interrupt
487  * disable process and return NULL.  If able to allocate but
488  * interrupts are disabled, free the message and return NULL after
489  * starting the interrupt enable process.
490  */
491 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
492 {
493         struct ipmi_smi_msg *msg;
494
495         msg = ipmi_alloc_smi_msg();
496         if (!msg) {
497                 if (!disable_si_irq(smi_info))
498                         smi_info->si_state = SI_NORMAL;
499         } else if (enable_si_irq(smi_info)) {
500                 ipmi_free_smi_msg(msg);
501                 msg = NULL;
502         }
503         return msg;
504 }
505
506 static void handle_flags(struct smi_info *smi_info)
507 {
508  retry:
509         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
510                 /* Watchdog pre-timeout */
511                 smi_inc_stat(smi_info, watchdog_pretimeouts);
512
513                 start_clear_flags(smi_info);
514                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
515                 if (smi_info->intf)
516                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
517         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
518                 /* Messages available. */
519                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
520                 if (!smi_info->curr_msg)
521                         return;
522
523                 start_getting_msg_queue(smi_info);
524         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
525                 /* Events available. */
526                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
527                 if (!smi_info->curr_msg)
528                         return;
529
530                 start_getting_events(smi_info);
531         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
532                    smi_info->oem_data_avail_handler) {
533                 if (smi_info->oem_data_avail_handler(smi_info))
534                         goto retry;
535         } else
536                 smi_info->si_state = SI_NORMAL;
537 }
538
539 /*
540  * Global enables we care about.
541  */
542 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
543                              IPMI_BMC_EVT_MSG_INTR)
544
545 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
546                                  bool *irq_on)
547 {
548         u8 enables = 0;
549
550         if (smi_info->supports_event_msg_buff)
551                 enables |= IPMI_BMC_EVT_MSG_BUFF;
552         else
553                 enables &= ~IPMI_BMC_EVT_MSG_BUFF;
554
555         if (smi_info->irq && !smi_info->interrupt_disabled)
556                 enables |= IPMI_BMC_RCV_MSG_INTR;
557         else
558                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
559
560         if (smi_info->supports_event_msg_buff &&
561             smi_info->irq && !smi_info->interrupt_disabled)
562
563                 enables |= IPMI_BMC_EVT_MSG_INTR;
564         else
565                 enables &= ~IPMI_BMC_EVT_MSG_INTR;
566
567         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
568
569         return enables;
570 }
571
572 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
573 {
574         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
575
576         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
577
578         if ((bool)irqstate == irq_on)
579                 return;
580
581         if (irq_on)
582                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
583                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
584         else
585                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
586 }
587
588 static void handle_transaction_done(struct smi_info *smi_info)
589 {
590         struct ipmi_smi_msg *msg;
591
592         debug_timestamp("Done");
593         switch (smi_info->si_state) {
594         case SI_NORMAL:
595                 if (!smi_info->curr_msg)
596                         break;
597
598                 smi_info->curr_msg->rsp_size
599                         = smi_info->handlers->get_result(
600                                 smi_info->si_sm,
601                                 smi_info->curr_msg->rsp,
602                                 IPMI_MAX_MSG_LENGTH);
603
604                 /*
605                  * Do this here becase deliver_recv_msg() releases the
606                  * lock, and a new message can be put in during the
607                  * time the lock is released.
608                  */
609                 msg = smi_info->curr_msg;
610                 smi_info->curr_msg = NULL;
611                 deliver_recv_msg(smi_info, msg);
612                 break;
613
614         case SI_GETTING_FLAGS:
615         {
616                 unsigned char msg[4];
617                 unsigned int  len;
618
619                 /* We got the flags from the SMI, now handle them. */
620                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
621                 if (msg[2] != 0) {
622                         /* Error fetching flags, just give up for now. */
623                         smi_info->si_state = SI_NORMAL;
624                 } else if (len < 4) {
625                         /*
626                          * Hmm, no flags.  That's technically illegal, but
627                          * don't use uninitialized data.
628                          */
629                         smi_info->si_state = SI_NORMAL;
630                 } else {
631                         smi_info->msg_flags = msg[3];
632                         handle_flags(smi_info);
633                 }
634                 break;
635         }
636
637         case SI_CLEARING_FLAGS:
638         {
639                 unsigned char msg[3];
640
641                 /* We cleared the flags. */
642                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
643                 if (msg[2] != 0) {
644                         /* Error clearing flags */
645                         dev_warn(smi_info->dev,
646                                  "Error clearing flags: %2.2x\n", msg[2]);
647                 }
648                 smi_info->si_state = SI_NORMAL;
649                 break;
650         }
651
652         case SI_GETTING_EVENTS:
653         {
654                 smi_info->curr_msg->rsp_size
655                         = smi_info->handlers->get_result(
656                                 smi_info->si_sm,
657                                 smi_info->curr_msg->rsp,
658                                 IPMI_MAX_MSG_LENGTH);
659
660                 /*
661                  * Do this here becase deliver_recv_msg() releases the
662                  * lock, and a new message can be put in during the
663                  * time the lock is released.
664                  */
665                 msg = smi_info->curr_msg;
666                 smi_info->curr_msg = NULL;
667                 if (msg->rsp[2] != 0) {
668                         /* Error getting event, probably done. */
669                         msg->done(msg);
670
671                         /* Take off the event flag. */
672                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
673                         handle_flags(smi_info);
674                 } else {
675                         smi_inc_stat(smi_info, events);
676
677                         /*
678                          * Do this before we deliver the message
679                          * because delivering the message releases the
680                          * lock and something else can mess with the
681                          * state.
682                          */
683                         handle_flags(smi_info);
684
685                         deliver_recv_msg(smi_info, msg);
686                 }
687                 break;
688         }
689
690         case SI_GETTING_MESSAGES:
691         {
692                 smi_info->curr_msg->rsp_size
693                         = smi_info->handlers->get_result(
694                                 smi_info->si_sm,
695                                 smi_info->curr_msg->rsp,
696                                 IPMI_MAX_MSG_LENGTH);
697
698                 /*
699                  * Do this here becase deliver_recv_msg() releases the
700                  * lock, and a new message can be put in during the
701                  * time the lock is released.
702                  */
703                 msg = smi_info->curr_msg;
704                 smi_info->curr_msg = NULL;
705                 if (msg->rsp[2] != 0) {
706                         /* Error getting event, probably done. */
707                         msg->done(msg);
708
709                         /* Take off the msg flag. */
710                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
711                         handle_flags(smi_info);
712                 } else {
713                         smi_inc_stat(smi_info, incoming_messages);
714
715                         /*
716                          * Do this before we deliver the message
717                          * because delivering the message releases the
718                          * lock and something else can mess with the
719                          * state.
720                          */
721                         handle_flags(smi_info);
722
723                         deliver_recv_msg(smi_info, msg);
724                 }
725                 break;
726         }
727
728         case SI_CHECKING_ENABLES:
729         {
730                 unsigned char msg[4];
731                 u8 enables;
732                 bool irq_on;
733
734                 /* We got the flags from the SMI, now handle them. */
735                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736                 if (msg[2] != 0) {
737                         dev_warn(smi_info->dev,
738                                  "Couldn't get irq info: %x.\n", msg[2]);
739                         dev_warn(smi_info->dev,
740                                  "Maybe ok, but ipmi might run very slowly.\n");
741                         smi_info->si_state = SI_NORMAL;
742                         break;
743                 }
744                 enables = current_global_enables(smi_info, 0, &irq_on);
745                 if (smi_info->si_type == SI_BT)
746                         /* BT has its own interrupt enable bit. */
747                         check_bt_irq(smi_info, irq_on);
748                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
749                         /* Enables are not correct, fix them. */
750                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
751                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
752                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
753                         smi_info->handlers->start_transaction(
754                                 smi_info->si_sm, msg, 3);
755                         smi_info->si_state = SI_SETTING_ENABLES;
756                 } else if (smi_info->supports_event_msg_buff) {
757                         smi_info->curr_msg = ipmi_alloc_smi_msg();
758                         if (!smi_info->curr_msg) {
759                                 smi_info->si_state = SI_NORMAL;
760                                 break;
761                         }
762                         start_getting_msg_queue(smi_info);
763                 } else {
764                         smi_info->si_state = SI_NORMAL;
765                 }
766                 break;
767         }
768
769         case SI_SETTING_ENABLES:
770         {
771                 unsigned char msg[4];
772
773                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
774                 if (msg[2] != 0)
775                         dev_warn(smi_info->dev,
776                                  "Could not set the global enables: 0x%x.\n",
777                                  msg[2]);
778
779                 if (smi_info->supports_event_msg_buff) {
780                         smi_info->curr_msg = ipmi_alloc_smi_msg();
781                         if (!smi_info->curr_msg) {
782                                 smi_info->si_state = SI_NORMAL;
783                                 break;
784                         }
785                         start_getting_msg_queue(smi_info);
786                 } else {
787                         smi_info->si_state = SI_NORMAL;
788                 }
789                 break;
790         }
791         }
792 }
793
794 /*
795  * Called on timeouts and events.  Timeouts should pass the elapsed
796  * time, interrupts should pass in zero.  Must be called with
797  * si_lock held and interrupts disabled.
798  */
799 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
800                                            int time)
801 {
802         enum si_sm_result si_sm_result;
803
804  restart:
805         /*
806          * There used to be a loop here that waited a little while
807          * (around 25us) before giving up.  That turned out to be
808          * pointless, the minimum delays I was seeing were in the 300us
809          * range, which is far too long to wait in an interrupt.  So
810          * we just run until the state machine tells us something
811          * happened or it needs a delay.
812          */
813         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
814         time = 0;
815         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
816                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
817
818         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
819                 smi_inc_stat(smi_info, complete_transactions);
820
821                 handle_transaction_done(smi_info);
822                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
823         } else if (si_sm_result == SI_SM_HOSED) {
824                 smi_inc_stat(smi_info, hosed_count);
825
826                 /*
827                  * Do the before return_hosed_msg, because that
828                  * releases the lock.
829                  */
830                 smi_info->si_state = SI_NORMAL;
831                 if (smi_info->curr_msg != NULL) {
832                         /*
833                          * If we were handling a user message, format
834                          * a response to send to the upper layer to
835                          * tell it about the error.
836                          */
837                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
838                 }
839                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
840         }
841
842         /*
843          * We prefer handling attn over new messages.  But don't do
844          * this if there is not yet an upper layer to handle anything.
845          */
846         if (likely(smi_info->intf) &&
847             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
848                 unsigned char msg[2];
849
850                 if (smi_info->si_state != SI_NORMAL) {
851                         /*
852                          * We got an ATTN, but we are doing something else.
853                          * Handle the ATTN later.
854                          */
855                         smi_info->got_attn = true;
856                 } else {
857                         smi_info->got_attn = false;
858                         smi_inc_stat(smi_info, attentions);
859
860                         /*
861                          * Got a attn, send down a get message flags to see
862                          * what's causing it.  It would be better to handle
863                          * this in the upper layer, but due to the way
864                          * interrupts work with the SMI, that's not really
865                          * possible.
866                          */
867                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
868                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
869
870                         smi_info->handlers->start_transaction(
871                                 smi_info->si_sm, msg, 2);
872                         smi_info->si_state = SI_GETTING_FLAGS;
873                         goto restart;
874                 }
875         }
876
877         /* If we are currently idle, try to start the next message. */
878         if (si_sm_result == SI_SM_IDLE) {
879                 smi_inc_stat(smi_info, idles);
880
881                 si_sm_result = start_next_msg(smi_info);
882                 if (si_sm_result != SI_SM_IDLE)
883                         goto restart;
884         }
885
886         if ((si_sm_result == SI_SM_IDLE)
887             && (atomic_read(&smi_info->req_events))) {
888                 /*
889                  * We are idle and the upper layer requested that I fetch
890                  * events, so do so.
891                  */
892                 atomic_set(&smi_info->req_events, 0);
893
894                 /*
895                  * Take this opportunity to check the interrupt and
896                  * message enable state for the BMC.  The BMC can be
897                  * asynchronously reset, and may thus get interrupts
898                  * disable and messages disabled.
899                  */
900                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
901                         start_check_enables(smi_info);
902                 } else {
903                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
904                         if (!smi_info->curr_msg)
905                                 goto out;
906
907                         start_getting_events(smi_info);
908                 }
909                 goto restart;
910         }
911  out:
912         return si_sm_result;
913 }
914
915 static void check_start_timer_thread(struct smi_info *smi_info)
916 {
917         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
918                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
919
920                 if (smi_info->thread)
921                         wake_up_process(smi_info->thread);
922
923                 start_next_msg(smi_info);
924                 smi_event_handler(smi_info, 0);
925         }
926 }
927
928 static void sender(void                *send_info,
929                    struct ipmi_smi_msg *msg)
930 {
931         struct smi_info   *smi_info = send_info;
932         enum si_sm_result result;
933         unsigned long     flags;
934
935         BUG_ON(smi_info->waiting_msg);
936         smi_info->waiting_msg = msg;
937
938         debug_timestamp("Enqueue");
939
940         if (smi_info->run_to_completion) {
941                 /*
942                  * If we are running to completion, start it and run
943                  * transactions until everything is clear.
944                  */
945                 smi_info->curr_msg = smi_info->waiting_msg;
946                 smi_info->waiting_msg = NULL;
947
948                 /*
949                  * Run to completion means we are single-threaded, no
950                  * need for locks.
951                  */
952
953                 result = smi_event_handler(smi_info, 0);
954                 while (result != SI_SM_IDLE) {
955                         udelay(SI_SHORT_TIMEOUT_USEC);
956                         result = smi_event_handler(smi_info,
957                                                    SI_SHORT_TIMEOUT_USEC);
958                 }
959                 return;
960         }
961
962         spin_lock_irqsave(&smi_info->si_lock, flags);
963         check_start_timer_thread(smi_info);
964         spin_unlock_irqrestore(&smi_info->si_lock, flags);
965 }
966
967 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
968 {
969         struct smi_info   *smi_info = send_info;
970         enum si_sm_result result;
971
972         smi_info->run_to_completion = i_run_to_completion;
973         if (i_run_to_completion) {
974                 result = smi_event_handler(smi_info, 0);
975                 while (result != SI_SM_IDLE) {
976                         udelay(SI_SHORT_TIMEOUT_USEC);
977                         result = smi_event_handler(smi_info,
978                                                    SI_SHORT_TIMEOUT_USEC);
979                 }
980         }
981 }
982
983 /*
984  * Use -1 in the nsec value of the busy waiting timespec to tell that
985  * we are spinning in kipmid looking for something and not delaying
986  * between checks
987  */
988 static inline void ipmi_si_set_not_busy(struct timespec *ts)
989 {
990         ts->tv_nsec = -1;
991 }
992 static inline int ipmi_si_is_busy(struct timespec *ts)
993 {
994         return ts->tv_nsec != -1;
995 }
996
997 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
998                                         const struct smi_info *smi_info,
999                                         struct timespec *busy_until)
1000 {
1001         unsigned int max_busy_us = 0;
1002
1003         if (smi_info->intf_num < num_max_busy_us)
1004                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1005         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1006                 ipmi_si_set_not_busy(busy_until);
1007         else if (!ipmi_si_is_busy(busy_until)) {
1008                 getnstimeofday(busy_until);
1009                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1010         } else {
1011                 struct timespec now;
1012                 getnstimeofday(&now);
1013                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
1014                         ipmi_si_set_not_busy(busy_until);
1015                         return 0;
1016                 }
1017         }
1018         return 1;
1019 }
1020
1021
1022 /*
1023  * A busy-waiting loop for speeding up IPMI operation.
1024  *
1025  * Lousy hardware makes this hard.  This is only enabled for systems
1026  * that are not BT and do not have interrupts.  It starts spinning
1027  * when an operation is complete or until max_busy tells it to stop
1028  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1029  * Documentation/IPMI.txt for details.
1030  */
1031 static int ipmi_thread(void *data)
1032 {
1033         struct smi_info *smi_info = data;
1034         unsigned long flags;
1035         enum si_sm_result smi_result;
1036         struct timespec busy_until;
1037
1038         ipmi_si_set_not_busy(&busy_until);
1039         set_user_nice(current, MAX_NICE);
1040         while (!kthread_should_stop()) {
1041                 int busy_wait;
1042
1043                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1044                 smi_result = smi_event_handler(smi_info, 0);
1045
1046                 /*
1047                  * If the driver is doing something, there is a possible
1048                  * race with the timer.  If the timer handler see idle,
1049                  * and the thread here sees something else, the timer
1050                  * handler won't restart the timer even though it is
1051                  * required.  So start it here if necessary.
1052                  */
1053                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1054                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1055
1056                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1057                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1058                                                   &busy_until);
1059                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1060                         ; /* do nothing */
1061                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1062                         schedule();
1063                 else if (smi_result == SI_SM_IDLE) {
1064                         if (atomic_read(&smi_info->need_watch)) {
1065                                 schedule_timeout_interruptible(100);
1066                         } else {
1067                                 /* Wait to be woken up when we are needed. */
1068                                 __set_current_state(TASK_INTERRUPTIBLE);
1069                                 schedule();
1070                         }
1071                 } else
1072                         schedule_timeout_interruptible(1);
1073         }
1074         return 0;
1075 }
1076
1077
1078 static void poll(void *send_info)
1079 {
1080         struct smi_info *smi_info = send_info;
1081         unsigned long flags = 0;
1082         bool run_to_completion = smi_info->run_to_completion;
1083
1084         /*
1085          * Make sure there is some delay in the poll loop so we can
1086          * drive time forward and timeout things.
1087          */
1088         udelay(10);
1089         if (!run_to_completion)
1090                 spin_lock_irqsave(&smi_info->si_lock, flags);
1091         smi_event_handler(smi_info, 10);
1092         if (!run_to_completion)
1093                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1094 }
1095
1096 static void request_events(void *send_info)
1097 {
1098         struct smi_info *smi_info = send_info;
1099
1100         if (!smi_info->has_event_buffer)
1101                 return;
1102
1103         atomic_set(&smi_info->req_events, 1);
1104 }
1105
1106 static void set_need_watch(void *send_info, bool enable)
1107 {
1108         struct smi_info *smi_info = send_info;
1109         unsigned long flags;
1110
1111         atomic_set(&smi_info->need_watch, enable);
1112         spin_lock_irqsave(&smi_info->si_lock, flags);
1113         check_start_timer_thread(smi_info);
1114         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1115 }
1116
1117 static int initialized;
1118
1119 static void smi_timeout(unsigned long data)
1120 {
1121         struct smi_info   *smi_info = (struct smi_info *) data;
1122         enum si_sm_result smi_result;
1123         unsigned long     flags;
1124         unsigned long     jiffies_now;
1125         long              time_diff;
1126         long              timeout;
1127
1128         spin_lock_irqsave(&(smi_info->si_lock), flags);
1129         debug_timestamp("Timer");
1130
1131         jiffies_now = jiffies;
1132         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1133                      * SI_USEC_PER_JIFFY);
1134         smi_result = smi_event_handler(smi_info, time_diff);
1135
1136         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1137                 /* Running with interrupts, only do long timeouts. */
1138                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1139                 smi_inc_stat(smi_info, long_timeouts);
1140                 goto do_mod_timer;
1141         }
1142
1143         /*
1144          * If the state machine asks for a short delay, then shorten
1145          * the timer timeout.
1146          */
1147         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1148                 smi_inc_stat(smi_info, short_timeouts);
1149                 timeout = jiffies + 1;
1150         } else {
1151                 smi_inc_stat(smi_info, long_timeouts);
1152                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1153         }
1154
1155  do_mod_timer:
1156         if (smi_result != SI_SM_IDLE)
1157                 smi_mod_timer(smi_info, timeout);
1158         else
1159                 smi_info->timer_running = false;
1160         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1161 }
1162
1163 static irqreturn_t si_irq_handler(int irq, void *data)
1164 {
1165         struct smi_info *smi_info = data;
1166         unsigned long   flags;
1167
1168         spin_lock_irqsave(&(smi_info->si_lock), flags);
1169
1170         smi_inc_stat(smi_info, interrupts);
1171
1172         debug_timestamp("Interrupt");
1173
1174         smi_event_handler(smi_info, 0);
1175         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1176         return IRQ_HANDLED;
1177 }
1178
1179 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1180 {
1181         struct smi_info *smi_info = data;
1182         /* We need to clear the IRQ flag for the BT interface. */
1183         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1184                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1185                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1186         return si_irq_handler(irq, data);
1187 }
1188
1189 static int smi_start_processing(void       *send_info,
1190                                 ipmi_smi_t intf)
1191 {
1192         struct smi_info *new_smi = send_info;
1193         int             enable = 0;
1194
1195         new_smi->intf = intf;
1196
1197         /* Try to claim any interrupts. */
1198         if (new_smi->irq_setup)
1199                 new_smi->irq_setup(new_smi);
1200
1201         /* Set up the timer that drives the interface. */
1202         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1203         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1204
1205         /*
1206          * Check if the user forcefully enabled the daemon.
1207          */
1208         if (new_smi->intf_num < num_force_kipmid)
1209                 enable = force_kipmid[new_smi->intf_num];
1210         /*
1211          * The BT interface is efficient enough to not need a thread,
1212          * and there is no need for a thread if we have interrupts.
1213          */
1214         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1215                 enable = 1;
1216
1217         if (enable) {
1218                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1219                                               "kipmi%d", new_smi->intf_num);
1220                 if (IS_ERR(new_smi->thread)) {
1221                         dev_notice(new_smi->dev, "Could not start"
1222                                    " kernel thread due to error %ld, only using"
1223                                    " timers to drive the interface\n",
1224                                    PTR_ERR(new_smi->thread));
1225                         new_smi->thread = NULL;
1226                 }
1227         }
1228
1229         return 0;
1230 }
1231
1232 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1233 {
1234         struct smi_info *smi = send_info;
1235
1236         data->addr_src = smi->addr_source;
1237         data->dev = smi->dev;
1238         data->addr_info = smi->addr_info;
1239         get_device(smi->dev);
1240
1241         return 0;
1242 }
1243
1244 static void set_maintenance_mode(void *send_info, bool enable)
1245 {
1246         struct smi_info   *smi_info = send_info;
1247
1248         if (!enable)
1249                 atomic_set(&smi_info->req_events, 0);
1250 }
1251
1252 static struct ipmi_smi_handlers handlers = {
1253         .owner                  = THIS_MODULE,
1254         .start_processing       = smi_start_processing,
1255         .get_smi_info           = get_smi_info,
1256         .sender                 = sender,
1257         .request_events         = request_events,
1258         .set_need_watch         = set_need_watch,
1259         .set_maintenance_mode   = set_maintenance_mode,
1260         .set_run_to_completion  = set_run_to_completion,
1261         .poll                   = poll,
1262 };
1263
1264 /*
1265  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1266  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1267  */
1268
1269 static LIST_HEAD(smi_infos);
1270 static DEFINE_MUTEX(smi_infos_lock);
1271 static int smi_num; /* Used to sequence the SMIs */
1272
1273 #define DEFAULT_REGSPACING      1
1274 #define DEFAULT_REGSIZE         1
1275
1276 #ifdef CONFIG_ACPI
1277 static bool          si_tryacpi = 1;
1278 #endif
1279 #ifdef CONFIG_DMI
1280 static bool          si_trydmi = 1;
1281 #endif
1282 static bool          si_tryplatform = 1;
1283 #ifdef CONFIG_PCI
1284 static bool          si_trypci = 1;
1285 #endif
1286 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1287 static char          *si_type[SI_MAX_PARMS];
1288 #define MAX_SI_TYPE_STR 30
1289 static char          si_type_str[MAX_SI_TYPE_STR];
1290 static unsigned long addrs[SI_MAX_PARMS];
1291 static unsigned int num_addrs;
1292 static unsigned int  ports[SI_MAX_PARMS];
1293 static unsigned int num_ports;
1294 static int           irqs[SI_MAX_PARMS];
1295 static unsigned int num_irqs;
1296 static int           regspacings[SI_MAX_PARMS];
1297 static unsigned int num_regspacings;
1298 static int           regsizes[SI_MAX_PARMS];
1299 static unsigned int num_regsizes;
1300 static int           regshifts[SI_MAX_PARMS];
1301 static unsigned int num_regshifts;
1302 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1303 static unsigned int num_slave_addrs;
1304
1305 #define IPMI_IO_ADDR_SPACE  0
1306 #define IPMI_MEM_ADDR_SPACE 1
1307 static char *addr_space_to_str[] = { "i/o", "mem" };
1308
1309 static int hotmod_handler(const char *val, struct kernel_param *kp);
1310
1311 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1312 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1313                  " Documentation/IPMI.txt in the kernel sources for the"
1314                  " gory details.");
1315
1316 #ifdef CONFIG_ACPI
1317 module_param_named(tryacpi, si_tryacpi, bool, 0);
1318 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1319                  " default scan of the interfaces identified via ACPI");
1320 #endif
1321 #ifdef CONFIG_DMI
1322 module_param_named(trydmi, si_trydmi, bool, 0);
1323 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1324                  " default scan of the interfaces identified via DMI");
1325 #endif
1326 module_param_named(tryplatform, si_tryplatform, bool, 0);
1327 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1328                  " default scan of the interfaces identified via platform"
1329                  " interfaces like openfirmware");
1330 #ifdef CONFIG_PCI
1331 module_param_named(trypci, si_trypci, bool, 0);
1332 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1333                  " default scan of the interfaces identified via pci");
1334 #endif
1335 module_param_named(trydefaults, si_trydefaults, bool, 0);
1336 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1337                  " default scan of the KCS and SMIC interface at the standard"
1338                  " address");
1339 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1340 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1341                  " interface separated by commas.  The types are 'kcs',"
1342                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1343                  " the first interface to kcs and the second to bt");
1344 module_param_array(addrs, ulong, &num_addrs, 0);
1345 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1346                  " addresses separated by commas.  Only use if an interface"
1347                  " is in memory.  Otherwise, set it to zero or leave"
1348                  " it blank.");
1349 module_param_array(ports, uint, &num_ports, 0);
1350 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1351                  " addresses separated by commas.  Only use if an interface"
1352                  " is a port.  Otherwise, set it to zero or leave"
1353                  " it blank.");
1354 module_param_array(irqs, int, &num_irqs, 0);
1355 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1356                  " addresses separated by commas.  Only use if an interface"
1357                  " has an interrupt.  Otherwise, set it to zero or leave"
1358                  " it blank.");
1359 module_param_array(regspacings, int, &num_regspacings, 0);
1360 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1361                  " and each successive register used by the interface.  For"
1362                  " instance, if the start address is 0xca2 and the spacing"
1363                  " is 2, then the second address is at 0xca4.  Defaults"
1364                  " to 1.");
1365 module_param_array(regsizes, int, &num_regsizes, 0);
1366 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1367                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1368                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1369                  " the 8-bit IPMI register has to be read from a larger"
1370                  " register.");
1371 module_param_array(regshifts, int, &num_regshifts, 0);
1372 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1373                  " IPMI register, in bits.  For instance, if the data"
1374                  " is read from a 32-bit word and the IPMI data is in"
1375                  " bit 8-15, then the shift would be 8");
1376 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1377 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1378                  " the controller.  Normally this is 0x20, but can be"
1379                  " overridden by this parm.  This is an array indexed"
1380                  " by interface number.");
1381 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1382 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1383                  " disabled(0).  Normally the IPMI driver auto-detects"
1384                  " this, but the value may be overridden by this parm.");
1385 module_param(unload_when_empty, bool, 0);
1386 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1387                  " specified or found, default is 1.  Setting to 0"
1388                  " is useful for hot add of devices using hotmod.");
1389 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1390 MODULE_PARM_DESC(kipmid_max_busy_us,
1391                  "Max time (in microseconds) to busy-wait for IPMI data before"
1392                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1393                  " if kipmid is using up a lot of CPU time.");
1394
1395
1396 static void std_irq_cleanup(struct smi_info *info)
1397 {
1398         if (info->si_type == SI_BT)
1399                 /* Disable the interrupt in the BT interface. */
1400                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1401         free_irq(info->irq, info);
1402 }
1403
1404 static int std_irq_setup(struct smi_info *info)
1405 {
1406         int rv;
1407
1408         if (!info->irq)
1409                 return 0;
1410
1411         if (info->si_type == SI_BT) {
1412                 rv = request_irq(info->irq,
1413                                  si_bt_irq_handler,
1414                                  IRQF_SHARED,
1415                                  DEVICE_NAME,
1416                                  info);
1417                 if (!rv)
1418                         /* Enable the interrupt in the BT interface. */
1419                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1420                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1421         } else
1422                 rv = request_irq(info->irq,
1423                                  si_irq_handler,
1424                                  IRQF_SHARED,
1425                                  DEVICE_NAME,
1426                                  info);
1427         if (rv) {
1428                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1429                          " running polled\n",
1430                          DEVICE_NAME, info->irq);
1431                 info->irq = 0;
1432         } else {
1433                 info->irq_cleanup = std_irq_cleanup;
1434                 dev_info(info->dev, "Using irq %d\n", info->irq);
1435         }
1436
1437         return rv;
1438 }
1439
1440 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1441 {
1442         unsigned int addr = io->addr_data;
1443
1444         return inb(addr + (offset * io->regspacing));
1445 }
1446
1447 static void port_outb(struct si_sm_io *io, unsigned int offset,
1448                       unsigned char b)
1449 {
1450         unsigned int addr = io->addr_data;
1451
1452         outb(b, addr + (offset * io->regspacing));
1453 }
1454
1455 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1456 {
1457         unsigned int addr = io->addr_data;
1458
1459         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1460 }
1461
1462 static void port_outw(struct si_sm_io *io, unsigned int offset,
1463                       unsigned char b)
1464 {
1465         unsigned int addr = io->addr_data;
1466
1467         outw(b << io->regshift, addr + (offset * io->regspacing));
1468 }
1469
1470 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1471 {
1472         unsigned int addr = io->addr_data;
1473
1474         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1475 }
1476
1477 static void port_outl(struct si_sm_io *io, unsigned int offset,
1478                       unsigned char b)
1479 {
1480         unsigned int addr = io->addr_data;
1481
1482         outl(b << io->regshift, addr+(offset * io->regspacing));
1483 }
1484
1485 static void port_cleanup(struct smi_info *info)
1486 {
1487         unsigned int addr = info->io.addr_data;
1488         int          idx;
1489
1490         if (addr) {
1491                 for (idx = 0; idx < info->io_size; idx++)
1492                         release_region(addr + idx * info->io.regspacing,
1493                                        info->io.regsize);
1494         }
1495 }
1496
1497 static int port_setup(struct smi_info *info)
1498 {
1499         unsigned int addr = info->io.addr_data;
1500         int          idx;
1501
1502         if (!addr)
1503                 return -ENODEV;
1504
1505         info->io_cleanup = port_cleanup;
1506
1507         /*
1508          * Figure out the actual inb/inw/inl/etc routine to use based
1509          * upon the register size.
1510          */
1511         switch (info->io.regsize) {
1512         case 1:
1513                 info->io.inputb = port_inb;
1514                 info->io.outputb = port_outb;
1515                 break;
1516         case 2:
1517                 info->io.inputb = port_inw;
1518                 info->io.outputb = port_outw;
1519                 break;
1520         case 4:
1521                 info->io.inputb = port_inl;
1522                 info->io.outputb = port_outl;
1523                 break;
1524         default:
1525                 dev_warn(info->dev, "Invalid register size: %d\n",
1526                          info->io.regsize);
1527                 return -EINVAL;
1528         }
1529
1530         /*
1531          * Some BIOSes reserve disjoint I/O regions in their ACPI
1532          * tables.  This causes problems when trying to register the
1533          * entire I/O region.  Therefore we must register each I/O
1534          * port separately.
1535          */
1536         for (idx = 0; idx < info->io_size; idx++) {
1537                 if (request_region(addr + idx * info->io.regspacing,
1538                                    info->io.regsize, DEVICE_NAME) == NULL) {
1539                         /* Undo allocations */
1540                         while (idx--) {
1541                                 release_region(addr + idx * info->io.regspacing,
1542                                                info->io.regsize);
1543                         }
1544                         return -EIO;
1545                 }
1546         }
1547         return 0;
1548 }
1549
1550 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1551 {
1552         return readb((io->addr)+(offset * io->regspacing));
1553 }
1554
1555 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1556                      unsigned char b)
1557 {
1558         writeb(b, (io->addr)+(offset * io->regspacing));
1559 }
1560
1561 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1562 {
1563         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1564                 & 0xff;
1565 }
1566
1567 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1568                      unsigned char b)
1569 {
1570         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1571 }
1572
1573 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1574 {
1575         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1576                 & 0xff;
1577 }
1578
1579 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1580                      unsigned char b)
1581 {
1582         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1583 }
1584
1585 #ifdef readq
1586 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1587 {
1588         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1589                 & 0xff;
1590 }
1591
1592 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1593                      unsigned char b)
1594 {
1595         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1596 }
1597 #endif
1598
1599 static void mem_cleanup(struct smi_info *info)
1600 {
1601         unsigned long addr = info->io.addr_data;
1602         int           mapsize;
1603
1604         if (info->io.addr) {
1605                 iounmap(info->io.addr);
1606
1607                 mapsize = ((info->io_size * info->io.regspacing)
1608                            - (info->io.regspacing - info->io.regsize));
1609
1610                 release_mem_region(addr, mapsize);
1611         }
1612 }
1613
1614 static int mem_setup(struct smi_info *info)
1615 {
1616         unsigned long addr = info->io.addr_data;
1617         int           mapsize;
1618
1619         if (!addr)
1620                 return -ENODEV;
1621
1622         info->io_cleanup = mem_cleanup;
1623
1624         /*
1625          * Figure out the actual readb/readw/readl/etc routine to use based
1626          * upon the register size.
1627          */
1628         switch (info->io.regsize) {
1629         case 1:
1630                 info->io.inputb = intf_mem_inb;
1631                 info->io.outputb = intf_mem_outb;
1632                 break;
1633         case 2:
1634                 info->io.inputb = intf_mem_inw;
1635                 info->io.outputb = intf_mem_outw;
1636                 break;
1637         case 4:
1638                 info->io.inputb = intf_mem_inl;
1639                 info->io.outputb = intf_mem_outl;
1640                 break;
1641 #ifdef readq
1642         case 8:
1643                 info->io.inputb = mem_inq;
1644                 info->io.outputb = mem_outq;
1645                 break;
1646 #endif
1647         default:
1648                 dev_warn(info->dev, "Invalid register size: %d\n",
1649                          info->io.regsize);
1650                 return -EINVAL;
1651         }
1652
1653         /*
1654          * Calculate the total amount of memory to claim.  This is an
1655          * unusual looking calculation, but it avoids claiming any
1656          * more memory than it has to.  It will claim everything
1657          * between the first address to the end of the last full
1658          * register.
1659          */
1660         mapsize = ((info->io_size * info->io.regspacing)
1661                    - (info->io.regspacing - info->io.regsize));
1662
1663         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1664                 return -EIO;
1665
1666         info->io.addr = ioremap(addr, mapsize);
1667         if (info->io.addr == NULL) {
1668                 release_mem_region(addr, mapsize);
1669                 return -EIO;
1670         }
1671         return 0;
1672 }
1673
1674 /*
1675  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1676  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1677  * Options are:
1678  *   rsp=<regspacing>
1679  *   rsi=<regsize>
1680  *   rsh=<regshift>
1681  *   irq=<irq>
1682  *   ipmb=<ipmb addr>
1683  */
1684 enum hotmod_op { HM_ADD, HM_REMOVE };
1685 struct hotmod_vals {
1686         char *name;
1687         int  val;
1688 };
1689 static struct hotmod_vals hotmod_ops[] = {
1690         { "add",        HM_ADD },
1691         { "remove",     HM_REMOVE },
1692         { NULL }
1693 };
1694 static struct hotmod_vals hotmod_si[] = {
1695         { "kcs",        SI_KCS },
1696         { "smic",       SI_SMIC },
1697         { "bt",         SI_BT },
1698         { NULL }
1699 };
1700 static struct hotmod_vals hotmod_as[] = {
1701         { "mem",        IPMI_MEM_ADDR_SPACE },
1702         { "i/o",        IPMI_IO_ADDR_SPACE },
1703         { NULL }
1704 };
1705
1706 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1707 {
1708         char *s;
1709         int  i;
1710
1711         s = strchr(*curr, ',');
1712         if (!s) {
1713                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1714                 return -EINVAL;
1715         }
1716         *s = '\0';
1717         s++;
1718         for (i = 0; v[i].name; i++) {
1719                 if (strcmp(*curr, v[i].name) == 0) {
1720                         *val = v[i].val;
1721                         *curr = s;
1722                         return 0;
1723                 }
1724         }
1725
1726         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1727         return -EINVAL;
1728 }
1729
1730 static int check_hotmod_int_op(const char *curr, const char *option,
1731                                const char *name, int *val)
1732 {
1733         char *n;
1734
1735         if (strcmp(curr, name) == 0) {
1736                 if (!option) {
1737                         printk(KERN_WARNING PFX
1738                                "No option given for '%s'\n",
1739                                curr);
1740                         return -EINVAL;
1741                 }
1742                 *val = simple_strtoul(option, &n, 0);
1743                 if ((*n != '\0') || (*option == '\0')) {
1744                         printk(KERN_WARNING PFX
1745                                "Bad option given for '%s'\n",
1746                                curr);
1747                         return -EINVAL;
1748                 }
1749                 return 1;
1750         }
1751         return 0;
1752 }
1753
1754 static struct smi_info *smi_info_alloc(void)
1755 {
1756         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1757
1758         if (info)
1759                 spin_lock_init(&info->si_lock);
1760         return info;
1761 }
1762
1763 static int hotmod_handler(const char *val, struct kernel_param *kp)
1764 {
1765         char *str = kstrdup(val, GFP_KERNEL);
1766         int  rv;
1767         char *next, *curr, *s, *n, *o;
1768         enum hotmod_op op;
1769         enum si_type si_type;
1770         int  addr_space;
1771         unsigned long addr;
1772         int regspacing;
1773         int regsize;
1774         int regshift;
1775         int irq;
1776         int ipmb;
1777         int ival;
1778         int len;
1779         struct smi_info *info;
1780
1781         if (!str)
1782                 return -ENOMEM;
1783
1784         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1785         len = strlen(str);
1786         ival = len - 1;
1787         while ((ival >= 0) && isspace(str[ival])) {
1788                 str[ival] = '\0';
1789                 ival--;
1790         }
1791
1792         for (curr = str; curr; curr = next) {
1793                 regspacing = 1;
1794                 regsize = 1;
1795                 regshift = 0;
1796                 irq = 0;
1797                 ipmb = 0; /* Choose the default if not specified */
1798
1799                 next = strchr(curr, ':');
1800                 if (next) {
1801                         *next = '\0';
1802                         next++;
1803                 }
1804
1805                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1806                 if (rv)
1807                         break;
1808                 op = ival;
1809
1810                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1811                 if (rv)
1812                         break;
1813                 si_type = ival;
1814
1815                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1816                 if (rv)
1817                         break;
1818
1819                 s = strchr(curr, ',');
1820                 if (s) {
1821                         *s = '\0';
1822                         s++;
1823                 }
1824                 addr = simple_strtoul(curr, &n, 0);
1825                 if ((*n != '\0') || (*curr == '\0')) {
1826                         printk(KERN_WARNING PFX "Invalid hotmod address"
1827                                " '%s'\n", curr);
1828                         break;
1829                 }
1830
1831                 while (s) {
1832                         curr = s;
1833                         s = strchr(curr, ',');
1834                         if (s) {
1835                                 *s = '\0';
1836                                 s++;
1837                         }
1838                         o = strchr(curr, '=');
1839                         if (o) {
1840                                 *o = '\0';
1841                                 o++;
1842                         }
1843                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1844                         if (rv < 0)
1845                                 goto out;
1846                         else if (rv)
1847                                 continue;
1848                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1849                         if (rv < 0)
1850                                 goto out;
1851                         else if (rv)
1852                                 continue;
1853                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1854                         if (rv < 0)
1855                                 goto out;
1856                         else if (rv)
1857                                 continue;
1858                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1859                         if (rv < 0)
1860                                 goto out;
1861                         else if (rv)
1862                                 continue;
1863                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1864                         if (rv < 0)
1865                                 goto out;
1866                         else if (rv)
1867                                 continue;
1868
1869                         rv = -EINVAL;
1870                         printk(KERN_WARNING PFX
1871                                "Invalid hotmod option '%s'\n",
1872                                curr);
1873                         goto out;
1874                 }
1875
1876                 if (op == HM_ADD) {
1877                         info = smi_info_alloc();
1878                         if (!info) {
1879                                 rv = -ENOMEM;
1880                                 goto out;
1881                         }
1882
1883                         info->addr_source = SI_HOTMOD;
1884                         info->si_type = si_type;
1885                         info->io.addr_data = addr;
1886                         info->io.addr_type = addr_space;
1887                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1888                                 info->io_setup = mem_setup;
1889                         else
1890                                 info->io_setup = port_setup;
1891
1892                         info->io.addr = NULL;
1893                         info->io.regspacing = regspacing;
1894                         if (!info->io.regspacing)
1895                                 info->io.regspacing = DEFAULT_REGSPACING;
1896                         info->io.regsize = regsize;
1897                         if (!info->io.regsize)
1898                                 info->io.regsize = DEFAULT_REGSPACING;
1899                         info->io.regshift = regshift;
1900                         info->irq = irq;
1901                         if (info->irq)
1902                                 info->irq_setup = std_irq_setup;
1903                         info->slave_addr = ipmb;
1904
1905                         rv = add_smi(info);
1906                         if (rv) {
1907                                 kfree(info);
1908                                 goto out;
1909                         }
1910                         rv = try_smi_init(info);
1911                         if (rv) {
1912                                 cleanup_one_si(info);
1913                                 goto out;
1914                         }
1915                 } else {
1916                         /* remove */
1917                         struct smi_info *e, *tmp_e;
1918
1919                         mutex_lock(&smi_infos_lock);
1920                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1921                                 if (e->io.addr_type != addr_space)
1922                                         continue;
1923                                 if (e->si_type != si_type)
1924                                         continue;
1925                                 if (e->io.addr_data == addr)
1926                                         cleanup_one_si(e);
1927                         }
1928                         mutex_unlock(&smi_infos_lock);
1929                 }
1930         }
1931         rv = len;
1932  out:
1933         kfree(str);
1934         return rv;
1935 }
1936
1937 static int hardcode_find_bmc(void)
1938 {
1939         int ret = -ENODEV;
1940         int             i;
1941         struct smi_info *info;
1942
1943         for (i = 0; i < SI_MAX_PARMS; i++) {
1944                 if (!ports[i] && !addrs[i])
1945                         continue;
1946
1947                 info = smi_info_alloc();
1948                 if (!info)
1949                         return -ENOMEM;
1950
1951                 info->addr_source = SI_HARDCODED;
1952                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1953
1954                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1955                         info->si_type = SI_KCS;
1956                 } else if (strcmp(si_type[i], "smic") == 0) {
1957                         info->si_type = SI_SMIC;
1958                 } else if (strcmp(si_type[i], "bt") == 0) {
1959                         info->si_type = SI_BT;
1960                 } else {
1961                         printk(KERN_WARNING PFX "Interface type specified "
1962                                "for interface %d, was invalid: %s\n",
1963                                i, si_type[i]);
1964                         kfree(info);
1965                         continue;
1966                 }
1967
1968                 if (ports[i]) {
1969                         /* An I/O port */
1970                         info->io_setup = port_setup;
1971                         info->io.addr_data = ports[i];
1972                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1973                 } else if (addrs[i]) {
1974                         /* A memory port */
1975                         info->io_setup = mem_setup;
1976                         info->io.addr_data = addrs[i];
1977                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1978                 } else {
1979                         printk(KERN_WARNING PFX "Interface type specified "
1980                                "for interface %d, but port and address were "
1981                                "not set or set to zero.\n", i);
1982                         kfree(info);
1983                         continue;
1984                 }
1985
1986                 info->io.addr = NULL;
1987                 info->io.regspacing = regspacings[i];
1988                 if (!info->io.regspacing)
1989                         info->io.regspacing = DEFAULT_REGSPACING;
1990                 info->io.regsize = regsizes[i];
1991                 if (!info->io.regsize)
1992                         info->io.regsize = DEFAULT_REGSPACING;
1993                 info->io.regshift = regshifts[i];
1994                 info->irq = irqs[i];
1995                 if (info->irq)
1996                         info->irq_setup = std_irq_setup;
1997                 info->slave_addr = slave_addrs[i];
1998
1999                 if (!add_smi(info)) {
2000                         if (try_smi_init(info))
2001                                 cleanup_one_si(info);
2002                         ret = 0;
2003                 } else {
2004                         kfree(info);
2005                 }
2006         }
2007         return ret;
2008 }
2009
2010 #ifdef CONFIG_ACPI
2011
2012 #include <linux/acpi.h>
2013
2014 /*
2015  * Once we get an ACPI failure, we don't try any more, because we go
2016  * through the tables sequentially.  Once we don't find a table, there
2017  * are no more.
2018  */
2019 static int acpi_failure;
2020
2021 /* For GPE-type interrupts. */
2022 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2023         u32 gpe_number, void *context)
2024 {
2025         struct smi_info *smi_info = context;
2026         unsigned long   flags;
2027
2028         spin_lock_irqsave(&(smi_info->si_lock), flags);
2029
2030         smi_inc_stat(smi_info, interrupts);
2031
2032         debug_timestamp("ACPI_GPE");
2033
2034         smi_event_handler(smi_info, 0);
2035         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2036
2037         return ACPI_INTERRUPT_HANDLED;
2038 }
2039
2040 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2041 {
2042         if (!info->irq)
2043                 return;
2044
2045         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2046 }
2047
2048 static int acpi_gpe_irq_setup(struct smi_info *info)
2049 {
2050         acpi_status status;
2051
2052         if (!info->irq)
2053                 return 0;
2054
2055         status = acpi_install_gpe_handler(NULL,
2056                                           info->irq,
2057                                           ACPI_GPE_LEVEL_TRIGGERED,
2058                                           &ipmi_acpi_gpe,
2059                                           info);
2060         if (status != AE_OK) {
2061                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2062                          " running polled\n", DEVICE_NAME, info->irq);
2063                 info->irq = 0;
2064                 return -EINVAL;
2065         } else {
2066                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2067                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2068                 return 0;
2069         }
2070 }
2071
2072 /*
2073  * Defined at
2074  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2075  */
2076 struct SPMITable {
2077         s8      Signature[4];
2078         u32     Length;
2079         u8      Revision;
2080         u8      Checksum;
2081         s8      OEMID[6];
2082         s8      OEMTableID[8];
2083         s8      OEMRevision[4];
2084         s8      CreatorID[4];
2085         s8      CreatorRevision[4];
2086         u8      InterfaceType;
2087         u8      IPMIlegacy;
2088         s16     SpecificationRevision;
2089
2090         /*
2091          * Bit 0 - SCI interrupt supported
2092          * Bit 1 - I/O APIC/SAPIC
2093          */
2094         u8      InterruptType;
2095
2096         /*
2097          * If bit 0 of InterruptType is set, then this is the SCI
2098          * interrupt in the GPEx_STS register.
2099          */
2100         u8      GPE;
2101
2102         s16     Reserved;
2103
2104         /*
2105          * If bit 1 of InterruptType is set, then this is the I/O
2106          * APIC/SAPIC interrupt.
2107          */
2108         u32     GlobalSystemInterrupt;
2109
2110         /* The actual register address. */
2111         struct acpi_generic_address addr;
2112
2113         u8      UID[4];
2114
2115         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2116 };
2117
2118 static int try_init_spmi(struct SPMITable *spmi)
2119 {
2120         struct smi_info  *info;
2121         int rv;
2122
2123         if (spmi->IPMIlegacy != 1) {
2124                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2125                 return -ENODEV;
2126         }
2127
2128         info = smi_info_alloc();
2129         if (!info) {
2130                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2131                 return -ENOMEM;
2132         }
2133
2134         info->addr_source = SI_SPMI;
2135         printk(KERN_INFO PFX "probing via SPMI\n");
2136
2137         /* Figure out the interface type. */
2138         switch (spmi->InterfaceType) {
2139         case 1: /* KCS */
2140                 info->si_type = SI_KCS;
2141                 break;
2142         case 2: /* SMIC */
2143                 info->si_type = SI_SMIC;
2144                 break;
2145         case 3: /* BT */
2146                 info->si_type = SI_BT;
2147                 break;
2148         case 4: /* SSIF, just ignore */
2149                 kfree(info);
2150                 return -EIO;
2151         default:
2152                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2153                        spmi->InterfaceType);
2154                 kfree(info);
2155                 return -EIO;
2156         }
2157
2158         if (spmi->InterruptType & 1) {
2159                 /* We've got a GPE interrupt. */
2160                 info->irq = spmi->GPE;
2161                 info->irq_setup = acpi_gpe_irq_setup;
2162         } else if (spmi->InterruptType & 2) {
2163                 /* We've got an APIC/SAPIC interrupt. */
2164                 info->irq = spmi->GlobalSystemInterrupt;
2165                 info->irq_setup = std_irq_setup;
2166         } else {
2167                 /* Use the default interrupt setting. */
2168                 info->irq = 0;
2169                 info->irq_setup = NULL;
2170         }
2171
2172         if (spmi->addr.bit_width) {
2173                 /* A (hopefully) properly formed register bit width. */
2174                 info->io.regspacing = spmi->addr.bit_width / 8;
2175         } else {
2176                 info->io.regspacing = DEFAULT_REGSPACING;
2177         }
2178         info->io.regsize = info->io.regspacing;
2179         info->io.regshift = spmi->addr.bit_offset;
2180
2181         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2182                 info->io_setup = mem_setup;
2183                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2184         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2185                 info->io_setup = port_setup;
2186                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2187         } else {
2188                 kfree(info);
2189                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2190                 return -EIO;
2191         }
2192         info->io.addr_data = spmi->addr.address;
2193
2194         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2195                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2196                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2197                  info->irq);
2198
2199         rv = add_smi(info);
2200         if (rv)
2201                 kfree(info);
2202
2203         return rv;
2204 }
2205
2206 static void spmi_find_bmc(void)
2207 {
2208         acpi_status      status;
2209         struct SPMITable *spmi;
2210         int              i;
2211
2212         if (acpi_disabled)
2213                 return;
2214
2215         if (acpi_failure)
2216                 return;
2217
2218         for (i = 0; ; i++) {
2219                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2220                                         (struct acpi_table_header **)&spmi);
2221                 if (status != AE_OK)
2222                         return;
2223
2224                 try_init_spmi(spmi);
2225         }
2226 }
2227
2228 static int ipmi_pnp_probe(struct pnp_dev *dev,
2229                                     const struct pnp_device_id *dev_id)
2230 {
2231         struct acpi_device *acpi_dev;
2232         struct smi_info *info;
2233         struct resource *res, *res_second;
2234         acpi_handle handle;
2235         acpi_status status;
2236         unsigned long long tmp;
2237         int rv;
2238
2239         acpi_dev = pnp_acpi_device(dev);
2240         if (!acpi_dev)
2241                 return -ENODEV;
2242
2243         info = smi_info_alloc();
2244         if (!info)
2245                 return -ENOMEM;
2246
2247         info->addr_source = SI_ACPI;
2248         printk(KERN_INFO PFX "probing via ACPI\n");
2249
2250         handle = acpi_dev->handle;
2251         info->addr_info.acpi_info.acpi_handle = handle;
2252
2253         /* _IFT tells us the interface type: KCS, BT, etc */
2254         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2255         if (ACPI_FAILURE(status))
2256                 goto err_free;
2257
2258         switch (tmp) {
2259         case 1:
2260                 info->si_type = SI_KCS;
2261                 break;
2262         case 2:
2263                 info->si_type = SI_SMIC;
2264                 break;
2265         case 3:
2266                 info->si_type = SI_BT;
2267                 break;
2268         case 4: /* SSIF, just ignore */
2269                 goto err_free;
2270         default:
2271                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2272                 goto err_free;
2273         }
2274
2275         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2276         if (res) {
2277                 info->io_setup = port_setup;
2278                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2279         } else {
2280                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2281                 if (res) {
2282                         info->io_setup = mem_setup;
2283                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2284                 }
2285         }
2286         if (!res) {
2287                 dev_err(&dev->dev, "no I/O or memory address\n");
2288                 goto err_free;
2289         }
2290         info->io.addr_data = res->start;
2291
2292         info->io.regspacing = DEFAULT_REGSPACING;
2293         res_second = pnp_get_resource(dev,
2294                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2295                                         IORESOURCE_IO : IORESOURCE_MEM,
2296                                1);
2297         if (res_second) {
2298                 if (res_second->start > info->io.addr_data)
2299                         info->io.regspacing = res_second->start - info->io.addr_data;
2300         }
2301         info->io.regsize = DEFAULT_REGSPACING;
2302         info->io.regshift = 0;
2303
2304         /* If _GPE exists, use it; otherwise use standard interrupts */
2305         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2306         if (ACPI_SUCCESS(status)) {
2307                 info->irq = tmp;
2308                 info->irq_setup = acpi_gpe_irq_setup;
2309         } else if (pnp_irq_valid(dev, 0)) {
2310                 info->irq = pnp_irq(dev, 0);
2311                 info->irq_setup = std_irq_setup;
2312         }
2313
2314         info->dev = &dev->dev;
2315         pnp_set_drvdata(dev, info);
2316
2317         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2318                  res, info->io.regsize, info->io.regspacing,
2319                  info->irq);
2320
2321         rv = add_smi(info);
2322         if (rv)
2323                 kfree(info);
2324
2325         return rv;
2326
2327 err_free:
2328         kfree(info);
2329         return -EINVAL;
2330 }
2331
2332 static void ipmi_pnp_remove(struct pnp_dev *dev)
2333 {
2334         struct smi_info *info = pnp_get_drvdata(dev);
2335
2336         cleanup_one_si(info);
2337 }
2338
2339 static const struct pnp_device_id pnp_dev_table[] = {
2340         {"IPI0001", 0},
2341         {"", 0},
2342 };
2343
2344 static struct pnp_driver ipmi_pnp_driver = {
2345         .name           = DEVICE_NAME,
2346         .probe          = ipmi_pnp_probe,
2347         .remove         = ipmi_pnp_remove,
2348         .id_table       = pnp_dev_table,
2349 };
2350
2351 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2352 #endif
2353
2354 #ifdef CONFIG_DMI
2355 struct dmi_ipmi_data {
2356         u8              type;
2357         u8              addr_space;
2358         unsigned long   base_addr;
2359         u8              irq;
2360         u8              offset;
2361         u8              slave_addr;
2362 };
2363
2364 static int decode_dmi(const struct dmi_header *dm,
2365                                 struct dmi_ipmi_data *dmi)
2366 {
2367         const u8        *data = (const u8 *)dm;
2368         unsigned long   base_addr;
2369         u8              reg_spacing;
2370         u8              len = dm->length;
2371
2372         dmi->type = data[4];
2373
2374         memcpy(&base_addr, data+8, sizeof(unsigned long));
2375         if (len >= 0x11) {
2376                 if (base_addr & 1) {
2377                         /* I/O */
2378                         base_addr &= 0xFFFE;
2379                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2380                 } else
2381                         /* Memory */
2382                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2383
2384                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2385                    is odd. */
2386                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2387
2388                 dmi->irq = data[0x11];
2389
2390                 /* The top two bits of byte 0x10 hold the register spacing. */
2391                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2392                 switch (reg_spacing) {
2393                 case 0x00: /* Byte boundaries */
2394                     dmi->offset = 1;
2395                     break;
2396                 case 0x01: /* 32-bit boundaries */
2397                     dmi->offset = 4;
2398                     break;
2399                 case 0x02: /* 16-byte boundaries */
2400                     dmi->offset = 16;
2401                     break;
2402                 default:
2403                     /* Some other interface, just ignore it. */
2404                     return -EIO;
2405                 }
2406         } else {
2407                 /* Old DMI spec. */
2408                 /*
2409                  * Note that technically, the lower bit of the base
2410                  * address should be 1 if the address is I/O and 0 if
2411                  * the address is in memory.  So many systems get that
2412                  * wrong (and all that I have seen are I/O) so we just
2413                  * ignore that bit and assume I/O.  Systems that use
2414                  * memory should use the newer spec, anyway.
2415                  */
2416                 dmi->base_addr = base_addr & 0xfffe;
2417                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2418                 dmi->offset = 1;
2419         }
2420
2421         dmi->slave_addr = data[6];
2422
2423         return 0;
2424 }
2425
2426 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2427 {
2428         struct smi_info *info;
2429
2430         info = smi_info_alloc();
2431         if (!info) {
2432                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2433                 return;
2434         }
2435
2436         info->addr_source = SI_SMBIOS;
2437         printk(KERN_INFO PFX "probing via SMBIOS\n");
2438
2439         switch (ipmi_data->type) {
2440         case 0x01: /* KCS */
2441                 info->si_type = SI_KCS;
2442                 break;
2443         case 0x02: /* SMIC */
2444                 info->si_type = SI_SMIC;
2445                 break;
2446         case 0x03: /* BT */
2447                 info->si_type = SI_BT;
2448                 break;
2449         default:
2450                 kfree(info);
2451                 return;
2452         }
2453
2454         switch (ipmi_data->addr_space) {
2455         case IPMI_MEM_ADDR_SPACE:
2456                 info->io_setup = mem_setup;
2457                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2458                 break;
2459
2460         case IPMI_IO_ADDR_SPACE:
2461                 info->io_setup = port_setup;
2462                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2463                 break;
2464
2465         default:
2466                 kfree(info);
2467                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2468                        ipmi_data->addr_space);
2469                 return;
2470         }
2471         info->io.addr_data = ipmi_data->base_addr;
2472
2473         info->io.regspacing = ipmi_data->offset;
2474         if (!info->io.regspacing)
2475                 info->io.regspacing = DEFAULT_REGSPACING;
2476         info->io.regsize = DEFAULT_REGSPACING;
2477         info->io.regshift = 0;
2478
2479         info->slave_addr = ipmi_data->slave_addr;
2480
2481         info->irq = ipmi_data->irq;
2482         if (info->irq)
2483                 info->irq_setup = std_irq_setup;
2484
2485         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2486                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2487                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2488                  info->irq);
2489
2490         if (add_smi(info))
2491                 kfree(info);
2492 }
2493
2494 static void dmi_find_bmc(void)
2495 {
2496         const struct dmi_device *dev = NULL;
2497         struct dmi_ipmi_data data;
2498         int                  rv;
2499
2500         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2501                 memset(&data, 0, sizeof(data));
2502                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2503                                 &data);
2504                 if (!rv)
2505                         try_init_dmi(&data);
2506         }
2507 }
2508 #endif /* CONFIG_DMI */
2509
2510 #ifdef CONFIG_PCI
2511
2512 #define PCI_ERMC_CLASSCODE              0x0C0700
2513 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2514 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2515 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2516 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2517 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2518
2519 #define PCI_HP_VENDOR_ID    0x103C
2520 #define PCI_MMC_DEVICE_ID   0x121A
2521 #define PCI_MMC_ADDR_CW     0x10
2522
2523 static void ipmi_pci_cleanup(struct smi_info *info)
2524 {
2525         struct pci_dev *pdev = info->addr_source_data;
2526
2527         pci_disable_device(pdev);
2528 }
2529
2530 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2531 {
2532         if (info->si_type == SI_KCS) {
2533                 unsigned char   status;
2534                 int             regspacing;
2535
2536                 info->io.regsize = DEFAULT_REGSIZE;
2537                 info->io.regshift = 0;
2538                 info->io_size = 2;
2539                 info->handlers = &kcs_smi_handlers;
2540
2541                 /* detect 1, 4, 16byte spacing */
2542                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2543                         info->io.regspacing = regspacing;
2544                         if (info->io_setup(info)) {
2545                                 dev_err(info->dev,
2546                                         "Could not setup I/O space\n");
2547                                 return DEFAULT_REGSPACING;
2548                         }
2549                         /* write invalid cmd */
2550                         info->io.outputb(&info->io, 1, 0x10);
2551                         /* read status back */
2552                         status = info->io.inputb(&info->io, 1);
2553                         info->io_cleanup(info);
2554                         if (status)
2555                                 return regspacing;
2556                         regspacing *= 4;
2557                 }
2558         }
2559         return DEFAULT_REGSPACING;
2560 }
2561
2562 static int ipmi_pci_probe(struct pci_dev *pdev,
2563                                     const struct pci_device_id *ent)
2564 {
2565         int rv;
2566         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2567         struct smi_info *info;
2568
2569         info = smi_info_alloc();
2570         if (!info)
2571                 return -ENOMEM;
2572
2573         info->addr_source = SI_PCI;
2574         dev_info(&pdev->dev, "probing via PCI");
2575
2576         switch (class_type) {
2577         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2578                 info->si_type = SI_SMIC;
2579                 break;
2580
2581         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2582                 info->si_type = SI_KCS;
2583                 break;
2584
2585         case PCI_ERMC_CLASSCODE_TYPE_BT:
2586                 info->si_type = SI_BT;
2587                 break;
2588
2589         default:
2590                 kfree(info);
2591                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2592                 return -ENOMEM;
2593         }
2594
2595         rv = pci_enable_device(pdev);
2596         if (rv) {
2597                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2598                 kfree(info);
2599                 return rv;
2600         }
2601
2602         info->addr_source_cleanup = ipmi_pci_cleanup;
2603         info->addr_source_data = pdev;
2604
2605         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2606                 info->io_setup = port_setup;
2607                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2608         } else {
2609                 info->io_setup = mem_setup;
2610                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2611         }
2612         info->io.addr_data = pci_resource_start(pdev, 0);
2613
2614         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2615         info->io.regsize = DEFAULT_REGSIZE;
2616         info->io.regshift = 0;
2617
2618         info->irq = pdev->irq;
2619         if (info->irq)
2620                 info->irq_setup = std_irq_setup;
2621
2622         info->dev = &pdev->dev;
2623         pci_set_drvdata(pdev, info);
2624
2625         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2626                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2627                 info->irq);
2628
2629         rv = add_smi(info);
2630         if (rv) {
2631                 kfree(info);
2632                 pci_disable_device(pdev);
2633         }
2634
2635         return rv;
2636 }
2637
2638 static void ipmi_pci_remove(struct pci_dev *pdev)
2639 {
2640         struct smi_info *info = pci_get_drvdata(pdev);
2641         cleanup_one_si(info);
2642         pci_disable_device(pdev);
2643 }
2644
2645 static struct pci_device_id ipmi_pci_devices[] = {
2646         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2647         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2648         { 0, }
2649 };
2650 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2651
2652 static struct pci_driver ipmi_pci_driver = {
2653         .name =         DEVICE_NAME,
2654         .id_table =     ipmi_pci_devices,
2655         .probe =        ipmi_pci_probe,
2656         .remove =       ipmi_pci_remove,
2657 };
2658 #endif /* CONFIG_PCI */
2659
2660 static struct of_device_id ipmi_match[];
2661 static int ipmi_probe(struct platform_device *dev)
2662 {
2663 #ifdef CONFIG_OF
2664         const struct of_device_id *match;
2665         struct smi_info *info;
2666         struct resource resource;
2667         const __be32 *regsize, *regspacing, *regshift;
2668         struct device_node *np = dev->dev.of_node;
2669         int ret;
2670         int proplen;
2671
2672         dev_info(&dev->dev, "probing via device tree\n");
2673
2674         match = of_match_device(ipmi_match, &dev->dev);
2675         if (!match)
2676                 return -EINVAL;
2677
2678         if (!of_device_is_available(np))
2679                 return -EINVAL;
2680
2681         ret = of_address_to_resource(np, 0, &resource);
2682         if (ret) {
2683                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2684                 return ret;
2685         }
2686
2687         regsize = of_get_property(np, "reg-size", &proplen);
2688         if (regsize && proplen != 4) {
2689                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2690                 return -EINVAL;
2691         }
2692
2693         regspacing = of_get_property(np, "reg-spacing", &proplen);
2694         if (regspacing && proplen != 4) {
2695                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2696                 return -EINVAL;
2697         }
2698
2699         regshift = of_get_property(np, "reg-shift", &proplen);
2700         if (regshift && proplen != 4) {
2701                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2702                 return -EINVAL;
2703         }
2704
2705         info = smi_info_alloc();
2706
2707         if (!info) {
2708                 dev_err(&dev->dev,
2709                         "could not allocate memory for OF probe\n");
2710                 return -ENOMEM;
2711         }
2712
2713         info->si_type           = (enum si_type) match->data;
2714         info->addr_source       = SI_DEVICETREE;
2715         info->irq_setup         = std_irq_setup;
2716
2717         if (resource.flags & IORESOURCE_IO) {
2718                 info->io_setup          = port_setup;
2719                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2720         } else {
2721                 info->io_setup          = mem_setup;
2722                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2723         }
2724
2725         info->io.addr_data      = resource.start;
2726
2727         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2728         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2729         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2730
2731         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2732         info->dev               = &dev->dev;
2733
2734         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2735                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2736                 info->irq);
2737
2738         dev_set_drvdata(&dev->dev, info);
2739
2740         ret = add_smi(info);
2741         if (ret) {
2742                 kfree(info);
2743                 return ret;
2744         }
2745 #endif
2746         return 0;
2747 }
2748
2749 static int ipmi_remove(struct platform_device *dev)
2750 {
2751 #ifdef CONFIG_OF
2752         cleanup_one_si(dev_get_drvdata(&dev->dev));
2753 #endif
2754         return 0;
2755 }
2756
2757 static struct of_device_id ipmi_match[] =
2758 {
2759         { .type = "ipmi", .compatible = "ipmi-kcs",
2760           .data = (void *)(unsigned long) SI_KCS },
2761         { .type = "ipmi", .compatible = "ipmi-smic",
2762           .data = (void *)(unsigned long) SI_SMIC },
2763         { .type = "ipmi", .compatible = "ipmi-bt",
2764           .data = (void *)(unsigned long) SI_BT },
2765         {},
2766 };
2767
2768 static struct platform_driver ipmi_driver = {
2769         .driver = {
2770                 .name = DEVICE_NAME,
2771                 .of_match_table = ipmi_match,
2772         },
2773         .probe          = ipmi_probe,
2774         .remove         = ipmi_remove,
2775 };
2776
2777 #ifdef CONFIG_PARISC
2778 static int ipmi_parisc_probe(struct parisc_device *dev)
2779 {
2780         struct smi_info *info;
2781         int rv;
2782
2783         info = smi_info_alloc();
2784
2785         if (!info) {
2786                 dev_err(&dev->dev,
2787                         "could not allocate memory for PARISC probe\n");
2788                 return -ENOMEM;
2789         }
2790
2791         info->si_type           = SI_KCS;
2792         info->addr_source       = SI_DEVICETREE;
2793         info->io_setup          = mem_setup;
2794         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2795         info->io.addr_data      = dev->hpa.start;
2796         info->io.regsize        = 1;
2797         info->io.regspacing     = 1;
2798         info->io.regshift       = 0;
2799         info->irq               = 0; /* no interrupt */
2800         info->irq_setup         = NULL;
2801         info->dev               = &dev->dev;
2802
2803         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2804
2805         dev_set_drvdata(&dev->dev, info);
2806
2807         rv = add_smi(info);
2808         if (rv) {
2809                 kfree(info);
2810                 return rv;
2811         }
2812
2813         return 0;
2814 }
2815
2816 static int ipmi_parisc_remove(struct parisc_device *dev)
2817 {
2818         cleanup_one_si(dev_get_drvdata(&dev->dev));
2819         return 0;
2820 }
2821
2822 static struct parisc_device_id ipmi_parisc_tbl[] = {
2823         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2824         { 0, }
2825 };
2826
2827 static struct parisc_driver ipmi_parisc_driver = {
2828         .name =         "ipmi",
2829         .id_table =     ipmi_parisc_tbl,
2830         .probe =        ipmi_parisc_probe,
2831         .remove =       ipmi_parisc_remove,
2832 };
2833 #endif /* CONFIG_PARISC */
2834
2835 static int wait_for_msg_done(struct smi_info *smi_info)
2836 {
2837         enum si_sm_result     smi_result;
2838
2839         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2840         for (;;) {
2841                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2842                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2843                         schedule_timeout_uninterruptible(1);
2844                         smi_result = smi_info->handlers->event(
2845                                 smi_info->si_sm, jiffies_to_usecs(1));
2846                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2847                         smi_result = smi_info->handlers->event(
2848                                 smi_info->si_sm, 0);
2849                 } else
2850                         break;
2851         }
2852         if (smi_result == SI_SM_HOSED)
2853                 /*
2854                  * We couldn't get the state machine to run, so whatever's at
2855                  * the port is probably not an IPMI SMI interface.
2856                  */
2857                 return -ENODEV;
2858
2859         return 0;
2860 }
2861
2862 static int try_get_dev_id(struct smi_info *smi_info)
2863 {
2864         unsigned char         msg[2];
2865         unsigned char         *resp;
2866         unsigned long         resp_len;
2867         int                   rv = 0;
2868
2869         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2870         if (!resp)
2871                 return -ENOMEM;
2872
2873         /*
2874          * Do a Get Device ID command, since it comes back with some
2875          * useful info.
2876          */
2877         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2878         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2879         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2880
2881         rv = wait_for_msg_done(smi_info);
2882         if (rv)
2883                 goto out;
2884
2885         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2886                                                   resp, IPMI_MAX_MSG_LENGTH);
2887
2888         /* Check and record info from the get device id, in case we need it. */
2889         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2890
2891  out:
2892         kfree(resp);
2893         return rv;
2894 }
2895
2896 static int try_enable_event_buffer(struct smi_info *smi_info)
2897 {
2898         unsigned char         msg[3];
2899         unsigned char         *resp;
2900         unsigned long         resp_len;
2901         int                   rv = 0;
2902
2903         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2904         if (!resp)
2905                 return -ENOMEM;
2906
2907         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2908         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2909         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2910
2911         rv = wait_for_msg_done(smi_info);
2912         if (rv) {
2913                 printk(KERN_WARNING PFX "Error getting response from get"
2914                        " global enables command, the event buffer is not"
2915                        " enabled.\n");
2916                 goto out;
2917         }
2918
2919         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2920                                                   resp, IPMI_MAX_MSG_LENGTH);
2921
2922         if (resp_len < 4 ||
2923                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2924                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2925                         resp[2] != 0) {
2926                 printk(KERN_WARNING PFX "Invalid return from get global"
2927                        " enables command, cannot enable the event buffer.\n");
2928                 rv = -EINVAL;
2929                 goto out;
2930         }
2931
2932         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2933                 /* buffer is already enabled, nothing to do. */
2934                 smi_info->supports_event_msg_buff = true;
2935                 goto out;
2936         }
2937
2938         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2939         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2940         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2941         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2942
2943         rv = wait_for_msg_done(smi_info);
2944         if (rv) {
2945                 printk(KERN_WARNING PFX "Error getting response from set"
2946                        " global, enables command, the event buffer is not"
2947                        " enabled.\n");
2948                 goto out;
2949         }
2950
2951         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2952                                                   resp, IPMI_MAX_MSG_LENGTH);
2953
2954         if (resp_len < 3 ||
2955                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2956                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2957                 printk(KERN_WARNING PFX "Invalid return from get global,"
2958                        "enables command, not enable the event buffer.\n");
2959                 rv = -EINVAL;
2960                 goto out;
2961         }
2962
2963         if (resp[2] != 0)
2964                 /*
2965                  * An error when setting the event buffer bit means
2966                  * that the event buffer is not supported.
2967                  */
2968                 rv = -ENOENT;
2969         else
2970                 smi_info->supports_event_msg_buff = true;
2971
2972  out:
2973         kfree(resp);
2974         return rv;
2975 }
2976
2977 static int smi_type_proc_show(struct seq_file *m, void *v)
2978 {
2979         struct smi_info *smi = m->private;
2980
2981         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2982 }
2983
2984 static int smi_type_proc_open(struct inode *inode, struct file *file)
2985 {
2986         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2987 }
2988
2989 static const struct file_operations smi_type_proc_ops = {
2990         .open           = smi_type_proc_open,
2991         .read           = seq_read,
2992         .llseek         = seq_lseek,
2993         .release        = single_release,
2994 };
2995
2996 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2997 {
2998         struct smi_info *smi = m->private;
2999
3000         seq_printf(m, "interrupts_enabled:    %d\n",
3001                        smi->irq && !smi->interrupt_disabled);
3002         seq_printf(m, "short_timeouts:        %u\n",
3003                        smi_get_stat(smi, short_timeouts));
3004         seq_printf(m, "long_timeouts:         %u\n",
3005                        smi_get_stat(smi, long_timeouts));
3006         seq_printf(m, "idles:                 %u\n",
3007                        smi_get_stat(smi, idles));
3008         seq_printf(m, "interrupts:            %u\n",
3009                        smi_get_stat(smi, interrupts));
3010         seq_printf(m, "attentions:            %u\n",
3011                        smi_get_stat(smi, attentions));
3012         seq_printf(m, "flag_fetches:          %u\n",
3013                        smi_get_stat(smi, flag_fetches));
3014         seq_printf(m, "hosed_count:           %u\n",
3015                        smi_get_stat(smi, hosed_count));
3016         seq_printf(m, "complete_transactions: %u\n",
3017                        smi_get_stat(smi, complete_transactions));
3018         seq_printf(m, "events:                %u\n",
3019                        smi_get_stat(smi, events));
3020         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3021                        smi_get_stat(smi, watchdog_pretimeouts));
3022         seq_printf(m, "incoming_messages:     %u\n",
3023                        smi_get_stat(smi, incoming_messages));
3024         return 0;
3025 }
3026
3027 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3028 {
3029         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3030 }
3031
3032 static const struct file_operations smi_si_stats_proc_ops = {
3033         .open           = smi_si_stats_proc_open,
3034         .read           = seq_read,
3035         .llseek         = seq_lseek,
3036         .release        = single_release,
3037 };
3038
3039 static int smi_params_proc_show(struct seq_file *m, void *v)
3040 {
3041         struct smi_info *smi = m->private;
3042
3043         return seq_printf(m,
3044                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3045                        si_to_str[smi->si_type],
3046                        addr_space_to_str[smi->io.addr_type],
3047                        smi->io.addr_data,
3048                        smi->io.regspacing,
3049                        smi->io.regsize,
3050                        smi->io.regshift,
3051                        smi->irq,
3052                        smi->slave_addr);
3053 }
3054
3055 static int smi_params_proc_open(struct inode *inode, struct file *file)
3056 {
3057         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3058 }
3059
3060 static const struct file_operations smi_params_proc_ops = {
3061         .open           = smi_params_proc_open,
3062         .read           = seq_read,
3063         .llseek         = seq_lseek,
3064         .release        = single_release,
3065 };
3066
3067 /*
3068  * oem_data_avail_to_receive_msg_avail
3069  * @info - smi_info structure with msg_flags set
3070  *
3071  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3072  * Returns 1 indicating need to re-run handle_flags().
3073  */
3074 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3075 {
3076         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3077                                RECEIVE_MSG_AVAIL);
3078         return 1;
3079 }
3080
3081 /*
3082  * setup_dell_poweredge_oem_data_handler
3083  * @info - smi_info.device_id must be populated
3084  *
3085  * Systems that match, but have firmware version < 1.40 may assert
3086  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3087  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3088  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3089  * as RECEIVE_MSG_AVAIL instead.
3090  *
3091  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3092  * assert the OEM[012] bits, and if it did, the driver would have to
3093  * change to handle that properly, we don't actually check for the
3094  * firmware version.
3095  * Device ID = 0x20                BMC on PowerEdge 8G servers
3096  * Device Revision = 0x80
3097  * Firmware Revision1 = 0x01       BMC version 1.40
3098  * Firmware Revision2 = 0x40       BCD encoded
3099  * IPMI Version = 0x51             IPMI 1.5
3100  * Manufacturer ID = A2 02 00      Dell IANA
3101  *
3102  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3103  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3104  *
3105  */
3106 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3107 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3108 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3109 #define DELL_IANA_MFR_ID 0x0002a2
3110 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3111 {
3112         struct ipmi_device_id *id = &smi_info->device_id;
3113         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3114                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3115                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3116                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3117                         smi_info->oem_data_avail_handler =
3118                                 oem_data_avail_to_receive_msg_avail;
3119                 } else if (ipmi_version_major(id) < 1 ||
3120                            (ipmi_version_major(id) == 1 &&
3121                             ipmi_version_minor(id) < 5)) {
3122                         smi_info->oem_data_avail_handler =
3123                                 oem_data_avail_to_receive_msg_avail;
3124                 }
3125         }
3126 }
3127
3128 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3129 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3130 {
3131         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3132
3133         /* Make it a response */
3134         msg->rsp[0] = msg->data[0] | 4;
3135         msg->rsp[1] = msg->data[1];
3136         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3137         msg->rsp_size = 3;
3138         smi_info->curr_msg = NULL;
3139         deliver_recv_msg(smi_info, msg);
3140 }
3141
3142 /*
3143  * dell_poweredge_bt_xaction_handler
3144  * @info - smi_info.device_id must be populated
3145  *
3146  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3147  * not respond to a Get SDR command if the length of the data
3148  * requested is exactly 0x3A, which leads to command timeouts and no
3149  * data returned.  This intercepts such commands, and causes userspace
3150  * callers to try again with a different-sized buffer, which succeeds.
3151  */
3152
3153 #define STORAGE_NETFN 0x0A
3154 #define STORAGE_CMD_GET_SDR 0x23
3155 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3156                                              unsigned long unused,
3157                                              void *in)
3158 {
3159         struct smi_info *smi_info = in;
3160         unsigned char *data = smi_info->curr_msg->data;
3161         unsigned int size   = smi_info->curr_msg->data_size;
3162         if (size >= 8 &&
3163             (data[0]>>2) == STORAGE_NETFN &&
3164             data[1] == STORAGE_CMD_GET_SDR &&
3165             data[7] == 0x3A) {
3166                 return_hosed_msg_badsize(smi_info);
3167                 return NOTIFY_STOP;
3168         }
3169         return NOTIFY_DONE;
3170 }
3171
3172 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3173         .notifier_call  = dell_poweredge_bt_xaction_handler,
3174 };
3175
3176 /*
3177  * setup_dell_poweredge_bt_xaction_handler
3178  * @info - smi_info.device_id must be filled in already
3179  *
3180  * Fills in smi_info.device_id.start_transaction_pre_hook
3181  * when we know what function to use there.
3182  */
3183 static void
3184 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3185 {
3186         struct ipmi_device_id *id = &smi_info->device_id;
3187         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3188             smi_info->si_type == SI_BT)
3189                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3190 }
3191
3192 /*
3193  * setup_oem_data_handler
3194  * @info - smi_info.device_id must be filled in already
3195  *
3196  * Fills in smi_info.device_id.oem_data_available_handler
3197  * when we know what function to use there.
3198  */
3199
3200 static void setup_oem_data_handler(struct smi_info *smi_info)
3201 {
3202         setup_dell_poweredge_oem_data_handler(smi_info);
3203 }
3204
3205 static void setup_xaction_handlers(struct smi_info *smi_info)
3206 {
3207         setup_dell_poweredge_bt_xaction_handler(smi_info);
3208 }
3209
3210 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3211 {
3212         if (smi_info->thread != NULL)
3213                 kthread_stop(smi_info->thread);
3214         if (smi_info->timer_running)
3215                 del_timer_sync(&smi_info->si_timer);
3216 }
3217
3218 static struct ipmi_default_vals
3219 {
3220         int type;
3221         int port;
3222 } ipmi_defaults[] =
3223 {
3224         { .type = SI_KCS, .port = 0xca2 },
3225         { .type = SI_SMIC, .port = 0xca9 },
3226         { .type = SI_BT, .port = 0xe4 },
3227         { .port = 0 }
3228 };
3229
3230 static void default_find_bmc(void)
3231 {
3232         struct smi_info *info;
3233         int             i;
3234
3235         for (i = 0; ; i++) {
3236                 if (!ipmi_defaults[i].port)
3237                         break;
3238 #ifdef CONFIG_PPC
3239                 if (check_legacy_ioport(ipmi_defaults[i].port))
3240                         continue;
3241 #endif
3242                 info = smi_info_alloc();
3243                 if (!info)
3244                         return;
3245
3246                 info->addr_source = SI_DEFAULT;
3247
3248                 info->si_type = ipmi_defaults[i].type;
3249                 info->io_setup = port_setup;
3250                 info->io.addr_data = ipmi_defaults[i].port;
3251                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3252
3253                 info->io.addr = NULL;
3254                 info->io.regspacing = DEFAULT_REGSPACING;
3255                 info->io.regsize = DEFAULT_REGSPACING;
3256                 info->io.regshift = 0;
3257
3258                 if (add_smi(info) == 0) {
3259                         if ((try_smi_init(info)) == 0) {
3260                                 /* Found one... */
3261                                 printk(KERN_INFO PFX "Found default %s"
3262                                 " state machine at %s address 0x%lx\n",
3263                                 si_to_str[info->si_type],
3264                                 addr_space_to_str[info->io.addr_type],
3265                                 info->io.addr_data);
3266                         } else
3267                                 cleanup_one_si(info);
3268                 } else {
3269                         kfree(info);
3270                 }
3271         }
3272 }
3273
3274 static int is_new_interface(struct smi_info *info)
3275 {
3276         struct smi_info *e;
3277
3278         list_for_each_entry(e, &smi_infos, link) {
3279                 if (e->io.addr_type != info->io.addr_type)
3280                         continue;
3281                 if (e->io.addr_data == info->io.addr_data)
3282                         return 0;
3283         }
3284
3285         return 1;
3286 }
3287
3288 static int add_smi(struct smi_info *new_smi)
3289 {
3290         int rv = 0;
3291
3292         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3293                ipmi_addr_src_to_str(new_smi->addr_source),
3294                si_to_str[new_smi->si_type]);
3295         mutex_lock(&smi_infos_lock);
3296         if (!is_new_interface(new_smi)) {
3297                 printk(KERN_CONT " duplicate interface\n");
3298                 rv = -EBUSY;
3299                 goto out_err;
3300         }
3301
3302         printk(KERN_CONT "\n");
3303
3304         /* So we know not to free it unless we have allocated one. */
3305         new_smi->intf = NULL;
3306         new_smi->si_sm = NULL;
3307         new_smi->handlers = NULL;
3308
3309         list_add_tail(&new_smi->link, &smi_infos);
3310
3311 out_err:
3312         mutex_unlock(&smi_infos_lock);
3313         return rv;
3314 }
3315
3316 static int try_smi_init(struct smi_info *new_smi)
3317 {
3318         int rv = 0;
3319         int i;
3320
3321         printk(KERN_INFO PFX "Trying %s-specified %s state"
3322                " machine at %s address 0x%lx, slave address 0x%x,"
3323                " irq %d\n",
3324                ipmi_addr_src_to_str(new_smi->addr_source),
3325                si_to_str[new_smi->si_type],
3326                addr_space_to_str[new_smi->io.addr_type],
3327                new_smi->io.addr_data,
3328                new_smi->slave_addr, new_smi->irq);
3329
3330         switch (new_smi->si_type) {
3331         case SI_KCS:
3332                 new_smi->handlers = &kcs_smi_handlers;
3333                 break;
3334
3335         case SI_SMIC:
3336                 new_smi->handlers = &smic_smi_handlers;
3337                 break;
3338
3339         case SI_BT:
3340                 new_smi->handlers = &bt_smi_handlers;
3341                 break;
3342
3343         default:
3344                 /* No support for anything else yet. */
3345                 rv = -EIO;
3346                 goto out_err;
3347         }
3348
3349         /* Allocate the state machine's data and initialize it. */
3350         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3351         if (!new_smi->si_sm) {
3352                 printk(KERN_ERR PFX
3353                        "Could not allocate state machine memory\n");
3354                 rv = -ENOMEM;
3355                 goto out_err;
3356         }
3357         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3358                                                         &new_smi->io);
3359
3360         /* Now that we know the I/O size, we can set up the I/O. */
3361         rv = new_smi->io_setup(new_smi);
3362         if (rv) {
3363                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3364                 goto out_err;
3365         }
3366
3367         /* Do low-level detection first. */
3368         if (new_smi->handlers->detect(new_smi->si_sm)) {
3369                 if (new_smi->addr_source)
3370                         printk(KERN_INFO PFX "Interface detection failed\n");
3371                 rv = -ENODEV;
3372                 goto out_err;
3373         }
3374
3375         /*
3376          * Attempt a get device id command.  If it fails, we probably
3377          * don't have a BMC here.
3378          */
3379         rv = try_get_dev_id(new_smi);
3380         if (rv) {
3381                 if (new_smi->addr_source)
3382                         printk(KERN_INFO PFX "There appears to be no BMC"
3383                                " at this location\n");
3384                 goto out_err;
3385         }
3386
3387         setup_oem_data_handler(new_smi);
3388         setup_xaction_handlers(new_smi);
3389
3390         new_smi->waiting_msg = NULL;
3391         new_smi->curr_msg = NULL;
3392         atomic_set(&new_smi->req_events, 0);
3393         new_smi->run_to_completion = false;
3394         for (i = 0; i < SI_NUM_STATS; i++)
3395                 atomic_set(&new_smi->stats[i], 0);
3396
3397         new_smi->interrupt_disabled = true;
3398         atomic_set(&new_smi->need_watch, 0);
3399         new_smi->intf_num = smi_num;
3400         smi_num++;
3401
3402         rv = try_enable_event_buffer(new_smi);
3403         if (rv == 0)
3404                 new_smi->has_event_buffer = true;
3405
3406         /*
3407          * Start clearing the flags before we enable interrupts or the
3408          * timer to avoid racing with the timer.
3409          */
3410         start_clear_flags(new_smi);
3411
3412         /*
3413          * IRQ is defined to be set when non-zero.  req_events will
3414          * cause a global flags check that will enable interrupts.
3415          */
3416         if (new_smi->irq) {
3417                 new_smi->interrupt_disabled = false;
3418                 atomic_set(&new_smi->req_events, 1);
3419         }
3420
3421         if (!new_smi->dev) {
3422                 /*
3423                  * If we don't already have a device from something
3424                  * else (like PCI), then register a new one.
3425                  */
3426                 new_smi->pdev = platform_device_alloc("ipmi_si",
3427                                                       new_smi->intf_num);
3428                 if (!new_smi->pdev) {
3429                         printk(KERN_ERR PFX
3430                                "Unable to allocate platform device\n");
3431                         goto out_err;
3432                 }
3433                 new_smi->dev = &new_smi->pdev->dev;
3434                 new_smi->dev->driver = &ipmi_driver.driver;
3435
3436                 rv = platform_device_add(new_smi->pdev);
3437                 if (rv) {
3438                         printk(KERN_ERR PFX
3439                                "Unable to register system interface device:"
3440                                " %d\n",
3441                                rv);
3442                         goto out_err;
3443                 }
3444                 new_smi->dev_registered = true;
3445         }
3446
3447         rv = ipmi_register_smi(&handlers,
3448                                new_smi,
3449                                &new_smi->device_id,
3450                                new_smi->dev,
3451                                new_smi->slave_addr);
3452         if (rv) {
3453                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3454                         rv);
3455                 goto out_err_stop_timer;
3456         }
3457
3458         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3459                                      &smi_type_proc_ops,
3460                                      new_smi);
3461         if (rv) {
3462                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3463                 goto out_err_stop_timer;
3464         }
3465
3466         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3467                                      &smi_si_stats_proc_ops,
3468                                      new_smi);
3469         if (rv) {
3470                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3471                 goto out_err_stop_timer;
3472         }
3473
3474         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3475                                      &smi_params_proc_ops,
3476                                      new_smi);
3477         if (rv) {
3478                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3479                 goto out_err_stop_timer;
3480         }
3481
3482         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3483                  si_to_str[new_smi->si_type]);
3484
3485         return 0;
3486
3487  out_err_stop_timer:
3488         wait_for_timer_and_thread(new_smi);
3489
3490  out_err:
3491         new_smi->interrupt_disabled = true;
3492
3493         if (new_smi->intf) {
3494                 ipmi_smi_t intf = new_smi->intf;
3495                 new_smi->intf = NULL;
3496                 ipmi_unregister_smi(intf);
3497         }
3498
3499         if (new_smi->irq_cleanup) {
3500                 new_smi->irq_cleanup(new_smi);
3501                 new_smi->irq_cleanup = NULL;
3502         }
3503
3504         /*
3505          * Wait until we know that we are out of any interrupt
3506          * handlers might have been running before we freed the
3507          * interrupt.
3508          */
3509         synchronize_sched();
3510
3511         if (new_smi->si_sm) {
3512                 if (new_smi->handlers)
3513                         new_smi->handlers->cleanup(new_smi->si_sm);
3514                 kfree(new_smi->si_sm);
3515                 new_smi->si_sm = NULL;
3516         }
3517         if (new_smi->addr_source_cleanup) {
3518                 new_smi->addr_source_cleanup(new_smi);
3519                 new_smi->addr_source_cleanup = NULL;
3520         }
3521         if (new_smi->io_cleanup) {
3522                 new_smi->io_cleanup(new_smi);
3523                 new_smi->io_cleanup = NULL;
3524         }
3525
3526         if (new_smi->dev_registered) {
3527                 platform_device_unregister(new_smi->pdev);
3528                 new_smi->dev_registered = false;
3529         }
3530
3531         return rv;
3532 }
3533
3534 static int init_ipmi_si(void)
3535 {
3536         int  i;
3537         char *str;
3538         int  rv;
3539         struct smi_info *e;
3540         enum ipmi_addr_src type = SI_INVALID;
3541
3542         if (initialized)
3543                 return 0;
3544         initialized = 1;
3545
3546         if (si_tryplatform) {
3547                 rv = platform_driver_register(&ipmi_driver);
3548                 if (rv) {
3549                         printk(KERN_ERR PFX "Unable to register "
3550                                "driver: %d\n", rv);
3551                         return rv;
3552                 }
3553         }
3554
3555         /* Parse out the si_type string into its components. */
3556         str = si_type_str;
3557         if (*str != '\0') {
3558                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3559                         si_type[i] = str;
3560                         str = strchr(str, ',');
3561                         if (str) {
3562                                 *str = '\0';
3563                                 str++;
3564                         } else {
3565                                 break;
3566                         }
3567                 }
3568         }
3569
3570         printk(KERN_INFO "IPMI System Interface driver.\n");
3571
3572         /* If the user gave us a device, they presumably want us to use it */
3573         if (!hardcode_find_bmc())
3574                 return 0;
3575
3576 #ifdef CONFIG_PCI
3577         if (si_trypci) {
3578                 rv = pci_register_driver(&ipmi_pci_driver);
3579                 if (rv)
3580                         printk(KERN_ERR PFX "Unable to register "
3581                                "PCI driver: %d\n", rv);
3582                 else
3583                         pci_registered = true;
3584         }
3585 #endif
3586
3587 #ifdef CONFIG_ACPI
3588         if (si_tryacpi) {
3589                 pnp_register_driver(&ipmi_pnp_driver);
3590                 pnp_registered = true;
3591         }
3592 #endif
3593
3594 #ifdef CONFIG_DMI
3595         if (si_trydmi)
3596                 dmi_find_bmc();
3597 #endif
3598
3599 #ifdef CONFIG_ACPI
3600         if (si_tryacpi)
3601                 spmi_find_bmc();
3602 #endif
3603
3604 #ifdef CONFIG_PARISC
3605         register_parisc_driver(&ipmi_parisc_driver);
3606         parisc_registered = true;
3607         /* poking PC IO addresses will crash machine, don't do it */
3608         si_trydefaults = 0;
3609 #endif
3610
3611         /* We prefer devices with interrupts, but in the case of a machine
3612            with multiple BMCs we assume that there will be several instances
3613            of a given type so if we succeed in registering a type then also
3614            try to register everything else of the same type */
3615
3616         mutex_lock(&smi_infos_lock);
3617         list_for_each_entry(e, &smi_infos, link) {
3618                 /* Try to register a device if it has an IRQ and we either
3619                    haven't successfully registered a device yet or this
3620                    device has the same type as one we successfully registered */
3621                 if (e->irq && (!type || e->addr_source == type)) {
3622                         if (!try_smi_init(e)) {
3623                                 type = e->addr_source;
3624                         }
3625                 }
3626         }
3627
3628         /* type will only have been set if we successfully registered an si */
3629         if (type) {
3630                 mutex_unlock(&smi_infos_lock);
3631                 return 0;
3632         }
3633
3634         /* Fall back to the preferred device */
3635
3636         list_for_each_entry(e, &smi_infos, link) {
3637                 if (!e->irq && (!type || e->addr_source == type)) {
3638                         if (!try_smi_init(e)) {
3639                                 type = e->addr_source;
3640                         }
3641                 }
3642         }
3643         mutex_unlock(&smi_infos_lock);
3644
3645         if (type)
3646                 return 0;
3647
3648         if (si_trydefaults) {
3649                 mutex_lock(&smi_infos_lock);
3650                 if (list_empty(&smi_infos)) {
3651                         /* No BMC was found, try defaults. */
3652                         mutex_unlock(&smi_infos_lock);
3653                         default_find_bmc();
3654                 } else
3655                         mutex_unlock(&smi_infos_lock);
3656         }
3657
3658         mutex_lock(&smi_infos_lock);
3659         if (unload_when_empty && list_empty(&smi_infos)) {
3660                 mutex_unlock(&smi_infos_lock);
3661                 cleanup_ipmi_si();
3662                 printk(KERN_WARNING PFX
3663                        "Unable to find any System Interface(s)\n");
3664                 return -ENODEV;
3665         } else {
3666                 mutex_unlock(&smi_infos_lock);
3667                 return 0;
3668         }
3669 }
3670 module_init(init_ipmi_si);
3671
3672 static void cleanup_one_si(struct smi_info *to_clean)
3673 {
3674         int           rv = 0;
3675
3676         if (!to_clean)
3677                 return;
3678
3679         if (to_clean->intf) {
3680                 ipmi_smi_t intf = to_clean->intf;
3681
3682                 to_clean->intf = NULL;
3683                 rv = ipmi_unregister_smi(intf);
3684                 if (rv) {
3685                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3686                                rv);
3687                 }
3688         }
3689
3690         if (to_clean->dev)
3691                 dev_set_drvdata(to_clean->dev, NULL);
3692
3693         list_del(&to_clean->link);
3694
3695         /*
3696          * Make sure that interrupts, the timer and the thread are
3697          * stopped and will not run again.
3698          */
3699         if (to_clean->irq_cleanup)
3700                 to_clean->irq_cleanup(to_clean);
3701         wait_for_timer_and_thread(to_clean);
3702
3703         /*
3704          * Timeouts are stopped, now make sure the interrupts are off
3705          * in the BMC.  Note that timers and CPU interrupts are off,
3706          * so no need for locks.
3707          */
3708         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3709                 poll(to_clean);
3710                 schedule_timeout_uninterruptible(1);
3711         }
3712         disable_si_irq(to_clean);
3713         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3714                 poll(to_clean);
3715                 schedule_timeout_uninterruptible(1);
3716         }
3717
3718         if (to_clean->handlers)
3719                 to_clean->handlers->cleanup(to_clean->si_sm);
3720
3721         kfree(to_clean->si_sm);
3722
3723         if (to_clean->addr_source_cleanup)
3724                 to_clean->addr_source_cleanup(to_clean);
3725         if (to_clean->io_cleanup)
3726                 to_clean->io_cleanup(to_clean);
3727
3728         if (to_clean->dev_registered)
3729                 platform_device_unregister(to_clean->pdev);
3730
3731         kfree(to_clean);
3732 }
3733
3734 static void cleanup_ipmi_si(void)
3735 {
3736         struct smi_info *e, *tmp_e;
3737
3738         if (!initialized)
3739                 return;
3740
3741 #ifdef CONFIG_PCI
3742         if (pci_registered)
3743                 pci_unregister_driver(&ipmi_pci_driver);
3744 #endif
3745 #ifdef CONFIG_ACPI
3746         if (pnp_registered)
3747                 pnp_unregister_driver(&ipmi_pnp_driver);
3748 #endif
3749 #ifdef CONFIG_PARISC
3750         if (parisc_registered)
3751                 unregister_parisc_driver(&ipmi_parisc_driver);
3752 #endif
3753
3754         platform_driver_unregister(&ipmi_driver);
3755
3756         mutex_lock(&smi_infos_lock);
3757         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3758                 cleanup_one_si(e);
3759         mutex_unlock(&smi_infos_lock);
3760 }
3761 module_exit(cleanup_ipmi_si);
3762
3763 MODULE_LICENSE("GPL");
3764 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3765 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3766                    " system interfaces.");