HID: multitouch: fix input mode switching on some Elan panels
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC    10000
84 #define SI_USEC_PER_JIFFY       (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87                                       short timeout */
88
89 enum si_intf_state {
90         SI_NORMAL,
91         SI_GETTING_FLAGS,
92         SI_GETTING_EVENTS,
93         SI_CLEARING_FLAGS,
94         SI_GETTING_MESSAGES,
95         SI_CHECKING_ENABLES,
96         SI_SETTING_ENABLES
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver;
113
114 /*
115  * Indexes into stats[] in smi_info below.
116  */
117 enum si_stat_indexes {
118         /*
119          * Number of times the driver requested a timer while an operation
120          * was in progress.
121          */
122         SI_STAT_short_timeouts = 0,
123
124         /*
125          * Number of times the driver requested a timer while nothing was in
126          * progress.
127          */
128         SI_STAT_long_timeouts,
129
130         /* Number of times the interface was idle while being polled. */
131         SI_STAT_idles,
132
133         /* Number of interrupts the driver handled. */
134         SI_STAT_interrupts,
135
136         /* Number of time the driver got an ATTN from the hardware. */
137         SI_STAT_attentions,
138
139         /* Number of times the driver requested flags from the hardware. */
140         SI_STAT_flag_fetches,
141
142         /* Number of times the hardware didn't follow the state machine. */
143         SI_STAT_hosed_count,
144
145         /* Number of completed messages. */
146         SI_STAT_complete_transactions,
147
148         /* Number of IPMI events received from the hardware. */
149         SI_STAT_events,
150
151         /* Number of watchdog pretimeouts. */
152         SI_STAT_watchdog_pretimeouts,
153
154         /* Number of asynchronous messages received. */
155         SI_STAT_incoming_messages,
156
157
158         /* This *must* remain last, add new values above this. */
159         SI_NUM_STATS
160 };
161
162 struct smi_info {
163         int                    intf_num;
164         ipmi_smi_t             intf;
165         struct si_sm_data      *si_sm;
166         const struct si_sm_handlers *handlers;
167         enum si_type           si_type;
168         spinlock_t             si_lock;
169         struct ipmi_smi_msg    *waiting_msg;
170         struct ipmi_smi_msg    *curr_msg;
171         enum si_intf_state     si_state;
172
173         /*
174          * Used to handle the various types of I/O that can occur with
175          * IPMI
176          */
177         struct si_sm_io io;
178         int (*io_setup)(struct smi_info *info);
179         void (*io_cleanup)(struct smi_info *info);
180         int (*irq_setup)(struct smi_info *info);
181         void (*irq_cleanup)(struct smi_info *info);
182         unsigned int io_size;
183         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184         void (*addr_source_cleanup)(struct smi_info *info);
185         void *addr_source_data;
186
187         /*
188          * Per-OEM handler, called from handle_flags().  Returns 1
189          * when handle_flags() needs to be re-run or 0 indicating it
190          * set si_state itself.
191          */
192         int (*oem_data_avail_handler)(struct smi_info *smi_info);
193
194         /*
195          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196          * is set to hold the flags until we are done handling everything
197          * from the flags.
198          */
199 #define RECEIVE_MSG_AVAIL       0x01
200 #define EVENT_MSG_BUFFER_FULL   0x02
201 #define WDT_PRE_TIMEOUT_INT     0x08
202 #define OEM0_DATA_AVAIL     0x20
203 #define OEM1_DATA_AVAIL     0x40
204 #define OEM2_DATA_AVAIL     0x80
205 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
206                              OEM1_DATA_AVAIL | \
207                              OEM2_DATA_AVAIL)
208         unsigned char       msg_flags;
209
210         /* Does the BMC have an event buffer? */
211         bool                has_event_buffer;
212
213         /*
214          * If set to true, this will request events the next time the
215          * state machine is idle.
216          */
217         atomic_t            req_events;
218
219         /*
220          * If true, run the state machine to completion on every send
221          * call.  Generally used after a panic to make sure stuff goes
222          * out.
223          */
224         bool                run_to_completion;
225
226         /* The I/O port of an SI interface. */
227         int                 port;
228
229         /*
230          * The space between start addresses of the two ports.  For
231          * instance, if the first port is 0xca2 and the spacing is 4, then
232          * the second port is 0xca6.
233          */
234         unsigned int        spacing;
235
236         /* zero if no irq; */
237         int                 irq;
238
239         /* The timer for this si. */
240         struct timer_list   si_timer;
241
242         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
243         bool                timer_running;
244
245         /* The time (in jiffies) the last timeout occurred at. */
246         unsigned long       last_timeout_jiffies;
247
248         /* Are we waiting for the events, pretimeouts, received msgs? */
249         atomic_t            need_watch;
250
251         /*
252          * The driver will disable interrupts when it gets into a
253          * situation where it cannot handle messages due to lack of
254          * memory.  Once that situation clears up, it will re-enable
255          * interrupts.
256          */
257         bool interrupt_disabled;
258
259         /*
260          * Does the BMC support events?
261          */
262         bool supports_event_msg_buff;
263
264         /*
265          * Can we disable interrupts the global enables receive irq
266          * bit?  There are currently two forms of brokenness, some
267          * systems cannot disable the bit (which is technically within
268          * the spec but a bad idea) and some systems have the bit
269          * forced to zero even though interrupts work (which is
270          * clearly outside the spec).  The next bool tells which form
271          * of brokenness is present.
272          */
273         bool cannot_disable_irq;
274
275         /*
276          * Some systems are broken and cannot set the irq enable
277          * bit, even if they support interrupts.
278          */
279         bool irq_enable_broken;
280
281         /*
282          * Did we get an attention that we did not handle?
283          */
284         bool got_attn;
285
286         /* From the get device id response... */
287         struct ipmi_device_id device_id;
288
289         /* Driver model stuff. */
290         struct device *dev;
291         struct platform_device *pdev;
292
293         /*
294          * True if we allocated the device, false if it came from
295          * someplace else (like PCI).
296          */
297         bool dev_registered;
298
299         /* Slave address, could be reported from DMI. */
300         unsigned char slave_addr;
301
302         /* Counters and things for the proc filesystem. */
303         atomic_t stats[SI_NUM_STATS];
304
305         struct task_struct *thread;
306
307         struct list_head link;
308         union ipmi_smi_info_union addr_info;
309 };
310
311 #define smi_inc_stat(smi, stat) \
312         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
313 #define smi_get_stat(smi, stat) \
314         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
315
316 #define SI_MAX_PARMS 4
317
318 static int force_kipmid[SI_MAX_PARMS];
319 static int num_force_kipmid;
320 #ifdef CONFIG_PCI
321 static bool pci_registered;
322 #endif
323 #ifdef CONFIG_PARISC
324 static bool parisc_registered;
325 #endif
326
327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
328 static int num_max_busy_us;
329
330 static bool unload_when_empty = true;
331
332 static int add_smi(struct smi_info *smi);
333 static int try_smi_init(struct smi_info *smi);
334 static void cleanup_one_si(struct smi_info *to_clean);
335 static void cleanup_ipmi_si(void);
336
337 #ifdef DEBUG_TIMING
338 void debug_timestamp(char *msg)
339 {
340         struct timespec64 t;
341
342         getnstimeofday64(&t);
343         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
344 }
345 #else
346 #define debug_timestamp(x)
347 #endif
348
349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
350 static int register_xaction_notifier(struct notifier_block *nb)
351 {
352         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
353 }
354
355 static void deliver_recv_msg(struct smi_info *smi_info,
356                              struct ipmi_smi_msg *msg)
357 {
358         /* Deliver the message to the upper layer. */
359         if (smi_info->intf)
360                 ipmi_smi_msg_received(smi_info->intf, msg);
361         else
362                 ipmi_free_smi_msg(msg);
363 }
364
365 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
366 {
367         struct ipmi_smi_msg *msg = smi_info->curr_msg;
368
369         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
370                 cCode = IPMI_ERR_UNSPECIFIED;
371         /* else use it as is */
372
373         /* Make it a response */
374         msg->rsp[0] = msg->data[0] | 4;
375         msg->rsp[1] = msg->data[1];
376         msg->rsp[2] = cCode;
377         msg->rsp_size = 3;
378
379         smi_info->curr_msg = NULL;
380         deliver_recv_msg(smi_info, msg);
381 }
382
383 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
384 {
385         int              rv;
386
387         if (!smi_info->waiting_msg) {
388                 smi_info->curr_msg = NULL;
389                 rv = SI_SM_IDLE;
390         } else {
391                 int err;
392
393                 smi_info->curr_msg = smi_info->waiting_msg;
394                 smi_info->waiting_msg = NULL;
395                 debug_timestamp("Start2");
396                 err = atomic_notifier_call_chain(&xaction_notifier_list,
397                                 0, smi_info);
398                 if (err & NOTIFY_STOP_MASK) {
399                         rv = SI_SM_CALL_WITHOUT_DELAY;
400                         goto out;
401                 }
402                 err = smi_info->handlers->start_transaction(
403                         smi_info->si_sm,
404                         smi_info->curr_msg->data,
405                         smi_info->curr_msg->data_size);
406                 if (err)
407                         return_hosed_msg(smi_info, err);
408
409                 rv = SI_SM_CALL_WITHOUT_DELAY;
410         }
411  out:
412         return rv;
413 }
414
415 static void start_check_enables(struct smi_info *smi_info)
416 {
417         unsigned char msg[2];
418
419         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423         smi_info->si_state = SI_CHECKING_ENABLES;
424 }
425
426 static void start_clear_flags(struct smi_info *smi_info)
427 {
428         unsigned char msg[3];
429
430         /* Make sure the watchdog pre-timeout flag is not set at startup. */
431         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
432         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
433         msg[2] = WDT_PRE_TIMEOUT_INT;
434
435         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
436         smi_info->si_state = SI_CLEARING_FLAGS;
437 }
438
439 static void start_getting_msg_queue(struct smi_info *smi_info)
440 {
441         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
443         smi_info->curr_msg->data_size = 2;
444
445         smi_info->handlers->start_transaction(
446                 smi_info->si_sm,
447                 smi_info->curr_msg->data,
448                 smi_info->curr_msg->data_size);
449         smi_info->si_state = SI_GETTING_MESSAGES;
450 }
451
452 static void start_getting_events(struct smi_info *smi_info)
453 {
454         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
455         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
456         smi_info->curr_msg->data_size = 2;
457
458         smi_info->handlers->start_transaction(
459                 smi_info->si_sm,
460                 smi_info->curr_msg->data,
461                 smi_info->curr_msg->data_size);
462         smi_info->si_state = SI_GETTING_EVENTS;
463 }
464
465 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
466 {
467         smi_info->last_timeout_jiffies = jiffies;
468         mod_timer(&smi_info->si_timer, new_val);
469         smi_info->timer_running = true;
470 }
471
472 /*
473  * When we have a situtaion where we run out of memory and cannot
474  * allocate messages, we just leave them in the BMC and run the system
475  * polled until we can allocate some memory.  Once we have some
476  * memory, we will re-enable the interrupt.
477  *
478  * Note that we cannot just use disable_irq(), since the interrupt may
479  * be shared.
480  */
481 static inline bool disable_si_irq(struct smi_info *smi_info)
482 {
483         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
484                 smi_info->interrupt_disabled = true;
485                 start_check_enables(smi_info);
486                 return true;
487         }
488         return false;
489 }
490
491 static inline bool enable_si_irq(struct smi_info *smi_info)
492 {
493         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
494                 smi_info->interrupt_disabled = false;
495                 start_check_enables(smi_info);
496                 return true;
497         }
498         return false;
499 }
500
501 /*
502  * Allocate a message.  If unable to allocate, start the interrupt
503  * disable process and return NULL.  If able to allocate but
504  * interrupts are disabled, free the message and return NULL after
505  * starting the interrupt enable process.
506  */
507 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
508 {
509         struct ipmi_smi_msg *msg;
510
511         msg = ipmi_alloc_smi_msg();
512         if (!msg) {
513                 if (!disable_si_irq(smi_info))
514                         smi_info->si_state = SI_NORMAL;
515         } else if (enable_si_irq(smi_info)) {
516                 ipmi_free_smi_msg(msg);
517                 msg = NULL;
518         }
519         return msg;
520 }
521
522 static void handle_flags(struct smi_info *smi_info)
523 {
524  retry:
525         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
526                 /* Watchdog pre-timeout */
527                 smi_inc_stat(smi_info, watchdog_pretimeouts);
528
529                 start_clear_flags(smi_info);
530                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
531                 if (smi_info->intf)
532                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
533         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
534                 /* Messages available. */
535                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
536                 if (!smi_info->curr_msg)
537                         return;
538
539                 start_getting_msg_queue(smi_info);
540         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
541                 /* Events available. */
542                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
543                 if (!smi_info->curr_msg)
544                         return;
545
546                 start_getting_events(smi_info);
547         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
548                    smi_info->oem_data_avail_handler) {
549                 if (smi_info->oem_data_avail_handler(smi_info))
550                         goto retry;
551         } else
552                 smi_info->si_state = SI_NORMAL;
553 }
554
555 /*
556  * Global enables we care about.
557  */
558 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
559                              IPMI_BMC_EVT_MSG_INTR)
560
561 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
562                                  bool *irq_on)
563 {
564         u8 enables = 0;
565
566         if (smi_info->supports_event_msg_buff)
567                 enables |= IPMI_BMC_EVT_MSG_BUFF;
568
569         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
570              smi_info->cannot_disable_irq) &&
571             !smi_info->irq_enable_broken)
572                 enables |= IPMI_BMC_RCV_MSG_INTR;
573
574         if (smi_info->supports_event_msg_buff &&
575             smi_info->irq && !smi_info->interrupt_disabled &&
576             !smi_info->irq_enable_broken)
577                 enables |= IPMI_BMC_EVT_MSG_INTR;
578
579         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
580
581         return enables;
582 }
583
584 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
585 {
586         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
587
588         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
589
590         if ((bool)irqstate == irq_on)
591                 return;
592
593         if (irq_on)
594                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
595                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
596         else
597                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
598 }
599
600 static void handle_transaction_done(struct smi_info *smi_info)
601 {
602         struct ipmi_smi_msg *msg;
603
604         debug_timestamp("Done");
605         switch (smi_info->si_state) {
606         case SI_NORMAL:
607                 if (!smi_info->curr_msg)
608                         break;
609
610                 smi_info->curr_msg->rsp_size
611                         = smi_info->handlers->get_result(
612                                 smi_info->si_sm,
613                                 smi_info->curr_msg->rsp,
614                                 IPMI_MAX_MSG_LENGTH);
615
616                 /*
617                  * Do this here becase deliver_recv_msg() releases the
618                  * lock, and a new message can be put in during the
619                  * time the lock is released.
620                  */
621                 msg = smi_info->curr_msg;
622                 smi_info->curr_msg = NULL;
623                 deliver_recv_msg(smi_info, msg);
624                 break;
625
626         case SI_GETTING_FLAGS:
627         {
628                 unsigned char msg[4];
629                 unsigned int  len;
630
631                 /* We got the flags from the SMI, now handle them. */
632                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
633                 if (msg[2] != 0) {
634                         /* Error fetching flags, just give up for now. */
635                         smi_info->si_state = SI_NORMAL;
636                 } else if (len < 4) {
637                         /*
638                          * Hmm, no flags.  That's technically illegal, but
639                          * don't use uninitialized data.
640                          */
641                         smi_info->si_state = SI_NORMAL;
642                 } else {
643                         smi_info->msg_flags = msg[3];
644                         handle_flags(smi_info);
645                 }
646                 break;
647         }
648
649         case SI_CLEARING_FLAGS:
650         {
651                 unsigned char msg[3];
652
653                 /* We cleared the flags. */
654                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
655                 if (msg[2] != 0) {
656                         /* Error clearing flags */
657                         dev_warn(smi_info->dev,
658                                  "Error clearing flags: %2.2x\n", msg[2]);
659                 }
660                 smi_info->si_state = SI_NORMAL;
661                 break;
662         }
663
664         case SI_GETTING_EVENTS:
665         {
666                 smi_info->curr_msg->rsp_size
667                         = smi_info->handlers->get_result(
668                                 smi_info->si_sm,
669                                 smi_info->curr_msg->rsp,
670                                 IPMI_MAX_MSG_LENGTH);
671
672                 /*
673                  * Do this here becase deliver_recv_msg() releases the
674                  * lock, and a new message can be put in during the
675                  * time the lock is released.
676                  */
677                 msg = smi_info->curr_msg;
678                 smi_info->curr_msg = NULL;
679                 if (msg->rsp[2] != 0) {
680                         /* Error getting event, probably done. */
681                         msg->done(msg);
682
683                         /* Take off the event flag. */
684                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
685                         handle_flags(smi_info);
686                 } else {
687                         smi_inc_stat(smi_info, events);
688
689                         /*
690                          * Do this before we deliver the message
691                          * because delivering the message releases the
692                          * lock and something else can mess with the
693                          * state.
694                          */
695                         handle_flags(smi_info);
696
697                         deliver_recv_msg(smi_info, msg);
698                 }
699                 break;
700         }
701
702         case SI_GETTING_MESSAGES:
703         {
704                 smi_info->curr_msg->rsp_size
705                         = smi_info->handlers->get_result(
706                                 smi_info->si_sm,
707                                 smi_info->curr_msg->rsp,
708                                 IPMI_MAX_MSG_LENGTH);
709
710                 /*
711                  * Do this here becase deliver_recv_msg() releases the
712                  * lock, and a new message can be put in during the
713                  * time the lock is released.
714                  */
715                 msg = smi_info->curr_msg;
716                 smi_info->curr_msg = NULL;
717                 if (msg->rsp[2] != 0) {
718                         /* Error getting event, probably done. */
719                         msg->done(msg);
720
721                         /* Take off the msg flag. */
722                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
723                         handle_flags(smi_info);
724                 } else {
725                         smi_inc_stat(smi_info, incoming_messages);
726
727                         /*
728                          * Do this before we deliver the message
729                          * because delivering the message releases the
730                          * lock and something else can mess with the
731                          * state.
732                          */
733                         handle_flags(smi_info);
734
735                         deliver_recv_msg(smi_info, msg);
736                 }
737                 break;
738         }
739
740         case SI_CHECKING_ENABLES:
741         {
742                 unsigned char msg[4];
743                 u8 enables;
744                 bool irq_on;
745
746                 /* We got the flags from the SMI, now handle them. */
747                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748                 if (msg[2] != 0) {
749                         dev_warn(smi_info->dev,
750                                  "Couldn't get irq info: %x.\n", msg[2]);
751                         dev_warn(smi_info->dev,
752                                  "Maybe ok, but ipmi might run very slowly.\n");
753                         smi_info->si_state = SI_NORMAL;
754                         break;
755                 }
756                 enables = current_global_enables(smi_info, 0, &irq_on);
757                 if (smi_info->si_type == SI_BT)
758                         /* BT has its own interrupt enable bit. */
759                         check_bt_irq(smi_info, irq_on);
760                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
761                         /* Enables are not correct, fix them. */
762                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
763                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
764                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
765                         smi_info->handlers->start_transaction(
766                                 smi_info->si_sm, msg, 3);
767                         smi_info->si_state = SI_SETTING_ENABLES;
768                 } else if (smi_info->supports_event_msg_buff) {
769                         smi_info->curr_msg = ipmi_alloc_smi_msg();
770                         if (!smi_info->curr_msg) {
771                                 smi_info->si_state = SI_NORMAL;
772                                 break;
773                         }
774                         start_getting_msg_queue(smi_info);
775                 } else {
776                         smi_info->si_state = SI_NORMAL;
777                 }
778                 break;
779         }
780
781         case SI_SETTING_ENABLES:
782         {
783                 unsigned char msg[4];
784
785                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
786                 if (msg[2] != 0)
787                         dev_warn(smi_info->dev,
788                                  "Could not set the global enables: 0x%x.\n",
789                                  msg[2]);
790
791                 if (smi_info->supports_event_msg_buff) {
792                         smi_info->curr_msg = ipmi_alloc_smi_msg();
793                         if (!smi_info->curr_msg) {
794                                 smi_info->si_state = SI_NORMAL;
795                                 break;
796                         }
797                         start_getting_msg_queue(smi_info);
798                 } else {
799                         smi_info->si_state = SI_NORMAL;
800                 }
801                 break;
802         }
803         }
804 }
805
806 /*
807  * Called on timeouts and events.  Timeouts should pass the elapsed
808  * time, interrupts should pass in zero.  Must be called with
809  * si_lock held and interrupts disabled.
810  */
811 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
812                                            int time)
813 {
814         enum si_sm_result si_sm_result;
815
816  restart:
817         /*
818          * There used to be a loop here that waited a little while
819          * (around 25us) before giving up.  That turned out to be
820          * pointless, the minimum delays I was seeing were in the 300us
821          * range, which is far too long to wait in an interrupt.  So
822          * we just run until the state machine tells us something
823          * happened or it needs a delay.
824          */
825         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
826         time = 0;
827         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
828                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
829
830         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
831                 smi_inc_stat(smi_info, complete_transactions);
832
833                 handle_transaction_done(smi_info);
834                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
835         } else if (si_sm_result == SI_SM_HOSED) {
836                 smi_inc_stat(smi_info, hosed_count);
837
838                 /*
839                  * Do the before return_hosed_msg, because that
840                  * releases the lock.
841                  */
842                 smi_info->si_state = SI_NORMAL;
843                 if (smi_info->curr_msg != NULL) {
844                         /*
845                          * If we were handling a user message, format
846                          * a response to send to the upper layer to
847                          * tell it about the error.
848                          */
849                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
850                 }
851                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
852         }
853
854         /*
855          * We prefer handling attn over new messages.  But don't do
856          * this if there is not yet an upper layer to handle anything.
857          */
858         if (likely(smi_info->intf) &&
859             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
860                 unsigned char msg[2];
861
862                 if (smi_info->si_state != SI_NORMAL) {
863                         /*
864                          * We got an ATTN, but we are doing something else.
865                          * Handle the ATTN later.
866                          */
867                         smi_info->got_attn = true;
868                 } else {
869                         smi_info->got_attn = false;
870                         smi_inc_stat(smi_info, attentions);
871
872                         /*
873                          * Got a attn, send down a get message flags to see
874                          * what's causing it.  It would be better to handle
875                          * this in the upper layer, but due to the way
876                          * interrupts work with the SMI, that's not really
877                          * possible.
878                          */
879                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
880                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
881
882                         smi_info->handlers->start_transaction(
883                                 smi_info->si_sm, msg, 2);
884                         smi_info->si_state = SI_GETTING_FLAGS;
885                         goto restart;
886                 }
887         }
888
889         /* If we are currently idle, try to start the next message. */
890         if (si_sm_result == SI_SM_IDLE) {
891                 smi_inc_stat(smi_info, idles);
892
893                 si_sm_result = start_next_msg(smi_info);
894                 if (si_sm_result != SI_SM_IDLE)
895                         goto restart;
896         }
897
898         if ((si_sm_result == SI_SM_IDLE)
899             && (atomic_read(&smi_info->req_events))) {
900                 /*
901                  * We are idle and the upper layer requested that I fetch
902                  * events, so do so.
903                  */
904                 atomic_set(&smi_info->req_events, 0);
905
906                 /*
907                  * Take this opportunity to check the interrupt and
908                  * message enable state for the BMC.  The BMC can be
909                  * asynchronously reset, and may thus get interrupts
910                  * disable and messages disabled.
911                  */
912                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
913                         start_check_enables(smi_info);
914                 } else {
915                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
916                         if (!smi_info->curr_msg)
917                                 goto out;
918
919                         start_getting_events(smi_info);
920                 }
921                 goto restart;
922         }
923  out:
924         return si_sm_result;
925 }
926
927 static void check_start_timer_thread(struct smi_info *smi_info)
928 {
929         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
930                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
931
932                 if (smi_info->thread)
933                         wake_up_process(smi_info->thread);
934
935                 start_next_msg(smi_info);
936                 smi_event_handler(smi_info, 0);
937         }
938 }
939
940 static void flush_messages(void *send_info)
941 {
942         struct smi_info *smi_info = send_info;
943         enum si_sm_result result;
944
945         /*
946          * Currently, this function is called only in run-to-completion
947          * mode.  This means we are single-threaded, no need for locks.
948          */
949         result = smi_event_handler(smi_info, 0);
950         while (result != SI_SM_IDLE) {
951                 udelay(SI_SHORT_TIMEOUT_USEC);
952                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
953         }
954 }
955
956 static void sender(void                *send_info,
957                    struct ipmi_smi_msg *msg)
958 {
959         struct smi_info   *smi_info = send_info;
960         unsigned long     flags;
961
962         debug_timestamp("Enqueue");
963
964         if (smi_info->run_to_completion) {
965                 /*
966                  * If we are running to completion, start it.  Upper
967                  * layer will call flush_messages to clear it out.
968                  */
969                 smi_info->waiting_msg = msg;
970                 return;
971         }
972
973         spin_lock_irqsave(&smi_info->si_lock, flags);
974         /*
975          * The following two lines don't need to be under the lock for
976          * the lock's sake, but they do need SMP memory barriers to
977          * avoid getting things out of order.  We are already claiming
978          * the lock, anyway, so just do it under the lock to avoid the
979          * ordering problem.
980          */
981         BUG_ON(smi_info->waiting_msg);
982         smi_info->waiting_msg = msg;
983         check_start_timer_thread(smi_info);
984         spin_unlock_irqrestore(&smi_info->si_lock, flags);
985 }
986
987 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
988 {
989         struct smi_info   *smi_info = send_info;
990
991         smi_info->run_to_completion = i_run_to_completion;
992         if (i_run_to_completion)
993                 flush_messages(smi_info);
994 }
995
996 /*
997  * Use -1 in the nsec value of the busy waiting timespec to tell that
998  * we are spinning in kipmid looking for something and not delaying
999  * between checks
1000  */
1001 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1002 {
1003         ts->tv_nsec = -1;
1004 }
1005 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1006 {
1007         return ts->tv_nsec != -1;
1008 }
1009
1010 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1011                                         const struct smi_info *smi_info,
1012                                         struct timespec64 *busy_until)
1013 {
1014         unsigned int max_busy_us = 0;
1015
1016         if (smi_info->intf_num < num_max_busy_us)
1017                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1018         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1019                 ipmi_si_set_not_busy(busy_until);
1020         else if (!ipmi_si_is_busy(busy_until)) {
1021                 getnstimeofday64(busy_until);
1022                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1023         } else {
1024                 struct timespec64 now;
1025
1026                 getnstimeofday64(&now);
1027                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1028                         ipmi_si_set_not_busy(busy_until);
1029                         return 0;
1030                 }
1031         }
1032         return 1;
1033 }
1034
1035
1036 /*
1037  * A busy-waiting loop for speeding up IPMI operation.
1038  *
1039  * Lousy hardware makes this hard.  This is only enabled for systems
1040  * that are not BT and do not have interrupts.  It starts spinning
1041  * when an operation is complete or until max_busy tells it to stop
1042  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1043  * Documentation/IPMI.txt for details.
1044  */
1045 static int ipmi_thread(void *data)
1046 {
1047         struct smi_info *smi_info = data;
1048         unsigned long flags;
1049         enum si_sm_result smi_result;
1050         struct timespec64 busy_until;
1051
1052         ipmi_si_set_not_busy(&busy_until);
1053         set_user_nice(current, MAX_NICE);
1054         while (!kthread_should_stop()) {
1055                 int busy_wait;
1056
1057                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1058                 smi_result = smi_event_handler(smi_info, 0);
1059
1060                 /*
1061                  * If the driver is doing something, there is a possible
1062                  * race with the timer.  If the timer handler see idle,
1063                  * and the thread here sees something else, the timer
1064                  * handler won't restart the timer even though it is
1065                  * required.  So start it here if necessary.
1066                  */
1067                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1068                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1069
1070                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1071                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1072                                                   &busy_until);
1073                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1074                         ; /* do nothing */
1075                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1076                         schedule();
1077                 else if (smi_result == SI_SM_IDLE) {
1078                         if (atomic_read(&smi_info->need_watch)) {
1079                                 schedule_timeout_interruptible(100);
1080                         } else {
1081                                 /* Wait to be woken up when we are needed. */
1082                                 __set_current_state(TASK_INTERRUPTIBLE);
1083                                 schedule();
1084                         }
1085                 } else
1086                         schedule_timeout_interruptible(1);
1087         }
1088         return 0;
1089 }
1090
1091
1092 static void poll(void *send_info)
1093 {
1094         struct smi_info *smi_info = send_info;
1095         unsigned long flags = 0;
1096         bool run_to_completion = smi_info->run_to_completion;
1097
1098         /*
1099          * Make sure there is some delay in the poll loop so we can
1100          * drive time forward and timeout things.
1101          */
1102         udelay(10);
1103         if (!run_to_completion)
1104                 spin_lock_irqsave(&smi_info->si_lock, flags);
1105         smi_event_handler(smi_info, 10);
1106         if (!run_to_completion)
1107                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1108 }
1109
1110 static void request_events(void *send_info)
1111 {
1112         struct smi_info *smi_info = send_info;
1113
1114         if (!smi_info->has_event_buffer)
1115                 return;
1116
1117         atomic_set(&smi_info->req_events, 1);
1118 }
1119
1120 static void set_need_watch(void *send_info, bool enable)
1121 {
1122         struct smi_info *smi_info = send_info;
1123         unsigned long flags;
1124
1125         atomic_set(&smi_info->need_watch, enable);
1126         spin_lock_irqsave(&smi_info->si_lock, flags);
1127         check_start_timer_thread(smi_info);
1128         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1129 }
1130
1131 static int initialized;
1132
1133 static void smi_timeout(unsigned long data)
1134 {
1135         struct smi_info   *smi_info = (struct smi_info *) data;
1136         enum si_sm_result smi_result;
1137         unsigned long     flags;
1138         unsigned long     jiffies_now;
1139         long              time_diff;
1140         long              timeout;
1141
1142         spin_lock_irqsave(&(smi_info->si_lock), flags);
1143         debug_timestamp("Timer");
1144
1145         jiffies_now = jiffies;
1146         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1147                      * SI_USEC_PER_JIFFY);
1148         smi_result = smi_event_handler(smi_info, time_diff);
1149
1150         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1151                 /* Running with interrupts, only do long timeouts. */
1152                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1153                 smi_inc_stat(smi_info, long_timeouts);
1154                 goto do_mod_timer;
1155         }
1156
1157         /*
1158          * If the state machine asks for a short delay, then shorten
1159          * the timer timeout.
1160          */
1161         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1162                 smi_inc_stat(smi_info, short_timeouts);
1163                 timeout = jiffies + 1;
1164         } else {
1165                 smi_inc_stat(smi_info, long_timeouts);
1166                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1167         }
1168
1169  do_mod_timer:
1170         if (smi_result != SI_SM_IDLE)
1171                 smi_mod_timer(smi_info, timeout);
1172         else
1173                 smi_info->timer_running = false;
1174         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1175 }
1176
1177 static irqreturn_t si_irq_handler(int irq, void *data)
1178 {
1179         struct smi_info *smi_info = data;
1180         unsigned long   flags;
1181
1182         spin_lock_irqsave(&(smi_info->si_lock), flags);
1183
1184         smi_inc_stat(smi_info, interrupts);
1185
1186         debug_timestamp("Interrupt");
1187
1188         smi_event_handler(smi_info, 0);
1189         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1190         return IRQ_HANDLED;
1191 }
1192
1193 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1194 {
1195         struct smi_info *smi_info = data;
1196         /* We need to clear the IRQ flag for the BT interface. */
1197         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1198                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1199                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1200         return si_irq_handler(irq, data);
1201 }
1202
1203 static int smi_start_processing(void       *send_info,
1204                                 ipmi_smi_t intf)
1205 {
1206         struct smi_info *new_smi = send_info;
1207         int             enable = 0;
1208
1209         new_smi->intf = intf;
1210
1211         /* Try to claim any interrupts. */
1212         if (new_smi->irq_setup)
1213                 new_smi->irq_setup(new_smi);
1214
1215         /* Set up the timer that drives the interface. */
1216         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1217         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1218
1219         /*
1220          * Check if the user forcefully enabled the daemon.
1221          */
1222         if (new_smi->intf_num < num_force_kipmid)
1223                 enable = force_kipmid[new_smi->intf_num];
1224         /*
1225          * The BT interface is efficient enough to not need a thread,
1226          * and there is no need for a thread if we have interrupts.
1227          */
1228         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1229                 enable = 1;
1230
1231         if (enable) {
1232                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1233                                               "kipmi%d", new_smi->intf_num);
1234                 if (IS_ERR(new_smi->thread)) {
1235                         dev_notice(new_smi->dev, "Could not start"
1236                                    " kernel thread due to error %ld, only using"
1237                                    " timers to drive the interface\n",
1238                                    PTR_ERR(new_smi->thread));
1239                         new_smi->thread = NULL;
1240                 }
1241         }
1242
1243         return 0;
1244 }
1245
1246 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1247 {
1248         struct smi_info *smi = send_info;
1249
1250         data->addr_src = smi->addr_source;
1251         data->dev = smi->dev;
1252         data->addr_info = smi->addr_info;
1253         get_device(smi->dev);
1254
1255         return 0;
1256 }
1257
1258 static void set_maintenance_mode(void *send_info, bool enable)
1259 {
1260         struct smi_info   *smi_info = send_info;
1261
1262         if (!enable)
1263                 atomic_set(&smi_info->req_events, 0);
1264 }
1265
1266 static const struct ipmi_smi_handlers handlers = {
1267         .owner                  = THIS_MODULE,
1268         .start_processing       = smi_start_processing,
1269         .get_smi_info           = get_smi_info,
1270         .sender                 = sender,
1271         .request_events         = request_events,
1272         .set_need_watch         = set_need_watch,
1273         .set_maintenance_mode   = set_maintenance_mode,
1274         .set_run_to_completion  = set_run_to_completion,
1275         .flush_messages         = flush_messages,
1276         .poll                   = poll,
1277 };
1278
1279 /*
1280  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1281  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1282  */
1283
1284 static LIST_HEAD(smi_infos);
1285 static DEFINE_MUTEX(smi_infos_lock);
1286 static int smi_num; /* Used to sequence the SMIs */
1287
1288 #define DEFAULT_REGSPACING      1
1289 #define DEFAULT_REGSIZE         1
1290
1291 #ifdef CONFIG_ACPI
1292 static bool          si_tryacpi = true;
1293 #endif
1294 #ifdef CONFIG_DMI
1295 static bool          si_trydmi = true;
1296 #endif
1297 static bool          si_tryplatform = true;
1298 #ifdef CONFIG_PCI
1299 static bool          si_trypci = true;
1300 #endif
1301 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1302 static char          *si_type[SI_MAX_PARMS];
1303 #define MAX_SI_TYPE_STR 30
1304 static char          si_type_str[MAX_SI_TYPE_STR];
1305 static unsigned long addrs[SI_MAX_PARMS];
1306 static unsigned int num_addrs;
1307 static unsigned int  ports[SI_MAX_PARMS];
1308 static unsigned int num_ports;
1309 static int           irqs[SI_MAX_PARMS];
1310 static unsigned int num_irqs;
1311 static int           regspacings[SI_MAX_PARMS];
1312 static unsigned int num_regspacings;
1313 static int           regsizes[SI_MAX_PARMS];
1314 static unsigned int num_regsizes;
1315 static int           regshifts[SI_MAX_PARMS];
1316 static unsigned int num_regshifts;
1317 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1318 static unsigned int num_slave_addrs;
1319
1320 #define IPMI_IO_ADDR_SPACE  0
1321 #define IPMI_MEM_ADDR_SPACE 1
1322 static char *addr_space_to_str[] = { "i/o", "mem" };
1323
1324 static int hotmod_handler(const char *val, struct kernel_param *kp);
1325
1326 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1327 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1328                  " Documentation/IPMI.txt in the kernel sources for the"
1329                  " gory details.");
1330
1331 #ifdef CONFIG_ACPI
1332 module_param_named(tryacpi, si_tryacpi, bool, 0);
1333 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1334                  " default scan of the interfaces identified via ACPI");
1335 #endif
1336 #ifdef CONFIG_DMI
1337 module_param_named(trydmi, si_trydmi, bool, 0);
1338 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1339                  " default scan of the interfaces identified via DMI");
1340 #endif
1341 module_param_named(tryplatform, si_tryplatform, bool, 0);
1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343                  " default scan of the interfaces identified via platform"
1344                  " interfaces like openfirmware");
1345 #ifdef CONFIG_PCI
1346 module_param_named(trypci, si_trypci, bool, 0);
1347 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1348                  " default scan of the interfaces identified via pci");
1349 #endif
1350 module_param_named(trydefaults, si_trydefaults, bool, 0);
1351 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1352                  " default scan of the KCS and SMIC interface at the standard"
1353                  " address");
1354 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1355 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1356                  " interface separated by commas.  The types are 'kcs',"
1357                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1358                  " the first interface to kcs and the second to bt");
1359 module_param_array(addrs, ulong, &num_addrs, 0);
1360 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1361                  " addresses separated by commas.  Only use if an interface"
1362                  " is in memory.  Otherwise, set it to zero or leave"
1363                  " it blank.");
1364 module_param_array(ports, uint, &num_ports, 0);
1365 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1366                  " addresses separated by commas.  Only use if an interface"
1367                  " is a port.  Otherwise, set it to zero or leave"
1368                  " it blank.");
1369 module_param_array(irqs, int, &num_irqs, 0);
1370 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1371                  " addresses separated by commas.  Only use if an interface"
1372                  " has an interrupt.  Otherwise, set it to zero or leave"
1373                  " it blank.");
1374 module_param_array(regspacings, int, &num_regspacings, 0);
1375 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1376                  " and each successive register used by the interface.  For"
1377                  " instance, if the start address is 0xca2 and the spacing"
1378                  " is 2, then the second address is at 0xca4.  Defaults"
1379                  " to 1.");
1380 module_param_array(regsizes, int, &num_regsizes, 0);
1381 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1382                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1383                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1384                  " the 8-bit IPMI register has to be read from a larger"
1385                  " register.");
1386 module_param_array(regshifts, int, &num_regshifts, 0);
1387 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1388                  " IPMI register, in bits.  For instance, if the data"
1389                  " is read from a 32-bit word and the IPMI data is in"
1390                  " bit 8-15, then the shift would be 8");
1391 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1392 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1393                  " the controller.  Normally this is 0x20, but can be"
1394                  " overridden by this parm.  This is an array indexed"
1395                  " by interface number.");
1396 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1397 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1398                  " disabled(0).  Normally the IPMI driver auto-detects"
1399                  " this, but the value may be overridden by this parm.");
1400 module_param(unload_when_empty, bool, 0);
1401 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1402                  " specified or found, default is 1.  Setting to 0"
1403                  " is useful for hot add of devices using hotmod.");
1404 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1405 MODULE_PARM_DESC(kipmid_max_busy_us,
1406                  "Max time (in microseconds) to busy-wait for IPMI data before"
1407                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1408                  " if kipmid is using up a lot of CPU time.");
1409
1410
1411 static void std_irq_cleanup(struct smi_info *info)
1412 {
1413         if (info->si_type == SI_BT)
1414                 /* Disable the interrupt in the BT interface. */
1415                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1416         free_irq(info->irq, info);
1417 }
1418
1419 static int std_irq_setup(struct smi_info *info)
1420 {
1421         int rv;
1422
1423         if (!info->irq)
1424                 return 0;
1425
1426         if (info->si_type == SI_BT) {
1427                 rv = request_irq(info->irq,
1428                                  si_bt_irq_handler,
1429                                  IRQF_SHARED,
1430                                  DEVICE_NAME,
1431                                  info);
1432                 if (!rv)
1433                         /* Enable the interrupt in the BT interface. */
1434                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1435                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1436         } else
1437                 rv = request_irq(info->irq,
1438                                  si_irq_handler,
1439                                  IRQF_SHARED,
1440                                  DEVICE_NAME,
1441                                  info);
1442         if (rv) {
1443                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1444                          " running polled\n",
1445                          DEVICE_NAME, info->irq);
1446                 info->irq = 0;
1447         } else {
1448                 info->irq_cleanup = std_irq_cleanup;
1449                 dev_info(info->dev, "Using irq %d\n", info->irq);
1450         }
1451
1452         return rv;
1453 }
1454
1455 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1456 {
1457         unsigned int addr = io->addr_data;
1458
1459         return inb(addr + (offset * io->regspacing));
1460 }
1461
1462 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1463                       unsigned char b)
1464 {
1465         unsigned int addr = io->addr_data;
1466
1467         outb(b, addr + (offset * io->regspacing));
1468 }
1469
1470 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1471 {
1472         unsigned int addr = io->addr_data;
1473
1474         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1475 }
1476
1477 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1478                       unsigned char b)
1479 {
1480         unsigned int addr = io->addr_data;
1481
1482         outw(b << io->regshift, addr + (offset * io->regspacing));
1483 }
1484
1485 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1486 {
1487         unsigned int addr = io->addr_data;
1488
1489         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1490 }
1491
1492 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1493                       unsigned char b)
1494 {
1495         unsigned int addr = io->addr_data;
1496
1497         outl(b << io->regshift, addr+(offset * io->regspacing));
1498 }
1499
1500 static void port_cleanup(struct smi_info *info)
1501 {
1502         unsigned int addr = info->io.addr_data;
1503         int          idx;
1504
1505         if (addr) {
1506                 for (idx = 0; idx < info->io_size; idx++)
1507                         release_region(addr + idx * info->io.regspacing,
1508                                        info->io.regsize);
1509         }
1510 }
1511
1512 static int port_setup(struct smi_info *info)
1513 {
1514         unsigned int addr = info->io.addr_data;
1515         int          idx;
1516
1517         if (!addr)
1518                 return -ENODEV;
1519
1520         info->io_cleanup = port_cleanup;
1521
1522         /*
1523          * Figure out the actual inb/inw/inl/etc routine to use based
1524          * upon the register size.
1525          */
1526         switch (info->io.regsize) {
1527         case 1:
1528                 info->io.inputb = port_inb;
1529                 info->io.outputb = port_outb;
1530                 break;
1531         case 2:
1532                 info->io.inputb = port_inw;
1533                 info->io.outputb = port_outw;
1534                 break;
1535         case 4:
1536                 info->io.inputb = port_inl;
1537                 info->io.outputb = port_outl;
1538                 break;
1539         default:
1540                 dev_warn(info->dev, "Invalid register size: %d\n",
1541                          info->io.regsize);
1542                 return -EINVAL;
1543         }
1544
1545         /*
1546          * Some BIOSes reserve disjoint I/O regions in their ACPI
1547          * tables.  This causes problems when trying to register the
1548          * entire I/O region.  Therefore we must register each I/O
1549          * port separately.
1550          */
1551         for (idx = 0; idx < info->io_size; idx++) {
1552                 if (request_region(addr + idx * info->io.regspacing,
1553                                    info->io.regsize, DEVICE_NAME) == NULL) {
1554                         /* Undo allocations */
1555                         while (idx--) {
1556                                 release_region(addr + idx * info->io.regspacing,
1557                                                info->io.regsize);
1558                         }
1559                         return -EIO;
1560                 }
1561         }
1562         return 0;
1563 }
1564
1565 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1566                                   unsigned int offset)
1567 {
1568         return readb((io->addr)+(offset * io->regspacing));
1569 }
1570
1571 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1572                           unsigned char b)
1573 {
1574         writeb(b, (io->addr)+(offset * io->regspacing));
1575 }
1576
1577 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1578                                   unsigned int offset)
1579 {
1580         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1581                 & 0xff;
1582 }
1583
1584 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1585                           unsigned char b)
1586 {
1587         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1588 }
1589
1590 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1591                                   unsigned int offset)
1592 {
1593         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1594                 & 0xff;
1595 }
1596
1597 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1598                           unsigned char b)
1599 {
1600         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1601 }
1602
1603 #ifdef readq
1604 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1605 {
1606         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1607                 & 0xff;
1608 }
1609
1610 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1611                      unsigned char b)
1612 {
1613         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1614 }
1615 #endif
1616
1617 static void mem_cleanup(struct smi_info *info)
1618 {
1619         unsigned long addr = info->io.addr_data;
1620         int           mapsize;
1621
1622         if (info->io.addr) {
1623                 iounmap(info->io.addr);
1624
1625                 mapsize = ((info->io_size * info->io.regspacing)
1626                            - (info->io.regspacing - info->io.regsize));
1627
1628                 release_mem_region(addr, mapsize);
1629         }
1630 }
1631
1632 static int mem_setup(struct smi_info *info)
1633 {
1634         unsigned long addr = info->io.addr_data;
1635         int           mapsize;
1636
1637         if (!addr)
1638                 return -ENODEV;
1639
1640         info->io_cleanup = mem_cleanup;
1641
1642         /*
1643          * Figure out the actual readb/readw/readl/etc routine to use based
1644          * upon the register size.
1645          */
1646         switch (info->io.regsize) {
1647         case 1:
1648                 info->io.inputb = intf_mem_inb;
1649                 info->io.outputb = intf_mem_outb;
1650                 break;
1651         case 2:
1652                 info->io.inputb = intf_mem_inw;
1653                 info->io.outputb = intf_mem_outw;
1654                 break;
1655         case 4:
1656                 info->io.inputb = intf_mem_inl;
1657                 info->io.outputb = intf_mem_outl;
1658                 break;
1659 #ifdef readq
1660         case 8:
1661                 info->io.inputb = mem_inq;
1662                 info->io.outputb = mem_outq;
1663                 break;
1664 #endif
1665         default:
1666                 dev_warn(info->dev, "Invalid register size: %d\n",
1667                          info->io.regsize);
1668                 return -EINVAL;
1669         }
1670
1671         /*
1672          * Calculate the total amount of memory to claim.  This is an
1673          * unusual looking calculation, but it avoids claiming any
1674          * more memory than it has to.  It will claim everything
1675          * between the first address to the end of the last full
1676          * register.
1677          */
1678         mapsize = ((info->io_size * info->io.regspacing)
1679                    - (info->io.regspacing - info->io.regsize));
1680
1681         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1682                 return -EIO;
1683
1684         info->io.addr = ioremap(addr, mapsize);
1685         if (info->io.addr == NULL) {
1686                 release_mem_region(addr, mapsize);
1687                 return -EIO;
1688         }
1689         return 0;
1690 }
1691
1692 /*
1693  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1694  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1695  * Options are:
1696  *   rsp=<regspacing>
1697  *   rsi=<regsize>
1698  *   rsh=<regshift>
1699  *   irq=<irq>
1700  *   ipmb=<ipmb addr>
1701  */
1702 enum hotmod_op { HM_ADD, HM_REMOVE };
1703 struct hotmod_vals {
1704         char *name;
1705         int  val;
1706 };
1707 static struct hotmod_vals hotmod_ops[] = {
1708         { "add",        HM_ADD },
1709         { "remove",     HM_REMOVE },
1710         { NULL }
1711 };
1712 static struct hotmod_vals hotmod_si[] = {
1713         { "kcs",        SI_KCS },
1714         { "smic",       SI_SMIC },
1715         { "bt",         SI_BT },
1716         { NULL }
1717 };
1718 static struct hotmod_vals hotmod_as[] = {
1719         { "mem",        IPMI_MEM_ADDR_SPACE },
1720         { "i/o",        IPMI_IO_ADDR_SPACE },
1721         { NULL }
1722 };
1723
1724 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1725 {
1726         char *s;
1727         int  i;
1728
1729         s = strchr(*curr, ',');
1730         if (!s) {
1731                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1732                 return -EINVAL;
1733         }
1734         *s = '\0';
1735         s++;
1736         for (i = 0; v[i].name; i++) {
1737                 if (strcmp(*curr, v[i].name) == 0) {
1738                         *val = v[i].val;
1739                         *curr = s;
1740                         return 0;
1741                 }
1742         }
1743
1744         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1745         return -EINVAL;
1746 }
1747
1748 static int check_hotmod_int_op(const char *curr, const char *option,
1749                                const char *name, int *val)
1750 {
1751         char *n;
1752
1753         if (strcmp(curr, name) == 0) {
1754                 if (!option) {
1755                         printk(KERN_WARNING PFX
1756                                "No option given for '%s'\n",
1757                                curr);
1758                         return -EINVAL;
1759                 }
1760                 *val = simple_strtoul(option, &n, 0);
1761                 if ((*n != '\0') || (*option == '\0')) {
1762                         printk(KERN_WARNING PFX
1763                                "Bad option given for '%s'\n",
1764                                curr);
1765                         return -EINVAL;
1766                 }
1767                 return 1;
1768         }
1769         return 0;
1770 }
1771
1772 static struct smi_info *smi_info_alloc(void)
1773 {
1774         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1775
1776         if (info)
1777                 spin_lock_init(&info->si_lock);
1778         return info;
1779 }
1780
1781 static int hotmod_handler(const char *val, struct kernel_param *kp)
1782 {
1783         char *str = kstrdup(val, GFP_KERNEL);
1784         int  rv;
1785         char *next, *curr, *s, *n, *o;
1786         enum hotmod_op op;
1787         enum si_type si_type;
1788         int  addr_space;
1789         unsigned long addr;
1790         int regspacing;
1791         int regsize;
1792         int regshift;
1793         int irq;
1794         int ipmb;
1795         int ival;
1796         int len;
1797         struct smi_info *info;
1798
1799         if (!str)
1800                 return -ENOMEM;
1801
1802         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1803         len = strlen(str);
1804         ival = len - 1;
1805         while ((ival >= 0) && isspace(str[ival])) {
1806                 str[ival] = '\0';
1807                 ival--;
1808         }
1809
1810         for (curr = str; curr; curr = next) {
1811                 regspacing = 1;
1812                 regsize = 1;
1813                 regshift = 0;
1814                 irq = 0;
1815                 ipmb = 0; /* Choose the default if not specified */
1816
1817                 next = strchr(curr, ':');
1818                 if (next) {
1819                         *next = '\0';
1820                         next++;
1821                 }
1822
1823                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1824                 if (rv)
1825                         break;
1826                 op = ival;
1827
1828                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1829                 if (rv)
1830                         break;
1831                 si_type = ival;
1832
1833                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1834                 if (rv)
1835                         break;
1836
1837                 s = strchr(curr, ',');
1838                 if (s) {
1839                         *s = '\0';
1840                         s++;
1841                 }
1842                 addr = simple_strtoul(curr, &n, 0);
1843                 if ((*n != '\0') || (*curr == '\0')) {
1844                         printk(KERN_WARNING PFX "Invalid hotmod address"
1845                                " '%s'\n", curr);
1846                         break;
1847                 }
1848
1849                 while (s) {
1850                         curr = s;
1851                         s = strchr(curr, ',');
1852                         if (s) {
1853                                 *s = '\0';
1854                                 s++;
1855                         }
1856                         o = strchr(curr, '=');
1857                         if (o) {
1858                                 *o = '\0';
1859                                 o++;
1860                         }
1861                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1862                         if (rv < 0)
1863                                 goto out;
1864                         else if (rv)
1865                                 continue;
1866                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1867                         if (rv < 0)
1868                                 goto out;
1869                         else if (rv)
1870                                 continue;
1871                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1872                         if (rv < 0)
1873                                 goto out;
1874                         else if (rv)
1875                                 continue;
1876                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1877                         if (rv < 0)
1878                                 goto out;
1879                         else if (rv)
1880                                 continue;
1881                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1882                         if (rv < 0)
1883                                 goto out;
1884                         else if (rv)
1885                                 continue;
1886
1887                         rv = -EINVAL;
1888                         printk(KERN_WARNING PFX
1889                                "Invalid hotmod option '%s'\n",
1890                                curr);
1891                         goto out;
1892                 }
1893
1894                 if (op == HM_ADD) {
1895                         info = smi_info_alloc();
1896                         if (!info) {
1897                                 rv = -ENOMEM;
1898                                 goto out;
1899                         }
1900
1901                         info->addr_source = SI_HOTMOD;
1902                         info->si_type = si_type;
1903                         info->io.addr_data = addr;
1904                         info->io.addr_type = addr_space;
1905                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1906                                 info->io_setup = mem_setup;
1907                         else
1908                                 info->io_setup = port_setup;
1909
1910                         info->io.addr = NULL;
1911                         info->io.regspacing = regspacing;
1912                         if (!info->io.regspacing)
1913                                 info->io.regspacing = DEFAULT_REGSPACING;
1914                         info->io.regsize = regsize;
1915                         if (!info->io.regsize)
1916                                 info->io.regsize = DEFAULT_REGSPACING;
1917                         info->io.regshift = regshift;
1918                         info->irq = irq;
1919                         if (info->irq)
1920                                 info->irq_setup = std_irq_setup;
1921                         info->slave_addr = ipmb;
1922
1923                         rv = add_smi(info);
1924                         if (rv) {
1925                                 kfree(info);
1926                                 goto out;
1927                         }
1928                         rv = try_smi_init(info);
1929                         if (rv) {
1930                                 cleanup_one_si(info);
1931                                 goto out;
1932                         }
1933                 } else {
1934                         /* remove */
1935                         struct smi_info *e, *tmp_e;
1936
1937                         mutex_lock(&smi_infos_lock);
1938                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1939                                 if (e->io.addr_type != addr_space)
1940                                         continue;
1941                                 if (e->si_type != si_type)
1942                                         continue;
1943                                 if (e->io.addr_data == addr)
1944                                         cleanup_one_si(e);
1945                         }
1946                         mutex_unlock(&smi_infos_lock);
1947                 }
1948         }
1949         rv = len;
1950  out:
1951         kfree(str);
1952         return rv;
1953 }
1954
1955 static int hardcode_find_bmc(void)
1956 {
1957         int ret = -ENODEV;
1958         int             i;
1959         struct smi_info *info;
1960
1961         for (i = 0; i < SI_MAX_PARMS; i++) {
1962                 if (!ports[i] && !addrs[i])
1963                         continue;
1964
1965                 info = smi_info_alloc();
1966                 if (!info)
1967                         return -ENOMEM;
1968
1969                 info->addr_source = SI_HARDCODED;
1970                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1971
1972                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1973                         info->si_type = SI_KCS;
1974                 } else if (strcmp(si_type[i], "smic") == 0) {
1975                         info->si_type = SI_SMIC;
1976                 } else if (strcmp(si_type[i], "bt") == 0) {
1977                         info->si_type = SI_BT;
1978                 } else {
1979                         printk(KERN_WARNING PFX "Interface type specified "
1980                                "for interface %d, was invalid: %s\n",
1981                                i, si_type[i]);
1982                         kfree(info);
1983                         continue;
1984                 }
1985
1986                 if (ports[i]) {
1987                         /* An I/O port */
1988                         info->io_setup = port_setup;
1989                         info->io.addr_data = ports[i];
1990                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1991                 } else if (addrs[i]) {
1992                         /* A memory port */
1993                         info->io_setup = mem_setup;
1994                         info->io.addr_data = addrs[i];
1995                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1996                 } else {
1997                         printk(KERN_WARNING PFX "Interface type specified "
1998                                "for interface %d, but port and address were "
1999                                "not set or set to zero.\n", i);
2000                         kfree(info);
2001                         continue;
2002                 }
2003
2004                 info->io.addr = NULL;
2005                 info->io.regspacing = regspacings[i];
2006                 if (!info->io.regspacing)
2007                         info->io.regspacing = DEFAULT_REGSPACING;
2008                 info->io.regsize = regsizes[i];
2009                 if (!info->io.regsize)
2010                         info->io.regsize = DEFAULT_REGSPACING;
2011                 info->io.regshift = regshifts[i];
2012                 info->irq = irqs[i];
2013                 if (info->irq)
2014                         info->irq_setup = std_irq_setup;
2015                 info->slave_addr = slave_addrs[i];
2016
2017                 if (!add_smi(info)) {
2018                         if (try_smi_init(info))
2019                                 cleanup_one_si(info);
2020                         ret = 0;
2021                 } else {
2022                         kfree(info);
2023                 }
2024         }
2025         return ret;
2026 }
2027
2028 #ifdef CONFIG_ACPI
2029
2030 #include <linux/acpi.h>
2031
2032 /*
2033  * Once we get an ACPI failure, we don't try any more, because we go
2034  * through the tables sequentially.  Once we don't find a table, there
2035  * are no more.
2036  */
2037 static int acpi_failure;
2038
2039 /* For GPE-type interrupts. */
2040 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2041         u32 gpe_number, void *context)
2042 {
2043         struct smi_info *smi_info = context;
2044         unsigned long   flags;
2045
2046         spin_lock_irqsave(&(smi_info->si_lock), flags);
2047
2048         smi_inc_stat(smi_info, interrupts);
2049
2050         debug_timestamp("ACPI_GPE");
2051
2052         smi_event_handler(smi_info, 0);
2053         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2054
2055         return ACPI_INTERRUPT_HANDLED;
2056 }
2057
2058 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2059 {
2060         if (!info->irq)
2061                 return;
2062
2063         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2064 }
2065
2066 static int acpi_gpe_irq_setup(struct smi_info *info)
2067 {
2068         acpi_status status;
2069
2070         if (!info->irq)
2071                 return 0;
2072
2073         status = acpi_install_gpe_handler(NULL,
2074                                           info->irq,
2075                                           ACPI_GPE_LEVEL_TRIGGERED,
2076                                           &ipmi_acpi_gpe,
2077                                           info);
2078         if (status != AE_OK) {
2079                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2080                          " running polled\n", DEVICE_NAME, info->irq);
2081                 info->irq = 0;
2082                 return -EINVAL;
2083         } else {
2084                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2085                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2086                 return 0;
2087         }
2088 }
2089
2090 /*
2091  * Defined at
2092  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2093  */
2094 struct SPMITable {
2095         s8      Signature[4];
2096         u32     Length;
2097         u8      Revision;
2098         u8      Checksum;
2099         s8      OEMID[6];
2100         s8      OEMTableID[8];
2101         s8      OEMRevision[4];
2102         s8      CreatorID[4];
2103         s8      CreatorRevision[4];
2104         u8      InterfaceType;
2105         u8      IPMIlegacy;
2106         s16     SpecificationRevision;
2107
2108         /*
2109          * Bit 0 - SCI interrupt supported
2110          * Bit 1 - I/O APIC/SAPIC
2111          */
2112         u8      InterruptType;
2113
2114         /*
2115          * If bit 0 of InterruptType is set, then this is the SCI
2116          * interrupt in the GPEx_STS register.
2117          */
2118         u8      GPE;
2119
2120         s16     Reserved;
2121
2122         /*
2123          * If bit 1 of InterruptType is set, then this is the I/O
2124          * APIC/SAPIC interrupt.
2125          */
2126         u32     GlobalSystemInterrupt;
2127
2128         /* The actual register address. */
2129         struct acpi_generic_address addr;
2130
2131         u8      UID[4];
2132
2133         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2134 };
2135
2136 static int try_init_spmi(struct SPMITable *spmi)
2137 {
2138         struct smi_info  *info;
2139         int rv;
2140
2141         if (spmi->IPMIlegacy != 1) {
2142                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2143                 return -ENODEV;
2144         }
2145
2146         info = smi_info_alloc();
2147         if (!info) {
2148                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2149                 return -ENOMEM;
2150         }
2151
2152         info->addr_source = SI_SPMI;
2153         printk(KERN_INFO PFX "probing via SPMI\n");
2154
2155         /* Figure out the interface type. */
2156         switch (spmi->InterfaceType) {
2157         case 1: /* KCS */
2158                 info->si_type = SI_KCS;
2159                 break;
2160         case 2: /* SMIC */
2161                 info->si_type = SI_SMIC;
2162                 break;
2163         case 3: /* BT */
2164                 info->si_type = SI_BT;
2165                 break;
2166         case 4: /* SSIF, just ignore */
2167                 kfree(info);
2168                 return -EIO;
2169         default:
2170                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2171                        spmi->InterfaceType);
2172                 kfree(info);
2173                 return -EIO;
2174         }
2175
2176         if (spmi->InterruptType & 1) {
2177                 /* We've got a GPE interrupt. */
2178                 info->irq = spmi->GPE;
2179                 info->irq_setup = acpi_gpe_irq_setup;
2180         } else if (spmi->InterruptType & 2) {
2181                 /* We've got an APIC/SAPIC interrupt. */
2182                 info->irq = spmi->GlobalSystemInterrupt;
2183                 info->irq_setup = std_irq_setup;
2184         } else {
2185                 /* Use the default interrupt setting. */
2186                 info->irq = 0;
2187                 info->irq_setup = NULL;
2188         }
2189
2190         if (spmi->addr.bit_width) {
2191                 /* A (hopefully) properly formed register bit width. */
2192                 info->io.regspacing = spmi->addr.bit_width / 8;
2193         } else {
2194                 info->io.regspacing = DEFAULT_REGSPACING;
2195         }
2196         info->io.regsize = info->io.regspacing;
2197         info->io.regshift = spmi->addr.bit_offset;
2198
2199         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2200                 info->io_setup = mem_setup;
2201                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2202         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2203                 info->io_setup = port_setup;
2204                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2205         } else {
2206                 kfree(info);
2207                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2208                 return -EIO;
2209         }
2210         info->io.addr_data = spmi->addr.address;
2211
2212         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2213                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2214                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2215                  info->irq);
2216
2217         rv = add_smi(info);
2218         if (rv)
2219                 kfree(info);
2220
2221         return rv;
2222 }
2223
2224 static void spmi_find_bmc(void)
2225 {
2226         acpi_status      status;
2227         struct SPMITable *spmi;
2228         int              i;
2229
2230         if (acpi_disabled)
2231                 return;
2232
2233         if (acpi_failure)
2234                 return;
2235
2236         for (i = 0; ; i++) {
2237                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2238                                         (struct acpi_table_header **)&spmi);
2239                 if (status != AE_OK)
2240                         return;
2241
2242                 try_init_spmi(spmi);
2243         }
2244 }
2245 #endif
2246
2247 #ifdef CONFIG_DMI
2248 struct dmi_ipmi_data {
2249         u8              type;
2250         u8              addr_space;
2251         unsigned long   base_addr;
2252         u8              irq;
2253         u8              offset;
2254         u8              slave_addr;
2255 };
2256
2257 static int decode_dmi(const struct dmi_header *dm,
2258                                 struct dmi_ipmi_data *dmi)
2259 {
2260         const u8        *data = (const u8 *)dm;
2261         unsigned long   base_addr;
2262         u8              reg_spacing;
2263         u8              len = dm->length;
2264
2265         dmi->type = data[4];
2266
2267         memcpy(&base_addr, data+8, sizeof(unsigned long));
2268         if (len >= 0x11) {
2269                 if (base_addr & 1) {
2270                         /* I/O */
2271                         base_addr &= 0xFFFE;
2272                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2273                 } else
2274                         /* Memory */
2275                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2276
2277                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2278                    is odd. */
2279                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2280
2281                 dmi->irq = data[0x11];
2282
2283                 /* The top two bits of byte 0x10 hold the register spacing. */
2284                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2285                 switch (reg_spacing) {
2286                 case 0x00: /* Byte boundaries */
2287                     dmi->offset = 1;
2288                     break;
2289                 case 0x01: /* 32-bit boundaries */
2290                     dmi->offset = 4;
2291                     break;
2292                 case 0x02: /* 16-byte boundaries */
2293                     dmi->offset = 16;
2294                     break;
2295                 default:
2296                     /* Some other interface, just ignore it. */
2297                     return -EIO;
2298                 }
2299         } else {
2300                 /* Old DMI spec. */
2301                 /*
2302                  * Note that technically, the lower bit of the base
2303                  * address should be 1 if the address is I/O and 0 if
2304                  * the address is in memory.  So many systems get that
2305                  * wrong (and all that I have seen are I/O) so we just
2306                  * ignore that bit and assume I/O.  Systems that use
2307                  * memory should use the newer spec, anyway.
2308                  */
2309                 dmi->base_addr = base_addr & 0xfffe;
2310                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2311                 dmi->offset = 1;
2312         }
2313
2314         dmi->slave_addr = data[6];
2315
2316         return 0;
2317 }
2318
2319 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2320 {
2321         struct smi_info *info;
2322
2323         info = smi_info_alloc();
2324         if (!info) {
2325                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2326                 return;
2327         }
2328
2329         info->addr_source = SI_SMBIOS;
2330         printk(KERN_INFO PFX "probing via SMBIOS\n");
2331
2332         switch (ipmi_data->type) {
2333         case 0x01: /* KCS */
2334                 info->si_type = SI_KCS;
2335                 break;
2336         case 0x02: /* SMIC */
2337                 info->si_type = SI_SMIC;
2338                 break;
2339         case 0x03: /* BT */
2340                 info->si_type = SI_BT;
2341                 break;
2342         default:
2343                 kfree(info);
2344                 return;
2345         }
2346
2347         switch (ipmi_data->addr_space) {
2348         case IPMI_MEM_ADDR_SPACE:
2349                 info->io_setup = mem_setup;
2350                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2351                 break;
2352
2353         case IPMI_IO_ADDR_SPACE:
2354                 info->io_setup = port_setup;
2355                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2356                 break;
2357
2358         default:
2359                 kfree(info);
2360                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2361                        ipmi_data->addr_space);
2362                 return;
2363         }
2364         info->io.addr_data = ipmi_data->base_addr;
2365
2366         info->io.regspacing = ipmi_data->offset;
2367         if (!info->io.regspacing)
2368                 info->io.regspacing = DEFAULT_REGSPACING;
2369         info->io.regsize = DEFAULT_REGSPACING;
2370         info->io.regshift = 0;
2371
2372         info->slave_addr = ipmi_data->slave_addr;
2373
2374         info->irq = ipmi_data->irq;
2375         if (info->irq)
2376                 info->irq_setup = std_irq_setup;
2377
2378         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2379                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2380                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2381                  info->irq);
2382
2383         if (add_smi(info))
2384                 kfree(info);
2385 }
2386
2387 static void dmi_find_bmc(void)
2388 {
2389         const struct dmi_device *dev = NULL;
2390         struct dmi_ipmi_data data;
2391         int                  rv;
2392
2393         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2394                 memset(&data, 0, sizeof(data));
2395                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2396                                 &data);
2397                 if (!rv)
2398                         try_init_dmi(&data);
2399         }
2400 }
2401 #endif /* CONFIG_DMI */
2402
2403 #ifdef CONFIG_PCI
2404
2405 #define PCI_ERMC_CLASSCODE              0x0C0700
2406 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2407 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2408 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2409 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2410 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2411
2412 #define PCI_HP_VENDOR_ID    0x103C
2413 #define PCI_MMC_DEVICE_ID   0x121A
2414 #define PCI_MMC_ADDR_CW     0x10
2415
2416 static void ipmi_pci_cleanup(struct smi_info *info)
2417 {
2418         struct pci_dev *pdev = info->addr_source_data;
2419
2420         pci_disable_device(pdev);
2421 }
2422
2423 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2424 {
2425         if (info->si_type == SI_KCS) {
2426                 unsigned char   status;
2427                 int             regspacing;
2428
2429                 info->io.regsize = DEFAULT_REGSIZE;
2430                 info->io.regshift = 0;
2431                 info->io_size = 2;
2432                 info->handlers = &kcs_smi_handlers;
2433
2434                 /* detect 1, 4, 16byte spacing */
2435                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2436                         info->io.regspacing = regspacing;
2437                         if (info->io_setup(info)) {
2438                                 dev_err(info->dev,
2439                                         "Could not setup I/O space\n");
2440                                 return DEFAULT_REGSPACING;
2441                         }
2442                         /* write invalid cmd */
2443                         info->io.outputb(&info->io, 1, 0x10);
2444                         /* read status back */
2445                         status = info->io.inputb(&info->io, 1);
2446                         info->io_cleanup(info);
2447                         if (status)
2448                                 return regspacing;
2449                         regspacing *= 4;
2450                 }
2451         }
2452         return DEFAULT_REGSPACING;
2453 }
2454
2455 static int ipmi_pci_probe(struct pci_dev *pdev,
2456                                     const struct pci_device_id *ent)
2457 {
2458         int rv;
2459         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2460         struct smi_info *info;
2461
2462         info = smi_info_alloc();
2463         if (!info)
2464                 return -ENOMEM;
2465
2466         info->addr_source = SI_PCI;
2467         dev_info(&pdev->dev, "probing via PCI");
2468
2469         switch (class_type) {
2470         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2471                 info->si_type = SI_SMIC;
2472                 break;
2473
2474         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2475                 info->si_type = SI_KCS;
2476                 break;
2477
2478         case PCI_ERMC_CLASSCODE_TYPE_BT:
2479                 info->si_type = SI_BT;
2480                 break;
2481
2482         default:
2483                 kfree(info);
2484                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2485                 return -ENOMEM;
2486         }
2487
2488         rv = pci_enable_device(pdev);
2489         if (rv) {
2490                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2491                 kfree(info);
2492                 return rv;
2493         }
2494
2495         info->addr_source_cleanup = ipmi_pci_cleanup;
2496         info->addr_source_data = pdev;
2497
2498         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2499                 info->io_setup = port_setup;
2500                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2501         } else {
2502                 info->io_setup = mem_setup;
2503                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2504         }
2505         info->io.addr_data = pci_resource_start(pdev, 0);
2506
2507         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2508         info->io.regsize = DEFAULT_REGSIZE;
2509         info->io.regshift = 0;
2510
2511         info->irq = pdev->irq;
2512         if (info->irq)
2513                 info->irq_setup = std_irq_setup;
2514
2515         info->dev = &pdev->dev;
2516         pci_set_drvdata(pdev, info);
2517
2518         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2519                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2520                 info->irq);
2521
2522         rv = add_smi(info);
2523         if (rv) {
2524                 kfree(info);
2525                 pci_disable_device(pdev);
2526         }
2527
2528         return rv;
2529 }
2530
2531 static void ipmi_pci_remove(struct pci_dev *pdev)
2532 {
2533         struct smi_info *info = pci_get_drvdata(pdev);
2534         cleanup_one_si(info);
2535         pci_disable_device(pdev);
2536 }
2537
2538 static const struct pci_device_id ipmi_pci_devices[] = {
2539         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541         { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545 static struct pci_driver ipmi_pci_driver = {
2546         .name =         DEVICE_NAME,
2547         .id_table =     ipmi_pci_devices,
2548         .probe =        ipmi_pci_probe,
2549         .remove =       ipmi_pci_remove,
2550 };
2551 #endif /* CONFIG_PCI */
2552
2553 #ifdef CONFIG_OF
2554 static const struct of_device_id of_ipmi_match[] = {
2555         { .type = "ipmi", .compatible = "ipmi-kcs",
2556           .data = (void *)(unsigned long) SI_KCS },
2557         { .type = "ipmi", .compatible = "ipmi-smic",
2558           .data = (void *)(unsigned long) SI_SMIC },
2559         { .type = "ipmi", .compatible = "ipmi-bt",
2560           .data = (void *)(unsigned long) SI_BT },
2561         {},
2562 };
2563
2564 static int of_ipmi_probe(struct platform_device *dev)
2565 {
2566         const struct of_device_id *match;
2567         struct smi_info *info;
2568         struct resource resource;
2569         const __be32 *regsize, *regspacing, *regshift;
2570         struct device_node *np = dev->dev.of_node;
2571         int ret;
2572         int proplen;
2573
2574         dev_info(&dev->dev, "probing via device tree\n");
2575
2576         match = of_match_device(of_ipmi_match, &dev->dev);
2577         if (!match)
2578                 return -ENODEV;
2579
2580         if (!of_device_is_available(np))
2581                 return -EINVAL;
2582
2583         ret = of_address_to_resource(np, 0, &resource);
2584         if (ret) {
2585                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2586                 return ret;
2587         }
2588
2589         regsize = of_get_property(np, "reg-size", &proplen);
2590         if (regsize && proplen != 4) {
2591                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2592                 return -EINVAL;
2593         }
2594
2595         regspacing = of_get_property(np, "reg-spacing", &proplen);
2596         if (regspacing && proplen != 4) {
2597                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2598                 return -EINVAL;
2599         }
2600
2601         regshift = of_get_property(np, "reg-shift", &proplen);
2602         if (regshift && proplen != 4) {
2603                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2604                 return -EINVAL;
2605         }
2606
2607         info = smi_info_alloc();
2608
2609         if (!info) {
2610                 dev_err(&dev->dev,
2611                         "could not allocate memory for OF probe\n");
2612                 return -ENOMEM;
2613         }
2614
2615         info->si_type           = (enum si_type) match->data;
2616         info->addr_source       = SI_DEVICETREE;
2617         info->irq_setup         = std_irq_setup;
2618
2619         if (resource.flags & IORESOURCE_IO) {
2620                 info->io_setup          = port_setup;
2621                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2622         } else {
2623                 info->io_setup          = mem_setup;
2624                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2625         }
2626
2627         info->io.addr_data      = resource.start;
2628
2629         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2630         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2631         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2632
2633         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2634         info->dev               = &dev->dev;
2635
2636         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2637                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2638                 info->irq);
2639
2640         dev_set_drvdata(&dev->dev, info);
2641
2642         ret = add_smi(info);
2643         if (ret) {
2644                 kfree(info);
2645                 return ret;
2646         }
2647         return 0;
2648 }
2649 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2650 #else
2651 #define of_ipmi_match NULL
2652 static int of_ipmi_probe(struct platform_device *dev)
2653 {
2654         return -ENODEV;
2655 }
2656 #endif
2657
2658 #ifdef CONFIG_ACPI
2659 static int acpi_ipmi_probe(struct platform_device *dev)
2660 {
2661         struct smi_info *info;
2662         struct resource *res, *res_second;
2663         acpi_handle handle;
2664         acpi_status status;
2665         unsigned long long tmp;
2666         int rv = -EINVAL;
2667
2668         handle = ACPI_HANDLE(&dev->dev);
2669         if (!handle)
2670                 return -ENODEV;
2671
2672         info = smi_info_alloc();
2673         if (!info)
2674                 return -ENOMEM;
2675
2676         info->addr_source = SI_ACPI;
2677         dev_info(&dev->dev, PFX "probing via ACPI\n");
2678
2679         info->addr_info.acpi_info.acpi_handle = handle;
2680
2681         /* _IFT tells us the interface type: KCS, BT, etc */
2682         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2683         if (ACPI_FAILURE(status)) {
2684                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2685                 goto err_free;
2686         }
2687
2688         switch (tmp) {
2689         case 1:
2690                 info->si_type = SI_KCS;
2691                 break;
2692         case 2:
2693                 info->si_type = SI_SMIC;
2694                 break;
2695         case 3:
2696                 info->si_type = SI_BT;
2697                 break;
2698         case 4: /* SSIF, just ignore */
2699                 rv = -ENODEV;
2700                 goto err_free;
2701         default:
2702                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2703                 goto err_free;
2704         }
2705
2706         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2707         if (res) {
2708                 info->io_setup = port_setup;
2709                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2710         } else {
2711                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2712                 if (res) {
2713                         info->io_setup = mem_setup;
2714                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2715                 }
2716         }
2717         if (!res) {
2718                 dev_err(&dev->dev, "no I/O or memory address\n");
2719                 goto err_free;
2720         }
2721         info->io.addr_data = res->start;
2722
2723         info->io.regspacing = DEFAULT_REGSPACING;
2724         res_second = platform_get_resource(dev,
2725                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2726                                         IORESOURCE_IO : IORESOURCE_MEM,
2727                                1);
2728         if (res_second) {
2729                 if (res_second->start > info->io.addr_data)
2730                         info->io.regspacing =
2731                                 res_second->start - info->io.addr_data;
2732         }
2733         info->io.regsize = DEFAULT_REGSPACING;
2734         info->io.regshift = 0;
2735
2736         /* If _GPE exists, use it; otherwise use standard interrupts */
2737         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2738         if (ACPI_SUCCESS(status)) {
2739                 info->irq = tmp;
2740                 info->irq_setup = acpi_gpe_irq_setup;
2741         } else {
2742                 int irq = platform_get_irq(dev, 0);
2743
2744                 if (irq > 0) {
2745                         info->irq = irq;
2746                         info->irq_setup = std_irq_setup;
2747                 }
2748         }
2749
2750         info->dev = &dev->dev;
2751         platform_set_drvdata(dev, info);
2752
2753         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2754                  res, info->io.regsize, info->io.regspacing,
2755                  info->irq);
2756
2757         rv = add_smi(info);
2758         if (rv)
2759                 kfree(info);
2760
2761         return rv;
2762
2763 err_free:
2764         kfree(info);
2765         return rv;
2766 }
2767
2768 static const struct acpi_device_id acpi_ipmi_match[] = {
2769         { "IPI0001", 0 },
2770         { },
2771 };
2772 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2773 #else
2774 static int acpi_ipmi_probe(struct platform_device *dev)
2775 {
2776         return -ENODEV;
2777 }
2778 #endif
2779
2780 static int ipmi_probe(struct platform_device *dev)
2781 {
2782         if (of_ipmi_probe(dev) == 0)
2783                 return 0;
2784
2785         return acpi_ipmi_probe(dev);
2786 }
2787
2788 static int ipmi_remove(struct platform_device *dev)
2789 {
2790         struct smi_info *info = dev_get_drvdata(&dev->dev);
2791
2792         cleanup_one_si(info);
2793         return 0;
2794 }
2795
2796 static struct platform_driver ipmi_driver = {
2797         .driver = {
2798                 .name = DEVICE_NAME,
2799                 .of_match_table = of_ipmi_match,
2800                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2801         },
2802         .probe          = ipmi_probe,
2803         .remove         = ipmi_remove,
2804 };
2805
2806 #ifdef CONFIG_PARISC
2807 static int ipmi_parisc_probe(struct parisc_device *dev)
2808 {
2809         struct smi_info *info;
2810         int rv;
2811
2812         info = smi_info_alloc();
2813
2814         if (!info) {
2815                 dev_err(&dev->dev,
2816                         "could not allocate memory for PARISC probe\n");
2817                 return -ENOMEM;
2818         }
2819
2820         info->si_type           = SI_KCS;
2821         info->addr_source       = SI_DEVICETREE;
2822         info->io_setup          = mem_setup;
2823         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2824         info->io.addr_data      = dev->hpa.start;
2825         info->io.regsize        = 1;
2826         info->io.regspacing     = 1;
2827         info->io.regshift       = 0;
2828         info->irq               = 0; /* no interrupt */
2829         info->irq_setup         = NULL;
2830         info->dev               = &dev->dev;
2831
2832         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2833
2834         dev_set_drvdata(&dev->dev, info);
2835
2836         rv = add_smi(info);
2837         if (rv) {
2838                 kfree(info);
2839                 return rv;
2840         }
2841
2842         return 0;
2843 }
2844
2845 static int ipmi_parisc_remove(struct parisc_device *dev)
2846 {
2847         cleanup_one_si(dev_get_drvdata(&dev->dev));
2848         return 0;
2849 }
2850
2851 static struct parisc_device_id ipmi_parisc_tbl[] = {
2852         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2853         { 0, }
2854 };
2855
2856 static struct parisc_driver ipmi_parisc_driver = {
2857         .name =         "ipmi",
2858         .id_table =     ipmi_parisc_tbl,
2859         .probe =        ipmi_parisc_probe,
2860         .remove =       ipmi_parisc_remove,
2861 };
2862 #endif /* CONFIG_PARISC */
2863
2864 static int wait_for_msg_done(struct smi_info *smi_info)
2865 {
2866         enum si_sm_result     smi_result;
2867
2868         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2869         for (;;) {
2870                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2871                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2872                         schedule_timeout_uninterruptible(1);
2873                         smi_result = smi_info->handlers->event(
2874                                 smi_info->si_sm, jiffies_to_usecs(1));
2875                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2876                         smi_result = smi_info->handlers->event(
2877                                 smi_info->si_sm, 0);
2878                 } else
2879                         break;
2880         }
2881         if (smi_result == SI_SM_HOSED)
2882                 /*
2883                  * We couldn't get the state machine to run, so whatever's at
2884                  * the port is probably not an IPMI SMI interface.
2885                  */
2886                 return -ENODEV;
2887
2888         return 0;
2889 }
2890
2891 static int try_get_dev_id(struct smi_info *smi_info)
2892 {
2893         unsigned char         msg[2];
2894         unsigned char         *resp;
2895         unsigned long         resp_len;
2896         int                   rv = 0;
2897
2898         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2899         if (!resp)
2900                 return -ENOMEM;
2901
2902         /*
2903          * Do a Get Device ID command, since it comes back with some
2904          * useful info.
2905          */
2906         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2907         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2908         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2909
2910         rv = wait_for_msg_done(smi_info);
2911         if (rv)
2912                 goto out;
2913
2914         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2915                                                   resp, IPMI_MAX_MSG_LENGTH);
2916
2917         /* Check and record info from the get device id, in case we need it. */
2918         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2919
2920  out:
2921         kfree(resp);
2922         return rv;
2923 }
2924
2925 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2926 {
2927         unsigned char         msg[3];
2928         unsigned char         *resp;
2929         unsigned long         resp_len;
2930         int                   rv;
2931
2932         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2933         if (!resp)
2934                 return -ENOMEM;
2935
2936         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2937         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2938         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2939
2940         rv = wait_for_msg_done(smi_info);
2941         if (rv) {
2942                 dev_warn(smi_info->dev,
2943                          "Error getting response from get global enables command: %d\n",
2944                          rv);
2945                 goto out;
2946         }
2947
2948         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2949                                                   resp, IPMI_MAX_MSG_LENGTH);
2950
2951         if (resp_len < 4 ||
2952                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2953                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2954                         resp[2] != 0) {
2955                 dev_warn(smi_info->dev,
2956                          "Invalid return from get global enables command: %ld %x %x %x\n",
2957                          resp_len, resp[0], resp[1], resp[2]);
2958                 rv = -EINVAL;
2959                 goto out;
2960         } else {
2961                 *enables = resp[3];
2962         }
2963
2964 out:
2965         kfree(resp);
2966         return rv;
2967 }
2968
2969 /*
2970  * Returns 1 if it gets an error from the command.
2971  */
2972 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2973 {
2974         unsigned char         msg[3];
2975         unsigned char         *resp;
2976         unsigned long         resp_len;
2977         int                   rv;
2978
2979         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2980         if (!resp)
2981                 return -ENOMEM;
2982
2983         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2984         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2985         msg[2] = enables;
2986         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2987
2988         rv = wait_for_msg_done(smi_info);
2989         if (rv) {
2990                 dev_warn(smi_info->dev,
2991                          "Error getting response from set global enables command: %d\n",
2992                          rv);
2993                 goto out;
2994         }
2995
2996         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2997                                                   resp, IPMI_MAX_MSG_LENGTH);
2998
2999         if (resp_len < 3 ||
3000                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3001                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3002                 dev_warn(smi_info->dev,
3003                          "Invalid return from set global enables command: %ld %x %x\n",
3004                          resp_len, resp[0], resp[1]);
3005                 rv = -EINVAL;
3006                 goto out;
3007         }
3008
3009         if (resp[2] != 0)
3010                 rv = 1;
3011
3012 out:
3013         kfree(resp);
3014         return rv;
3015 }
3016
3017 /*
3018  * Some BMCs do not support clearing the receive irq bit in the global
3019  * enables (even if they don't support interrupts on the BMC).  Check
3020  * for this and handle it properly.
3021  */
3022 static void check_clr_rcv_irq(struct smi_info *smi_info)
3023 {
3024         u8 enables = 0;
3025         int rv;
3026
3027         rv = get_global_enables(smi_info, &enables);
3028         if (!rv) {
3029                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3030                         /* Already clear, should work ok. */
3031                         return;
3032
3033                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3034                 rv = set_global_enables(smi_info, enables);
3035         }
3036
3037         if (rv < 0) {
3038                 dev_err(smi_info->dev,
3039                         "Cannot check clearing the rcv irq: %d\n", rv);
3040                 return;
3041         }
3042
3043         if (rv) {
3044                 /*
3045                  * An error when setting the event buffer bit means
3046                  * clearing the bit is not supported.
3047                  */
3048                 dev_warn(smi_info->dev,
3049                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3050                 smi_info->cannot_disable_irq = true;
3051         }
3052 }
3053
3054 /*
3055  * Some BMCs do not support setting the interrupt bits in the global
3056  * enables even if they support interrupts.  Clearly bad, but we can
3057  * compensate.
3058  */
3059 static void check_set_rcv_irq(struct smi_info *smi_info)
3060 {
3061         u8 enables = 0;
3062         int rv;
3063
3064         if (!smi_info->irq)
3065                 return;
3066
3067         rv = get_global_enables(smi_info, &enables);
3068         if (!rv) {
3069                 enables |= IPMI_BMC_RCV_MSG_INTR;
3070                 rv = set_global_enables(smi_info, enables);
3071         }
3072
3073         if (rv < 0) {
3074                 dev_err(smi_info->dev,
3075                         "Cannot check setting the rcv irq: %d\n", rv);
3076                 return;
3077         }
3078
3079         if (rv) {
3080                 /*
3081                  * An error when setting the event buffer bit means
3082                  * setting the bit is not supported.
3083                  */
3084                 dev_warn(smi_info->dev,
3085                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086                 smi_info->cannot_disable_irq = true;
3087                 smi_info->irq_enable_broken = true;
3088         }
3089 }
3090
3091 static int try_enable_event_buffer(struct smi_info *smi_info)
3092 {
3093         unsigned char         msg[3];
3094         unsigned char         *resp;
3095         unsigned long         resp_len;
3096         int                   rv = 0;
3097
3098         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3099         if (!resp)
3100                 return -ENOMEM;
3101
3102         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3103         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3104         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3105
3106         rv = wait_for_msg_done(smi_info);
3107         if (rv) {
3108                 printk(KERN_WARNING PFX "Error getting response from get"
3109                        " global enables command, the event buffer is not"
3110                        " enabled.\n");
3111                 goto out;
3112         }
3113
3114         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3115                                                   resp, IPMI_MAX_MSG_LENGTH);
3116
3117         if (resp_len < 4 ||
3118                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3119                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3120                         resp[2] != 0) {
3121                 printk(KERN_WARNING PFX "Invalid return from get global"
3122                        " enables command, cannot enable the event buffer.\n");
3123                 rv = -EINVAL;
3124                 goto out;
3125         }
3126
3127         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3128                 /* buffer is already enabled, nothing to do. */
3129                 smi_info->supports_event_msg_buff = true;
3130                 goto out;
3131         }
3132
3133         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3134         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3135         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3136         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3137
3138         rv = wait_for_msg_done(smi_info);
3139         if (rv) {
3140                 printk(KERN_WARNING PFX "Error getting response from set"
3141                        " global, enables command, the event buffer is not"
3142                        " enabled.\n");
3143                 goto out;
3144         }
3145
3146         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3147                                                   resp, IPMI_MAX_MSG_LENGTH);
3148
3149         if (resp_len < 3 ||
3150                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3151                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3152                 printk(KERN_WARNING PFX "Invalid return from get global,"
3153                        "enables command, not enable the event buffer.\n");
3154                 rv = -EINVAL;
3155                 goto out;
3156         }
3157
3158         if (resp[2] != 0)
3159                 /*
3160                  * An error when setting the event buffer bit means
3161                  * that the event buffer is not supported.
3162                  */
3163                 rv = -ENOENT;
3164         else
3165                 smi_info->supports_event_msg_buff = true;
3166
3167  out:
3168         kfree(resp);
3169         return rv;
3170 }
3171
3172 static int smi_type_proc_show(struct seq_file *m, void *v)
3173 {
3174         struct smi_info *smi = m->private;
3175
3176         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3177
3178         return 0;
3179 }
3180
3181 static int smi_type_proc_open(struct inode *inode, struct file *file)
3182 {
3183         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3184 }
3185
3186 static const struct file_operations smi_type_proc_ops = {
3187         .open           = smi_type_proc_open,
3188         .read           = seq_read,
3189         .llseek         = seq_lseek,
3190         .release        = single_release,
3191 };
3192
3193 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3194 {
3195         struct smi_info *smi = m->private;
3196
3197         seq_printf(m, "interrupts_enabled:    %d\n",
3198                        smi->irq && !smi->interrupt_disabled);
3199         seq_printf(m, "short_timeouts:        %u\n",
3200                        smi_get_stat(smi, short_timeouts));
3201         seq_printf(m, "long_timeouts:         %u\n",
3202                        smi_get_stat(smi, long_timeouts));
3203         seq_printf(m, "idles:                 %u\n",
3204                        smi_get_stat(smi, idles));
3205         seq_printf(m, "interrupts:            %u\n",
3206                        smi_get_stat(smi, interrupts));
3207         seq_printf(m, "attentions:            %u\n",
3208                        smi_get_stat(smi, attentions));
3209         seq_printf(m, "flag_fetches:          %u\n",
3210                        smi_get_stat(smi, flag_fetches));
3211         seq_printf(m, "hosed_count:           %u\n",
3212                        smi_get_stat(smi, hosed_count));
3213         seq_printf(m, "complete_transactions: %u\n",
3214                        smi_get_stat(smi, complete_transactions));
3215         seq_printf(m, "events:                %u\n",
3216                        smi_get_stat(smi, events));
3217         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3218                        smi_get_stat(smi, watchdog_pretimeouts));
3219         seq_printf(m, "incoming_messages:     %u\n",
3220                        smi_get_stat(smi, incoming_messages));
3221         return 0;
3222 }
3223
3224 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3225 {
3226         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3227 }
3228
3229 static const struct file_operations smi_si_stats_proc_ops = {
3230         .open           = smi_si_stats_proc_open,
3231         .read           = seq_read,
3232         .llseek         = seq_lseek,
3233         .release        = single_release,
3234 };
3235
3236 static int smi_params_proc_show(struct seq_file *m, void *v)
3237 {
3238         struct smi_info *smi = m->private;
3239
3240         seq_printf(m,
3241                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3242                    si_to_str[smi->si_type],
3243                    addr_space_to_str[smi->io.addr_type],
3244                    smi->io.addr_data,
3245                    smi->io.regspacing,
3246                    smi->io.regsize,
3247                    smi->io.regshift,
3248                    smi->irq,
3249                    smi->slave_addr);
3250
3251         return 0;
3252 }
3253
3254 static int smi_params_proc_open(struct inode *inode, struct file *file)
3255 {
3256         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3257 }
3258
3259 static const struct file_operations smi_params_proc_ops = {
3260         .open           = smi_params_proc_open,
3261         .read           = seq_read,
3262         .llseek         = seq_lseek,
3263         .release        = single_release,
3264 };
3265
3266 /*
3267  * oem_data_avail_to_receive_msg_avail
3268  * @info - smi_info structure with msg_flags set
3269  *
3270  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3271  * Returns 1 indicating need to re-run handle_flags().
3272  */
3273 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3274 {
3275         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3276                                RECEIVE_MSG_AVAIL);
3277         return 1;
3278 }
3279
3280 /*
3281  * setup_dell_poweredge_oem_data_handler
3282  * @info - smi_info.device_id must be populated
3283  *
3284  * Systems that match, but have firmware version < 1.40 may assert
3285  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3286  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3287  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3288  * as RECEIVE_MSG_AVAIL instead.
3289  *
3290  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3291  * assert the OEM[012] bits, and if it did, the driver would have to
3292  * change to handle that properly, we don't actually check for the
3293  * firmware version.
3294  * Device ID = 0x20                BMC on PowerEdge 8G servers
3295  * Device Revision = 0x80
3296  * Firmware Revision1 = 0x01       BMC version 1.40
3297  * Firmware Revision2 = 0x40       BCD encoded
3298  * IPMI Version = 0x51             IPMI 1.5
3299  * Manufacturer ID = A2 02 00      Dell IANA
3300  *
3301  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3302  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3303  *
3304  */
3305 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3306 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3307 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3308 #define DELL_IANA_MFR_ID 0x0002a2
3309 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3310 {
3311         struct ipmi_device_id *id = &smi_info->device_id;
3312         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3313                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3314                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3315                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3316                         smi_info->oem_data_avail_handler =
3317                                 oem_data_avail_to_receive_msg_avail;
3318                 } else if (ipmi_version_major(id) < 1 ||
3319                            (ipmi_version_major(id) == 1 &&
3320                             ipmi_version_minor(id) < 5)) {
3321                         smi_info->oem_data_avail_handler =
3322                                 oem_data_avail_to_receive_msg_avail;
3323                 }
3324         }
3325 }
3326
3327 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3328 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3329 {
3330         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3331
3332         /* Make it a response */
3333         msg->rsp[0] = msg->data[0] | 4;
3334         msg->rsp[1] = msg->data[1];
3335         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3336         msg->rsp_size = 3;
3337         smi_info->curr_msg = NULL;
3338         deliver_recv_msg(smi_info, msg);
3339 }
3340
3341 /*
3342  * dell_poweredge_bt_xaction_handler
3343  * @info - smi_info.device_id must be populated
3344  *
3345  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3346  * not respond to a Get SDR command if the length of the data
3347  * requested is exactly 0x3A, which leads to command timeouts and no
3348  * data returned.  This intercepts such commands, and causes userspace
3349  * callers to try again with a different-sized buffer, which succeeds.
3350  */
3351
3352 #define STORAGE_NETFN 0x0A
3353 #define STORAGE_CMD_GET_SDR 0x23
3354 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3355                                              unsigned long unused,
3356                                              void *in)
3357 {
3358         struct smi_info *smi_info = in;
3359         unsigned char *data = smi_info->curr_msg->data;
3360         unsigned int size   = smi_info->curr_msg->data_size;
3361         if (size >= 8 &&
3362             (data[0]>>2) == STORAGE_NETFN &&
3363             data[1] == STORAGE_CMD_GET_SDR &&
3364             data[7] == 0x3A) {
3365                 return_hosed_msg_badsize(smi_info);
3366                 return NOTIFY_STOP;
3367         }
3368         return NOTIFY_DONE;
3369 }
3370
3371 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3372         .notifier_call  = dell_poweredge_bt_xaction_handler,
3373 };
3374
3375 /*
3376  * setup_dell_poweredge_bt_xaction_handler
3377  * @info - smi_info.device_id must be filled in already
3378  *
3379  * Fills in smi_info.device_id.start_transaction_pre_hook
3380  * when we know what function to use there.
3381  */
3382 static void
3383 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3384 {
3385         struct ipmi_device_id *id = &smi_info->device_id;
3386         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3387             smi_info->si_type == SI_BT)
3388                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3389 }
3390
3391 /*
3392  * setup_oem_data_handler
3393  * @info - smi_info.device_id must be filled in already
3394  *
3395  * Fills in smi_info.device_id.oem_data_available_handler
3396  * when we know what function to use there.
3397  */
3398
3399 static void setup_oem_data_handler(struct smi_info *smi_info)
3400 {
3401         setup_dell_poweredge_oem_data_handler(smi_info);
3402 }
3403
3404 static void setup_xaction_handlers(struct smi_info *smi_info)
3405 {
3406         setup_dell_poweredge_bt_xaction_handler(smi_info);
3407 }
3408
3409 static void check_for_broken_irqs(struct smi_info *smi_info)
3410 {
3411         check_clr_rcv_irq(smi_info);
3412         check_set_rcv_irq(smi_info);
3413 }
3414
3415 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3416 {
3417         if (smi_info->thread != NULL)
3418                 kthread_stop(smi_info->thread);
3419         if (smi_info->timer_running)
3420                 del_timer_sync(&smi_info->si_timer);
3421 }
3422
3423 static const struct ipmi_default_vals
3424 {
3425         int type;
3426         int port;
3427 } ipmi_defaults[] =
3428 {
3429         { .type = SI_KCS, .port = 0xca2 },
3430         { .type = SI_SMIC, .port = 0xca9 },
3431         { .type = SI_BT, .port = 0xe4 },
3432         { .port = 0 }
3433 };
3434
3435 static void default_find_bmc(void)
3436 {
3437         struct smi_info *info;
3438         int             i;
3439
3440         for (i = 0; ; i++) {
3441                 if (!ipmi_defaults[i].port)
3442                         break;
3443 #ifdef CONFIG_PPC
3444                 if (check_legacy_ioport(ipmi_defaults[i].port))
3445                         continue;
3446 #endif
3447                 info = smi_info_alloc();
3448                 if (!info)
3449                         return;
3450
3451                 info->addr_source = SI_DEFAULT;
3452
3453                 info->si_type = ipmi_defaults[i].type;
3454                 info->io_setup = port_setup;
3455                 info->io.addr_data = ipmi_defaults[i].port;
3456                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3457
3458                 info->io.addr = NULL;
3459                 info->io.regspacing = DEFAULT_REGSPACING;
3460                 info->io.regsize = DEFAULT_REGSPACING;
3461                 info->io.regshift = 0;
3462
3463                 if (add_smi(info) == 0) {
3464                         if ((try_smi_init(info)) == 0) {
3465                                 /* Found one... */
3466                                 printk(KERN_INFO PFX "Found default %s"
3467                                 " state machine at %s address 0x%lx\n",
3468                                 si_to_str[info->si_type],
3469                                 addr_space_to_str[info->io.addr_type],
3470                                 info->io.addr_data);
3471                         } else
3472                                 cleanup_one_si(info);
3473                 } else {
3474                         kfree(info);
3475                 }
3476         }
3477 }
3478
3479 static int is_new_interface(struct smi_info *info)
3480 {
3481         struct smi_info *e;
3482
3483         list_for_each_entry(e, &smi_infos, link) {
3484                 if (e->io.addr_type != info->io.addr_type)
3485                         continue;
3486                 if (e->io.addr_data == info->io.addr_data)
3487                         return 0;
3488         }
3489
3490         return 1;
3491 }
3492
3493 static int add_smi(struct smi_info *new_smi)
3494 {
3495         int rv = 0;
3496
3497         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3498                ipmi_addr_src_to_str(new_smi->addr_source),
3499                si_to_str[new_smi->si_type]);
3500         mutex_lock(&smi_infos_lock);
3501         if (!is_new_interface(new_smi)) {
3502                 printk(KERN_CONT " duplicate interface\n");
3503                 rv = -EBUSY;
3504                 goto out_err;
3505         }
3506
3507         printk(KERN_CONT "\n");
3508
3509         /* So we know not to free it unless we have allocated one. */
3510         new_smi->intf = NULL;
3511         new_smi->si_sm = NULL;
3512         new_smi->handlers = NULL;
3513
3514         list_add_tail(&new_smi->link, &smi_infos);
3515
3516 out_err:
3517         mutex_unlock(&smi_infos_lock);
3518         return rv;
3519 }
3520
3521 static int try_smi_init(struct smi_info *new_smi)
3522 {
3523         int rv = 0;
3524         int i;
3525
3526         printk(KERN_INFO PFX "Trying %s-specified %s state"
3527                " machine at %s address 0x%lx, slave address 0x%x,"
3528                " irq %d\n",
3529                ipmi_addr_src_to_str(new_smi->addr_source),
3530                si_to_str[new_smi->si_type],
3531                addr_space_to_str[new_smi->io.addr_type],
3532                new_smi->io.addr_data,
3533                new_smi->slave_addr, new_smi->irq);
3534
3535         switch (new_smi->si_type) {
3536         case SI_KCS:
3537                 new_smi->handlers = &kcs_smi_handlers;
3538                 break;
3539
3540         case SI_SMIC:
3541                 new_smi->handlers = &smic_smi_handlers;
3542                 break;
3543
3544         case SI_BT:
3545                 new_smi->handlers = &bt_smi_handlers;
3546                 break;
3547
3548         default:
3549                 /* No support for anything else yet. */
3550                 rv = -EIO;
3551                 goto out_err;
3552         }
3553
3554         /* Allocate the state machine's data and initialize it. */
3555         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3556         if (!new_smi->si_sm) {
3557                 printk(KERN_ERR PFX
3558                        "Could not allocate state machine memory\n");
3559                 rv = -ENOMEM;
3560                 goto out_err;
3561         }
3562         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3563                                                         &new_smi->io);
3564
3565         /* Now that we know the I/O size, we can set up the I/O. */
3566         rv = new_smi->io_setup(new_smi);
3567         if (rv) {
3568                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3569                 goto out_err;
3570         }
3571
3572         /* Do low-level detection first. */
3573         if (new_smi->handlers->detect(new_smi->si_sm)) {
3574                 if (new_smi->addr_source)
3575                         printk(KERN_INFO PFX "Interface detection failed\n");
3576                 rv = -ENODEV;
3577                 goto out_err;
3578         }
3579
3580         /*
3581          * Attempt a get device id command.  If it fails, we probably
3582          * don't have a BMC here.
3583          */
3584         rv = try_get_dev_id(new_smi);
3585         if (rv) {
3586                 if (new_smi->addr_source)
3587                         printk(KERN_INFO PFX "There appears to be no BMC"
3588                                " at this location\n");
3589                 goto out_err;
3590         }
3591
3592         setup_oem_data_handler(new_smi);
3593         setup_xaction_handlers(new_smi);
3594         check_for_broken_irqs(new_smi);
3595
3596         new_smi->waiting_msg = NULL;
3597         new_smi->curr_msg = NULL;
3598         atomic_set(&new_smi->req_events, 0);
3599         new_smi->run_to_completion = false;
3600         for (i = 0; i < SI_NUM_STATS; i++)
3601                 atomic_set(&new_smi->stats[i], 0);
3602
3603         new_smi->interrupt_disabled = true;
3604         atomic_set(&new_smi->need_watch, 0);
3605         new_smi->intf_num = smi_num;
3606         smi_num++;
3607
3608         rv = try_enable_event_buffer(new_smi);
3609         if (rv == 0)
3610                 new_smi->has_event_buffer = true;
3611
3612         /*
3613          * Start clearing the flags before we enable interrupts or the
3614          * timer to avoid racing with the timer.
3615          */
3616         start_clear_flags(new_smi);
3617
3618         /*
3619          * IRQ is defined to be set when non-zero.  req_events will
3620          * cause a global flags check that will enable interrupts.
3621          */
3622         if (new_smi->irq) {
3623                 new_smi->interrupt_disabled = false;
3624                 atomic_set(&new_smi->req_events, 1);
3625         }
3626
3627         if (!new_smi->dev) {
3628                 /*
3629                  * If we don't already have a device from something
3630                  * else (like PCI), then register a new one.
3631                  */
3632                 new_smi->pdev = platform_device_alloc("ipmi_si",
3633                                                       new_smi->intf_num);
3634                 if (!new_smi->pdev) {
3635                         printk(KERN_ERR PFX
3636                                "Unable to allocate platform device\n");
3637                         goto out_err;
3638                 }
3639                 new_smi->dev = &new_smi->pdev->dev;
3640                 new_smi->dev->driver = &ipmi_driver.driver;
3641
3642                 rv = platform_device_add(new_smi->pdev);
3643                 if (rv) {
3644                         printk(KERN_ERR PFX
3645                                "Unable to register system interface device:"
3646                                " %d\n",
3647                                rv);
3648                         goto out_err;
3649                 }
3650                 new_smi->dev_registered = true;
3651         }
3652
3653         rv = ipmi_register_smi(&handlers,
3654                                new_smi,
3655                                &new_smi->device_id,
3656                                new_smi->dev,
3657                                new_smi->slave_addr);
3658         if (rv) {
3659                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3660                         rv);
3661                 goto out_err_stop_timer;
3662         }
3663
3664         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3665                                      &smi_type_proc_ops,
3666                                      new_smi);
3667         if (rv) {
3668                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3669                 goto out_err_stop_timer;
3670         }
3671
3672         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3673                                      &smi_si_stats_proc_ops,
3674                                      new_smi);
3675         if (rv) {
3676                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3677                 goto out_err_stop_timer;
3678         }
3679
3680         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3681                                      &smi_params_proc_ops,
3682                                      new_smi);
3683         if (rv) {
3684                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3685                 goto out_err_stop_timer;
3686         }
3687
3688         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3689                  si_to_str[new_smi->si_type]);
3690
3691         return 0;
3692
3693  out_err_stop_timer:
3694         wait_for_timer_and_thread(new_smi);
3695
3696  out_err:
3697         new_smi->interrupt_disabled = true;
3698
3699         if (new_smi->intf) {
3700                 ipmi_smi_t intf = new_smi->intf;
3701                 new_smi->intf = NULL;
3702                 ipmi_unregister_smi(intf);
3703         }
3704
3705         if (new_smi->irq_cleanup) {
3706                 new_smi->irq_cleanup(new_smi);
3707                 new_smi->irq_cleanup = NULL;
3708         }
3709
3710         /*
3711          * Wait until we know that we are out of any interrupt
3712          * handlers might have been running before we freed the
3713          * interrupt.
3714          */
3715         synchronize_sched();
3716
3717         if (new_smi->si_sm) {
3718                 if (new_smi->handlers)
3719                         new_smi->handlers->cleanup(new_smi->si_sm);
3720                 kfree(new_smi->si_sm);
3721                 new_smi->si_sm = NULL;
3722         }
3723         if (new_smi->addr_source_cleanup) {
3724                 new_smi->addr_source_cleanup(new_smi);
3725                 new_smi->addr_source_cleanup = NULL;
3726         }
3727         if (new_smi->io_cleanup) {
3728                 new_smi->io_cleanup(new_smi);
3729                 new_smi->io_cleanup = NULL;
3730         }
3731
3732         if (new_smi->dev_registered) {
3733                 platform_device_unregister(new_smi->pdev);
3734                 new_smi->dev_registered = false;
3735         }
3736
3737         return rv;
3738 }
3739
3740 static int init_ipmi_si(void)
3741 {
3742         int  i;
3743         char *str;
3744         int  rv;
3745         struct smi_info *e;
3746         enum ipmi_addr_src type = SI_INVALID;
3747
3748         if (initialized)
3749                 return 0;
3750         initialized = 1;
3751
3752         if (si_tryplatform) {
3753                 rv = platform_driver_register(&ipmi_driver);
3754                 if (rv) {
3755                         printk(KERN_ERR PFX "Unable to register "
3756                                "driver: %d\n", rv);
3757                         return rv;
3758                 }
3759         }
3760
3761         /* Parse out the si_type string into its components. */
3762         str = si_type_str;
3763         if (*str != '\0') {
3764                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3765                         si_type[i] = str;
3766                         str = strchr(str, ',');
3767                         if (str) {
3768                                 *str = '\0';
3769                                 str++;
3770                         } else {
3771                                 break;
3772                         }
3773                 }
3774         }
3775
3776         printk(KERN_INFO "IPMI System Interface driver.\n");
3777
3778         /* If the user gave us a device, they presumably want us to use it */
3779         if (!hardcode_find_bmc())
3780                 return 0;
3781
3782 #ifdef CONFIG_PCI
3783         if (si_trypci) {
3784                 rv = pci_register_driver(&ipmi_pci_driver);
3785                 if (rv)
3786                         printk(KERN_ERR PFX "Unable to register "
3787                                "PCI driver: %d\n", rv);
3788                 else
3789                         pci_registered = true;
3790         }
3791 #endif
3792
3793 #ifdef CONFIG_DMI
3794         if (si_trydmi)
3795                 dmi_find_bmc();
3796 #endif
3797
3798 #ifdef CONFIG_ACPI
3799         if (si_tryacpi)
3800                 spmi_find_bmc();
3801 #endif
3802
3803 #ifdef CONFIG_PARISC
3804         register_parisc_driver(&ipmi_parisc_driver);
3805         parisc_registered = true;
3806         /* poking PC IO addresses will crash machine, don't do it */
3807         si_trydefaults = 0;
3808 #endif
3809
3810         /* We prefer devices with interrupts, but in the case of a machine
3811            with multiple BMCs we assume that there will be several instances
3812            of a given type so if we succeed in registering a type then also
3813            try to register everything else of the same type */
3814
3815         mutex_lock(&smi_infos_lock);
3816         list_for_each_entry(e, &smi_infos, link) {
3817                 /* Try to register a device if it has an IRQ and we either
3818                    haven't successfully registered a device yet or this
3819                    device has the same type as one we successfully registered */
3820                 if (e->irq && (!type || e->addr_source == type)) {
3821                         if (!try_smi_init(e)) {
3822                                 type = e->addr_source;
3823                         }
3824                 }
3825         }
3826
3827         /* type will only have been set if we successfully registered an si */
3828         if (type) {
3829                 mutex_unlock(&smi_infos_lock);
3830                 return 0;
3831         }
3832
3833         /* Fall back to the preferred device */
3834
3835         list_for_each_entry(e, &smi_infos, link) {
3836                 if (!e->irq && (!type || e->addr_source == type)) {
3837                         if (!try_smi_init(e)) {
3838                                 type = e->addr_source;
3839                         }
3840                 }
3841         }
3842         mutex_unlock(&smi_infos_lock);
3843
3844         if (type)
3845                 return 0;
3846
3847         if (si_trydefaults) {
3848                 mutex_lock(&smi_infos_lock);
3849                 if (list_empty(&smi_infos)) {
3850                         /* No BMC was found, try defaults. */
3851                         mutex_unlock(&smi_infos_lock);
3852                         default_find_bmc();
3853                 } else
3854                         mutex_unlock(&smi_infos_lock);
3855         }
3856
3857         mutex_lock(&smi_infos_lock);
3858         if (unload_when_empty && list_empty(&smi_infos)) {
3859                 mutex_unlock(&smi_infos_lock);
3860                 cleanup_ipmi_si();
3861                 printk(KERN_WARNING PFX
3862                        "Unable to find any System Interface(s)\n");
3863                 return -ENODEV;
3864         } else {
3865                 mutex_unlock(&smi_infos_lock);
3866                 return 0;
3867         }
3868 }
3869 module_init(init_ipmi_si);
3870
3871 static void cleanup_one_si(struct smi_info *to_clean)
3872 {
3873         int           rv = 0;
3874
3875         if (!to_clean)
3876                 return;
3877
3878         if (to_clean->intf) {
3879                 ipmi_smi_t intf = to_clean->intf;
3880
3881                 to_clean->intf = NULL;
3882                 rv = ipmi_unregister_smi(intf);
3883                 if (rv) {
3884                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3885                                rv);
3886                 }
3887         }
3888
3889         if (to_clean->dev)
3890                 dev_set_drvdata(to_clean->dev, NULL);
3891
3892         list_del(&to_clean->link);
3893
3894         /*
3895          * Make sure that interrupts, the timer and the thread are
3896          * stopped and will not run again.
3897          */
3898         if (to_clean->irq_cleanup)
3899                 to_clean->irq_cleanup(to_clean);
3900         wait_for_timer_and_thread(to_clean);
3901
3902         /*
3903          * Timeouts are stopped, now make sure the interrupts are off
3904          * in the BMC.  Note that timers and CPU interrupts are off,
3905          * so no need for locks.
3906          */
3907         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3908                 poll(to_clean);
3909                 schedule_timeout_uninterruptible(1);
3910         }
3911         disable_si_irq(to_clean);
3912         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3913                 poll(to_clean);
3914                 schedule_timeout_uninterruptible(1);
3915         }
3916
3917         if (to_clean->handlers)
3918                 to_clean->handlers->cleanup(to_clean->si_sm);
3919
3920         kfree(to_clean->si_sm);
3921
3922         if (to_clean->addr_source_cleanup)
3923                 to_clean->addr_source_cleanup(to_clean);
3924         if (to_clean->io_cleanup)
3925                 to_clean->io_cleanup(to_clean);
3926
3927         if (to_clean->dev_registered)
3928                 platform_device_unregister(to_clean->pdev);
3929
3930         kfree(to_clean);
3931 }
3932
3933 static void cleanup_ipmi_si(void)
3934 {
3935         struct smi_info *e, *tmp_e;
3936
3937         if (!initialized)
3938                 return;
3939
3940 #ifdef CONFIG_PCI
3941         if (pci_registered)
3942                 pci_unregister_driver(&ipmi_pci_driver);
3943 #endif
3944 #ifdef CONFIG_PARISC
3945         if (parisc_registered)
3946                 unregister_parisc_driver(&ipmi_parisc_driver);
3947 #endif
3948
3949         platform_driver_unregister(&ipmi_driver);
3950
3951         mutex_lock(&smi_infos_lock);
3952         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3953                 cleanup_one_si(e);
3954         mutex_unlock(&smi_infos_lock);
3955 }
3956 module_exit(cleanup_ipmi_si);
3957
3958 MODULE_LICENSE("GPL");
3959 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3960 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3961                    " system interfaces.");