6c2daed531df4a1477d0806f319934e68780133f
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_PPC_OF
309 static int of_registered;
310 #endif
311
312 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
313 static int num_max_busy_us;
314
315 static int unload_when_empty = 1;
316
317 static int add_smi(struct smi_info *smi);
318 static int try_smi_init(struct smi_info *smi);
319 static void cleanup_one_si(struct smi_info *to_clean);
320
321 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
322 static int register_xaction_notifier(struct notifier_block *nb)
323 {
324         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
325 }
326
327 static void deliver_recv_msg(struct smi_info *smi_info,
328                              struct ipmi_smi_msg *msg)
329 {
330         /* Deliver the message to the upper layer with the lock
331            released. */
332
333         if (smi_info->run_to_completion) {
334                 ipmi_smi_msg_received(smi_info->intf, msg);
335         } else {
336                 spin_unlock(&(smi_info->si_lock));
337                 ipmi_smi_msg_received(smi_info->intf, msg);
338                 spin_lock(&(smi_info->si_lock));
339         }
340 }
341
342 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
343 {
344         struct ipmi_smi_msg *msg = smi_info->curr_msg;
345
346         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
347                 cCode = IPMI_ERR_UNSPECIFIED;
348         /* else use it as is */
349
350         /* Make it a reponse */
351         msg->rsp[0] = msg->data[0] | 4;
352         msg->rsp[1] = msg->data[1];
353         msg->rsp[2] = cCode;
354         msg->rsp_size = 3;
355
356         smi_info->curr_msg = NULL;
357         deliver_recv_msg(smi_info, msg);
358 }
359
360 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
361 {
362         int              rv;
363         struct list_head *entry = NULL;
364 #ifdef DEBUG_TIMING
365         struct timeval t;
366 #endif
367
368         /*
369          * No need to save flags, we aleady have interrupts off and we
370          * already hold the SMI lock.
371          */
372         if (!smi_info->run_to_completion)
373                 spin_lock(&(smi_info->msg_lock));
374
375         /* Pick the high priority queue first. */
376         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
377                 entry = smi_info->hp_xmit_msgs.next;
378         } else if (!list_empty(&(smi_info->xmit_msgs))) {
379                 entry = smi_info->xmit_msgs.next;
380         }
381
382         if (!entry) {
383                 smi_info->curr_msg = NULL;
384                 rv = SI_SM_IDLE;
385         } else {
386                 int err;
387
388                 list_del(entry);
389                 smi_info->curr_msg = list_entry(entry,
390                                                 struct ipmi_smi_msg,
391                                                 link);
392 #ifdef DEBUG_TIMING
393                 do_gettimeofday(&t);
394                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
395 #endif
396                 err = atomic_notifier_call_chain(&xaction_notifier_list,
397                                 0, smi_info);
398                 if (err & NOTIFY_STOP_MASK) {
399                         rv = SI_SM_CALL_WITHOUT_DELAY;
400                         goto out;
401                 }
402                 err = smi_info->handlers->start_transaction(
403                         smi_info->si_sm,
404                         smi_info->curr_msg->data,
405                         smi_info->curr_msg->data_size);
406                 if (err)
407                         return_hosed_msg(smi_info, err);
408
409                 rv = SI_SM_CALL_WITHOUT_DELAY;
410         }
411  out:
412         if (!smi_info->run_to_completion)
413                 spin_unlock(&(smi_info->msg_lock));
414
415         return rv;
416 }
417
418 static void start_enable_irq(struct smi_info *smi_info)
419 {
420         unsigned char msg[2];
421
422         /*
423          * If we are enabling interrupts, we have to tell the
424          * BMC to use them.
425          */
426         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
431 }
432
433 static void start_disable_irq(struct smi_info *smi_info)
434 {
435         unsigned char msg[2];
436
437         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
438         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
439
440         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
441         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
442 }
443
444 static void start_clear_flags(struct smi_info *smi_info)
445 {
446         unsigned char msg[3];
447
448         /* Make sure the watchdog pre-timeout flag is not set at startup. */
449         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
450         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
451         msg[2] = WDT_PRE_TIMEOUT_INT;
452
453         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
454         smi_info->si_state = SI_CLEARING_FLAGS;
455 }
456
457 /*
458  * When we have a situtaion where we run out of memory and cannot
459  * allocate messages, we just leave them in the BMC and run the system
460  * polled until we can allocate some memory.  Once we have some
461  * memory, we will re-enable the interrupt.
462  */
463 static inline void disable_si_irq(struct smi_info *smi_info)
464 {
465         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
466                 start_disable_irq(smi_info);
467                 smi_info->interrupt_disabled = 1;
468                 if (!atomic_read(&smi_info->stop_operation))
469                         mod_timer(&smi_info->si_timer,
470                                   jiffies + SI_TIMEOUT_JIFFIES);
471         }
472 }
473
474 static inline void enable_si_irq(struct smi_info *smi_info)
475 {
476         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
477                 start_enable_irq(smi_info);
478                 smi_info->interrupt_disabled = 0;
479         }
480 }
481
482 static void handle_flags(struct smi_info *smi_info)
483 {
484  retry:
485         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
486                 /* Watchdog pre-timeout */
487                 smi_inc_stat(smi_info, watchdog_pretimeouts);
488
489                 start_clear_flags(smi_info);
490                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
491                 spin_unlock(&(smi_info->si_lock));
492                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
493                 spin_lock(&(smi_info->si_lock));
494         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
495                 /* Messages available. */
496                 smi_info->curr_msg = ipmi_alloc_smi_msg();
497                 if (!smi_info->curr_msg) {
498                         disable_si_irq(smi_info);
499                         smi_info->si_state = SI_NORMAL;
500                         return;
501                 }
502                 enable_si_irq(smi_info);
503
504                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
505                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
506                 smi_info->curr_msg->data_size = 2;
507
508                 smi_info->handlers->start_transaction(
509                         smi_info->si_sm,
510                         smi_info->curr_msg->data,
511                         smi_info->curr_msg->data_size);
512                 smi_info->si_state = SI_GETTING_MESSAGES;
513         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
514                 /* Events available. */
515                 smi_info->curr_msg = ipmi_alloc_smi_msg();
516                 if (!smi_info->curr_msg) {
517                         disable_si_irq(smi_info);
518                         smi_info->si_state = SI_NORMAL;
519                         return;
520                 }
521                 enable_si_irq(smi_info);
522
523                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
524                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
525                 smi_info->curr_msg->data_size = 2;
526
527                 smi_info->handlers->start_transaction(
528                         smi_info->si_sm,
529                         smi_info->curr_msg->data,
530                         smi_info->curr_msg->data_size);
531                 smi_info->si_state = SI_GETTING_EVENTS;
532         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
533                    smi_info->oem_data_avail_handler) {
534                 if (smi_info->oem_data_avail_handler(smi_info))
535                         goto retry;
536         } else
537                 smi_info->si_state = SI_NORMAL;
538 }
539
540 static void handle_transaction_done(struct smi_info *smi_info)
541 {
542         struct ipmi_smi_msg *msg;
543 #ifdef DEBUG_TIMING
544         struct timeval t;
545
546         do_gettimeofday(&t);
547         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
548 #endif
549         switch (smi_info->si_state) {
550         case SI_NORMAL:
551                 if (!smi_info->curr_msg)
552                         break;
553
554                 smi_info->curr_msg->rsp_size
555                         = smi_info->handlers->get_result(
556                                 smi_info->si_sm,
557                                 smi_info->curr_msg->rsp,
558                                 IPMI_MAX_MSG_LENGTH);
559
560                 /*
561                  * Do this here becase deliver_recv_msg() releases the
562                  * lock, and a new message can be put in during the
563                  * time the lock is released.
564                  */
565                 msg = smi_info->curr_msg;
566                 smi_info->curr_msg = NULL;
567                 deliver_recv_msg(smi_info, msg);
568                 break;
569
570         case SI_GETTING_FLAGS:
571         {
572                 unsigned char msg[4];
573                 unsigned int  len;
574
575                 /* We got the flags from the SMI, now handle them. */
576                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
577                 if (msg[2] != 0) {
578                         /* Error fetching flags, just give up for now. */
579                         smi_info->si_state = SI_NORMAL;
580                 } else if (len < 4) {
581                         /*
582                          * Hmm, no flags.  That's technically illegal, but
583                          * don't use uninitialized data.
584                          */
585                         smi_info->si_state = SI_NORMAL;
586                 } else {
587                         smi_info->msg_flags = msg[3];
588                         handle_flags(smi_info);
589                 }
590                 break;
591         }
592
593         case SI_CLEARING_FLAGS:
594         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
595         {
596                 unsigned char msg[3];
597
598                 /* We cleared the flags. */
599                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
600                 if (msg[2] != 0) {
601                         /* Error clearing flags */
602                         dev_warn(smi_info->dev,
603                                  "Error clearing flags: %2.2x\n", msg[2]);
604                 }
605                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
606                         start_enable_irq(smi_info);
607                 else
608                         smi_info->si_state = SI_NORMAL;
609                 break;
610         }
611
612         case SI_GETTING_EVENTS:
613         {
614                 smi_info->curr_msg->rsp_size
615                         = smi_info->handlers->get_result(
616                                 smi_info->si_sm,
617                                 smi_info->curr_msg->rsp,
618                                 IPMI_MAX_MSG_LENGTH);
619
620                 /*
621                  * Do this here becase deliver_recv_msg() releases the
622                  * lock, and a new message can be put in during the
623                  * time the lock is released.
624                  */
625                 msg = smi_info->curr_msg;
626                 smi_info->curr_msg = NULL;
627                 if (msg->rsp[2] != 0) {
628                         /* Error getting event, probably done. */
629                         msg->done(msg);
630
631                         /* Take off the event flag. */
632                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
633                         handle_flags(smi_info);
634                 } else {
635                         smi_inc_stat(smi_info, events);
636
637                         /*
638                          * Do this before we deliver the message
639                          * because delivering the message releases the
640                          * lock and something else can mess with the
641                          * state.
642                          */
643                         handle_flags(smi_info);
644
645                         deliver_recv_msg(smi_info, msg);
646                 }
647                 break;
648         }
649
650         case SI_GETTING_MESSAGES:
651         {
652                 smi_info->curr_msg->rsp_size
653                         = smi_info->handlers->get_result(
654                                 smi_info->si_sm,
655                                 smi_info->curr_msg->rsp,
656                                 IPMI_MAX_MSG_LENGTH);
657
658                 /*
659                  * Do this here becase deliver_recv_msg() releases the
660                  * lock, and a new message can be put in during the
661                  * time the lock is released.
662                  */
663                 msg = smi_info->curr_msg;
664                 smi_info->curr_msg = NULL;
665                 if (msg->rsp[2] != 0) {
666                         /* Error getting event, probably done. */
667                         msg->done(msg);
668
669                         /* Take off the msg flag. */
670                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
671                         handle_flags(smi_info);
672                 } else {
673                         smi_inc_stat(smi_info, incoming_messages);
674
675                         /*
676                          * Do this before we deliver the message
677                          * because delivering the message releases the
678                          * lock and something else can mess with the
679                          * state.
680                          */
681                         handle_flags(smi_info);
682
683                         deliver_recv_msg(smi_info, msg);
684                 }
685                 break;
686         }
687
688         case SI_ENABLE_INTERRUPTS1:
689         {
690                 unsigned char msg[4];
691
692                 /* We got the flags from the SMI, now handle them. */
693                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
694                 if (msg[2] != 0) {
695                         dev_warn(smi_info->dev, "Could not enable interrupts"
696                                  ", failed get, using polled mode.\n");
697                         smi_info->si_state = SI_NORMAL;
698                 } else {
699                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
700                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
701                         msg[2] = (msg[3] |
702                                   IPMI_BMC_RCV_MSG_INTR |
703                                   IPMI_BMC_EVT_MSG_INTR);
704                         smi_info->handlers->start_transaction(
705                                 smi_info->si_sm, msg, 3);
706                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
707                 }
708                 break;
709         }
710
711         case SI_ENABLE_INTERRUPTS2:
712         {
713                 unsigned char msg[4];
714
715                 /* We got the flags from the SMI, now handle them. */
716                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
717                 if (msg[2] != 0)
718                         dev_warn(smi_info->dev, "Could not enable interrupts"
719                                  ", failed set, using polled mode.\n");
720                 else
721                         smi_info->interrupt_disabled = 0;
722                 smi_info->si_state = SI_NORMAL;
723                 break;
724         }
725
726         case SI_DISABLE_INTERRUPTS1:
727         {
728                 unsigned char msg[4];
729
730                 /* We got the flags from the SMI, now handle them. */
731                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732                 if (msg[2] != 0) {
733                         dev_warn(smi_info->dev, "Could not disable interrupts"
734                                  ", failed get.\n");
735                         smi_info->si_state = SI_NORMAL;
736                 } else {
737                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
738                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
739                         msg[2] = (msg[3] &
740                                   ~(IPMI_BMC_RCV_MSG_INTR |
741                                     IPMI_BMC_EVT_MSG_INTR));
742                         smi_info->handlers->start_transaction(
743                                 smi_info->si_sm, msg, 3);
744                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
745                 }
746                 break;
747         }
748
749         case SI_DISABLE_INTERRUPTS2:
750         {
751                 unsigned char msg[4];
752
753                 /* We got the flags from the SMI, now handle them. */
754                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
755                 if (msg[2] != 0) {
756                         dev_warn(smi_info->dev, "Could not disable interrupts"
757                                  ", failed set.\n");
758                 }
759                 smi_info->si_state = SI_NORMAL;
760                 break;
761         }
762         }
763 }
764
765 /*
766  * Called on timeouts and events.  Timeouts should pass the elapsed
767  * time, interrupts should pass in zero.  Must be called with
768  * si_lock held and interrupts disabled.
769  */
770 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
771                                            int time)
772 {
773         enum si_sm_result si_sm_result;
774
775  restart:
776         /*
777          * There used to be a loop here that waited a little while
778          * (around 25us) before giving up.  That turned out to be
779          * pointless, the minimum delays I was seeing were in the 300us
780          * range, which is far too long to wait in an interrupt.  So
781          * we just run until the state machine tells us something
782          * happened or it needs a delay.
783          */
784         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
785         time = 0;
786         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
787                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788
789         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
790                 smi_inc_stat(smi_info, complete_transactions);
791
792                 handle_transaction_done(smi_info);
793                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
794         } else if (si_sm_result == SI_SM_HOSED) {
795                 smi_inc_stat(smi_info, hosed_count);
796
797                 /*
798                  * Do the before return_hosed_msg, because that
799                  * releases the lock.
800                  */
801                 smi_info->si_state = SI_NORMAL;
802                 if (smi_info->curr_msg != NULL) {
803                         /*
804                          * If we were handling a user message, format
805                          * a response to send to the upper layer to
806                          * tell it about the error.
807                          */
808                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
809                 }
810                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
811         }
812
813         /*
814          * We prefer handling attn over new messages.  But don't do
815          * this if there is not yet an upper layer to handle anything.
816          */
817         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
818                 unsigned char msg[2];
819
820                 smi_inc_stat(smi_info, attentions);
821
822                 /*
823                  * Got a attn, send down a get message flags to see
824                  * what's causing it.  It would be better to handle
825                  * this in the upper layer, but due to the way
826                  * interrupts work with the SMI, that's not really
827                  * possible.
828                  */
829                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
830                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
831
832                 smi_info->handlers->start_transaction(
833                         smi_info->si_sm, msg, 2);
834                 smi_info->si_state = SI_GETTING_FLAGS;
835                 goto restart;
836         }
837
838         /* If we are currently idle, try to start the next message. */
839         if (si_sm_result == SI_SM_IDLE) {
840                 smi_inc_stat(smi_info, idles);
841
842                 si_sm_result = start_next_msg(smi_info);
843                 if (si_sm_result != SI_SM_IDLE)
844                         goto restart;
845         }
846
847         if ((si_sm_result == SI_SM_IDLE)
848             && (atomic_read(&smi_info->req_events))) {
849                 /*
850                  * We are idle and the upper layer requested that I fetch
851                  * events, so do so.
852                  */
853                 atomic_set(&smi_info->req_events, 0);
854
855                 smi_info->curr_msg = ipmi_alloc_smi_msg();
856                 if (!smi_info->curr_msg)
857                         goto out;
858
859                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
860                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
861                 smi_info->curr_msg->data_size = 2;
862
863                 smi_info->handlers->start_transaction(
864                         smi_info->si_sm,
865                         smi_info->curr_msg->data,
866                         smi_info->curr_msg->data_size);
867                 smi_info->si_state = SI_GETTING_EVENTS;
868                 goto restart;
869         }
870  out:
871         return si_sm_result;
872 }
873
874 static void sender(void                *send_info,
875                    struct ipmi_smi_msg *msg,
876                    int                 priority)
877 {
878         struct smi_info   *smi_info = send_info;
879         enum si_sm_result result;
880         unsigned long     flags;
881 #ifdef DEBUG_TIMING
882         struct timeval    t;
883 #endif
884
885         if (atomic_read(&smi_info->stop_operation)) {
886                 msg->rsp[0] = msg->data[0] | 4;
887                 msg->rsp[1] = msg->data[1];
888                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
889                 msg->rsp_size = 3;
890                 deliver_recv_msg(smi_info, msg);
891                 return;
892         }
893
894 #ifdef DEBUG_TIMING
895         do_gettimeofday(&t);
896         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
897 #endif
898
899         mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
900
901         if (smi_info->thread)
902                 wake_up_process(smi_info->thread);
903
904         if (smi_info->run_to_completion) {
905                 /*
906                  * If we are running to completion, then throw it in
907                  * the list and run transactions until everything is
908                  * clear.  Priority doesn't matter here.
909                  */
910
911                 /*
912                  * Run to completion means we are single-threaded, no
913                  * need for locks.
914                  */
915                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
916
917                 result = smi_event_handler(smi_info, 0);
918                 while (result != SI_SM_IDLE) {
919                         udelay(SI_SHORT_TIMEOUT_USEC);
920                         result = smi_event_handler(smi_info,
921                                                    SI_SHORT_TIMEOUT_USEC);
922                 }
923                 return;
924         }
925
926         spin_lock_irqsave(&smi_info->msg_lock, flags);
927         if (priority > 0)
928                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
929         else
930                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
931         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
932
933         spin_lock_irqsave(&smi_info->si_lock, flags);
934         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
935                 start_next_msg(smi_info);
936         spin_unlock_irqrestore(&smi_info->si_lock, flags);
937 }
938
939 static void set_run_to_completion(void *send_info, int i_run_to_completion)
940 {
941         struct smi_info   *smi_info = send_info;
942         enum si_sm_result result;
943
944         smi_info->run_to_completion = i_run_to_completion;
945         if (i_run_to_completion) {
946                 result = smi_event_handler(smi_info, 0);
947                 while (result != SI_SM_IDLE) {
948                         udelay(SI_SHORT_TIMEOUT_USEC);
949                         result = smi_event_handler(smi_info,
950                                                    SI_SHORT_TIMEOUT_USEC);
951                 }
952         }
953 }
954
955 /*
956  * Use -1 in the nsec value of the busy waiting timespec to tell that
957  * we are spinning in kipmid looking for something and not delaying
958  * between checks
959  */
960 static inline void ipmi_si_set_not_busy(struct timespec *ts)
961 {
962         ts->tv_nsec = -1;
963 }
964 static inline int ipmi_si_is_busy(struct timespec *ts)
965 {
966         return ts->tv_nsec != -1;
967 }
968
969 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
970                                  const struct smi_info *smi_info,
971                                  struct timespec *busy_until)
972 {
973         unsigned int max_busy_us = 0;
974
975         if (smi_info->intf_num < num_max_busy_us)
976                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
977         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
978                 ipmi_si_set_not_busy(busy_until);
979         else if (!ipmi_si_is_busy(busy_until)) {
980                 getnstimeofday(busy_until);
981                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
982         } else {
983                 struct timespec now;
984                 getnstimeofday(&now);
985                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
986                         ipmi_si_set_not_busy(busy_until);
987                         return 0;
988                 }
989         }
990         return 1;
991 }
992
993
994 /*
995  * A busy-waiting loop for speeding up IPMI operation.
996  *
997  * Lousy hardware makes this hard.  This is only enabled for systems
998  * that are not BT and do not have interrupts.  It starts spinning
999  * when an operation is complete or until max_busy tells it to stop
1000  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1001  * Documentation/IPMI.txt for details.
1002  */
1003 static int ipmi_thread(void *data)
1004 {
1005         struct smi_info *smi_info = data;
1006         unsigned long flags;
1007         enum si_sm_result smi_result;
1008         struct timespec busy_until;
1009
1010         ipmi_si_set_not_busy(&busy_until);
1011         set_user_nice(current, 19);
1012         while (!kthread_should_stop()) {
1013                 int busy_wait;
1014
1015                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1016                 smi_result = smi_event_handler(smi_info, 0);
1017                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1018                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1019                                                   &busy_until);
1020                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1021                         ; /* do nothing */
1022                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1023                         schedule();
1024                 else if (smi_result == SI_SM_IDLE)
1025                         schedule_timeout_interruptible(100);
1026                 else
1027                         schedule_timeout_interruptible(1);
1028         }
1029         return 0;
1030 }
1031
1032
1033 static void poll(void *send_info)
1034 {
1035         struct smi_info *smi_info = send_info;
1036         unsigned long flags;
1037
1038         /*
1039          * Make sure there is some delay in the poll loop so we can
1040          * drive time forward and timeout things.
1041          */
1042         udelay(10);
1043         spin_lock_irqsave(&smi_info->si_lock, flags);
1044         smi_event_handler(smi_info, 10);
1045         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1046 }
1047
1048 static void request_events(void *send_info)
1049 {
1050         struct smi_info *smi_info = send_info;
1051
1052         if (atomic_read(&smi_info->stop_operation) ||
1053                                 !smi_info->has_event_buffer)
1054                 return;
1055
1056         atomic_set(&smi_info->req_events, 1);
1057 }
1058
1059 static int initialized;
1060
1061 static void smi_timeout(unsigned long data)
1062 {
1063         struct smi_info   *smi_info = (struct smi_info *) data;
1064         enum si_sm_result smi_result;
1065         unsigned long     flags;
1066         unsigned long     jiffies_now;
1067         long              time_diff;
1068         long              timeout;
1069 #ifdef DEBUG_TIMING
1070         struct timeval    t;
1071 #endif
1072
1073         spin_lock_irqsave(&(smi_info->si_lock), flags);
1074 #ifdef DEBUG_TIMING
1075         do_gettimeofday(&t);
1076         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1077 #endif
1078         jiffies_now = jiffies;
1079         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1080                      * SI_USEC_PER_JIFFY);
1081         smi_result = smi_event_handler(smi_info, time_diff);
1082
1083         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1084
1085         smi_info->last_timeout_jiffies = jiffies_now;
1086
1087         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1088                 /* Running with interrupts, only do long timeouts. */
1089                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090                 smi_inc_stat(smi_info, long_timeouts);
1091                 goto do_mod_timer;
1092         }
1093
1094         /*
1095          * If the state machine asks for a short delay, then shorten
1096          * the timer timeout.
1097          */
1098         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1099                 smi_inc_stat(smi_info, short_timeouts);
1100                 timeout = jiffies + 1;
1101         } else {
1102                 smi_inc_stat(smi_info, long_timeouts);
1103                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1104         }
1105
1106  do_mod_timer:
1107         if (smi_result != SI_SM_IDLE)
1108                 mod_timer(&(smi_info->si_timer), timeout);
1109 }
1110
1111 static irqreturn_t si_irq_handler(int irq, void *data)
1112 {
1113         struct smi_info *smi_info = data;
1114         unsigned long   flags;
1115 #ifdef DEBUG_TIMING
1116         struct timeval  t;
1117 #endif
1118
1119         spin_lock_irqsave(&(smi_info->si_lock), flags);
1120
1121         smi_inc_stat(smi_info, interrupts);
1122
1123 #ifdef DEBUG_TIMING
1124         do_gettimeofday(&t);
1125         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1126 #endif
1127         smi_event_handler(smi_info, 0);
1128         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1129         return IRQ_HANDLED;
1130 }
1131
1132 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1133 {
1134         struct smi_info *smi_info = data;
1135         /* We need to clear the IRQ flag for the BT interface. */
1136         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1137                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1138                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1139         return si_irq_handler(irq, data);
1140 }
1141
1142 static int smi_start_processing(void       *send_info,
1143                                 ipmi_smi_t intf)
1144 {
1145         struct smi_info *new_smi = send_info;
1146         int             enable = 0;
1147
1148         new_smi->intf = intf;
1149
1150         /* Try to claim any interrupts. */
1151         if (new_smi->irq_setup)
1152                 new_smi->irq_setup(new_smi);
1153
1154         /* Set up the timer that drives the interface. */
1155         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1156         new_smi->last_timeout_jiffies = jiffies;
1157         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1158
1159         /*
1160          * Check if the user forcefully enabled the daemon.
1161          */
1162         if (new_smi->intf_num < num_force_kipmid)
1163                 enable = force_kipmid[new_smi->intf_num];
1164         /*
1165          * The BT interface is efficient enough to not need a thread,
1166          * and there is no need for a thread if we have interrupts.
1167          */
1168         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1169                 enable = 1;
1170
1171         if (enable) {
1172                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173                                               "kipmi%d", new_smi->intf_num);
1174                 if (IS_ERR(new_smi->thread)) {
1175                         dev_notice(new_smi->dev, "Could not start"
1176                                    " kernel thread due to error %ld, only using"
1177                                    " timers to drive the interface\n",
1178                                    PTR_ERR(new_smi->thread));
1179                         new_smi->thread = NULL;
1180                 }
1181         }
1182
1183         return 0;
1184 }
1185
1186 static void set_maintenance_mode(void *send_info, int enable)
1187 {
1188         struct smi_info   *smi_info = send_info;
1189
1190         if (!enable)
1191                 atomic_set(&smi_info->req_events, 0);
1192 }
1193
1194 static struct ipmi_smi_handlers handlers = {
1195         .owner                  = THIS_MODULE,
1196         .start_processing       = smi_start_processing,
1197         .sender                 = sender,
1198         .request_events         = request_events,
1199         .set_maintenance_mode   = set_maintenance_mode,
1200         .set_run_to_completion  = set_run_to_completion,
1201         .poll                   = poll,
1202 };
1203
1204 /*
1205  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1206  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1207  */
1208
1209 static LIST_HEAD(smi_infos);
1210 static DEFINE_MUTEX(smi_infos_lock);
1211 static int smi_num; /* Used to sequence the SMIs */
1212
1213 #define DEFAULT_REGSPACING      1
1214 #define DEFAULT_REGSIZE         1
1215
1216 static int           si_trydefaults = 1;
1217 static char          *si_type[SI_MAX_PARMS];
1218 #define MAX_SI_TYPE_STR 30
1219 static char          si_type_str[MAX_SI_TYPE_STR];
1220 static unsigned long addrs[SI_MAX_PARMS];
1221 static unsigned int num_addrs;
1222 static unsigned int  ports[SI_MAX_PARMS];
1223 static unsigned int num_ports;
1224 static int           irqs[SI_MAX_PARMS];
1225 static unsigned int num_irqs;
1226 static int           regspacings[SI_MAX_PARMS];
1227 static unsigned int num_regspacings;
1228 static int           regsizes[SI_MAX_PARMS];
1229 static unsigned int num_regsizes;
1230 static int           regshifts[SI_MAX_PARMS];
1231 static unsigned int num_regshifts;
1232 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1233 static unsigned int num_slave_addrs;
1234
1235 #define IPMI_IO_ADDR_SPACE  0
1236 #define IPMI_MEM_ADDR_SPACE 1
1237 static char *addr_space_to_str[] = { "i/o", "mem" };
1238
1239 static int hotmod_handler(const char *val, struct kernel_param *kp);
1240
1241 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1242 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1243                  " Documentation/IPMI.txt in the kernel sources for the"
1244                  " gory details.");
1245
1246 module_param_named(trydefaults, si_trydefaults, bool, 0);
1247 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1248                  " default scan of the KCS and SMIC interface at the standard"
1249                  " address");
1250 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1251 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1252                  " interface separated by commas.  The types are 'kcs',"
1253                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1254                  " the first interface to kcs and the second to bt");
1255 module_param_array(addrs, ulong, &num_addrs, 0);
1256 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1257                  " addresses separated by commas.  Only use if an interface"
1258                  " is in memory.  Otherwise, set it to zero or leave"
1259                  " it blank.");
1260 module_param_array(ports, uint, &num_ports, 0);
1261 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1262                  " addresses separated by commas.  Only use if an interface"
1263                  " is a port.  Otherwise, set it to zero or leave"
1264                  " it blank.");
1265 module_param_array(irqs, int, &num_irqs, 0);
1266 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1267                  " addresses separated by commas.  Only use if an interface"
1268                  " has an interrupt.  Otherwise, set it to zero or leave"
1269                  " it blank.");
1270 module_param_array(regspacings, int, &num_regspacings, 0);
1271 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1272                  " and each successive register used by the interface.  For"
1273                  " instance, if the start address is 0xca2 and the spacing"
1274                  " is 2, then the second address is at 0xca4.  Defaults"
1275                  " to 1.");
1276 module_param_array(regsizes, int, &num_regsizes, 0);
1277 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1278                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1279                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1280                  " the 8-bit IPMI register has to be read from a larger"
1281                  " register.");
1282 module_param_array(regshifts, int, &num_regshifts, 0);
1283 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1284                  " IPMI register, in bits.  For instance, if the data"
1285                  " is read from a 32-bit word and the IPMI data is in"
1286                  " bit 8-15, then the shift would be 8");
1287 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1288 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1289                  " the controller.  Normally this is 0x20, but can be"
1290                  " overridden by this parm.  This is an array indexed"
1291                  " by interface number.");
1292 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1293 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1294                  " disabled(0).  Normally the IPMI driver auto-detects"
1295                  " this, but the value may be overridden by this parm.");
1296 module_param(unload_when_empty, int, 0);
1297 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1298                  " specified or found, default is 1.  Setting to 0"
1299                  " is useful for hot add of devices using hotmod.");
1300 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1301 MODULE_PARM_DESC(kipmid_max_busy_us,
1302                  "Max time (in microseconds) to busy-wait for IPMI data before"
1303                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1304                  " if kipmid is using up a lot of CPU time.");
1305
1306
1307 static void std_irq_cleanup(struct smi_info *info)
1308 {
1309         if (info->si_type == SI_BT)
1310                 /* Disable the interrupt in the BT interface. */
1311                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1312         free_irq(info->irq, info);
1313 }
1314
1315 static int std_irq_setup(struct smi_info *info)
1316 {
1317         int rv;
1318
1319         if (!info->irq)
1320                 return 0;
1321
1322         if (info->si_type == SI_BT) {
1323                 rv = request_irq(info->irq,
1324                                  si_bt_irq_handler,
1325                                  IRQF_SHARED | IRQF_DISABLED,
1326                                  DEVICE_NAME,
1327                                  info);
1328                 if (!rv)
1329                         /* Enable the interrupt in the BT interface. */
1330                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1331                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1332         } else
1333                 rv = request_irq(info->irq,
1334                                  si_irq_handler,
1335                                  IRQF_SHARED | IRQF_DISABLED,
1336                                  DEVICE_NAME,
1337                                  info);
1338         if (rv) {
1339                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1340                          " running polled\n",
1341                          DEVICE_NAME, info->irq);
1342                 info->irq = 0;
1343         } else {
1344                 info->irq_cleanup = std_irq_cleanup;
1345                 dev_info(info->dev, "Using irq %d\n", info->irq);
1346         }
1347
1348         return rv;
1349 }
1350
1351 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1352 {
1353         unsigned int addr = io->addr_data;
1354
1355         return inb(addr + (offset * io->regspacing));
1356 }
1357
1358 static void port_outb(struct si_sm_io *io, unsigned int offset,
1359                       unsigned char b)
1360 {
1361         unsigned int addr = io->addr_data;
1362
1363         outb(b, addr + (offset * io->regspacing));
1364 }
1365
1366 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1367 {
1368         unsigned int addr = io->addr_data;
1369
1370         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1371 }
1372
1373 static void port_outw(struct si_sm_io *io, unsigned int offset,
1374                       unsigned char b)
1375 {
1376         unsigned int addr = io->addr_data;
1377
1378         outw(b << io->regshift, addr + (offset * io->regspacing));
1379 }
1380
1381 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1382 {
1383         unsigned int addr = io->addr_data;
1384
1385         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1386 }
1387
1388 static void port_outl(struct si_sm_io *io, unsigned int offset,
1389                       unsigned char b)
1390 {
1391         unsigned int addr = io->addr_data;
1392
1393         outl(b << io->regshift, addr+(offset * io->regspacing));
1394 }
1395
1396 static void port_cleanup(struct smi_info *info)
1397 {
1398         unsigned int addr = info->io.addr_data;
1399         int          idx;
1400
1401         if (addr) {
1402                 for (idx = 0; idx < info->io_size; idx++)
1403                         release_region(addr + idx * info->io.regspacing,
1404                                        info->io.regsize);
1405         }
1406 }
1407
1408 static int port_setup(struct smi_info *info)
1409 {
1410         unsigned int addr = info->io.addr_data;
1411         int          idx;
1412
1413         if (!addr)
1414                 return -ENODEV;
1415
1416         info->io_cleanup = port_cleanup;
1417
1418         /*
1419          * Figure out the actual inb/inw/inl/etc routine to use based
1420          * upon the register size.
1421          */
1422         switch (info->io.regsize) {
1423         case 1:
1424                 info->io.inputb = port_inb;
1425                 info->io.outputb = port_outb;
1426                 break;
1427         case 2:
1428                 info->io.inputb = port_inw;
1429                 info->io.outputb = port_outw;
1430                 break;
1431         case 4:
1432                 info->io.inputb = port_inl;
1433                 info->io.outputb = port_outl;
1434                 break;
1435         default:
1436                 dev_warn(info->dev, "Invalid register size: %d\n",
1437                          info->io.regsize);
1438                 return -EINVAL;
1439         }
1440
1441         /*
1442          * Some BIOSes reserve disjoint I/O regions in their ACPI
1443          * tables.  This causes problems when trying to register the
1444          * entire I/O region.  Therefore we must register each I/O
1445          * port separately.
1446          */
1447         for (idx = 0; idx < info->io_size; idx++) {
1448                 if (request_region(addr + idx * info->io.regspacing,
1449                                    info->io.regsize, DEVICE_NAME) == NULL) {
1450                         /* Undo allocations */
1451                         while (idx--) {
1452                                 release_region(addr + idx * info->io.regspacing,
1453                                                info->io.regsize);
1454                         }
1455                         return -EIO;
1456                 }
1457         }
1458         return 0;
1459 }
1460
1461 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1462 {
1463         return readb((io->addr)+(offset * io->regspacing));
1464 }
1465
1466 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1467                      unsigned char b)
1468 {
1469         writeb(b, (io->addr)+(offset * io->regspacing));
1470 }
1471
1472 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1473 {
1474         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1475                 & 0xff;
1476 }
1477
1478 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1479                      unsigned char b)
1480 {
1481         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1482 }
1483
1484 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1485 {
1486         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1487                 & 0xff;
1488 }
1489
1490 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1491                      unsigned char b)
1492 {
1493         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1494 }
1495
1496 #ifdef readq
1497 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1498 {
1499         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1500                 & 0xff;
1501 }
1502
1503 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1504                      unsigned char b)
1505 {
1506         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507 }
1508 #endif
1509
1510 static void mem_cleanup(struct smi_info *info)
1511 {
1512         unsigned long addr = info->io.addr_data;
1513         int           mapsize;
1514
1515         if (info->io.addr) {
1516                 iounmap(info->io.addr);
1517
1518                 mapsize = ((info->io_size * info->io.regspacing)
1519                            - (info->io.regspacing - info->io.regsize));
1520
1521                 release_mem_region(addr, mapsize);
1522         }
1523 }
1524
1525 static int mem_setup(struct smi_info *info)
1526 {
1527         unsigned long addr = info->io.addr_data;
1528         int           mapsize;
1529
1530         if (!addr)
1531                 return -ENODEV;
1532
1533         info->io_cleanup = mem_cleanup;
1534
1535         /*
1536          * Figure out the actual readb/readw/readl/etc routine to use based
1537          * upon the register size.
1538          */
1539         switch (info->io.regsize) {
1540         case 1:
1541                 info->io.inputb = intf_mem_inb;
1542                 info->io.outputb = intf_mem_outb;
1543                 break;
1544         case 2:
1545                 info->io.inputb = intf_mem_inw;
1546                 info->io.outputb = intf_mem_outw;
1547                 break;
1548         case 4:
1549                 info->io.inputb = intf_mem_inl;
1550                 info->io.outputb = intf_mem_outl;
1551                 break;
1552 #ifdef readq
1553         case 8:
1554                 info->io.inputb = mem_inq;
1555                 info->io.outputb = mem_outq;
1556                 break;
1557 #endif
1558         default:
1559                 dev_warn(info->dev, "Invalid register size: %d\n",
1560                          info->io.regsize);
1561                 return -EINVAL;
1562         }
1563
1564         /*
1565          * Calculate the total amount of memory to claim.  This is an
1566          * unusual looking calculation, but it avoids claiming any
1567          * more memory than it has to.  It will claim everything
1568          * between the first address to the end of the last full
1569          * register.
1570          */
1571         mapsize = ((info->io_size * info->io.regspacing)
1572                    - (info->io.regspacing - info->io.regsize));
1573
1574         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1575                 return -EIO;
1576
1577         info->io.addr = ioremap(addr, mapsize);
1578         if (info->io.addr == NULL) {
1579                 release_mem_region(addr, mapsize);
1580                 return -EIO;
1581         }
1582         return 0;
1583 }
1584
1585 /*
1586  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1587  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1588  * Options are:
1589  *   rsp=<regspacing>
1590  *   rsi=<regsize>
1591  *   rsh=<regshift>
1592  *   irq=<irq>
1593  *   ipmb=<ipmb addr>
1594  */
1595 enum hotmod_op { HM_ADD, HM_REMOVE };
1596 struct hotmod_vals {
1597         char *name;
1598         int  val;
1599 };
1600 static struct hotmod_vals hotmod_ops[] = {
1601         { "add",        HM_ADD },
1602         { "remove",     HM_REMOVE },
1603         { NULL }
1604 };
1605 static struct hotmod_vals hotmod_si[] = {
1606         { "kcs",        SI_KCS },
1607         { "smic",       SI_SMIC },
1608         { "bt",         SI_BT },
1609         { NULL }
1610 };
1611 static struct hotmod_vals hotmod_as[] = {
1612         { "mem",        IPMI_MEM_ADDR_SPACE },
1613         { "i/o",        IPMI_IO_ADDR_SPACE },
1614         { NULL }
1615 };
1616
1617 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1618 {
1619         char *s;
1620         int  i;
1621
1622         s = strchr(*curr, ',');
1623         if (!s) {
1624                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1625                 return -EINVAL;
1626         }
1627         *s = '\0';
1628         s++;
1629         for (i = 0; hotmod_ops[i].name; i++) {
1630                 if (strcmp(*curr, v[i].name) == 0) {
1631                         *val = v[i].val;
1632                         *curr = s;
1633                         return 0;
1634                 }
1635         }
1636
1637         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1638         return -EINVAL;
1639 }
1640
1641 static int check_hotmod_int_op(const char *curr, const char *option,
1642                                const char *name, int *val)
1643 {
1644         char *n;
1645
1646         if (strcmp(curr, name) == 0) {
1647                 if (!option) {
1648                         printk(KERN_WARNING PFX
1649                                "No option given for '%s'\n",
1650                                curr);
1651                         return -EINVAL;
1652                 }
1653                 *val = simple_strtoul(option, &n, 0);
1654                 if ((*n != '\0') || (*option == '\0')) {
1655                         printk(KERN_WARNING PFX
1656                                "Bad option given for '%s'\n",
1657                                curr);
1658                         return -EINVAL;
1659                 }
1660                 return 1;
1661         }
1662         return 0;
1663 }
1664
1665 static int hotmod_handler(const char *val, struct kernel_param *kp)
1666 {
1667         char *str = kstrdup(val, GFP_KERNEL);
1668         int  rv;
1669         char *next, *curr, *s, *n, *o;
1670         enum hotmod_op op;
1671         enum si_type si_type;
1672         int  addr_space;
1673         unsigned long addr;
1674         int regspacing;
1675         int regsize;
1676         int regshift;
1677         int irq;
1678         int ipmb;
1679         int ival;
1680         int len;
1681         struct smi_info *info;
1682
1683         if (!str)
1684                 return -ENOMEM;
1685
1686         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1687         len = strlen(str);
1688         ival = len - 1;
1689         while ((ival >= 0) && isspace(str[ival])) {
1690                 str[ival] = '\0';
1691                 ival--;
1692         }
1693
1694         for (curr = str; curr; curr = next) {
1695                 regspacing = 1;
1696                 regsize = 1;
1697                 regshift = 0;
1698                 irq = 0;
1699                 ipmb = 0; /* Choose the default if not specified */
1700
1701                 next = strchr(curr, ':');
1702                 if (next) {
1703                         *next = '\0';
1704                         next++;
1705                 }
1706
1707                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1708                 if (rv)
1709                         break;
1710                 op = ival;
1711
1712                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1713                 if (rv)
1714                         break;
1715                 si_type = ival;
1716
1717                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1718                 if (rv)
1719                         break;
1720
1721                 s = strchr(curr, ',');
1722                 if (s) {
1723                         *s = '\0';
1724                         s++;
1725                 }
1726                 addr = simple_strtoul(curr, &n, 0);
1727                 if ((*n != '\0') || (*curr == '\0')) {
1728                         printk(KERN_WARNING PFX "Invalid hotmod address"
1729                                " '%s'\n", curr);
1730                         break;
1731                 }
1732
1733                 while (s) {
1734                         curr = s;
1735                         s = strchr(curr, ',');
1736                         if (s) {
1737                                 *s = '\0';
1738                                 s++;
1739                         }
1740                         o = strchr(curr, '=');
1741                         if (o) {
1742                                 *o = '\0';
1743                                 o++;
1744                         }
1745                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1746                         if (rv < 0)
1747                                 goto out;
1748                         else if (rv)
1749                                 continue;
1750                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1751                         if (rv < 0)
1752                                 goto out;
1753                         else if (rv)
1754                                 continue;
1755                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1756                         if (rv < 0)
1757                                 goto out;
1758                         else if (rv)
1759                                 continue;
1760                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1761                         if (rv < 0)
1762                                 goto out;
1763                         else if (rv)
1764                                 continue;
1765                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1766                         if (rv < 0)
1767                                 goto out;
1768                         else if (rv)
1769                                 continue;
1770
1771                         rv = -EINVAL;
1772                         printk(KERN_WARNING PFX
1773                                "Invalid hotmod option '%s'\n",
1774                                curr);
1775                         goto out;
1776                 }
1777
1778                 if (op == HM_ADD) {
1779                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1780                         if (!info) {
1781                                 rv = -ENOMEM;
1782                                 goto out;
1783                         }
1784
1785                         info->addr_source = SI_HOTMOD;
1786                         info->si_type = si_type;
1787                         info->io.addr_data = addr;
1788                         info->io.addr_type = addr_space;
1789                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1790                                 info->io_setup = mem_setup;
1791                         else
1792                                 info->io_setup = port_setup;
1793
1794                         info->io.addr = NULL;
1795                         info->io.regspacing = regspacing;
1796                         if (!info->io.regspacing)
1797                                 info->io.regspacing = DEFAULT_REGSPACING;
1798                         info->io.regsize = regsize;
1799                         if (!info->io.regsize)
1800                                 info->io.regsize = DEFAULT_REGSPACING;
1801                         info->io.regshift = regshift;
1802                         info->irq = irq;
1803                         if (info->irq)
1804                                 info->irq_setup = std_irq_setup;
1805                         info->slave_addr = ipmb;
1806
1807                         if (!add_smi(info)) {
1808                                 if (try_smi_init(info))
1809                                         cleanup_one_si(info);
1810                         } else {
1811                                 kfree(info);
1812                         }
1813                 } else {
1814                         /* remove */
1815                         struct smi_info *e, *tmp_e;
1816
1817                         mutex_lock(&smi_infos_lock);
1818                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1819                                 if (e->io.addr_type != addr_space)
1820                                         continue;
1821                                 if (e->si_type != si_type)
1822                                         continue;
1823                                 if (e->io.addr_data == addr)
1824                                         cleanup_one_si(e);
1825                         }
1826                         mutex_unlock(&smi_infos_lock);
1827                 }
1828         }
1829         rv = len;
1830  out:
1831         kfree(str);
1832         return rv;
1833 }
1834
1835 static __devinit void hardcode_find_bmc(void)
1836 {
1837         int             i;
1838         struct smi_info *info;
1839
1840         for (i = 0; i < SI_MAX_PARMS; i++) {
1841                 if (!ports[i] && !addrs[i])
1842                         continue;
1843
1844                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1845                 if (!info)
1846                         return;
1847
1848                 info->addr_source = SI_HARDCODED;
1849                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1850
1851                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1852                         info->si_type = SI_KCS;
1853                 } else if (strcmp(si_type[i], "smic") == 0) {
1854                         info->si_type = SI_SMIC;
1855                 } else if (strcmp(si_type[i], "bt") == 0) {
1856                         info->si_type = SI_BT;
1857                 } else {
1858                         printk(KERN_WARNING PFX "Interface type specified "
1859                                "for interface %d, was invalid: %s\n",
1860                                i, si_type[i]);
1861                         kfree(info);
1862                         continue;
1863                 }
1864
1865                 if (ports[i]) {
1866                         /* An I/O port */
1867                         info->io_setup = port_setup;
1868                         info->io.addr_data = ports[i];
1869                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1870                 } else if (addrs[i]) {
1871                         /* A memory port */
1872                         info->io_setup = mem_setup;
1873                         info->io.addr_data = addrs[i];
1874                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1875                 } else {
1876                         printk(KERN_WARNING PFX "Interface type specified "
1877                                "for interface %d, but port and address were "
1878                                "not set or set to zero.\n", i);
1879                         kfree(info);
1880                         continue;
1881                 }
1882
1883                 info->io.addr = NULL;
1884                 info->io.regspacing = regspacings[i];
1885                 if (!info->io.regspacing)
1886                         info->io.regspacing = DEFAULT_REGSPACING;
1887                 info->io.regsize = regsizes[i];
1888                 if (!info->io.regsize)
1889                         info->io.regsize = DEFAULT_REGSPACING;
1890                 info->io.regshift = regshifts[i];
1891                 info->irq = irqs[i];
1892                 if (info->irq)
1893                         info->irq_setup = std_irq_setup;
1894                 info->slave_addr = slave_addrs[i];
1895
1896                 if (!add_smi(info)) {
1897                         if (try_smi_init(info))
1898                                 cleanup_one_si(info);
1899                 } else {
1900                         kfree(info);
1901                 }
1902         }
1903 }
1904
1905 #ifdef CONFIG_ACPI
1906
1907 #include <linux/acpi.h>
1908
1909 /*
1910  * Once we get an ACPI failure, we don't try any more, because we go
1911  * through the tables sequentially.  Once we don't find a table, there
1912  * are no more.
1913  */
1914 static int acpi_failure;
1915
1916 /* For GPE-type interrupts. */
1917 static u32 ipmi_acpi_gpe(void *context)
1918 {
1919         struct smi_info *smi_info = context;
1920         unsigned long   flags;
1921 #ifdef DEBUG_TIMING
1922         struct timeval t;
1923 #endif
1924
1925         spin_lock_irqsave(&(smi_info->si_lock), flags);
1926
1927         smi_inc_stat(smi_info, interrupts);
1928
1929 #ifdef DEBUG_TIMING
1930         do_gettimeofday(&t);
1931         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1932 #endif
1933         smi_event_handler(smi_info, 0);
1934         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1935
1936         return ACPI_INTERRUPT_HANDLED;
1937 }
1938
1939 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1940 {
1941         if (!info->irq)
1942                 return;
1943
1944         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1945 }
1946
1947 static int acpi_gpe_irq_setup(struct smi_info *info)
1948 {
1949         acpi_status status;
1950
1951         if (!info->irq)
1952                 return 0;
1953
1954         /* FIXME - is level triggered right? */
1955         status = acpi_install_gpe_handler(NULL,
1956                                           info->irq,
1957                                           ACPI_GPE_LEVEL_TRIGGERED,
1958                                           &ipmi_acpi_gpe,
1959                                           info);
1960         if (status != AE_OK) {
1961                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1962                          " running polled\n", DEVICE_NAME, info->irq);
1963                 info->irq = 0;
1964                 return -EINVAL;
1965         } else {
1966                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1967                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1968                 return 0;
1969         }
1970 }
1971
1972 /*
1973  * Defined at
1974  * http://h21007.www2.hp.com/portal/download/files
1975  * /unprot/hpspmi.pdf
1976  */
1977 struct SPMITable {
1978         s8      Signature[4];
1979         u32     Length;
1980         u8      Revision;
1981         u8      Checksum;
1982         s8      OEMID[6];
1983         s8      OEMTableID[8];
1984         s8      OEMRevision[4];
1985         s8      CreatorID[4];
1986         s8      CreatorRevision[4];
1987         u8      InterfaceType;
1988         u8      IPMIlegacy;
1989         s16     SpecificationRevision;
1990
1991         /*
1992          * Bit 0 - SCI interrupt supported
1993          * Bit 1 - I/O APIC/SAPIC
1994          */
1995         u8      InterruptType;
1996
1997         /*
1998          * If bit 0 of InterruptType is set, then this is the SCI
1999          * interrupt in the GPEx_STS register.
2000          */
2001         u8      GPE;
2002
2003         s16     Reserved;
2004
2005         /*
2006          * If bit 1 of InterruptType is set, then this is the I/O
2007          * APIC/SAPIC interrupt.
2008          */
2009         u32     GlobalSystemInterrupt;
2010
2011         /* The actual register address. */
2012         struct acpi_generic_address addr;
2013
2014         u8      UID[4];
2015
2016         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2017 };
2018
2019 static __devinit int try_init_spmi(struct SPMITable *spmi)
2020 {
2021         struct smi_info  *info;
2022
2023         if (spmi->IPMIlegacy != 1) {
2024                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2025                 return -ENODEV;
2026         }
2027
2028         info = kzalloc(sizeof(*info), GFP_KERNEL);
2029         if (!info) {
2030                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2031                 return -ENOMEM;
2032         }
2033
2034         info->addr_source = SI_SPMI;
2035         printk(KERN_INFO PFX "probing via SPMI\n");
2036
2037         /* Figure out the interface type. */
2038         switch (spmi->InterfaceType) {
2039         case 1: /* KCS */
2040                 info->si_type = SI_KCS;
2041                 break;
2042         case 2: /* SMIC */
2043                 info->si_type = SI_SMIC;
2044                 break;
2045         case 3: /* BT */
2046                 info->si_type = SI_BT;
2047                 break;
2048         default:
2049                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2050                        spmi->InterfaceType);
2051                 kfree(info);
2052                 return -EIO;
2053         }
2054
2055         if (spmi->InterruptType & 1) {
2056                 /* We've got a GPE interrupt. */
2057                 info->irq = spmi->GPE;
2058                 info->irq_setup = acpi_gpe_irq_setup;
2059         } else if (spmi->InterruptType & 2) {
2060                 /* We've got an APIC/SAPIC interrupt. */
2061                 info->irq = spmi->GlobalSystemInterrupt;
2062                 info->irq_setup = std_irq_setup;
2063         } else {
2064                 /* Use the default interrupt setting. */
2065                 info->irq = 0;
2066                 info->irq_setup = NULL;
2067         }
2068
2069         if (spmi->addr.bit_width) {
2070                 /* A (hopefully) properly formed register bit width. */
2071                 info->io.regspacing = spmi->addr.bit_width / 8;
2072         } else {
2073                 info->io.regspacing = DEFAULT_REGSPACING;
2074         }
2075         info->io.regsize = info->io.regspacing;
2076         info->io.regshift = spmi->addr.bit_offset;
2077
2078         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2079                 info->io_setup = mem_setup;
2080                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2081         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2082                 info->io_setup = port_setup;
2083                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2084         } else {
2085                 kfree(info);
2086                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2087                 return -EIO;
2088         }
2089         info->io.addr_data = spmi->addr.address;
2090
2091         if (add_smi(info))
2092                 kfree(info);
2093
2094         return 0;
2095 }
2096
2097 static __devinit void spmi_find_bmc(void)
2098 {
2099         acpi_status      status;
2100         struct SPMITable *spmi;
2101         int              i;
2102
2103         if (acpi_disabled)
2104                 return;
2105
2106         if (acpi_failure)
2107                 return;
2108
2109         for (i = 0; ; i++) {
2110                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2111                                         (struct acpi_table_header **)&spmi);
2112                 if (status != AE_OK)
2113                         return;
2114
2115                 try_init_spmi(spmi);
2116         }
2117 }
2118
2119 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2120                                     const struct pnp_device_id *dev_id)
2121 {
2122         struct acpi_device *acpi_dev;
2123         struct smi_info *info;
2124         struct resource *res;
2125         acpi_handle handle;
2126         acpi_status status;
2127         unsigned long long tmp;
2128
2129         acpi_dev = pnp_acpi_device(dev);
2130         if (!acpi_dev)
2131                 return -ENODEV;
2132
2133         info = kzalloc(sizeof(*info), GFP_KERNEL);
2134         if (!info)
2135                 return -ENOMEM;
2136
2137         info->addr_source = SI_ACPI;
2138         printk(KERN_INFO PFX "probing via ACPI\n");
2139
2140         handle = acpi_dev->handle;
2141
2142         /* _IFT tells us the interface type: KCS, BT, etc */
2143         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2144         if (ACPI_FAILURE(status))
2145                 goto err_free;
2146
2147         switch (tmp) {
2148         case 1:
2149                 info->si_type = SI_KCS;
2150                 break;
2151         case 2:
2152                 info->si_type = SI_SMIC;
2153                 break;
2154         case 3:
2155                 info->si_type = SI_BT;
2156                 break;
2157         default:
2158                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2159                 goto err_free;
2160         }
2161
2162         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2163         if (res) {
2164                 info->io_setup = port_setup;
2165                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2166         } else {
2167                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2168                 if (res) {
2169                         info->io_setup = mem_setup;
2170                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2171                 }
2172         }
2173         if (!res) {
2174                 dev_err(&dev->dev, "no I/O or memory address\n");
2175                 goto err_free;
2176         }
2177         info->io.addr_data = res->start;
2178
2179         info->io.regspacing = DEFAULT_REGSPACING;
2180         res = pnp_get_resource(dev,
2181                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2182                                         IORESOURCE_IO : IORESOURCE_MEM,
2183                                1);
2184         if (res) {
2185                 if (res->start > info->io.addr_data)
2186                         info->io.regspacing = res->start - info->io.addr_data;
2187         }
2188         info->io.regsize = DEFAULT_REGSPACING;
2189         info->io.regshift = 0;
2190
2191         /* If _GPE exists, use it; otherwise use standard interrupts */
2192         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2193         if (ACPI_SUCCESS(status)) {
2194                 info->irq = tmp;
2195                 info->irq_setup = acpi_gpe_irq_setup;
2196         } else if (pnp_irq_valid(dev, 0)) {
2197                 info->irq = pnp_irq(dev, 0);
2198                 info->irq_setup = std_irq_setup;
2199         }
2200
2201         info->dev = &dev->dev;
2202         pnp_set_drvdata(dev, info);
2203
2204         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2205                  res, info->io.regsize, info->io.regspacing,
2206                  info->irq);
2207
2208         if (add_smi(info))
2209                 goto err_free;
2210
2211         return 0;
2212
2213 err_free:
2214         kfree(info);
2215         return -EINVAL;
2216 }
2217
2218 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2219 {
2220         struct smi_info *info = pnp_get_drvdata(dev);
2221
2222         cleanup_one_si(info);
2223 }
2224
2225 static const struct pnp_device_id pnp_dev_table[] = {
2226         {"IPI0001", 0},
2227         {"", 0},
2228 };
2229
2230 static struct pnp_driver ipmi_pnp_driver = {
2231         .name           = DEVICE_NAME,
2232         .probe          = ipmi_pnp_probe,
2233         .remove         = __devexit_p(ipmi_pnp_remove),
2234         .id_table       = pnp_dev_table,
2235 };
2236 #endif
2237
2238 #ifdef CONFIG_DMI
2239 struct dmi_ipmi_data {
2240         u8              type;
2241         u8              addr_space;
2242         unsigned long   base_addr;
2243         u8              irq;
2244         u8              offset;
2245         u8              slave_addr;
2246 };
2247
2248 static int __devinit decode_dmi(const struct dmi_header *dm,
2249                                 struct dmi_ipmi_data *dmi)
2250 {
2251         const u8        *data = (const u8 *)dm;
2252         unsigned long   base_addr;
2253         u8              reg_spacing;
2254         u8              len = dm->length;
2255
2256         dmi->type = data[4];
2257
2258         memcpy(&base_addr, data+8, sizeof(unsigned long));
2259         if (len >= 0x11) {
2260                 if (base_addr & 1) {
2261                         /* I/O */
2262                         base_addr &= 0xFFFE;
2263                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2264                 } else
2265                         /* Memory */
2266                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2267
2268                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2269                    is odd. */
2270                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2271
2272                 dmi->irq = data[0x11];
2273
2274                 /* The top two bits of byte 0x10 hold the register spacing. */
2275                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2276                 switch (reg_spacing) {
2277                 case 0x00: /* Byte boundaries */
2278                     dmi->offset = 1;
2279                     break;
2280                 case 0x01: /* 32-bit boundaries */
2281                     dmi->offset = 4;
2282                     break;
2283                 case 0x02: /* 16-byte boundaries */
2284                     dmi->offset = 16;
2285                     break;
2286                 default:
2287                     /* Some other interface, just ignore it. */
2288                     return -EIO;
2289                 }
2290         } else {
2291                 /* Old DMI spec. */
2292                 /*
2293                  * Note that technically, the lower bit of the base
2294                  * address should be 1 if the address is I/O and 0 if
2295                  * the address is in memory.  So many systems get that
2296                  * wrong (and all that I have seen are I/O) so we just
2297                  * ignore that bit and assume I/O.  Systems that use
2298                  * memory should use the newer spec, anyway.
2299                  */
2300                 dmi->base_addr = base_addr & 0xfffe;
2301                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2302                 dmi->offset = 1;
2303         }
2304
2305         dmi->slave_addr = data[6];
2306
2307         return 0;
2308 }
2309
2310 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2311 {
2312         struct smi_info *info;
2313
2314         info = kzalloc(sizeof(*info), GFP_KERNEL);
2315         if (!info) {
2316                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2317                 return;
2318         }
2319
2320         info->addr_source = SI_SMBIOS;
2321         printk(KERN_INFO PFX "probing via SMBIOS\n");
2322
2323         switch (ipmi_data->type) {
2324         case 0x01: /* KCS */
2325                 info->si_type = SI_KCS;
2326                 break;
2327         case 0x02: /* SMIC */
2328                 info->si_type = SI_SMIC;
2329                 break;
2330         case 0x03: /* BT */
2331                 info->si_type = SI_BT;
2332                 break;
2333         default:
2334                 kfree(info);
2335                 return;
2336         }
2337
2338         switch (ipmi_data->addr_space) {
2339         case IPMI_MEM_ADDR_SPACE:
2340                 info->io_setup = mem_setup;
2341                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2342                 break;
2343
2344         case IPMI_IO_ADDR_SPACE:
2345                 info->io_setup = port_setup;
2346                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2347                 break;
2348
2349         default:
2350                 kfree(info);
2351                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2352                        ipmi_data->addr_space);
2353                 return;
2354         }
2355         info->io.addr_data = ipmi_data->base_addr;
2356
2357         info->io.regspacing = ipmi_data->offset;
2358         if (!info->io.regspacing)
2359                 info->io.regspacing = DEFAULT_REGSPACING;
2360         info->io.regsize = DEFAULT_REGSPACING;
2361         info->io.regshift = 0;
2362
2363         info->slave_addr = ipmi_data->slave_addr;
2364
2365         info->irq = ipmi_data->irq;
2366         if (info->irq)
2367                 info->irq_setup = std_irq_setup;
2368
2369         if (add_smi(info))
2370                 kfree(info);
2371 }
2372
2373 static void __devinit dmi_find_bmc(void)
2374 {
2375         const struct dmi_device *dev = NULL;
2376         struct dmi_ipmi_data data;
2377         int                  rv;
2378
2379         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2380                 memset(&data, 0, sizeof(data));
2381                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2382                                 &data);
2383                 if (!rv)
2384                         try_init_dmi(&data);
2385         }
2386 }
2387 #endif /* CONFIG_DMI */
2388
2389 #ifdef CONFIG_PCI
2390
2391 #define PCI_ERMC_CLASSCODE              0x0C0700
2392 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2393 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2394 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2395 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2396 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2397
2398 #define PCI_HP_VENDOR_ID    0x103C
2399 #define PCI_MMC_DEVICE_ID   0x121A
2400 #define PCI_MMC_ADDR_CW     0x10
2401
2402 static void ipmi_pci_cleanup(struct smi_info *info)
2403 {
2404         struct pci_dev *pdev = info->addr_source_data;
2405
2406         pci_disable_device(pdev);
2407 }
2408
2409 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2410                                     const struct pci_device_id *ent)
2411 {
2412         int rv;
2413         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2414         struct smi_info *info;
2415
2416         info = kzalloc(sizeof(*info), GFP_KERNEL);
2417         if (!info)
2418                 return -ENOMEM;
2419
2420         info->addr_source = SI_PCI;
2421         dev_info(&pdev->dev, "probing via PCI");
2422
2423         switch (class_type) {
2424         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2425                 info->si_type = SI_SMIC;
2426                 break;
2427
2428         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2429                 info->si_type = SI_KCS;
2430                 break;
2431
2432         case PCI_ERMC_CLASSCODE_TYPE_BT:
2433                 info->si_type = SI_BT;
2434                 break;
2435
2436         default:
2437                 kfree(info);
2438                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2439                 return -ENOMEM;
2440         }
2441
2442         rv = pci_enable_device(pdev);
2443         if (rv) {
2444                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2445                 kfree(info);
2446                 return rv;
2447         }
2448
2449         info->addr_source_cleanup = ipmi_pci_cleanup;
2450         info->addr_source_data = pdev;
2451
2452         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2453                 info->io_setup = port_setup;
2454                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2455         } else {
2456                 info->io_setup = mem_setup;
2457                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2458         }
2459         info->io.addr_data = pci_resource_start(pdev, 0);
2460
2461         info->io.regspacing = DEFAULT_REGSPACING;
2462         info->io.regsize = DEFAULT_REGSPACING;
2463         info->io.regshift = 0;
2464
2465         info->irq = pdev->irq;
2466         if (info->irq)
2467                 info->irq_setup = std_irq_setup;
2468
2469         info->dev = &pdev->dev;
2470         pci_set_drvdata(pdev, info);
2471
2472         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2473                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2474                 info->irq);
2475
2476         if (add_smi(info))
2477                 kfree(info);
2478
2479         return 0;
2480 }
2481
2482 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2483 {
2484         struct smi_info *info = pci_get_drvdata(pdev);
2485         cleanup_one_si(info);
2486 }
2487
2488 #ifdef CONFIG_PM
2489 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2490 {
2491         return 0;
2492 }
2493
2494 static int ipmi_pci_resume(struct pci_dev *pdev)
2495 {
2496         return 0;
2497 }
2498 #endif
2499
2500 static struct pci_device_id ipmi_pci_devices[] = {
2501         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2502         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2503         { 0, }
2504 };
2505 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2506
2507 static struct pci_driver ipmi_pci_driver = {
2508         .name =         DEVICE_NAME,
2509         .id_table =     ipmi_pci_devices,
2510         .probe =        ipmi_pci_probe,
2511         .remove =       __devexit_p(ipmi_pci_remove),
2512 #ifdef CONFIG_PM
2513         .suspend =      ipmi_pci_suspend,
2514         .resume =       ipmi_pci_resume,
2515 #endif
2516 };
2517 #endif /* CONFIG_PCI */
2518
2519
2520 #ifdef CONFIG_PPC_OF
2521 static int __devinit ipmi_of_probe(struct of_device *dev,
2522                          const struct of_device_id *match)
2523 {
2524         struct smi_info *info;
2525         struct resource resource;
2526         const int *regsize, *regspacing, *regshift;
2527         struct device_node *np = dev->dev.of_node;
2528         int ret;
2529         int proplen;
2530
2531         dev_info(&dev->dev, "probing via device tree\n");
2532
2533         ret = of_address_to_resource(np, 0, &resource);
2534         if (ret) {
2535                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2536                 return ret;
2537         }
2538
2539         regsize = of_get_property(np, "reg-size", &proplen);
2540         if (regsize && proplen != 4) {
2541                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2542                 return -EINVAL;
2543         }
2544
2545         regspacing = of_get_property(np, "reg-spacing", &proplen);
2546         if (regspacing && proplen != 4) {
2547                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2548                 return -EINVAL;
2549         }
2550
2551         regshift = of_get_property(np, "reg-shift", &proplen);
2552         if (regshift && proplen != 4) {
2553                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2554                 return -EINVAL;
2555         }
2556
2557         info = kzalloc(sizeof(*info), GFP_KERNEL);
2558
2559         if (!info) {
2560                 dev_err(&dev->dev,
2561                         "could not allocate memory for OF probe\n");
2562                 return -ENOMEM;
2563         }
2564
2565         info->si_type           = (enum si_type) match->data;
2566         info->addr_source       = SI_DEVICETREE;
2567         info->irq_setup         = std_irq_setup;
2568
2569         if (resource.flags & IORESOURCE_IO) {
2570                 info->io_setup          = port_setup;
2571                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2572         } else {
2573                 info->io_setup          = mem_setup;
2574                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2575         }
2576
2577         info->io.addr_data      = resource.start;
2578
2579         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2580         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2581         info->io.regshift       = regshift ? *regshift : 0;
2582
2583         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2584         info->dev               = &dev->dev;
2585
2586         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2587                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2588                 info->irq);
2589
2590         dev_set_drvdata(&dev->dev, info);
2591
2592         if (add_smi(info)) {
2593                 kfree(info);
2594                 return -EBUSY;
2595         }
2596
2597         return 0;
2598 }
2599
2600 static int __devexit ipmi_of_remove(struct of_device *dev)
2601 {
2602         cleanup_one_si(dev_get_drvdata(&dev->dev));
2603         return 0;
2604 }
2605
2606 static struct of_device_id ipmi_match[] =
2607 {
2608         { .type = "ipmi", .compatible = "ipmi-kcs",
2609           .data = (void *)(unsigned long) SI_KCS },
2610         { .type = "ipmi", .compatible = "ipmi-smic",
2611           .data = (void *)(unsigned long) SI_SMIC },
2612         { .type = "ipmi", .compatible = "ipmi-bt",
2613           .data = (void *)(unsigned long) SI_BT },
2614         {},
2615 };
2616
2617 static struct of_platform_driver ipmi_of_platform_driver = {
2618         .driver = {
2619                 .name = "ipmi",
2620                 .owner = THIS_MODULE,
2621                 .of_match_table = ipmi_match,
2622         },
2623         .probe          = ipmi_of_probe,
2624         .remove         = __devexit_p(ipmi_of_remove),
2625 };
2626 #endif /* CONFIG_PPC_OF */
2627
2628 static int wait_for_msg_done(struct smi_info *smi_info)
2629 {
2630         enum si_sm_result     smi_result;
2631
2632         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2633         for (;;) {
2634                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2635                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2636                         schedule_timeout_uninterruptible(1);
2637                         smi_result = smi_info->handlers->event(
2638                                 smi_info->si_sm, 100);
2639                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2640                         smi_result = smi_info->handlers->event(
2641                                 smi_info->si_sm, 0);
2642                 } else
2643                         break;
2644         }
2645         if (smi_result == SI_SM_HOSED)
2646                 /*
2647                  * We couldn't get the state machine to run, so whatever's at
2648                  * the port is probably not an IPMI SMI interface.
2649                  */
2650                 return -ENODEV;
2651
2652         return 0;
2653 }
2654
2655 static int try_get_dev_id(struct smi_info *smi_info)
2656 {
2657         unsigned char         msg[2];
2658         unsigned char         *resp;
2659         unsigned long         resp_len;
2660         int                   rv = 0;
2661
2662         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2663         if (!resp)
2664                 return -ENOMEM;
2665
2666         /*
2667          * Do a Get Device ID command, since it comes back with some
2668          * useful info.
2669          */
2670         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2671         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2672         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2673
2674         rv = wait_for_msg_done(smi_info);
2675         if (rv)
2676                 goto out;
2677
2678         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2679                                                   resp, IPMI_MAX_MSG_LENGTH);
2680
2681         /* Check and record info from the get device id, in case we need it. */
2682         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2683
2684  out:
2685         kfree(resp);
2686         return rv;
2687 }
2688
2689 static int try_enable_event_buffer(struct smi_info *smi_info)
2690 {
2691         unsigned char         msg[3];
2692         unsigned char         *resp;
2693         unsigned long         resp_len;
2694         int                   rv = 0;
2695
2696         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2697         if (!resp)
2698                 return -ENOMEM;
2699
2700         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2701         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2702         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2703
2704         rv = wait_for_msg_done(smi_info);
2705         if (rv) {
2706                 printk(KERN_WARNING PFX "Error getting response from get"
2707                        " global enables command, the event buffer is not"
2708                        " enabled.\n");
2709                 goto out;
2710         }
2711
2712         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2713                                                   resp, IPMI_MAX_MSG_LENGTH);
2714
2715         if (resp_len < 4 ||
2716                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2717                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2718                         resp[2] != 0) {
2719                 printk(KERN_WARNING PFX "Invalid return from get global"
2720                        " enables command, cannot enable the event buffer.\n");
2721                 rv = -EINVAL;
2722                 goto out;
2723         }
2724
2725         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2726                 /* buffer is already enabled, nothing to do. */
2727                 goto out;
2728
2729         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2730         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2731         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2732         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2733
2734         rv = wait_for_msg_done(smi_info);
2735         if (rv) {
2736                 printk(KERN_WARNING PFX "Error getting response from set"
2737                        " global, enables command, the event buffer is not"
2738                        " enabled.\n");
2739                 goto out;
2740         }
2741
2742         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2743                                                   resp, IPMI_MAX_MSG_LENGTH);
2744
2745         if (resp_len < 3 ||
2746                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2747                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2748                 printk(KERN_WARNING PFX "Invalid return from get global,"
2749                        "enables command, not enable the event buffer.\n");
2750                 rv = -EINVAL;
2751                 goto out;
2752         }
2753
2754         if (resp[2] != 0)
2755                 /*
2756                  * An error when setting the event buffer bit means
2757                  * that the event buffer is not supported.
2758                  */
2759                 rv = -ENOENT;
2760  out:
2761         kfree(resp);
2762         return rv;
2763 }
2764
2765 static int type_file_read_proc(char *page, char **start, off_t off,
2766                                int count, int *eof, void *data)
2767 {
2768         struct smi_info *smi = data;
2769
2770         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2771 }
2772
2773 static int stat_file_read_proc(char *page, char **start, off_t off,
2774                                int count, int *eof, void *data)
2775 {
2776         char            *out = (char *) page;
2777         struct smi_info *smi = data;
2778
2779         out += sprintf(out, "interrupts_enabled:    %d\n",
2780                        smi->irq && !smi->interrupt_disabled);
2781         out += sprintf(out, "short_timeouts:        %u\n",
2782                        smi_get_stat(smi, short_timeouts));
2783         out += sprintf(out, "long_timeouts:         %u\n",
2784                        smi_get_stat(smi, long_timeouts));
2785         out += sprintf(out, "idles:                 %u\n",
2786                        smi_get_stat(smi, idles));
2787         out += sprintf(out, "interrupts:            %u\n",
2788                        smi_get_stat(smi, interrupts));
2789         out += sprintf(out, "attentions:            %u\n",
2790                        smi_get_stat(smi, attentions));
2791         out += sprintf(out, "flag_fetches:          %u\n",
2792                        smi_get_stat(smi, flag_fetches));
2793         out += sprintf(out, "hosed_count:           %u\n",
2794                        smi_get_stat(smi, hosed_count));
2795         out += sprintf(out, "complete_transactions: %u\n",
2796                        smi_get_stat(smi, complete_transactions));
2797         out += sprintf(out, "events:                %u\n",
2798                        smi_get_stat(smi, events));
2799         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2800                        smi_get_stat(smi, watchdog_pretimeouts));
2801         out += sprintf(out, "incoming_messages:     %u\n",
2802                        smi_get_stat(smi, incoming_messages));
2803
2804         return out - page;
2805 }
2806
2807 static int param_read_proc(char *page, char **start, off_t off,
2808                            int count, int *eof, void *data)
2809 {
2810         struct smi_info *smi = data;
2811
2812         return sprintf(page,
2813                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2814                        si_to_str[smi->si_type],
2815                        addr_space_to_str[smi->io.addr_type],
2816                        smi->io.addr_data,
2817                        smi->io.regspacing,
2818                        smi->io.regsize,
2819                        smi->io.regshift,
2820                        smi->irq,
2821                        smi->slave_addr);
2822 }
2823
2824 /*
2825  * oem_data_avail_to_receive_msg_avail
2826  * @info - smi_info structure with msg_flags set
2827  *
2828  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2829  * Returns 1 indicating need to re-run handle_flags().
2830  */
2831 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2832 {
2833         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2834                                RECEIVE_MSG_AVAIL);
2835         return 1;
2836 }
2837
2838 /*
2839  * setup_dell_poweredge_oem_data_handler
2840  * @info - smi_info.device_id must be populated
2841  *
2842  * Systems that match, but have firmware version < 1.40 may assert
2843  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2844  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2845  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2846  * as RECEIVE_MSG_AVAIL instead.
2847  *
2848  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2849  * assert the OEM[012] bits, and if it did, the driver would have to
2850  * change to handle that properly, we don't actually check for the
2851  * firmware version.
2852  * Device ID = 0x20                BMC on PowerEdge 8G servers
2853  * Device Revision = 0x80
2854  * Firmware Revision1 = 0x01       BMC version 1.40
2855  * Firmware Revision2 = 0x40       BCD encoded
2856  * IPMI Version = 0x51             IPMI 1.5
2857  * Manufacturer ID = A2 02 00      Dell IANA
2858  *
2859  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2860  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2861  *
2862  */
2863 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2864 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2865 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2866 #define DELL_IANA_MFR_ID 0x0002a2
2867 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2868 {
2869         struct ipmi_device_id *id = &smi_info->device_id;
2870         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2871                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2872                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2873                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2874                         smi_info->oem_data_avail_handler =
2875                                 oem_data_avail_to_receive_msg_avail;
2876                 } else if (ipmi_version_major(id) < 1 ||
2877                            (ipmi_version_major(id) == 1 &&
2878                             ipmi_version_minor(id) < 5)) {
2879                         smi_info->oem_data_avail_handler =
2880                                 oem_data_avail_to_receive_msg_avail;
2881                 }
2882         }
2883 }
2884
2885 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2886 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2887 {
2888         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2889
2890         /* Make it a reponse */
2891         msg->rsp[0] = msg->data[0] | 4;
2892         msg->rsp[1] = msg->data[1];
2893         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2894         msg->rsp_size = 3;
2895         smi_info->curr_msg = NULL;
2896         deliver_recv_msg(smi_info, msg);
2897 }
2898
2899 /*
2900  * dell_poweredge_bt_xaction_handler
2901  * @info - smi_info.device_id must be populated
2902  *
2903  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2904  * not respond to a Get SDR command if the length of the data
2905  * requested is exactly 0x3A, which leads to command timeouts and no
2906  * data returned.  This intercepts such commands, and causes userspace
2907  * callers to try again with a different-sized buffer, which succeeds.
2908  */
2909
2910 #define STORAGE_NETFN 0x0A
2911 #define STORAGE_CMD_GET_SDR 0x23
2912 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2913                                              unsigned long unused,
2914                                              void *in)
2915 {
2916         struct smi_info *smi_info = in;
2917         unsigned char *data = smi_info->curr_msg->data;
2918         unsigned int size   = smi_info->curr_msg->data_size;
2919         if (size >= 8 &&
2920             (data[0]>>2) == STORAGE_NETFN &&
2921             data[1] == STORAGE_CMD_GET_SDR &&
2922             data[7] == 0x3A) {
2923                 return_hosed_msg_badsize(smi_info);
2924                 return NOTIFY_STOP;
2925         }
2926         return NOTIFY_DONE;
2927 }
2928
2929 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2930         .notifier_call  = dell_poweredge_bt_xaction_handler,
2931 };
2932
2933 /*
2934  * setup_dell_poweredge_bt_xaction_handler
2935  * @info - smi_info.device_id must be filled in already
2936  *
2937  * Fills in smi_info.device_id.start_transaction_pre_hook
2938  * when we know what function to use there.
2939  */
2940 static void
2941 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2942 {
2943         struct ipmi_device_id *id = &smi_info->device_id;
2944         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2945             smi_info->si_type == SI_BT)
2946                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2947 }
2948
2949 /*
2950  * setup_oem_data_handler
2951  * @info - smi_info.device_id must be filled in already
2952  *
2953  * Fills in smi_info.device_id.oem_data_available_handler
2954  * when we know what function to use there.
2955  */
2956
2957 static void setup_oem_data_handler(struct smi_info *smi_info)
2958 {
2959         setup_dell_poweredge_oem_data_handler(smi_info);
2960 }
2961
2962 static void setup_xaction_handlers(struct smi_info *smi_info)
2963 {
2964         setup_dell_poweredge_bt_xaction_handler(smi_info);
2965 }
2966
2967 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2968 {
2969         if (smi_info->intf) {
2970                 /*
2971                  * The timer and thread are only running if the
2972                  * interface has been started up and registered.
2973                  */
2974                 if (smi_info->thread != NULL)
2975                         kthread_stop(smi_info->thread);
2976                 del_timer_sync(&smi_info->si_timer);
2977         }
2978 }
2979
2980 static __devinitdata struct ipmi_default_vals
2981 {
2982         int type;
2983         int port;
2984 } ipmi_defaults[] =
2985 {
2986         { .type = SI_KCS, .port = 0xca2 },
2987         { .type = SI_SMIC, .port = 0xca9 },
2988         { .type = SI_BT, .port = 0xe4 },
2989         { .port = 0 }
2990 };
2991
2992 static __devinit void default_find_bmc(void)
2993 {
2994         struct smi_info *info;
2995         int             i;
2996
2997         for (i = 0; ; i++) {
2998                 if (!ipmi_defaults[i].port)
2999                         break;
3000 #ifdef CONFIG_PPC
3001                 if (check_legacy_ioport(ipmi_defaults[i].port))
3002                         continue;
3003 #endif
3004                 info = kzalloc(sizeof(*info), GFP_KERNEL);
3005                 if (!info)
3006                         return;
3007
3008                 info->addr_source = SI_DEFAULT;
3009
3010                 info->si_type = ipmi_defaults[i].type;
3011                 info->io_setup = port_setup;
3012                 info->io.addr_data = ipmi_defaults[i].port;
3013                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3014
3015                 info->io.addr = NULL;
3016                 info->io.regspacing = DEFAULT_REGSPACING;
3017                 info->io.regsize = DEFAULT_REGSPACING;
3018                 info->io.regshift = 0;
3019
3020                 if (add_smi(info) == 0) {
3021                         if ((try_smi_init(info)) == 0) {
3022                                 /* Found one... */
3023                                 printk(KERN_INFO PFX "Found default %s"
3024                                 " state machine at %s address 0x%lx\n",
3025                                 si_to_str[info->si_type],
3026                                 addr_space_to_str[info->io.addr_type],
3027                                 info->io.addr_data);
3028                         } else
3029                                 cleanup_one_si(info);
3030                 } else {
3031                         kfree(info);
3032                 }
3033         }
3034 }
3035
3036 static int is_new_interface(struct smi_info *info)
3037 {
3038         struct smi_info *e;
3039
3040         list_for_each_entry(e, &smi_infos, link) {
3041                 if (e->io.addr_type != info->io.addr_type)
3042                         continue;
3043                 if (e->io.addr_data == info->io.addr_data)
3044                         return 0;
3045         }
3046
3047         return 1;
3048 }
3049
3050 static int add_smi(struct smi_info *new_smi)
3051 {
3052         int rv = 0;
3053
3054         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3055                         ipmi_addr_src_to_str[new_smi->addr_source],
3056                         si_to_str[new_smi->si_type]);
3057         mutex_lock(&smi_infos_lock);
3058         if (!is_new_interface(new_smi)) {
3059                 printk(KERN_CONT PFX "duplicate interface\n");
3060                 rv = -EBUSY;
3061                 goto out_err;
3062         }
3063
3064         printk(KERN_CONT "\n");
3065
3066         /* So we know not to free it unless we have allocated one. */
3067         new_smi->intf = NULL;
3068         new_smi->si_sm = NULL;
3069         new_smi->handlers = NULL;
3070
3071         list_add_tail(&new_smi->link, &smi_infos);
3072
3073 out_err:
3074         mutex_unlock(&smi_infos_lock);
3075         return rv;
3076 }
3077
3078 static int try_smi_init(struct smi_info *new_smi)
3079 {
3080         int rv = 0;
3081         int i;
3082
3083         printk(KERN_INFO PFX "Trying %s-specified %s state"
3084                " machine at %s address 0x%lx, slave address 0x%x,"
3085                " irq %d\n",
3086                ipmi_addr_src_to_str[new_smi->addr_source],
3087                si_to_str[new_smi->si_type],
3088                addr_space_to_str[new_smi->io.addr_type],
3089                new_smi->io.addr_data,
3090                new_smi->slave_addr, new_smi->irq);
3091
3092         switch (new_smi->si_type) {
3093         case SI_KCS:
3094                 new_smi->handlers = &kcs_smi_handlers;
3095                 break;
3096
3097         case SI_SMIC:
3098                 new_smi->handlers = &smic_smi_handlers;
3099                 break;
3100
3101         case SI_BT:
3102                 new_smi->handlers = &bt_smi_handlers;
3103                 break;
3104
3105         default:
3106                 /* No support for anything else yet. */
3107                 rv = -EIO;
3108                 goto out_err;
3109         }
3110
3111         /* Allocate the state machine's data and initialize it. */
3112         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3113         if (!new_smi->si_sm) {
3114                 printk(KERN_ERR PFX
3115                        "Could not allocate state machine memory\n");
3116                 rv = -ENOMEM;
3117                 goto out_err;
3118         }
3119         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3120                                                         &new_smi->io);
3121
3122         /* Now that we know the I/O size, we can set up the I/O. */
3123         rv = new_smi->io_setup(new_smi);
3124         if (rv) {
3125                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3126                 goto out_err;
3127         }
3128
3129         spin_lock_init(&(new_smi->si_lock));
3130         spin_lock_init(&(new_smi->msg_lock));
3131
3132         /* Do low-level detection first. */
3133         if (new_smi->handlers->detect(new_smi->si_sm)) {
3134                 if (new_smi->addr_source)
3135                         printk(KERN_INFO PFX "Interface detection failed\n");
3136                 rv = -ENODEV;
3137                 goto out_err;
3138         }
3139
3140         /*
3141          * Attempt a get device id command.  If it fails, we probably
3142          * don't have a BMC here.
3143          */
3144         rv = try_get_dev_id(new_smi);
3145         if (rv) {
3146                 if (new_smi->addr_source)
3147                         printk(KERN_INFO PFX "There appears to be no BMC"
3148                                " at this location\n");
3149                 goto out_err;
3150         }
3151
3152         setup_oem_data_handler(new_smi);
3153         setup_xaction_handlers(new_smi);
3154
3155         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3156         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3157         new_smi->curr_msg = NULL;
3158         atomic_set(&new_smi->req_events, 0);
3159         new_smi->run_to_completion = 0;
3160         for (i = 0; i < SI_NUM_STATS; i++)
3161                 atomic_set(&new_smi->stats[i], 0);
3162
3163         new_smi->interrupt_disabled = 1;
3164         atomic_set(&new_smi->stop_operation, 0);
3165         new_smi->intf_num = smi_num;
3166         smi_num++;
3167
3168         rv = try_enable_event_buffer(new_smi);
3169         if (rv == 0)
3170                 new_smi->has_event_buffer = 1;
3171
3172         /*
3173          * Start clearing the flags before we enable interrupts or the
3174          * timer to avoid racing with the timer.
3175          */
3176         start_clear_flags(new_smi);
3177         /* IRQ is defined to be set when non-zero. */
3178         if (new_smi->irq)
3179                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3180
3181         if (!new_smi->dev) {
3182                 /*
3183                  * If we don't already have a device from something
3184                  * else (like PCI), then register a new one.
3185                  */
3186                 new_smi->pdev = platform_device_alloc("ipmi_si",
3187                                                       new_smi->intf_num);
3188                 if (!new_smi->pdev) {
3189                         printk(KERN_ERR PFX
3190                                "Unable to allocate platform device\n");
3191                         goto out_err;
3192                 }
3193                 new_smi->dev = &new_smi->pdev->dev;
3194                 new_smi->dev->driver = &ipmi_driver.driver;
3195
3196                 rv = platform_device_add(new_smi->pdev);
3197                 if (rv) {
3198                         printk(KERN_ERR PFX
3199                                "Unable to register system interface device:"
3200                                " %d\n",
3201                                rv);
3202                         goto out_err;
3203                 }
3204                 new_smi->dev_registered = 1;
3205         }
3206
3207         rv = ipmi_register_smi(&handlers,
3208                                new_smi,
3209                                &new_smi->device_id,
3210                                new_smi->dev,
3211                                "bmc",
3212                                new_smi->slave_addr);
3213         if (rv) {
3214                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3215                         rv);
3216                 goto out_err_stop_timer;
3217         }
3218
3219         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3220                                      type_file_read_proc,
3221                                      new_smi);
3222         if (rv) {
3223                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3224                 goto out_err_stop_timer;
3225         }
3226
3227         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3228                                      stat_file_read_proc,
3229                                      new_smi);
3230         if (rv) {
3231                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3232                 goto out_err_stop_timer;
3233         }
3234
3235         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3236                                      param_read_proc,
3237                                      new_smi);
3238         if (rv) {
3239                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3240                 goto out_err_stop_timer;
3241         }
3242
3243         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3244                  si_to_str[new_smi->si_type]);
3245
3246         return 0;
3247
3248  out_err_stop_timer:
3249         atomic_inc(&new_smi->stop_operation);
3250         wait_for_timer_and_thread(new_smi);
3251
3252  out_err:
3253         new_smi->interrupt_disabled = 1;
3254
3255         if (new_smi->intf) {
3256                 ipmi_unregister_smi(new_smi->intf);
3257                 new_smi->intf = NULL;
3258         }
3259
3260         if (new_smi->irq_cleanup) {
3261                 new_smi->irq_cleanup(new_smi);
3262                 new_smi->irq_cleanup = NULL;
3263         }
3264
3265         /*
3266          * Wait until we know that we are out of any interrupt
3267          * handlers might have been running before we freed the
3268          * interrupt.
3269          */
3270         synchronize_sched();
3271
3272         if (new_smi->si_sm) {
3273                 if (new_smi->handlers)
3274                         new_smi->handlers->cleanup(new_smi->si_sm);
3275                 kfree(new_smi->si_sm);
3276                 new_smi->si_sm = NULL;
3277         }
3278         if (new_smi->addr_source_cleanup) {
3279                 new_smi->addr_source_cleanup(new_smi);
3280                 new_smi->addr_source_cleanup = NULL;
3281         }
3282         if (new_smi->io_cleanup) {
3283                 new_smi->io_cleanup(new_smi);
3284                 new_smi->io_cleanup = NULL;
3285         }
3286
3287         if (new_smi->dev_registered) {
3288                 platform_device_unregister(new_smi->pdev);
3289                 new_smi->dev_registered = 0;
3290         }
3291
3292         return rv;
3293 }
3294
3295 static __devinit int init_ipmi_si(void)
3296 {
3297         int  i;
3298         char *str;
3299         int  rv;
3300         struct smi_info *e;
3301         enum ipmi_addr_src type = SI_INVALID;
3302
3303         if (initialized)
3304                 return 0;
3305         initialized = 1;
3306
3307         /* Register the device drivers. */
3308         rv = driver_register(&ipmi_driver.driver);
3309         if (rv) {
3310                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3311                 return rv;
3312         }
3313
3314
3315         /* Parse out the si_type string into its components. */
3316         str = si_type_str;
3317         if (*str != '\0') {
3318                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3319                         si_type[i] = str;
3320                         str = strchr(str, ',');
3321                         if (str) {
3322                                 *str = '\0';
3323                                 str++;
3324                         } else {
3325                                 break;
3326                         }
3327                 }
3328         }
3329
3330         printk(KERN_INFO "IPMI System Interface driver.\n");
3331
3332         hardcode_find_bmc();
3333
3334         /* If the user gave us a device, they presumably want us to use it */
3335         mutex_lock(&smi_infos_lock);
3336         if (!list_empty(&smi_infos)) {
3337                 mutex_unlock(&smi_infos_lock);
3338                 return 0;
3339         }
3340         mutex_unlock(&smi_infos_lock);
3341
3342 #ifdef CONFIG_PCI
3343         rv = pci_register_driver(&ipmi_pci_driver);
3344         if (rv)
3345                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3346         else
3347                 pci_registered = 1;
3348 #endif
3349
3350 #ifdef CONFIG_ACPI
3351         pnp_register_driver(&ipmi_pnp_driver);
3352 #endif
3353
3354 #ifdef CONFIG_DMI
3355         dmi_find_bmc();
3356 #endif
3357
3358 #ifdef CONFIG_ACPI
3359         spmi_find_bmc();
3360 #endif
3361
3362 #ifdef CONFIG_PPC_OF
3363         of_register_platform_driver(&ipmi_of_platform_driver);
3364         of_registered = 1;
3365 #endif
3366
3367         /* We prefer devices with interrupts, but in the case of a machine
3368            with multiple BMCs we assume that there will be several instances
3369            of a given type so if we succeed in registering a type then also
3370            try to register everything else of the same type */
3371
3372         mutex_lock(&smi_infos_lock);
3373         list_for_each_entry(e, &smi_infos, link) {
3374                 /* Try to register a device if it has an IRQ and we either
3375                    haven't successfully registered a device yet or this
3376                    device has the same type as one we successfully registered */
3377                 if (e->irq && (!type || e->addr_source == type)) {
3378                         if (!try_smi_init(e)) {
3379                                 type = e->addr_source;
3380                         }
3381                 }
3382         }
3383
3384         /* type will only have been set if we successfully registered an si */
3385         if (type) {
3386                 mutex_unlock(&smi_infos_lock);
3387                 return 0;
3388         }
3389
3390         /* Fall back to the preferred device */
3391
3392         list_for_each_entry(e, &smi_infos, link) {
3393                 if (!e->irq && (!type || e->addr_source == type)) {
3394                         if (!try_smi_init(e)) {
3395                                 type = e->addr_source;
3396                         }
3397                 }
3398         }
3399         mutex_unlock(&smi_infos_lock);
3400
3401         if (type)
3402                 return 0;
3403
3404         if (si_trydefaults) {
3405                 mutex_lock(&smi_infos_lock);
3406                 if (list_empty(&smi_infos)) {
3407                         /* No BMC was found, try defaults. */
3408                         mutex_unlock(&smi_infos_lock);
3409                         default_find_bmc();
3410                 } else
3411                         mutex_unlock(&smi_infos_lock);
3412         }
3413
3414         mutex_lock(&smi_infos_lock);
3415         if (unload_when_empty && list_empty(&smi_infos)) {
3416                 mutex_unlock(&smi_infos_lock);
3417 #ifdef CONFIG_PCI
3418                 if (pci_registered)
3419                         pci_unregister_driver(&ipmi_pci_driver);
3420 #endif
3421
3422 #ifdef CONFIG_PPC_OF
3423                 if (of_registered)
3424                         of_unregister_platform_driver(&ipmi_of_platform_driver);
3425 #endif
3426                 driver_unregister(&ipmi_driver.driver);
3427                 printk(KERN_WARNING PFX
3428                        "Unable to find any System Interface(s)\n");
3429                 return -ENODEV;
3430         } else {
3431                 mutex_unlock(&smi_infos_lock);
3432                 return 0;
3433         }
3434 }
3435 module_init(init_ipmi_si);
3436
3437 static void cleanup_one_si(struct smi_info *to_clean)
3438 {
3439         int           rv = 0;
3440         unsigned long flags;
3441
3442         if (!to_clean)
3443                 return;
3444
3445         list_del(&to_clean->link);
3446
3447         /* Tell the driver that we are shutting down. */
3448         atomic_inc(&to_clean->stop_operation);
3449
3450         /*
3451          * Make sure the timer and thread are stopped and will not run
3452          * again.
3453          */
3454         wait_for_timer_and_thread(to_clean);
3455
3456         /*
3457          * Timeouts are stopped, now make sure the interrupts are off
3458          * for the device.  A little tricky with locks to make sure
3459          * there are no races.
3460          */
3461         spin_lock_irqsave(&to_clean->si_lock, flags);
3462         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3463                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3464                 poll(to_clean);
3465                 schedule_timeout_uninterruptible(1);
3466                 spin_lock_irqsave(&to_clean->si_lock, flags);
3467         }
3468         disable_si_irq(to_clean);
3469         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3470         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3471                 poll(to_clean);
3472                 schedule_timeout_uninterruptible(1);
3473         }
3474
3475         /* Clean up interrupts and make sure that everything is done. */
3476         if (to_clean->irq_cleanup)
3477                 to_clean->irq_cleanup(to_clean);
3478         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3479                 poll(to_clean);
3480                 schedule_timeout_uninterruptible(1);
3481         }
3482
3483         if (to_clean->intf)
3484                 rv = ipmi_unregister_smi(to_clean->intf);
3485
3486         if (rv) {
3487                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3488                        rv);
3489         }
3490
3491         if (to_clean->handlers)
3492                 to_clean->handlers->cleanup(to_clean->si_sm);
3493
3494         kfree(to_clean->si_sm);
3495
3496         if (to_clean->addr_source_cleanup)
3497                 to_clean->addr_source_cleanup(to_clean);
3498         if (to_clean->io_cleanup)
3499                 to_clean->io_cleanup(to_clean);
3500
3501         if (to_clean->dev_registered)
3502                 platform_device_unregister(to_clean->pdev);
3503
3504         kfree(to_clean);
3505 }
3506
3507 static __exit void cleanup_ipmi_si(void)
3508 {
3509         struct smi_info *e, *tmp_e;
3510
3511         if (!initialized)
3512                 return;
3513
3514 #ifdef CONFIG_PCI
3515         if (pci_registered)
3516                 pci_unregister_driver(&ipmi_pci_driver);
3517 #endif
3518 #ifdef CONFIG_ACPI
3519         pnp_unregister_driver(&ipmi_pnp_driver);
3520 #endif
3521
3522 #ifdef CONFIG_PPC_OF
3523         if (of_registered)
3524                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3525 #endif
3526
3527         mutex_lock(&smi_infos_lock);
3528         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3529                 cleanup_one_si(e);
3530         mutex_unlock(&smi_infos_lock);
3531
3532         driver_unregister(&ipmi_driver.driver);
3533 }
3534 module_exit(cleanup_ipmi_si);
3535
3536 MODULE_LICENSE("GPL");
3537 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3538 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3539                    " system interfaces.");