Merge tag 'xtensa-for-next-20141021-1' of git://github.com/jcmvbkbc/linux-xtensa...
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_CLEARING_FLAGS_THEN_SET_IRQ,
96         SI_GETTING_MESSAGES,
97         SI_ENABLE_INTERRUPTS1,
98         SI_ENABLE_INTERRUPTS2,
99         SI_DISABLE_INTERRUPTS1,
100         SI_DISABLE_INTERRUPTS2
101         /* FIXME - add watchdog stuff. */
102 };
103
104 /* Some BT-specific defines we need here. */
105 #define IPMI_BT_INTMASK_REG             2
106 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
107 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
108
109 enum si_type {
110     SI_KCS, SI_SMIC, SI_BT
111 };
112 static char *si_to_str[] = { "kcs", "smic", "bt" };
113
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver;
121
122 /*
123  * Indexes into stats[] in smi_info below.
124  */
125 enum si_stat_indexes {
126         /*
127          * Number of times the driver requested a timer while an operation
128          * was in progress.
129          */
130         SI_STAT_short_timeouts = 0,
131
132         /*
133          * Number of times the driver requested a timer while nothing was in
134          * progress.
135          */
136         SI_STAT_long_timeouts,
137
138         /* Number of times the interface was idle while being polled. */
139         SI_STAT_idles,
140
141         /* Number of interrupts the driver handled. */
142         SI_STAT_interrupts,
143
144         /* Number of time the driver got an ATTN from the hardware. */
145         SI_STAT_attentions,
146
147         /* Number of times the driver requested flags from the hardware. */
148         SI_STAT_flag_fetches,
149
150         /* Number of times the hardware didn't follow the state machine. */
151         SI_STAT_hosed_count,
152
153         /* Number of completed messages. */
154         SI_STAT_complete_transactions,
155
156         /* Number of IPMI events received from the hardware. */
157         SI_STAT_events,
158
159         /* Number of watchdog pretimeouts. */
160         SI_STAT_watchdog_pretimeouts,
161
162         /* Number of asynchronous messages received. */
163         SI_STAT_incoming_messages,
164
165
166         /* This *must* remain last, add new values above this. */
167         SI_NUM_STATS
168 };
169
170 struct smi_info {
171         int                    intf_num;
172         ipmi_smi_t             intf;
173         struct si_sm_data      *si_sm;
174         struct si_sm_handlers  *handlers;
175         enum si_type           si_type;
176         spinlock_t             si_lock;
177         struct list_head       xmit_msgs;
178         struct list_head       hp_xmit_msgs;
179         struct ipmi_smi_msg    *curr_msg;
180         enum si_intf_state     si_state;
181
182         /*
183          * Used to handle the various types of I/O that can occur with
184          * IPMI
185          */
186         struct si_sm_io io;
187         int (*io_setup)(struct smi_info *info);
188         void (*io_cleanup)(struct smi_info *info);
189         int (*irq_setup)(struct smi_info *info);
190         void (*irq_cleanup)(struct smi_info *info);
191         unsigned int io_size;
192         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
193         void (*addr_source_cleanup)(struct smi_info *info);
194         void *addr_source_data;
195
196         /*
197          * Per-OEM handler, called from handle_flags().  Returns 1
198          * when handle_flags() needs to be re-run or 0 indicating it
199          * set si_state itself.
200          */
201         int (*oem_data_avail_handler)(struct smi_info *smi_info);
202
203         /*
204          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
205          * is set to hold the flags until we are done handling everything
206          * from the flags.
207          */
208 #define RECEIVE_MSG_AVAIL       0x01
209 #define EVENT_MSG_BUFFER_FULL   0x02
210 #define WDT_PRE_TIMEOUT_INT     0x08
211 #define OEM0_DATA_AVAIL     0x20
212 #define OEM1_DATA_AVAIL     0x40
213 #define OEM2_DATA_AVAIL     0x80
214 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
215                              OEM1_DATA_AVAIL | \
216                              OEM2_DATA_AVAIL)
217         unsigned char       msg_flags;
218
219         /* Does the BMC have an event buffer? */
220         bool                has_event_buffer;
221
222         /*
223          * If set to true, this will request events the next time the
224          * state machine is idle.
225          */
226         atomic_t            req_events;
227
228         /*
229          * If true, run the state machine to completion on every send
230          * call.  Generally used after a panic to make sure stuff goes
231          * out.
232          */
233         bool                run_to_completion;
234
235         /* The I/O port of an SI interface. */
236         int                 port;
237
238         /*
239          * The space between start addresses of the two ports.  For
240          * instance, if the first port is 0xca2 and the spacing is 4, then
241          * the second port is 0xca6.
242          */
243         unsigned int        spacing;
244
245         /* zero if no irq; */
246         int                 irq;
247
248         /* The timer for this si. */
249         struct timer_list   si_timer;
250
251         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
252         bool                timer_running;
253
254         /* The time (in jiffies) the last timeout occurred at. */
255         unsigned long       last_timeout_jiffies;
256
257         /* Used to gracefully stop the timer without race conditions. */
258         atomic_t            stop_operation;
259
260         /* Are we waiting for the events, pretimeouts, received msgs? */
261         atomic_t            need_watch;
262
263         /*
264          * The driver will disable interrupts when it gets into a
265          * situation where it cannot handle messages due to lack of
266          * memory.  Once that situation clears up, it will re-enable
267          * interrupts.
268          */
269         bool interrupt_disabled;
270
271         /* From the get device id response... */
272         struct ipmi_device_id device_id;
273
274         /* Driver model stuff. */
275         struct device *dev;
276         struct platform_device *pdev;
277
278         /*
279          * True if we allocated the device, false if it came from
280          * someplace else (like PCI).
281          */
282         bool dev_registered;
283
284         /* Slave address, could be reported from DMI. */
285         unsigned char slave_addr;
286
287         /* Counters and things for the proc filesystem. */
288         atomic_t stats[SI_NUM_STATS];
289
290         struct task_struct *thread;
291
292         struct list_head link;
293         union ipmi_smi_info_union addr_info;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static bool pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static bool pnp_registered;
310 #endif
311 #ifdef CONFIG_PARISC
312 static bool parisc_registered;
313 #endif
314
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317
318 static bool unload_when_empty = true;
319
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 static void cleanup_ipmi_si(void);
324
325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
326 static int register_xaction_notifier(struct notifier_block *nb)
327 {
328         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
329 }
330
331 static void deliver_recv_msg(struct smi_info *smi_info,
332                              struct ipmi_smi_msg *msg)
333 {
334         /* Deliver the message to the upper layer. */
335         ipmi_smi_msg_received(smi_info->intf, msg);
336 }
337
338 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
339 {
340         struct ipmi_smi_msg *msg = smi_info->curr_msg;
341
342         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
343                 cCode = IPMI_ERR_UNSPECIFIED;
344         /* else use it as is */
345
346         /* Make it a response */
347         msg->rsp[0] = msg->data[0] | 4;
348         msg->rsp[1] = msg->data[1];
349         msg->rsp[2] = cCode;
350         msg->rsp_size = 3;
351
352         smi_info->curr_msg = NULL;
353         deliver_recv_msg(smi_info, msg);
354 }
355
356 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
357 {
358         int              rv;
359         struct list_head *entry = NULL;
360 #ifdef DEBUG_TIMING
361         struct timeval t;
362 #endif
363
364         /* Pick the high priority queue first. */
365         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
366                 entry = smi_info->hp_xmit_msgs.next;
367         } else if (!list_empty(&(smi_info->xmit_msgs))) {
368                 entry = smi_info->xmit_msgs.next;
369         }
370
371         if (!entry) {
372                 smi_info->curr_msg = NULL;
373                 rv = SI_SM_IDLE;
374         } else {
375                 int err;
376
377                 list_del(entry);
378                 smi_info->curr_msg = list_entry(entry,
379                                                 struct ipmi_smi_msg,
380                                                 link);
381 #ifdef DEBUG_TIMING
382                 do_gettimeofday(&t);
383                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
384 #endif
385                 err = atomic_notifier_call_chain(&xaction_notifier_list,
386                                 0, smi_info);
387                 if (err & NOTIFY_STOP_MASK) {
388                         rv = SI_SM_CALL_WITHOUT_DELAY;
389                         goto out;
390                 }
391                 err = smi_info->handlers->start_transaction(
392                         smi_info->si_sm,
393                         smi_info->curr_msg->data,
394                         smi_info->curr_msg->data_size);
395                 if (err)
396                         return_hosed_msg(smi_info, err);
397
398                 rv = SI_SM_CALL_WITHOUT_DELAY;
399         }
400  out:
401         return rv;
402 }
403
404 static void start_enable_irq(struct smi_info *smi_info)
405 {
406         unsigned char msg[2];
407
408         /*
409          * If we are enabling interrupts, we have to tell the
410          * BMC to use them.
411          */
412         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
413         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
414
415         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
416         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
417 }
418
419 static void start_disable_irq(struct smi_info *smi_info)
420 {
421         unsigned char msg[2];
422
423         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
425
426         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
427         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
428 }
429
430 static void start_clear_flags(struct smi_info *smi_info)
431 {
432         unsigned char msg[3];
433
434         /* Make sure the watchdog pre-timeout flag is not set at startup. */
435         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
436         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
437         msg[2] = WDT_PRE_TIMEOUT_INT;
438
439         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
440         smi_info->si_state = SI_CLEARING_FLAGS;
441 }
442
443 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
444 {
445         smi_info->last_timeout_jiffies = jiffies;
446         mod_timer(&smi_info->si_timer, new_val);
447         smi_info->timer_running = true;
448 }
449
450 /*
451  * When we have a situtaion where we run out of memory and cannot
452  * allocate messages, we just leave them in the BMC and run the system
453  * polled until we can allocate some memory.  Once we have some
454  * memory, we will re-enable the interrupt.
455  */
456 static inline void disable_si_irq(struct smi_info *smi_info)
457 {
458         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459                 start_disable_irq(smi_info);
460                 smi_info->interrupt_disabled = true;
461                 if (!atomic_read(&smi_info->stop_operation))
462                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
463         }
464 }
465
466 static inline void enable_si_irq(struct smi_info *smi_info)
467 {
468         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
469                 start_enable_irq(smi_info);
470                 smi_info->interrupt_disabled = false;
471         }
472 }
473
474 static void handle_flags(struct smi_info *smi_info)
475 {
476  retry:
477         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
478                 /* Watchdog pre-timeout */
479                 smi_inc_stat(smi_info, watchdog_pretimeouts);
480
481                 start_clear_flags(smi_info);
482                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
483                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
484         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
485                 /* Messages available. */
486                 smi_info->curr_msg = ipmi_alloc_smi_msg();
487                 if (!smi_info->curr_msg) {
488                         disable_si_irq(smi_info);
489                         smi_info->si_state = SI_NORMAL;
490                         return;
491                 }
492                 enable_si_irq(smi_info);
493
494                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
496                 smi_info->curr_msg->data_size = 2;
497
498                 smi_info->handlers->start_transaction(
499                         smi_info->si_sm,
500                         smi_info->curr_msg->data,
501                         smi_info->curr_msg->data_size);
502                 smi_info->si_state = SI_GETTING_MESSAGES;
503         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
504                 /* Events available. */
505                 smi_info->curr_msg = ipmi_alloc_smi_msg();
506                 if (!smi_info->curr_msg) {
507                         disable_si_irq(smi_info);
508                         smi_info->si_state = SI_NORMAL;
509                         return;
510                 }
511                 enable_si_irq(smi_info);
512
513                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
514                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
515                 smi_info->curr_msg->data_size = 2;
516
517                 smi_info->handlers->start_transaction(
518                         smi_info->si_sm,
519                         smi_info->curr_msg->data,
520                         smi_info->curr_msg->data_size);
521                 smi_info->si_state = SI_GETTING_EVENTS;
522         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
523                    smi_info->oem_data_avail_handler) {
524                 if (smi_info->oem_data_avail_handler(smi_info))
525                         goto retry;
526         } else
527                 smi_info->si_state = SI_NORMAL;
528 }
529
530 static void handle_transaction_done(struct smi_info *smi_info)
531 {
532         struct ipmi_smi_msg *msg;
533 #ifdef DEBUG_TIMING
534         struct timeval t;
535
536         do_gettimeofday(&t);
537         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
538 #endif
539         switch (smi_info->si_state) {
540         case SI_NORMAL:
541                 if (!smi_info->curr_msg)
542                         break;
543
544                 smi_info->curr_msg->rsp_size
545                         = smi_info->handlers->get_result(
546                                 smi_info->si_sm,
547                                 smi_info->curr_msg->rsp,
548                                 IPMI_MAX_MSG_LENGTH);
549
550                 /*
551                  * Do this here becase deliver_recv_msg() releases the
552                  * lock, and a new message can be put in during the
553                  * time the lock is released.
554                  */
555                 msg = smi_info->curr_msg;
556                 smi_info->curr_msg = NULL;
557                 deliver_recv_msg(smi_info, msg);
558                 break;
559
560         case SI_GETTING_FLAGS:
561         {
562                 unsigned char msg[4];
563                 unsigned int  len;
564
565                 /* We got the flags from the SMI, now handle them. */
566                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
567                 if (msg[2] != 0) {
568                         /* Error fetching flags, just give up for now. */
569                         smi_info->si_state = SI_NORMAL;
570                 } else if (len < 4) {
571                         /*
572                          * Hmm, no flags.  That's technically illegal, but
573                          * don't use uninitialized data.
574                          */
575                         smi_info->si_state = SI_NORMAL;
576                 } else {
577                         smi_info->msg_flags = msg[3];
578                         handle_flags(smi_info);
579                 }
580                 break;
581         }
582
583         case SI_CLEARING_FLAGS:
584         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
585         {
586                 unsigned char msg[3];
587
588                 /* We cleared the flags. */
589                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
590                 if (msg[2] != 0) {
591                         /* Error clearing flags */
592                         dev_warn(smi_info->dev,
593                                  "Error clearing flags: %2.2x\n", msg[2]);
594                 }
595                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
596                         start_enable_irq(smi_info);
597                 else
598                         smi_info->si_state = SI_NORMAL;
599                 break;
600         }
601
602         case SI_GETTING_EVENTS:
603         {
604                 smi_info->curr_msg->rsp_size
605                         = smi_info->handlers->get_result(
606                                 smi_info->si_sm,
607                                 smi_info->curr_msg->rsp,
608                                 IPMI_MAX_MSG_LENGTH);
609
610                 /*
611                  * Do this here becase deliver_recv_msg() releases the
612                  * lock, and a new message can be put in during the
613                  * time the lock is released.
614                  */
615                 msg = smi_info->curr_msg;
616                 smi_info->curr_msg = NULL;
617                 if (msg->rsp[2] != 0) {
618                         /* Error getting event, probably done. */
619                         msg->done(msg);
620
621                         /* Take off the event flag. */
622                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623                         handle_flags(smi_info);
624                 } else {
625                         smi_inc_stat(smi_info, events);
626
627                         /*
628                          * Do this before we deliver the message
629                          * because delivering the message releases the
630                          * lock and something else can mess with the
631                          * state.
632                          */
633                         handle_flags(smi_info);
634
635                         deliver_recv_msg(smi_info, msg);
636                 }
637                 break;
638         }
639
640         case SI_GETTING_MESSAGES:
641         {
642                 smi_info->curr_msg->rsp_size
643                         = smi_info->handlers->get_result(
644                                 smi_info->si_sm,
645                                 smi_info->curr_msg->rsp,
646                                 IPMI_MAX_MSG_LENGTH);
647
648                 /*
649                  * Do this here becase deliver_recv_msg() releases the
650                  * lock, and a new message can be put in during the
651                  * time the lock is released.
652                  */
653                 msg = smi_info->curr_msg;
654                 smi_info->curr_msg = NULL;
655                 if (msg->rsp[2] != 0) {
656                         /* Error getting event, probably done. */
657                         msg->done(msg);
658
659                         /* Take off the msg flag. */
660                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661                         handle_flags(smi_info);
662                 } else {
663                         smi_inc_stat(smi_info, incoming_messages);
664
665                         /*
666                          * Do this before we deliver the message
667                          * because delivering the message releases the
668                          * lock and something else can mess with the
669                          * state.
670                          */
671                         handle_flags(smi_info);
672
673                         deliver_recv_msg(smi_info, msg);
674                 }
675                 break;
676         }
677
678         case SI_ENABLE_INTERRUPTS1:
679         {
680                 unsigned char msg[4];
681
682                 /* We got the flags from the SMI, now handle them. */
683                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684                 if (msg[2] != 0) {
685                         dev_warn(smi_info->dev,
686                                  "Couldn't get irq info: %x.\n", msg[2]);
687                         dev_warn(smi_info->dev,
688                                  "Maybe ok, but ipmi might run very slowly.\n");
689                         smi_info->si_state = SI_NORMAL;
690                 } else {
691                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
692                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
693                         msg[2] = (msg[3] |
694                                   IPMI_BMC_RCV_MSG_INTR |
695                                   IPMI_BMC_EVT_MSG_INTR);
696                         smi_info->handlers->start_transaction(
697                                 smi_info->si_sm, msg, 3);
698                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
699                 }
700                 break;
701         }
702
703         case SI_ENABLE_INTERRUPTS2:
704         {
705                 unsigned char msg[4];
706
707                 /* We got the flags from the SMI, now handle them. */
708                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
709                 if (msg[2] != 0) {
710                         dev_warn(smi_info->dev,
711                                  "Couldn't set irq info: %x.\n", msg[2]);
712                         dev_warn(smi_info->dev,
713                                  "Maybe ok, but ipmi might run very slowly.\n");
714                 } else
715                         smi_info->interrupt_disabled = false;
716                 smi_info->si_state = SI_NORMAL;
717                 break;
718         }
719
720         case SI_DISABLE_INTERRUPTS1:
721         {
722                 unsigned char msg[4];
723
724                 /* We got the flags from the SMI, now handle them. */
725                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726                 if (msg[2] != 0) {
727                         dev_warn(smi_info->dev, "Could not disable interrupts"
728                                  ", failed get.\n");
729                         smi_info->si_state = SI_NORMAL;
730                 } else {
731                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733                         msg[2] = (msg[3] &
734                                   ~(IPMI_BMC_RCV_MSG_INTR |
735                                     IPMI_BMC_EVT_MSG_INTR));
736                         smi_info->handlers->start_transaction(
737                                 smi_info->si_sm, msg, 3);
738                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739                 }
740                 break;
741         }
742
743         case SI_DISABLE_INTERRUPTS2:
744         {
745                 unsigned char msg[4];
746
747                 /* We got the flags from the SMI, now handle them. */
748                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749                 if (msg[2] != 0) {
750                         dev_warn(smi_info->dev, "Could not disable interrupts"
751                                  ", failed set.\n");
752                 }
753                 smi_info->si_state = SI_NORMAL;
754                 break;
755         }
756         }
757 }
758
759 /*
760  * Called on timeouts and events.  Timeouts should pass the elapsed
761  * time, interrupts should pass in zero.  Must be called with
762  * si_lock held and interrupts disabled.
763  */
764 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
765                                            int time)
766 {
767         enum si_sm_result si_sm_result;
768
769  restart:
770         /*
771          * There used to be a loop here that waited a little while
772          * (around 25us) before giving up.  That turned out to be
773          * pointless, the minimum delays I was seeing were in the 300us
774          * range, which is far too long to wait in an interrupt.  So
775          * we just run until the state machine tells us something
776          * happened or it needs a delay.
777          */
778         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
779         time = 0;
780         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
781                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782
783         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
784                 smi_inc_stat(smi_info, complete_transactions);
785
786                 handle_transaction_done(smi_info);
787                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788         } else if (si_sm_result == SI_SM_HOSED) {
789                 smi_inc_stat(smi_info, hosed_count);
790
791                 /*
792                  * Do the before return_hosed_msg, because that
793                  * releases the lock.
794                  */
795                 smi_info->si_state = SI_NORMAL;
796                 if (smi_info->curr_msg != NULL) {
797                         /*
798                          * If we were handling a user message, format
799                          * a response to send to the upper layer to
800                          * tell it about the error.
801                          */
802                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
803                 }
804                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
805         }
806
807         /*
808          * We prefer handling attn over new messages.  But don't do
809          * this if there is not yet an upper layer to handle anything.
810          */
811         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
812                 unsigned char msg[2];
813
814                 smi_inc_stat(smi_info, attentions);
815
816                 /*
817                  * Got a attn, send down a get message flags to see
818                  * what's causing it.  It would be better to handle
819                  * this in the upper layer, but due to the way
820                  * interrupts work with the SMI, that's not really
821                  * possible.
822                  */
823                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
824                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825
826                 smi_info->handlers->start_transaction(
827                         smi_info->si_sm, msg, 2);
828                 smi_info->si_state = SI_GETTING_FLAGS;
829                 goto restart;
830         }
831
832         /* If we are currently idle, try to start the next message. */
833         if (si_sm_result == SI_SM_IDLE) {
834                 smi_inc_stat(smi_info, idles);
835
836                 si_sm_result = start_next_msg(smi_info);
837                 if (si_sm_result != SI_SM_IDLE)
838                         goto restart;
839         }
840
841         if ((si_sm_result == SI_SM_IDLE)
842             && (atomic_read(&smi_info->req_events))) {
843                 /*
844                  * We are idle and the upper layer requested that I fetch
845                  * events, so do so.
846                  */
847                 atomic_set(&smi_info->req_events, 0);
848
849                 smi_info->curr_msg = ipmi_alloc_smi_msg();
850                 if (!smi_info->curr_msg)
851                         goto out;
852
853                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
854                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
855                 smi_info->curr_msg->data_size = 2;
856
857                 smi_info->handlers->start_transaction(
858                         smi_info->si_sm,
859                         smi_info->curr_msg->data,
860                         smi_info->curr_msg->data_size);
861                 smi_info->si_state = SI_GETTING_EVENTS;
862                 goto restart;
863         }
864  out:
865         return si_sm_result;
866 }
867
868 static void check_start_timer_thread(struct smi_info *smi_info)
869 {
870         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
871                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
872
873                 if (smi_info->thread)
874                         wake_up_process(smi_info->thread);
875
876                 start_next_msg(smi_info);
877                 smi_event_handler(smi_info, 0);
878         }
879 }
880
881 static void sender(void                *send_info,
882                    struct ipmi_smi_msg *msg,
883                    int                 priority)
884 {
885         struct smi_info   *smi_info = send_info;
886         enum si_sm_result result;
887         unsigned long     flags;
888 #ifdef DEBUG_TIMING
889         struct timeval    t;
890 #endif
891
892         if (atomic_read(&smi_info->stop_operation)) {
893                 msg->rsp[0] = msg->data[0] | 4;
894                 msg->rsp[1] = msg->data[1];
895                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
896                 msg->rsp_size = 3;
897                 deliver_recv_msg(smi_info, msg);
898                 return;
899         }
900
901 #ifdef DEBUG_TIMING
902         do_gettimeofday(&t);
903         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
904 #endif
905
906         if (smi_info->run_to_completion) {
907                 /*
908                  * If we are running to completion, then throw it in
909                  * the list and run transactions until everything is
910                  * clear.  Priority doesn't matter here.
911                  */
912
913                 /*
914                  * Run to completion means we are single-threaded, no
915                  * need for locks.
916                  */
917                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
918
919                 result = smi_event_handler(smi_info, 0);
920                 while (result != SI_SM_IDLE) {
921                         udelay(SI_SHORT_TIMEOUT_USEC);
922                         result = smi_event_handler(smi_info,
923                                                    SI_SHORT_TIMEOUT_USEC);
924                 }
925                 return;
926         }
927
928         spin_lock_irqsave(&smi_info->si_lock, flags);
929         if (priority > 0)
930                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
931         else
932                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
933
934         check_start_timer_thread(smi_info);
935         spin_unlock_irqrestore(&smi_info->si_lock, flags);
936 }
937
938 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
939 {
940         struct smi_info   *smi_info = send_info;
941         enum si_sm_result result;
942
943         smi_info->run_to_completion = i_run_to_completion;
944         if (i_run_to_completion) {
945                 result = smi_event_handler(smi_info, 0);
946                 while (result != SI_SM_IDLE) {
947                         udelay(SI_SHORT_TIMEOUT_USEC);
948                         result = smi_event_handler(smi_info,
949                                                    SI_SHORT_TIMEOUT_USEC);
950                 }
951         }
952 }
953
954 /*
955  * Use -1 in the nsec value of the busy waiting timespec to tell that
956  * we are spinning in kipmid looking for something and not delaying
957  * between checks
958  */
959 static inline void ipmi_si_set_not_busy(struct timespec *ts)
960 {
961         ts->tv_nsec = -1;
962 }
963 static inline int ipmi_si_is_busy(struct timespec *ts)
964 {
965         return ts->tv_nsec != -1;
966 }
967
968 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
969                                         const struct smi_info *smi_info,
970                                         struct timespec *busy_until)
971 {
972         unsigned int max_busy_us = 0;
973
974         if (smi_info->intf_num < num_max_busy_us)
975                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
976         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
977                 ipmi_si_set_not_busy(busy_until);
978         else if (!ipmi_si_is_busy(busy_until)) {
979                 getnstimeofday(busy_until);
980                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
981         } else {
982                 struct timespec now;
983                 getnstimeofday(&now);
984                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
985                         ipmi_si_set_not_busy(busy_until);
986                         return 0;
987                 }
988         }
989         return 1;
990 }
991
992
993 /*
994  * A busy-waiting loop for speeding up IPMI operation.
995  *
996  * Lousy hardware makes this hard.  This is only enabled for systems
997  * that are not BT and do not have interrupts.  It starts spinning
998  * when an operation is complete or until max_busy tells it to stop
999  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1000  * Documentation/IPMI.txt for details.
1001  */
1002 static int ipmi_thread(void *data)
1003 {
1004         struct smi_info *smi_info = data;
1005         unsigned long flags;
1006         enum si_sm_result smi_result;
1007         struct timespec busy_until;
1008
1009         ipmi_si_set_not_busy(&busy_until);
1010         set_user_nice(current, MAX_NICE);
1011         while (!kthread_should_stop()) {
1012                 int busy_wait;
1013
1014                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1015                 smi_result = smi_event_handler(smi_info, 0);
1016
1017                 /*
1018                  * If the driver is doing something, there is a possible
1019                  * race with the timer.  If the timer handler see idle,
1020                  * and the thread here sees something else, the timer
1021                  * handler won't restart the timer even though it is
1022                  * required.  So start it here if necessary.
1023                  */
1024                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1025                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1026
1027                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1028                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1029                                                   &busy_until);
1030                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1031                         ; /* do nothing */
1032                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1033                         schedule();
1034                 else if (smi_result == SI_SM_IDLE) {
1035                         if (atomic_read(&smi_info->need_watch)) {
1036                                 schedule_timeout_interruptible(100);
1037                         } else {
1038                                 /* Wait to be woken up when we are needed. */
1039                                 __set_current_state(TASK_INTERRUPTIBLE);
1040                                 schedule();
1041                         }
1042                 } else
1043                         schedule_timeout_interruptible(1);
1044         }
1045         return 0;
1046 }
1047
1048
1049 static void poll(void *send_info)
1050 {
1051         struct smi_info *smi_info = send_info;
1052         unsigned long flags = 0;
1053         bool run_to_completion = smi_info->run_to_completion;
1054
1055         /*
1056          * Make sure there is some delay in the poll loop so we can
1057          * drive time forward and timeout things.
1058          */
1059         udelay(10);
1060         if (!run_to_completion)
1061                 spin_lock_irqsave(&smi_info->si_lock, flags);
1062         smi_event_handler(smi_info, 10);
1063         if (!run_to_completion)
1064                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1065 }
1066
1067 static void request_events(void *send_info)
1068 {
1069         struct smi_info *smi_info = send_info;
1070
1071         if (atomic_read(&smi_info->stop_operation) ||
1072                                 !smi_info->has_event_buffer)
1073                 return;
1074
1075         atomic_set(&smi_info->req_events, 1);
1076 }
1077
1078 static void set_need_watch(void *send_info, bool enable)
1079 {
1080         struct smi_info *smi_info = send_info;
1081         unsigned long flags;
1082
1083         atomic_set(&smi_info->need_watch, enable);
1084         spin_lock_irqsave(&smi_info->si_lock, flags);
1085         check_start_timer_thread(smi_info);
1086         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1087 }
1088
1089 static int initialized;
1090
1091 static void smi_timeout(unsigned long data)
1092 {
1093         struct smi_info   *smi_info = (struct smi_info *) data;
1094         enum si_sm_result smi_result;
1095         unsigned long     flags;
1096         unsigned long     jiffies_now;
1097         long              time_diff;
1098         long              timeout;
1099 #ifdef DEBUG_TIMING
1100         struct timeval    t;
1101 #endif
1102
1103         spin_lock_irqsave(&(smi_info->si_lock), flags);
1104 #ifdef DEBUG_TIMING
1105         do_gettimeofday(&t);
1106         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1107 #endif
1108         jiffies_now = jiffies;
1109         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1110                      * SI_USEC_PER_JIFFY);
1111         smi_result = smi_event_handler(smi_info, time_diff);
1112
1113         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1114                 /* Running with interrupts, only do long timeouts. */
1115                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1116                 smi_inc_stat(smi_info, long_timeouts);
1117                 goto do_mod_timer;
1118         }
1119
1120         /*
1121          * If the state machine asks for a short delay, then shorten
1122          * the timer timeout.
1123          */
1124         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1125                 smi_inc_stat(smi_info, short_timeouts);
1126                 timeout = jiffies + 1;
1127         } else {
1128                 smi_inc_stat(smi_info, long_timeouts);
1129                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1130         }
1131
1132  do_mod_timer:
1133         if (smi_result != SI_SM_IDLE)
1134                 smi_mod_timer(smi_info, timeout);
1135         else
1136                 smi_info->timer_running = false;
1137         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1138 }
1139
1140 static irqreturn_t si_irq_handler(int irq, void *data)
1141 {
1142         struct smi_info *smi_info = data;
1143         unsigned long   flags;
1144 #ifdef DEBUG_TIMING
1145         struct timeval  t;
1146 #endif
1147
1148         spin_lock_irqsave(&(smi_info->si_lock), flags);
1149
1150         smi_inc_stat(smi_info, interrupts);
1151
1152 #ifdef DEBUG_TIMING
1153         do_gettimeofday(&t);
1154         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1155 #endif
1156         smi_event_handler(smi_info, 0);
1157         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1158         return IRQ_HANDLED;
1159 }
1160
1161 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1162 {
1163         struct smi_info *smi_info = data;
1164         /* We need to clear the IRQ flag for the BT interface. */
1165         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1166                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1167                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1168         return si_irq_handler(irq, data);
1169 }
1170
1171 static int smi_start_processing(void       *send_info,
1172                                 ipmi_smi_t intf)
1173 {
1174         struct smi_info *new_smi = send_info;
1175         int             enable = 0;
1176
1177         new_smi->intf = intf;
1178
1179         /* Try to claim any interrupts. */
1180         if (new_smi->irq_setup)
1181                 new_smi->irq_setup(new_smi);
1182
1183         /* Set up the timer that drives the interface. */
1184         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1185         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1186
1187         /*
1188          * Check if the user forcefully enabled the daemon.
1189          */
1190         if (new_smi->intf_num < num_force_kipmid)
1191                 enable = force_kipmid[new_smi->intf_num];
1192         /*
1193          * The BT interface is efficient enough to not need a thread,
1194          * and there is no need for a thread if we have interrupts.
1195          */
1196         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1197                 enable = 1;
1198
1199         if (enable) {
1200                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1201                                               "kipmi%d", new_smi->intf_num);
1202                 if (IS_ERR(new_smi->thread)) {
1203                         dev_notice(new_smi->dev, "Could not start"
1204                                    " kernel thread due to error %ld, only using"
1205                                    " timers to drive the interface\n",
1206                                    PTR_ERR(new_smi->thread));
1207                         new_smi->thread = NULL;
1208                 }
1209         }
1210
1211         return 0;
1212 }
1213
1214 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1215 {
1216         struct smi_info *smi = send_info;
1217
1218         data->addr_src = smi->addr_source;
1219         data->dev = smi->dev;
1220         data->addr_info = smi->addr_info;
1221         get_device(smi->dev);
1222
1223         return 0;
1224 }
1225
1226 static void set_maintenance_mode(void *send_info, bool enable)
1227 {
1228         struct smi_info   *smi_info = send_info;
1229
1230         if (!enable)
1231                 atomic_set(&smi_info->req_events, 0);
1232 }
1233
1234 static struct ipmi_smi_handlers handlers = {
1235         .owner                  = THIS_MODULE,
1236         .start_processing       = smi_start_processing,
1237         .get_smi_info           = get_smi_info,
1238         .sender                 = sender,
1239         .request_events         = request_events,
1240         .set_need_watch         = set_need_watch,
1241         .set_maintenance_mode   = set_maintenance_mode,
1242         .set_run_to_completion  = set_run_to_completion,
1243         .poll                   = poll,
1244 };
1245
1246 /*
1247  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1248  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1249  */
1250
1251 static LIST_HEAD(smi_infos);
1252 static DEFINE_MUTEX(smi_infos_lock);
1253 static int smi_num; /* Used to sequence the SMIs */
1254
1255 #define DEFAULT_REGSPACING      1
1256 #define DEFAULT_REGSIZE         1
1257
1258 #ifdef CONFIG_ACPI
1259 static bool          si_tryacpi = 1;
1260 #endif
1261 #ifdef CONFIG_DMI
1262 static bool          si_trydmi = 1;
1263 #endif
1264 static bool          si_tryplatform = 1;
1265 #ifdef CONFIG_PCI
1266 static bool          si_trypci = 1;
1267 #endif
1268 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1269 static char          *si_type[SI_MAX_PARMS];
1270 #define MAX_SI_TYPE_STR 30
1271 static char          si_type_str[MAX_SI_TYPE_STR];
1272 static unsigned long addrs[SI_MAX_PARMS];
1273 static unsigned int num_addrs;
1274 static unsigned int  ports[SI_MAX_PARMS];
1275 static unsigned int num_ports;
1276 static int           irqs[SI_MAX_PARMS];
1277 static unsigned int num_irqs;
1278 static int           regspacings[SI_MAX_PARMS];
1279 static unsigned int num_regspacings;
1280 static int           regsizes[SI_MAX_PARMS];
1281 static unsigned int num_regsizes;
1282 static int           regshifts[SI_MAX_PARMS];
1283 static unsigned int num_regshifts;
1284 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1285 static unsigned int num_slave_addrs;
1286
1287 #define IPMI_IO_ADDR_SPACE  0
1288 #define IPMI_MEM_ADDR_SPACE 1
1289 static char *addr_space_to_str[] = { "i/o", "mem" };
1290
1291 static int hotmod_handler(const char *val, struct kernel_param *kp);
1292
1293 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1294 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1295                  " Documentation/IPMI.txt in the kernel sources for the"
1296                  " gory details.");
1297
1298 #ifdef CONFIG_ACPI
1299 module_param_named(tryacpi, si_tryacpi, bool, 0);
1300 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1301                  " default scan of the interfaces identified via ACPI");
1302 #endif
1303 #ifdef CONFIG_DMI
1304 module_param_named(trydmi, si_trydmi, bool, 0);
1305 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1306                  " default scan of the interfaces identified via DMI");
1307 #endif
1308 module_param_named(tryplatform, si_tryplatform, bool, 0);
1309 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1310                  " default scan of the interfaces identified via platform"
1311                  " interfaces like openfirmware");
1312 #ifdef CONFIG_PCI
1313 module_param_named(trypci, si_trypci, bool, 0);
1314 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1315                  " default scan of the interfaces identified via pci");
1316 #endif
1317 module_param_named(trydefaults, si_trydefaults, bool, 0);
1318 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1319                  " default scan of the KCS and SMIC interface at the standard"
1320                  " address");
1321 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1322 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1323                  " interface separated by commas.  The types are 'kcs',"
1324                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1325                  " the first interface to kcs and the second to bt");
1326 module_param_array(addrs, ulong, &num_addrs, 0);
1327 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1328                  " addresses separated by commas.  Only use if an interface"
1329                  " is in memory.  Otherwise, set it to zero or leave"
1330                  " it blank.");
1331 module_param_array(ports, uint, &num_ports, 0);
1332 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1333                  " addresses separated by commas.  Only use if an interface"
1334                  " is a port.  Otherwise, set it to zero or leave"
1335                  " it blank.");
1336 module_param_array(irqs, int, &num_irqs, 0);
1337 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1338                  " addresses separated by commas.  Only use if an interface"
1339                  " has an interrupt.  Otherwise, set it to zero or leave"
1340                  " it blank.");
1341 module_param_array(regspacings, int, &num_regspacings, 0);
1342 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1343                  " and each successive register used by the interface.  For"
1344                  " instance, if the start address is 0xca2 and the spacing"
1345                  " is 2, then the second address is at 0xca4.  Defaults"
1346                  " to 1.");
1347 module_param_array(regsizes, int, &num_regsizes, 0);
1348 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1349                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1350                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1351                  " the 8-bit IPMI register has to be read from a larger"
1352                  " register.");
1353 module_param_array(regshifts, int, &num_regshifts, 0);
1354 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1355                  " IPMI register, in bits.  For instance, if the data"
1356                  " is read from a 32-bit word and the IPMI data is in"
1357                  " bit 8-15, then the shift would be 8");
1358 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1359 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1360                  " the controller.  Normally this is 0x20, but can be"
1361                  " overridden by this parm.  This is an array indexed"
1362                  " by interface number.");
1363 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1364 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1365                  " disabled(0).  Normally the IPMI driver auto-detects"
1366                  " this, but the value may be overridden by this parm.");
1367 module_param(unload_when_empty, bool, 0);
1368 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1369                  " specified or found, default is 1.  Setting to 0"
1370                  " is useful for hot add of devices using hotmod.");
1371 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1372 MODULE_PARM_DESC(kipmid_max_busy_us,
1373                  "Max time (in microseconds) to busy-wait for IPMI data before"
1374                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1375                  " if kipmid is using up a lot of CPU time.");
1376
1377
1378 static void std_irq_cleanup(struct smi_info *info)
1379 {
1380         if (info->si_type == SI_BT)
1381                 /* Disable the interrupt in the BT interface. */
1382                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1383         free_irq(info->irq, info);
1384 }
1385
1386 static int std_irq_setup(struct smi_info *info)
1387 {
1388         int rv;
1389
1390         if (!info->irq)
1391                 return 0;
1392
1393         if (info->si_type == SI_BT) {
1394                 rv = request_irq(info->irq,
1395                                  si_bt_irq_handler,
1396                                  IRQF_SHARED,
1397                                  DEVICE_NAME,
1398                                  info);
1399                 if (!rv)
1400                         /* Enable the interrupt in the BT interface. */
1401                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1402                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1403         } else
1404                 rv = request_irq(info->irq,
1405                                  si_irq_handler,
1406                                  IRQF_SHARED,
1407                                  DEVICE_NAME,
1408                                  info);
1409         if (rv) {
1410                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1411                          " running polled\n",
1412                          DEVICE_NAME, info->irq);
1413                 info->irq = 0;
1414         } else {
1415                 info->irq_cleanup = std_irq_cleanup;
1416                 dev_info(info->dev, "Using irq %d\n", info->irq);
1417         }
1418
1419         return rv;
1420 }
1421
1422 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1423 {
1424         unsigned int addr = io->addr_data;
1425
1426         return inb(addr + (offset * io->regspacing));
1427 }
1428
1429 static void port_outb(struct si_sm_io *io, unsigned int offset,
1430                       unsigned char b)
1431 {
1432         unsigned int addr = io->addr_data;
1433
1434         outb(b, addr + (offset * io->regspacing));
1435 }
1436
1437 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1438 {
1439         unsigned int addr = io->addr_data;
1440
1441         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1442 }
1443
1444 static void port_outw(struct si_sm_io *io, unsigned int offset,
1445                       unsigned char b)
1446 {
1447         unsigned int addr = io->addr_data;
1448
1449         outw(b << io->regshift, addr + (offset * io->regspacing));
1450 }
1451
1452 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1453 {
1454         unsigned int addr = io->addr_data;
1455
1456         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1457 }
1458
1459 static void port_outl(struct si_sm_io *io, unsigned int offset,
1460                       unsigned char b)
1461 {
1462         unsigned int addr = io->addr_data;
1463
1464         outl(b << io->regshift, addr+(offset * io->regspacing));
1465 }
1466
1467 static void port_cleanup(struct smi_info *info)
1468 {
1469         unsigned int addr = info->io.addr_data;
1470         int          idx;
1471
1472         if (addr) {
1473                 for (idx = 0; idx < info->io_size; idx++)
1474                         release_region(addr + idx * info->io.regspacing,
1475                                        info->io.regsize);
1476         }
1477 }
1478
1479 static int port_setup(struct smi_info *info)
1480 {
1481         unsigned int addr = info->io.addr_data;
1482         int          idx;
1483
1484         if (!addr)
1485                 return -ENODEV;
1486
1487         info->io_cleanup = port_cleanup;
1488
1489         /*
1490          * Figure out the actual inb/inw/inl/etc routine to use based
1491          * upon the register size.
1492          */
1493         switch (info->io.regsize) {
1494         case 1:
1495                 info->io.inputb = port_inb;
1496                 info->io.outputb = port_outb;
1497                 break;
1498         case 2:
1499                 info->io.inputb = port_inw;
1500                 info->io.outputb = port_outw;
1501                 break;
1502         case 4:
1503                 info->io.inputb = port_inl;
1504                 info->io.outputb = port_outl;
1505                 break;
1506         default:
1507                 dev_warn(info->dev, "Invalid register size: %d\n",
1508                          info->io.regsize);
1509                 return -EINVAL;
1510         }
1511
1512         /*
1513          * Some BIOSes reserve disjoint I/O regions in their ACPI
1514          * tables.  This causes problems when trying to register the
1515          * entire I/O region.  Therefore we must register each I/O
1516          * port separately.
1517          */
1518         for (idx = 0; idx < info->io_size; idx++) {
1519                 if (request_region(addr + idx * info->io.regspacing,
1520                                    info->io.regsize, DEVICE_NAME) == NULL) {
1521                         /* Undo allocations */
1522                         while (idx--) {
1523                                 release_region(addr + idx * info->io.regspacing,
1524                                                info->io.regsize);
1525                         }
1526                         return -EIO;
1527                 }
1528         }
1529         return 0;
1530 }
1531
1532 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1533 {
1534         return readb((io->addr)+(offset * io->regspacing));
1535 }
1536
1537 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1538                      unsigned char b)
1539 {
1540         writeb(b, (io->addr)+(offset * io->regspacing));
1541 }
1542
1543 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1544 {
1545         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1546                 & 0xff;
1547 }
1548
1549 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1550                      unsigned char b)
1551 {
1552         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1553 }
1554
1555 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1556 {
1557         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1558                 & 0xff;
1559 }
1560
1561 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1562                      unsigned char b)
1563 {
1564         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1565 }
1566
1567 #ifdef readq
1568 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1569 {
1570         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1571                 & 0xff;
1572 }
1573
1574 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1575                      unsigned char b)
1576 {
1577         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1578 }
1579 #endif
1580
1581 static void mem_cleanup(struct smi_info *info)
1582 {
1583         unsigned long addr = info->io.addr_data;
1584         int           mapsize;
1585
1586         if (info->io.addr) {
1587                 iounmap(info->io.addr);
1588
1589                 mapsize = ((info->io_size * info->io.regspacing)
1590                            - (info->io.regspacing - info->io.regsize));
1591
1592                 release_mem_region(addr, mapsize);
1593         }
1594 }
1595
1596 static int mem_setup(struct smi_info *info)
1597 {
1598         unsigned long addr = info->io.addr_data;
1599         int           mapsize;
1600
1601         if (!addr)
1602                 return -ENODEV;
1603
1604         info->io_cleanup = mem_cleanup;
1605
1606         /*
1607          * Figure out the actual readb/readw/readl/etc routine to use based
1608          * upon the register size.
1609          */
1610         switch (info->io.regsize) {
1611         case 1:
1612                 info->io.inputb = intf_mem_inb;
1613                 info->io.outputb = intf_mem_outb;
1614                 break;
1615         case 2:
1616                 info->io.inputb = intf_mem_inw;
1617                 info->io.outputb = intf_mem_outw;
1618                 break;
1619         case 4:
1620                 info->io.inputb = intf_mem_inl;
1621                 info->io.outputb = intf_mem_outl;
1622                 break;
1623 #ifdef readq
1624         case 8:
1625                 info->io.inputb = mem_inq;
1626                 info->io.outputb = mem_outq;
1627                 break;
1628 #endif
1629         default:
1630                 dev_warn(info->dev, "Invalid register size: %d\n",
1631                          info->io.regsize);
1632                 return -EINVAL;
1633         }
1634
1635         /*
1636          * Calculate the total amount of memory to claim.  This is an
1637          * unusual looking calculation, but it avoids claiming any
1638          * more memory than it has to.  It will claim everything
1639          * between the first address to the end of the last full
1640          * register.
1641          */
1642         mapsize = ((info->io_size * info->io.regspacing)
1643                    - (info->io.regspacing - info->io.regsize));
1644
1645         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1646                 return -EIO;
1647
1648         info->io.addr = ioremap(addr, mapsize);
1649         if (info->io.addr == NULL) {
1650                 release_mem_region(addr, mapsize);
1651                 return -EIO;
1652         }
1653         return 0;
1654 }
1655
1656 /*
1657  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1658  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1659  * Options are:
1660  *   rsp=<regspacing>
1661  *   rsi=<regsize>
1662  *   rsh=<regshift>
1663  *   irq=<irq>
1664  *   ipmb=<ipmb addr>
1665  */
1666 enum hotmod_op { HM_ADD, HM_REMOVE };
1667 struct hotmod_vals {
1668         char *name;
1669         int  val;
1670 };
1671 static struct hotmod_vals hotmod_ops[] = {
1672         { "add",        HM_ADD },
1673         { "remove",     HM_REMOVE },
1674         { NULL }
1675 };
1676 static struct hotmod_vals hotmod_si[] = {
1677         { "kcs",        SI_KCS },
1678         { "smic",       SI_SMIC },
1679         { "bt",         SI_BT },
1680         { NULL }
1681 };
1682 static struct hotmod_vals hotmod_as[] = {
1683         { "mem",        IPMI_MEM_ADDR_SPACE },
1684         { "i/o",        IPMI_IO_ADDR_SPACE },
1685         { NULL }
1686 };
1687
1688 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1689 {
1690         char *s;
1691         int  i;
1692
1693         s = strchr(*curr, ',');
1694         if (!s) {
1695                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1696                 return -EINVAL;
1697         }
1698         *s = '\0';
1699         s++;
1700         for (i = 0; hotmod_ops[i].name; i++) {
1701                 if (strcmp(*curr, v[i].name) == 0) {
1702                         *val = v[i].val;
1703                         *curr = s;
1704                         return 0;
1705                 }
1706         }
1707
1708         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1709         return -EINVAL;
1710 }
1711
1712 static int check_hotmod_int_op(const char *curr, const char *option,
1713                                const char *name, int *val)
1714 {
1715         char *n;
1716
1717         if (strcmp(curr, name) == 0) {
1718                 if (!option) {
1719                         printk(KERN_WARNING PFX
1720                                "No option given for '%s'\n",
1721                                curr);
1722                         return -EINVAL;
1723                 }
1724                 *val = simple_strtoul(option, &n, 0);
1725                 if ((*n != '\0') || (*option == '\0')) {
1726                         printk(KERN_WARNING PFX
1727                                "Bad option given for '%s'\n",
1728                                curr);
1729                         return -EINVAL;
1730                 }
1731                 return 1;
1732         }
1733         return 0;
1734 }
1735
1736 static struct smi_info *smi_info_alloc(void)
1737 {
1738         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1739
1740         if (info)
1741                 spin_lock_init(&info->si_lock);
1742         return info;
1743 }
1744
1745 static int hotmod_handler(const char *val, struct kernel_param *kp)
1746 {
1747         char *str = kstrdup(val, GFP_KERNEL);
1748         int  rv;
1749         char *next, *curr, *s, *n, *o;
1750         enum hotmod_op op;
1751         enum si_type si_type;
1752         int  addr_space;
1753         unsigned long addr;
1754         int regspacing;
1755         int regsize;
1756         int regshift;
1757         int irq;
1758         int ipmb;
1759         int ival;
1760         int len;
1761         struct smi_info *info;
1762
1763         if (!str)
1764                 return -ENOMEM;
1765
1766         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1767         len = strlen(str);
1768         ival = len - 1;
1769         while ((ival >= 0) && isspace(str[ival])) {
1770                 str[ival] = '\0';
1771                 ival--;
1772         }
1773
1774         for (curr = str; curr; curr = next) {
1775                 regspacing = 1;
1776                 regsize = 1;
1777                 regshift = 0;
1778                 irq = 0;
1779                 ipmb = 0; /* Choose the default if not specified */
1780
1781                 next = strchr(curr, ':');
1782                 if (next) {
1783                         *next = '\0';
1784                         next++;
1785                 }
1786
1787                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1788                 if (rv)
1789                         break;
1790                 op = ival;
1791
1792                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1793                 if (rv)
1794                         break;
1795                 si_type = ival;
1796
1797                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1798                 if (rv)
1799                         break;
1800
1801                 s = strchr(curr, ',');
1802                 if (s) {
1803                         *s = '\0';
1804                         s++;
1805                 }
1806                 addr = simple_strtoul(curr, &n, 0);
1807                 if ((*n != '\0') || (*curr == '\0')) {
1808                         printk(KERN_WARNING PFX "Invalid hotmod address"
1809                                " '%s'\n", curr);
1810                         break;
1811                 }
1812
1813                 while (s) {
1814                         curr = s;
1815                         s = strchr(curr, ',');
1816                         if (s) {
1817                                 *s = '\0';
1818                                 s++;
1819                         }
1820                         o = strchr(curr, '=');
1821                         if (o) {
1822                                 *o = '\0';
1823                                 o++;
1824                         }
1825                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1826                         if (rv < 0)
1827                                 goto out;
1828                         else if (rv)
1829                                 continue;
1830                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1831                         if (rv < 0)
1832                                 goto out;
1833                         else if (rv)
1834                                 continue;
1835                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1836                         if (rv < 0)
1837                                 goto out;
1838                         else if (rv)
1839                                 continue;
1840                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1841                         if (rv < 0)
1842                                 goto out;
1843                         else if (rv)
1844                                 continue;
1845                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1846                         if (rv < 0)
1847                                 goto out;
1848                         else if (rv)
1849                                 continue;
1850
1851                         rv = -EINVAL;
1852                         printk(KERN_WARNING PFX
1853                                "Invalid hotmod option '%s'\n",
1854                                curr);
1855                         goto out;
1856                 }
1857
1858                 if (op == HM_ADD) {
1859                         info = smi_info_alloc();
1860                         if (!info) {
1861                                 rv = -ENOMEM;
1862                                 goto out;
1863                         }
1864
1865                         info->addr_source = SI_HOTMOD;
1866                         info->si_type = si_type;
1867                         info->io.addr_data = addr;
1868                         info->io.addr_type = addr_space;
1869                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1870                                 info->io_setup = mem_setup;
1871                         else
1872                                 info->io_setup = port_setup;
1873
1874                         info->io.addr = NULL;
1875                         info->io.regspacing = regspacing;
1876                         if (!info->io.regspacing)
1877                                 info->io.regspacing = DEFAULT_REGSPACING;
1878                         info->io.regsize = regsize;
1879                         if (!info->io.regsize)
1880                                 info->io.regsize = DEFAULT_REGSPACING;
1881                         info->io.regshift = regshift;
1882                         info->irq = irq;
1883                         if (info->irq)
1884                                 info->irq_setup = std_irq_setup;
1885                         info->slave_addr = ipmb;
1886
1887                         rv = add_smi(info);
1888                         if (rv) {
1889                                 kfree(info);
1890                                 goto out;
1891                         }
1892                         rv = try_smi_init(info);
1893                         if (rv) {
1894                                 cleanup_one_si(info);
1895                                 goto out;
1896                         }
1897                 } else {
1898                         /* remove */
1899                         struct smi_info *e, *tmp_e;
1900
1901                         mutex_lock(&smi_infos_lock);
1902                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1903                                 if (e->io.addr_type != addr_space)
1904                                         continue;
1905                                 if (e->si_type != si_type)
1906                                         continue;
1907                                 if (e->io.addr_data == addr)
1908                                         cleanup_one_si(e);
1909                         }
1910                         mutex_unlock(&smi_infos_lock);
1911                 }
1912         }
1913         rv = len;
1914  out:
1915         kfree(str);
1916         return rv;
1917 }
1918
1919 static int hardcode_find_bmc(void)
1920 {
1921         int ret = -ENODEV;
1922         int             i;
1923         struct smi_info *info;
1924
1925         for (i = 0; i < SI_MAX_PARMS; i++) {
1926                 if (!ports[i] && !addrs[i])
1927                         continue;
1928
1929                 info = smi_info_alloc();
1930                 if (!info)
1931                         return -ENOMEM;
1932
1933                 info->addr_source = SI_HARDCODED;
1934                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1935
1936                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1937                         info->si_type = SI_KCS;
1938                 } else if (strcmp(si_type[i], "smic") == 0) {
1939                         info->si_type = SI_SMIC;
1940                 } else if (strcmp(si_type[i], "bt") == 0) {
1941                         info->si_type = SI_BT;
1942                 } else {
1943                         printk(KERN_WARNING PFX "Interface type specified "
1944                                "for interface %d, was invalid: %s\n",
1945                                i, si_type[i]);
1946                         kfree(info);
1947                         continue;
1948                 }
1949
1950                 if (ports[i]) {
1951                         /* An I/O port */
1952                         info->io_setup = port_setup;
1953                         info->io.addr_data = ports[i];
1954                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1955                 } else if (addrs[i]) {
1956                         /* A memory port */
1957                         info->io_setup = mem_setup;
1958                         info->io.addr_data = addrs[i];
1959                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1960                 } else {
1961                         printk(KERN_WARNING PFX "Interface type specified "
1962                                "for interface %d, but port and address were "
1963                                "not set or set to zero.\n", i);
1964                         kfree(info);
1965                         continue;
1966                 }
1967
1968                 info->io.addr = NULL;
1969                 info->io.regspacing = regspacings[i];
1970                 if (!info->io.regspacing)
1971                         info->io.regspacing = DEFAULT_REGSPACING;
1972                 info->io.regsize = regsizes[i];
1973                 if (!info->io.regsize)
1974                         info->io.regsize = DEFAULT_REGSPACING;
1975                 info->io.regshift = regshifts[i];
1976                 info->irq = irqs[i];
1977                 if (info->irq)
1978                         info->irq_setup = std_irq_setup;
1979                 info->slave_addr = slave_addrs[i];
1980
1981                 if (!add_smi(info)) {
1982                         if (try_smi_init(info))
1983                                 cleanup_one_si(info);
1984                         ret = 0;
1985                 } else {
1986                         kfree(info);
1987                 }
1988         }
1989         return ret;
1990 }
1991
1992 #ifdef CONFIG_ACPI
1993
1994 #include <linux/acpi.h>
1995
1996 /*
1997  * Once we get an ACPI failure, we don't try any more, because we go
1998  * through the tables sequentially.  Once we don't find a table, there
1999  * are no more.
2000  */
2001 static int acpi_failure;
2002
2003 /* For GPE-type interrupts. */
2004 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2005         u32 gpe_number, void *context)
2006 {
2007         struct smi_info *smi_info = context;
2008         unsigned long   flags;
2009 #ifdef DEBUG_TIMING
2010         struct timeval t;
2011 #endif
2012
2013         spin_lock_irqsave(&(smi_info->si_lock), flags);
2014
2015         smi_inc_stat(smi_info, interrupts);
2016
2017 #ifdef DEBUG_TIMING
2018         do_gettimeofday(&t);
2019         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2020 #endif
2021         smi_event_handler(smi_info, 0);
2022         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2023
2024         return ACPI_INTERRUPT_HANDLED;
2025 }
2026
2027 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2028 {
2029         if (!info->irq)
2030                 return;
2031
2032         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2033 }
2034
2035 static int acpi_gpe_irq_setup(struct smi_info *info)
2036 {
2037         acpi_status status;
2038
2039         if (!info->irq)
2040                 return 0;
2041
2042         /* FIXME - is level triggered right? */
2043         status = acpi_install_gpe_handler(NULL,
2044                                           info->irq,
2045                                           ACPI_GPE_LEVEL_TRIGGERED,
2046                                           &ipmi_acpi_gpe,
2047                                           info);
2048         if (status != AE_OK) {
2049                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2050                          " running polled\n", DEVICE_NAME, info->irq);
2051                 info->irq = 0;
2052                 return -EINVAL;
2053         } else {
2054                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2055                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2056                 return 0;
2057         }
2058 }
2059
2060 /*
2061  * Defined at
2062  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2063  */
2064 struct SPMITable {
2065         s8      Signature[4];
2066         u32     Length;
2067         u8      Revision;
2068         u8      Checksum;
2069         s8      OEMID[6];
2070         s8      OEMTableID[8];
2071         s8      OEMRevision[4];
2072         s8      CreatorID[4];
2073         s8      CreatorRevision[4];
2074         u8      InterfaceType;
2075         u8      IPMIlegacy;
2076         s16     SpecificationRevision;
2077
2078         /*
2079          * Bit 0 - SCI interrupt supported
2080          * Bit 1 - I/O APIC/SAPIC
2081          */
2082         u8      InterruptType;
2083
2084         /*
2085          * If bit 0 of InterruptType is set, then this is the SCI
2086          * interrupt in the GPEx_STS register.
2087          */
2088         u8      GPE;
2089
2090         s16     Reserved;
2091
2092         /*
2093          * If bit 1 of InterruptType is set, then this is the I/O
2094          * APIC/SAPIC interrupt.
2095          */
2096         u32     GlobalSystemInterrupt;
2097
2098         /* The actual register address. */
2099         struct acpi_generic_address addr;
2100
2101         u8      UID[4];
2102
2103         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2104 };
2105
2106 static int try_init_spmi(struct SPMITable *spmi)
2107 {
2108         struct smi_info  *info;
2109         int rv;
2110
2111         if (spmi->IPMIlegacy != 1) {
2112                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2113                 return -ENODEV;
2114         }
2115
2116         info = smi_info_alloc();
2117         if (!info) {
2118                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2119                 return -ENOMEM;
2120         }
2121
2122         info->addr_source = SI_SPMI;
2123         printk(KERN_INFO PFX "probing via SPMI\n");
2124
2125         /* Figure out the interface type. */
2126         switch (spmi->InterfaceType) {
2127         case 1: /* KCS */
2128                 info->si_type = SI_KCS;
2129                 break;
2130         case 2: /* SMIC */
2131                 info->si_type = SI_SMIC;
2132                 break;
2133         case 3: /* BT */
2134                 info->si_type = SI_BT;
2135                 break;
2136         default:
2137                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2138                        spmi->InterfaceType);
2139                 kfree(info);
2140                 return -EIO;
2141         }
2142
2143         if (spmi->InterruptType & 1) {
2144                 /* We've got a GPE interrupt. */
2145                 info->irq = spmi->GPE;
2146                 info->irq_setup = acpi_gpe_irq_setup;
2147         } else if (spmi->InterruptType & 2) {
2148                 /* We've got an APIC/SAPIC interrupt. */
2149                 info->irq = spmi->GlobalSystemInterrupt;
2150                 info->irq_setup = std_irq_setup;
2151         } else {
2152                 /* Use the default interrupt setting. */
2153                 info->irq = 0;
2154                 info->irq_setup = NULL;
2155         }
2156
2157         if (spmi->addr.bit_width) {
2158                 /* A (hopefully) properly formed register bit width. */
2159                 info->io.regspacing = spmi->addr.bit_width / 8;
2160         } else {
2161                 info->io.regspacing = DEFAULT_REGSPACING;
2162         }
2163         info->io.regsize = info->io.regspacing;
2164         info->io.regshift = spmi->addr.bit_offset;
2165
2166         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2167                 info->io_setup = mem_setup;
2168                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2169         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2170                 info->io_setup = port_setup;
2171                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2172         } else {
2173                 kfree(info);
2174                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2175                 return -EIO;
2176         }
2177         info->io.addr_data = spmi->addr.address;
2178
2179         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2180                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2181                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2182                  info->irq);
2183
2184         rv = add_smi(info);
2185         if (rv)
2186                 kfree(info);
2187
2188         return rv;
2189 }
2190
2191 static void spmi_find_bmc(void)
2192 {
2193         acpi_status      status;
2194         struct SPMITable *spmi;
2195         int              i;
2196
2197         if (acpi_disabled)
2198                 return;
2199
2200         if (acpi_failure)
2201                 return;
2202
2203         for (i = 0; ; i++) {
2204                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2205                                         (struct acpi_table_header **)&spmi);
2206                 if (status != AE_OK)
2207                         return;
2208
2209                 try_init_spmi(spmi);
2210         }
2211 }
2212
2213 static int ipmi_pnp_probe(struct pnp_dev *dev,
2214                                     const struct pnp_device_id *dev_id)
2215 {
2216         struct acpi_device *acpi_dev;
2217         struct smi_info *info;
2218         struct resource *res, *res_second;
2219         acpi_handle handle;
2220         acpi_status status;
2221         unsigned long long tmp;
2222         int rv;
2223
2224         acpi_dev = pnp_acpi_device(dev);
2225         if (!acpi_dev)
2226                 return -ENODEV;
2227
2228         info = smi_info_alloc();
2229         if (!info)
2230                 return -ENOMEM;
2231
2232         info->addr_source = SI_ACPI;
2233         printk(KERN_INFO PFX "probing via ACPI\n");
2234
2235         handle = acpi_dev->handle;
2236         info->addr_info.acpi_info.acpi_handle = handle;
2237
2238         /* _IFT tells us the interface type: KCS, BT, etc */
2239         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2240         if (ACPI_FAILURE(status))
2241                 goto err_free;
2242
2243         switch (tmp) {
2244         case 1:
2245                 info->si_type = SI_KCS;
2246                 break;
2247         case 2:
2248                 info->si_type = SI_SMIC;
2249                 break;
2250         case 3:
2251                 info->si_type = SI_BT;
2252                 break;
2253         default:
2254                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2255                 goto err_free;
2256         }
2257
2258         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2259         if (res) {
2260                 info->io_setup = port_setup;
2261                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2262         } else {
2263                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2264                 if (res) {
2265                         info->io_setup = mem_setup;
2266                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2267                 }
2268         }
2269         if (!res) {
2270                 dev_err(&dev->dev, "no I/O or memory address\n");
2271                 goto err_free;
2272         }
2273         info->io.addr_data = res->start;
2274
2275         info->io.regspacing = DEFAULT_REGSPACING;
2276         res_second = pnp_get_resource(dev,
2277                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2278                                         IORESOURCE_IO : IORESOURCE_MEM,
2279                                1);
2280         if (res_second) {
2281                 if (res_second->start > info->io.addr_data)
2282                         info->io.regspacing = res_second->start - info->io.addr_data;
2283         }
2284         info->io.regsize = DEFAULT_REGSPACING;
2285         info->io.regshift = 0;
2286
2287         /* If _GPE exists, use it; otherwise use standard interrupts */
2288         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2289         if (ACPI_SUCCESS(status)) {
2290                 info->irq = tmp;
2291                 info->irq_setup = acpi_gpe_irq_setup;
2292         } else if (pnp_irq_valid(dev, 0)) {
2293                 info->irq = pnp_irq(dev, 0);
2294                 info->irq_setup = std_irq_setup;
2295         }
2296
2297         info->dev = &dev->dev;
2298         pnp_set_drvdata(dev, info);
2299
2300         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2301                  res, info->io.regsize, info->io.regspacing,
2302                  info->irq);
2303
2304         rv = add_smi(info);
2305         if (rv)
2306                 kfree(info);
2307
2308         return rv;
2309
2310 err_free:
2311         kfree(info);
2312         return -EINVAL;
2313 }
2314
2315 static void ipmi_pnp_remove(struct pnp_dev *dev)
2316 {
2317         struct smi_info *info = pnp_get_drvdata(dev);
2318
2319         cleanup_one_si(info);
2320 }
2321
2322 static const struct pnp_device_id pnp_dev_table[] = {
2323         {"IPI0001", 0},
2324         {"", 0},
2325 };
2326
2327 static struct pnp_driver ipmi_pnp_driver = {
2328         .name           = DEVICE_NAME,
2329         .probe          = ipmi_pnp_probe,
2330         .remove         = ipmi_pnp_remove,
2331         .id_table       = pnp_dev_table,
2332 };
2333
2334 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2335 #endif
2336
2337 #ifdef CONFIG_DMI
2338 struct dmi_ipmi_data {
2339         u8              type;
2340         u8              addr_space;
2341         unsigned long   base_addr;
2342         u8              irq;
2343         u8              offset;
2344         u8              slave_addr;
2345 };
2346
2347 static int decode_dmi(const struct dmi_header *dm,
2348                                 struct dmi_ipmi_data *dmi)
2349 {
2350         const u8        *data = (const u8 *)dm;
2351         unsigned long   base_addr;
2352         u8              reg_spacing;
2353         u8              len = dm->length;
2354
2355         dmi->type = data[4];
2356
2357         memcpy(&base_addr, data+8, sizeof(unsigned long));
2358         if (len >= 0x11) {
2359                 if (base_addr & 1) {
2360                         /* I/O */
2361                         base_addr &= 0xFFFE;
2362                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2363                 } else
2364                         /* Memory */
2365                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2366
2367                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2368                    is odd. */
2369                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2370
2371                 dmi->irq = data[0x11];
2372
2373                 /* The top two bits of byte 0x10 hold the register spacing. */
2374                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2375                 switch (reg_spacing) {
2376                 case 0x00: /* Byte boundaries */
2377                     dmi->offset = 1;
2378                     break;
2379                 case 0x01: /* 32-bit boundaries */
2380                     dmi->offset = 4;
2381                     break;
2382                 case 0x02: /* 16-byte boundaries */
2383                     dmi->offset = 16;
2384                     break;
2385                 default:
2386                     /* Some other interface, just ignore it. */
2387                     return -EIO;
2388                 }
2389         } else {
2390                 /* Old DMI spec. */
2391                 /*
2392                  * Note that technically, the lower bit of the base
2393                  * address should be 1 if the address is I/O and 0 if
2394                  * the address is in memory.  So many systems get that
2395                  * wrong (and all that I have seen are I/O) so we just
2396                  * ignore that bit and assume I/O.  Systems that use
2397                  * memory should use the newer spec, anyway.
2398                  */
2399                 dmi->base_addr = base_addr & 0xfffe;
2400                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2401                 dmi->offset = 1;
2402         }
2403
2404         dmi->slave_addr = data[6];
2405
2406         return 0;
2407 }
2408
2409 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2410 {
2411         struct smi_info *info;
2412
2413         info = smi_info_alloc();
2414         if (!info) {
2415                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2416                 return;
2417         }
2418
2419         info->addr_source = SI_SMBIOS;
2420         printk(KERN_INFO PFX "probing via SMBIOS\n");
2421
2422         switch (ipmi_data->type) {
2423         case 0x01: /* KCS */
2424                 info->si_type = SI_KCS;
2425                 break;
2426         case 0x02: /* SMIC */
2427                 info->si_type = SI_SMIC;
2428                 break;
2429         case 0x03: /* BT */
2430                 info->si_type = SI_BT;
2431                 break;
2432         default:
2433                 kfree(info);
2434                 return;
2435         }
2436
2437         switch (ipmi_data->addr_space) {
2438         case IPMI_MEM_ADDR_SPACE:
2439                 info->io_setup = mem_setup;
2440                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2441                 break;
2442
2443         case IPMI_IO_ADDR_SPACE:
2444                 info->io_setup = port_setup;
2445                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2446                 break;
2447
2448         default:
2449                 kfree(info);
2450                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2451                        ipmi_data->addr_space);
2452                 return;
2453         }
2454         info->io.addr_data = ipmi_data->base_addr;
2455
2456         info->io.regspacing = ipmi_data->offset;
2457         if (!info->io.regspacing)
2458                 info->io.regspacing = DEFAULT_REGSPACING;
2459         info->io.regsize = DEFAULT_REGSPACING;
2460         info->io.regshift = 0;
2461
2462         info->slave_addr = ipmi_data->slave_addr;
2463
2464         info->irq = ipmi_data->irq;
2465         if (info->irq)
2466                 info->irq_setup = std_irq_setup;
2467
2468         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2469                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2470                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2471                  info->irq);
2472
2473         if (add_smi(info))
2474                 kfree(info);
2475 }
2476
2477 static void dmi_find_bmc(void)
2478 {
2479         const struct dmi_device *dev = NULL;
2480         struct dmi_ipmi_data data;
2481         int                  rv;
2482
2483         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2484                 memset(&data, 0, sizeof(data));
2485                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2486                                 &data);
2487                 if (!rv)
2488                         try_init_dmi(&data);
2489         }
2490 }
2491 #endif /* CONFIG_DMI */
2492
2493 #ifdef CONFIG_PCI
2494
2495 #define PCI_ERMC_CLASSCODE              0x0C0700
2496 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2497 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2498 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2499 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2500 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2501
2502 #define PCI_HP_VENDOR_ID    0x103C
2503 #define PCI_MMC_DEVICE_ID   0x121A
2504 #define PCI_MMC_ADDR_CW     0x10
2505
2506 static void ipmi_pci_cleanup(struct smi_info *info)
2507 {
2508         struct pci_dev *pdev = info->addr_source_data;
2509
2510         pci_disable_device(pdev);
2511 }
2512
2513 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2514 {
2515         if (info->si_type == SI_KCS) {
2516                 unsigned char   status;
2517                 int             regspacing;
2518
2519                 info->io.regsize = DEFAULT_REGSIZE;
2520                 info->io.regshift = 0;
2521                 info->io_size = 2;
2522                 info->handlers = &kcs_smi_handlers;
2523
2524                 /* detect 1, 4, 16byte spacing */
2525                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2526                         info->io.regspacing = regspacing;
2527                         if (info->io_setup(info)) {
2528                                 dev_err(info->dev,
2529                                         "Could not setup I/O space\n");
2530                                 return DEFAULT_REGSPACING;
2531                         }
2532                         /* write invalid cmd */
2533                         info->io.outputb(&info->io, 1, 0x10);
2534                         /* read status back */
2535                         status = info->io.inputb(&info->io, 1);
2536                         info->io_cleanup(info);
2537                         if (status)
2538                                 return regspacing;
2539                         regspacing *= 4;
2540                 }
2541         }
2542         return DEFAULT_REGSPACING;
2543 }
2544
2545 static int ipmi_pci_probe(struct pci_dev *pdev,
2546                                     const struct pci_device_id *ent)
2547 {
2548         int rv;
2549         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2550         struct smi_info *info;
2551
2552         info = smi_info_alloc();
2553         if (!info)
2554                 return -ENOMEM;
2555
2556         info->addr_source = SI_PCI;
2557         dev_info(&pdev->dev, "probing via PCI");
2558
2559         switch (class_type) {
2560         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2561                 info->si_type = SI_SMIC;
2562                 break;
2563
2564         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2565                 info->si_type = SI_KCS;
2566                 break;
2567
2568         case PCI_ERMC_CLASSCODE_TYPE_BT:
2569                 info->si_type = SI_BT;
2570                 break;
2571
2572         default:
2573                 kfree(info);
2574                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2575                 return -ENOMEM;
2576         }
2577
2578         rv = pci_enable_device(pdev);
2579         if (rv) {
2580                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2581                 kfree(info);
2582                 return rv;
2583         }
2584
2585         info->addr_source_cleanup = ipmi_pci_cleanup;
2586         info->addr_source_data = pdev;
2587
2588         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2589                 info->io_setup = port_setup;
2590                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2591         } else {
2592                 info->io_setup = mem_setup;
2593                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2594         }
2595         info->io.addr_data = pci_resource_start(pdev, 0);
2596
2597         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2598         info->io.regsize = DEFAULT_REGSIZE;
2599         info->io.regshift = 0;
2600
2601         info->irq = pdev->irq;
2602         if (info->irq)
2603                 info->irq_setup = std_irq_setup;
2604
2605         info->dev = &pdev->dev;
2606         pci_set_drvdata(pdev, info);
2607
2608         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2609                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2610                 info->irq);
2611
2612         rv = add_smi(info);
2613         if (rv) {
2614                 kfree(info);
2615                 pci_disable_device(pdev);
2616         }
2617
2618         return rv;
2619 }
2620
2621 static void ipmi_pci_remove(struct pci_dev *pdev)
2622 {
2623         struct smi_info *info = pci_get_drvdata(pdev);
2624         cleanup_one_si(info);
2625         pci_disable_device(pdev);
2626 }
2627
2628 static struct pci_device_id ipmi_pci_devices[] = {
2629         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2630         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2631         { 0, }
2632 };
2633 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2634
2635 static struct pci_driver ipmi_pci_driver = {
2636         .name =         DEVICE_NAME,
2637         .id_table =     ipmi_pci_devices,
2638         .probe =        ipmi_pci_probe,
2639         .remove =       ipmi_pci_remove,
2640 };
2641 #endif /* CONFIG_PCI */
2642
2643 static struct of_device_id ipmi_match[];
2644 static int ipmi_probe(struct platform_device *dev)
2645 {
2646 #ifdef CONFIG_OF
2647         const struct of_device_id *match;
2648         struct smi_info *info;
2649         struct resource resource;
2650         const __be32 *regsize, *regspacing, *regshift;
2651         struct device_node *np = dev->dev.of_node;
2652         int ret;
2653         int proplen;
2654
2655         dev_info(&dev->dev, "probing via device tree\n");
2656
2657         match = of_match_device(ipmi_match, &dev->dev);
2658         if (!match)
2659                 return -EINVAL;
2660
2661         if (!of_device_is_available(np))
2662                 return -EINVAL;
2663
2664         ret = of_address_to_resource(np, 0, &resource);
2665         if (ret) {
2666                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2667                 return ret;
2668         }
2669
2670         regsize = of_get_property(np, "reg-size", &proplen);
2671         if (regsize && proplen != 4) {
2672                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2673                 return -EINVAL;
2674         }
2675
2676         regspacing = of_get_property(np, "reg-spacing", &proplen);
2677         if (regspacing && proplen != 4) {
2678                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2679                 return -EINVAL;
2680         }
2681
2682         regshift = of_get_property(np, "reg-shift", &proplen);
2683         if (regshift && proplen != 4) {
2684                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2685                 return -EINVAL;
2686         }
2687
2688         info = smi_info_alloc();
2689
2690         if (!info) {
2691                 dev_err(&dev->dev,
2692                         "could not allocate memory for OF probe\n");
2693                 return -ENOMEM;
2694         }
2695
2696         info->si_type           = (enum si_type) match->data;
2697         info->addr_source       = SI_DEVICETREE;
2698         info->irq_setup         = std_irq_setup;
2699
2700         if (resource.flags & IORESOURCE_IO) {
2701                 info->io_setup          = port_setup;
2702                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2703         } else {
2704                 info->io_setup          = mem_setup;
2705                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2706         }
2707
2708         info->io.addr_data      = resource.start;
2709
2710         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2711         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2712         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2713
2714         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2715         info->dev               = &dev->dev;
2716
2717         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2718                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2719                 info->irq);
2720
2721         dev_set_drvdata(&dev->dev, info);
2722
2723         ret = add_smi(info);
2724         if (ret) {
2725                 kfree(info);
2726                 return ret;
2727         }
2728 #endif
2729         return 0;
2730 }
2731
2732 static int ipmi_remove(struct platform_device *dev)
2733 {
2734 #ifdef CONFIG_OF
2735         cleanup_one_si(dev_get_drvdata(&dev->dev));
2736 #endif
2737         return 0;
2738 }
2739
2740 static struct of_device_id ipmi_match[] =
2741 {
2742         { .type = "ipmi", .compatible = "ipmi-kcs",
2743           .data = (void *)(unsigned long) SI_KCS },
2744         { .type = "ipmi", .compatible = "ipmi-smic",
2745           .data = (void *)(unsigned long) SI_SMIC },
2746         { .type = "ipmi", .compatible = "ipmi-bt",
2747           .data = (void *)(unsigned long) SI_BT },
2748         {},
2749 };
2750
2751 static struct platform_driver ipmi_driver = {
2752         .driver = {
2753                 .name = DEVICE_NAME,
2754                 .owner = THIS_MODULE,
2755                 .of_match_table = ipmi_match,
2756         },
2757         .probe          = ipmi_probe,
2758         .remove         = ipmi_remove,
2759 };
2760
2761 #ifdef CONFIG_PARISC
2762 static int ipmi_parisc_probe(struct parisc_device *dev)
2763 {
2764         struct smi_info *info;
2765         int rv;
2766
2767         info = smi_info_alloc();
2768
2769         if (!info) {
2770                 dev_err(&dev->dev,
2771                         "could not allocate memory for PARISC probe\n");
2772                 return -ENOMEM;
2773         }
2774
2775         info->si_type           = SI_KCS;
2776         info->addr_source       = SI_DEVICETREE;
2777         info->io_setup          = mem_setup;
2778         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2779         info->io.addr_data      = dev->hpa.start;
2780         info->io.regsize        = 1;
2781         info->io.regspacing     = 1;
2782         info->io.regshift       = 0;
2783         info->irq               = 0; /* no interrupt */
2784         info->irq_setup         = NULL;
2785         info->dev               = &dev->dev;
2786
2787         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2788
2789         dev_set_drvdata(&dev->dev, info);
2790
2791         rv = add_smi(info);
2792         if (rv) {
2793                 kfree(info);
2794                 return rv;
2795         }
2796
2797         return 0;
2798 }
2799
2800 static int ipmi_parisc_remove(struct parisc_device *dev)
2801 {
2802         cleanup_one_si(dev_get_drvdata(&dev->dev));
2803         return 0;
2804 }
2805
2806 static struct parisc_device_id ipmi_parisc_tbl[] = {
2807         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2808         { 0, }
2809 };
2810
2811 static struct parisc_driver ipmi_parisc_driver = {
2812         .name =         "ipmi",
2813         .id_table =     ipmi_parisc_tbl,
2814         .probe =        ipmi_parisc_probe,
2815         .remove =       ipmi_parisc_remove,
2816 };
2817 #endif /* CONFIG_PARISC */
2818
2819 static int wait_for_msg_done(struct smi_info *smi_info)
2820 {
2821         enum si_sm_result     smi_result;
2822
2823         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2824         for (;;) {
2825                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2826                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2827                         schedule_timeout_uninterruptible(1);
2828                         smi_result = smi_info->handlers->event(
2829                                 smi_info->si_sm, jiffies_to_usecs(1));
2830                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2831                         smi_result = smi_info->handlers->event(
2832                                 smi_info->si_sm, 0);
2833                 } else
2834                         break;
2835         }
2836         if (smi_result == SI_SM_HOSED)
2837                 /*
2838                  * We couldn't get the state machine to run, so whatever's at
2839                  * the port is probably not an IPMI SMI interface.
2840                  */
2841                 return -ENODEV;
2842
2843         return 0;
2844 }
2845
2846 static int try_get_dev_id(struct smi_info *smi_info)
2847 {
2848         unsigned char         msg[2];
2849         unsigned char         *resp;
2850         unsigned long         resp_len;
2851         int                   rv = 0;
2852
2853         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2854         if (!resp)
2855                 return -ENOMEM;
2856
2857         /*
2858          * Do a Get Device ID command, since it comes back with some
2859          * useful info.
2860          */
2861         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2862         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2863         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2864
2865         rv = wait_for_msg_done(smi_info);
2866         if (rv)
2867                 goto out;
2868
2869         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2870                                                   resp, IPMI_MAX_MSG_LENGTH);
2871
2872         /* Check and record info from the get device id, in case we need it. */
2873         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2874
2875  out:
2876         kfree(resp);
2877         return rv;
2878 }
2879
2880 static int try_enable_event_buffer(struct smi_info *smi_info)
2881 {
2882         unsigned char         msg[3];
2883         unsigned char         *resp;
2884         unsigned long         resp_len;
2885         int                   rv = 0;
2886
2887         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2888         if (!resp)
2889                 return -ENOMEM;
2890
2891         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2892         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2893         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2894
2895         rv = wait_for_msg_done(smi_info);
2896         if (rv) {
2897                 printk(KERN_WARNING PFX "Error getting response from get"
2898                        " global enables command, the event buffer is not"
2899                        " enabled.\n");
2900                 goto out;
2901         }
2902
2903         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2904                                                   resp, IPMI_MAX_MSG_LENGTH);
2905
2906         if (resp_len < 4 ||
2907                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2908                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2909                         resp[2] != 0) {
2910                 printk(KERN_WARNING PFX "Invalid return from get global"
2911                        " enables command, cannot enable the event buffer.\n");
2912                 rv = -EINVAL;
2913                 goto out;
2914         }
2915
2916         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2917                 /* buffer is already enabled, nothing to do. */
2918                 goto out;
2919
2920         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2921         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2922         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2923         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2924
2925         rv = wait_for_msg_done(smi_info);
2926         if (rv) {
2927                 printk(KERN_WARNING PFX "Error getting response from set"
2928                        " global, enables command, the event buffer is not"
2929                        " enabled.\n");
2930                 goto out;
2931         }
2932
2933         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2934                                                   resp, IPMI_MAX_MSG_LENGTH);
2935
2936         if (resp_len < 3 ||
2937                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2938                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2939                 printk(KERN_WARNING PFX "Invalid return from get global,"
2940                        "enables command, not enable the event buffer.\n");
2941                 rv = -EINVAL;
2942                 goto out;
2943         }
2944
2945         if (resp[2] != 0)
2946                 /*
2947                  * An error when setting the event buffer bit means
2948                  * that the event buffer is not supported.
2949                  */
2950                 rv = -ENOENT;
2951  out:
2952         kfree(resp);
2953         return rv;
2954 }
2955
2956 static int smi_type_proc_show(struct seq_file *m, void *v)
2957 {
2958         struct smi_info *smi = m->private;
2959
2960         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2961 }
2962
2963 static int smi_type_proc_open(struct inode *inode, struct file *file)
2964 {
2965         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2966 }
2967
2968 static const struct file_operations smi_type_proc_ops = {
2969         .open           = smi_type_proc_open,
2970         .read           = seq_read,
2971         .llseek         = seq_lseek,
2972         .release        = single_release,
2973 };
2974
2975 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2976 {
2977         struct smi_info *smi = m->private;
2978
2979         seq_printf(m, "interrupts_enabled:    %d\n",
2980                        smi->irq && !smi->interrupt_disabled);
2981         seq_printf(m, "short_timeouts:        %u\n",
2982                        smi_get_stat(smi, short_timeouts));
2983         seq_printf(m, "long_timeouts:         %u\n",
2984                        smi_get_stat(smi, long_timeouts));
2985         seq_printf(m, "idles:                 %u\n",
2986                        smi_get_stat(smi, idles));
2987         seq_printf(m, "interrupts:            %u\n",
2988                        smi_get_stat(smi, interrupts));
2989         seq_printf(m, "attentions:            %u\n",
2990                        smi_get_stat(smi, attentions));
2991         seq_printf(m, "flag_fetches:          %u\n",
2992                        smi_get_stat(smi, flag_fetches));
2993         seq_printf(m, "hosed_count:           %u\n",
2994                        smi_get_stat(smi, hosed_count));
2995         seq_printf(m, "complete_transactions: %u\n",
2996                        smi_get_stat(smi, complete_transactions));
2997         seq_printf(m, "events:                %u\n",
2998                        smi_get_stat(smi, events));
2999         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3000                        smi_get_stat(smi, watchdog_pretimeouts));
3001         seq_printf(m, "incoming_messages:     %u\n",
3002                        smi_get_stat(smi, incoming_messages));
3003         return 0;
3004 }
3005
3006 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3007 {
3008         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3009 }
3010
3011 static const struct file_operations smi_si_stats_proc_ops = {
3012         .open           = smi_si_stats_proc_open,
3013         .read           = seq_read,
3014         .llseek         = seq_lseek,
3015         .release        = single_release,
3016 };
3017
3018 static int smi_params_proc_show(struct seq_file *m, void *v)
3019 {
3020         struct smi_info *smi = m->private;
3021
3022         return seq_printf(m,
3023                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3024                        si_to_str[smi->si_type],
3025                        addr_space_to_str[smi->io.addr_type],
3026                        smi->io.addr_data,
3027                        smi->io.regspacing,
3028                        smi->io.regsize,
3029                        smi->io.regshift,
3030                        smi->irq,
3031                        smi->slave_addr);
3032 }
3033
3034 static int smi_params_proc_open(struct inode *inode, struct file *file)
3035 {
3036         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3037 }
3038
3039 static const struct file_operations smi_params_proc_ops = {
3040         .open           = smi_params_proc_open,
3041         .read           = seq_read,
3042         .llseek         = seq_lseek,
3043         .release        = single_release,
3044 };
3045
3046 /*
3047  * oem_data_avail_to_receive_msg_avail
3048  * @info - smi_info structure with msg_flags set
3049  *
3050  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3051  * Returns 1 indicating need to re-run handle_flags().
3052  */
3053 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3054 {
3055         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3056                                RECEIVE_MSG_AVAIL);
3057         return 1;
3058 }
3059
3060 /*
3061  * setup_dell_poweredge_oem_data_handler
3062  * @info - smi_info.device_id must be populated
3063  *
3064  * Systems that match, but have firmware version < 1.40 may assert
3065  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3066  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3067  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3068  * as RECEIVE_MSG_AVAIL instead.
3069  *
3070  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3071  * assert the OEM[012] bits, and if it did, the driver would have to
3072  * change to handle that properly, we don't actually check for the
3073  * firmware version.
3074  * Device ID = 0x20                BMC on PowerEdge 8G servers
3075  * Device Revision = 0x80
3076  * Firmware Revision1 = 0x01       BMC version 1.40
3077  * Firmware Revision2 = 0x40       BCD encoded
3078  * IPMI Version = 0x51             IPMI 1.5
3079  * Manufacturer ID = A2 02 00      Dell IANA
3080  *
3081  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3082  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3083  *
3084  */
3085 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3086 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3087 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3088 #define DELL_IANA_MFR_ID 0x0002a2
3089 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3090 {
3091         struct ipmi_device_id *id = &smi_info->device_id;
3092         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3093                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3094                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3095                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3096                         smi_info->oem_data_avail_handler =
3097                                 oem_data_avail_to_receive_msg_avail;
3098                 } else if (ipmi_version_major(id) < 1 ||
3099                            (ipmi_version_major(id) == 1 &&
3100                             ipmi_version_minor(id) < 5)) {
3101                         smi_info->oem_data_avail_handler =
3102                                 oem_data_avail_to_receive_msg_avail;
3103                 }
3104         }
3105 }
3106
3107 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3108 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3109 {
3110         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3111
3112         /* Make it a response */
3113         msg->rsp[0] = msg->data[0] | 4;
3114         msg->rsp[1] = msg->data[1];
3115         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3116         msg->rsp_size = 3;
3117         smi_info->curr_msg = NULL;
3118         deliver_recv_msg(smi_info, msg);
3119 }
3120
3121 /*
3122  * dell_poweredge_bt_xaction_handler
3123  * @info - smi_info.device_id must be populated
3124  *
3125  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3126  * not respond to a Get SDR command if the length of the data
3127  * requested is exactly 0x3A, which leads to command timeouts and no
3128  * data returned.  This intercepts such commands, and causes userspace
3129  * callers to try again with a different-sized buffer, which succeeds.
3130  */
3131
3132 #define STORAGE_NETFN 0x0A
3133 #define STORAGE_CMD_GET_SDR 0x23
3134 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3135                                              unsigned long unused,
3136                                              void *in)
3137 {
3138         struct smi_info *smi_info = in;
3139         unsigned char *data = smi_info->curr_msg->data;
3140         unsigned int size   = smi_info->curr_msg->data_size;
3141         if (size >= 8 &&
3142             (data[0]>>2) == STORAGE_NETFN &&
3143             data[1] == STORAGE_CMD_GET_SDR &&
3144             data[7] == 0x3A) {
3145                 return_hosed_msg_badsize(smi_info);
3146                 return NOTIFY_STOP;
3147         }
3148         return NOTIFY_DONE;
3149 }
3150
3151 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3152         .notifier_call  = dell_poweredge_bt_xaction_handler,
3153 };
3154
3155 /*
3156  * setup_dell_poweredge_bt_xaction_handler
3157  * @info - smi_info.device_id must be filled in already
3158  *
3159  * Fills in smi_info.device_id.start_transaction_pre_hook
3160  * when we know what function to use there.
3161  */
3162 static void
3163 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3164 {
3165         struct ipmi_device_id *id = &smi_info->device_id;
3166         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3167             smi_info->si_type == SI_BT)
3168                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3169 }
3170
3171 /*
3172  * setup_oem_data_handler
3173  * @info - smi_info.device_id must be filled in already
3174  *
3175  * Fills in smi_info.device_id.oem_data_available_handler
3176  * when we know what function to use there.
3177  */
3178
3179 static void setup_oem_data_handler(struct smi_info *smi_info)
3180 {
3181         setup_dell_poweredge_oem_data_handler(smi_info);
3182 }
3183
3184 static void setup_xaction_handlers(struct smi_info *smi_info)
3185 {
3186         setup_dell_poweredge_bt_xaction_handler(smi_info);
3187 }
3188
3189 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3190 {
3191         if (smi_info->intf) {
3192                 /*
3193                  * The timer and thread are only running if the
3194                  * interface has been started up and registered.
3195                  */
3196                 if (smi_info->thread != NULL)
3197                         kthread_stop(smi_info->thread);
3198                 del_timer_sync(&smi_info->si_timer);
3199         }
3200 }
3201
3202 static struct ipmi_default_vals
3203 {
3204         int type;
3205         int port;
3206 } ipmi_defaults[] =
3207 {
3208         { .type = SI_KCS, .port = 0xca2 },
3209         { .type = SI_SMIC, .port = 0xca9 },
3210         { .type = SI_BT, .port = 0xe4 },
3211         { .port = 0 }
3212 };
3213
3214 static void default_find_bmc(void)
3215 {
3216         struct smi_info *info;
3217         int             i;
3218
3219         for (i = 0; ; i++) {
3220                 if (!ipmi_defaults[i].port)
3221                         break;
3222 #ifdef CONFIG_PPC
3223                 if (check_legacy_ioport(ipmi_defaults[i].port))
3224                         continue;
3225 #endif
3226                 info = smi_info_alloc();
3227                 if (!info)
3228                         return;
3229
3230                 info->addr_source = SI_DEFAULT;
3231
3232                 info->si_type = ipmi_defaults[i].type;
3233                 info->io_setup = port_setup;
3234                 info->io.addr_data = ipmi_defaults[i].port;
3235                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3236
3237                 info->io.addr = NULL;
3238                 info->io.regspacing = DEFAULT_REGSPACING;
3239                 info->io.regsize = DEFAULT_REGSPACING;
3240                 info->io.regshift = 0;
3241
3242                 if (add_smi(info) == 0) {
3243                         if ((try_smi_init(info)) == 0) {
3244                                 /* Found one... */
3245                                 printk(KERN_INFO PFX "Found default %s"
3246                                 " state machine at %s address 0x%lx\n",
3247                                 si_to_str[info->si_type],
3248                                 addr_space_to_str[info->io.addr_type],
3249                                 info->io.addr_data);
3250                         } else
3251                                 cleanup_one_si(info);
3252                 } else {
3253                         kfree(info);
3254                 }
3255         }
3256 }
3257
3258 static int is_new_interface(struct smi_info *info)
3259 {
3260         struct smi_info *e;
3261
3262         list_for_each_entry(e, &smi_infos, link) {
3263                 if (e->io.addr_type != info->io.addr_type)
3264                         continue;
3265                 if (e->io.addr_data == info->io.addr_data)
3266                         return 0;
3267         }
3268
3269         return 1;
3270 }
3271
3272 static int add_smi(struct smi_info *new_smi)
3273 {
3274         int rv = 0;
3275
3276         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3277                         ipmi_addr_src_to_str[new_smi->addr_source],
3278                         si_to_str[new_smi->si_type]);
3279         mutex_lock(&smi_infos_lock);
3280         if (!is_new_interface(new_smi)) {
3281                 printk(KERN_CONT " duplicate interface\n");
3282                 rv = -EBUSY;
3283                 goto out_err;
3284         }
3285
3286         printk(KERN_CONT "\n");
3287
3288         /* So we know not to free it unless we have allocated one. */
3289         new_smi->intf = NULL;
3290         new_smi->si_sm = NULL;
3291         new_smi->handlers = NULL;
3292
3293         list_add_tail(&new_smi->link, &smi_infos);
3294
3295 out_err:
3296         mutex_unlock(&smi_infos_lock);
3297         return rv;
3298 }
3299
3300 static int try_smi_init(struct smi_info *new_smi)
3301 {
3302         int rv = 0;
3303         int i;
3304
3305         printk(KERN_INFO PFX "Trying %s-specified %s state"
3306                " machine at %s address 0x%lx, slave address 0x%x,"
3307                " irq %d\n",
3308                ipmi_addr_src_to_str[new_smi->addr_source],
3309                si_to_str[new_smi->si_type],
3310                addr_space_to_str[new_smi->io.addr_type],
3311                new_smi->io.addr_data,
3312                new_smi->slave_addr, new_smi->irq);
3313
3314         switch (new_smi->si_type) {
3315         case SI_KCS:
3316                 new_smi->handlers = &kcs_smi_handlers;
3317                 break;
3318
3319         case SI_SMIC:
3320                 new_smi->handlers = &smic_smi_handlers;
3321                 break;
3322
3323         case SI_BT:
3324                 new_smi->handlers = &bt_smi_handlers;
3325                 break;
3326
3327         default:
3328                 /* No support for anything else yet. */
3329                 rv = -EIO;
3330                 goto out_err;
3331         }
3332
3333         /* Allocate the state machine's data and initialize it. */
3334         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3335         if (!new_smi->si_sm) {
3336                 printk(KERN_ERR PFX
3337                        "Could not allocate state machine memory\n");
3338                 rv = -ENOMEM;
3339                 goto out_err;
3340         }
3341         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3342                                                         &new_smi->io);
3343
3344         /* Now that we know the I/O size, we can set up the I/O. */
3345         rv = new_smi->io_setup(new_smi);
3346         if (rv) {
3347                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3348                 goto out_err;
3349         }
3350
3351         /* Do low-level detection first. */
3352         if (new_smi->handlers->detect(new_smi->si_sm)) {
3353                 if (new_smi->addr_source)
3354                         printk(KERN_INFO PFX "Interface detection failed\n");
3355                 rv = -ENODEV;
3356                 goto out_err;
3357         }
3358
3359         /*
3360          * Attempt a get device id command.  If it fails, we probably
3361          * don't have a BMC here.
3362          */
3363         rv = try_get_dev_id(new_smi);
3364         if (rv) {
3365                 if (new_smi->addr_source)
3366                         printk(KERN_INFO PFX "There appears to be no BMC"
3367                                " at this location\n");
3368                 goto out_err;
3369         }
3370
3371         setup_oem_data_handler(new_smi);
3372         setup_xaction_handlers(new_smi);
3373
3374         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3375         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3376         new_smi->curr_msg = NULL;
3377         atomic_set(&new_smi->req_events, 0);
3378         new_smi->run_to_completion = false;
3379         for (i = 0; i < SI_NUM_STATS; i++)
3380                 atomic_set(&new_smi->stats[i], 0);
3381
3382         new_smi->interrupt_disabled = true;
3383         atomic_set(&new_smi->stop_operation, 0);
3384         atomic_set(&new_smi->need_watch, 0);
3385         new_smi->intf_num = smi_num;
3386         smi_num++;
3387
3388         rv = try_enable_event_buffer(new_smi);
3389         if (rv == 0)
3390                 new_smi->has_event_buffer = true;
3391
3392         /*
3393          * Start clearing the flags before we enable interrupts or the
3394          * timer to avoid racing with the timer.
3395          */
3396         start_clear_flags(new_smi);
3397         /* IRQ is defined to be set when non-zero. */
3398         if (new_smi->irq)
3399                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3400
3401         if (!new_smi->dev) {
3402                 /*
3403                  * If we don't already have a device from something
3404                  * else (like PCI), then register a new one.
3405                  */
3406                 new_smi->pdev = platform_device_alloc("ipmi_si",
3407                                                       new_smi->intf_num);
3408                 if (!new_smi->pdev) {
3409                         printk(KERN_ERR PFX
3410                                "Unable to allocate platform device\n");
3411                         goto out_err;
3412                 }
3413                 new_smi->dev = &new_smi->pdev->dev;
3414                 new_smi->dev->driver = &ipmi_driver.driver;
3415
3416                 rv = platform_device_add(new_smi->pdev);
3417                 if (rv) {
3418                         printk(KERN_ERR PFX
3419                                "Unable to register system interface device:"
3420                                " %d\n",
3421                                rv);
3422                         goto out_err;
3423                 }
3424                 new_smi->dev_registered = true;
3425         }
3426
3427         rv = ipmi_register_smi(&handlers,
3428                                new_smi,
3429                                &new_smi->device_id,
3430                                new_smi->dev,
3431                                "bmc",
3432                                new_smi->slave_addr);
3433         if (rv) {
3434                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3435                         rv);
3436                 goto out_err_stop_timer;
3437         }
3438
3439         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3440                                      &smi_type_proc_ops,
3441                                      new_smi);
3442         if (rv) {
3443                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3444                 goto out_err_stop_timer;
3445         }
3446
3447         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3448                                      &smi_si_stats_proc_ops,
3449                                      new_smi);
3450         if (rv) {
3451                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3452                 goto out_err_stop_timer;
3453         }
3454
3455         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3456                                      &smi_params_proc_ops,
3457                                      new_smi);
3458         if (rv) {
3459                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3460                 goto out_err_stop_timer;
3461         }
3462
3463         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3464                  si_to_str[new_smi->si_type]);
3465
3466         return 0;
3467
3468  out_err_stop_timer:
3469         atomic_inc(&new_smi->stop_operation);
3470         wait_for_timer_and_thread(new_smi);
3471
3472  out_err:
3473         new_smi->interrupt_disabled = true;
3474
3475         if (new_smi->intf) {
3476                 ipmi_unregister_smi(new_smi->intf);
3477                 new_smi->intf = NULL;
3478         }
3479
3480         if (new_smi->irq_cleanup) {
3481                 new_smi->irq_cleanup(new_smi);
3482                 new_smi->irq_cleanup = NULL;
3483         }
3484
3485         /*
3486          * Wait until we know that we are out of any interrupt
3487          * handlers might have been running before we freed the
3488          * interrupt.
3489          */
3490         synchronize_sched();
3491
3492         if (new_smi->si_sm) {
3493                 if (new_smi->handlers)
3494                         new_smi->handlers->cleanup(new_smi->si_sm);
3495                 kfree(new_smi->si_sm);
3496                 new_smi->si_sm = NULL;
3497         }
3498         if (new_smi->addr_source_cleanup) {
3499                 new_smi->addr_source_cleanup(new_smi);
3500                 new_smi->addr_source_cleanup = NULL;
3501         }
3502         if (new_smi->io_cleanup) {
3503                 new_smi->io_cleanup(new_smi);
3504                 new_smi->io_cleanup = NULL;
3505         }
3506
3507         if (new_smi->dev_registered) {
3508                 platform_device_unregister(new_smi->pdev);
3509                 new_smi->dev_registered = false;
3510         }
3511
3512         return rv;
3513 }
3514
3515 static int init_ipmi_si(void)
3516 {
3517         int  i;
3518         char *str;
3519         int  rv;
3520         struct smi_info *e;
3521         enum ipmi_addr_src type = SI_INVALID;
3522
3523         if (initialized)
3524                 return 0;
3525         initialized = 1;
3526
3527         if (si_tryplatform) {
3528                 rv = platform_driver_register(&ipmi_driver);
3529                 if (rv) {
3530                         printk(KERN_ERR PFX "Unable to register "
3531                                "driver: %d\n", rv);
3532                         return rv;
3533                 }
3534         }
3535
3536         /* Parse out the si_type string into its components. */
3537         str = si_type_str;
3538         if (*str != '\0') {
3539                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3540                         si_type[i] = str;
3541                         str = strchr(str, ',');
3542                         if (str) {
3543                                 *str = '\0';
3544                                 str++;
3545                         } else {
3546                                 break;
3547                         }
3548                 }
3549         }
3550
3551         printk(KERN_INFO "IPMI System Interface driver.\n");
3552
3553         /* If the user gave us a device, they presumably want us to use it */
3554         if (!hardcode_find_bmc())
3555                 return 0;
3556
3557 #ifdef CONFIG_PCI
3558         if (si_trypci) {
3559                 rv = pci_register_driver(&ipmi_pci_driver);
3560                 if (rv)
3561                         printk(KERN_ERR PFX "Unable to register "
3562                                "PCI driver: %d\n", rv);
3563                 else
3564                         pci_registered = true;
3565         }
3566 #endif
3567
3568 #ifdef CONFIG_ACPI
3569         if (si_tryacpi) {
3570                 pnp_register_driver(&ipmi_pnp_driver);
3571                 pnp_registered = true;
3572         }
3573 #endif
3574
3575 #ifdef CONFIG_DMI
3576         if (si_trydmi)
3577                 dmi_find_bmc();
3578 #endif
3579
3580 #ifdef CONFIG_ACPI
3581         if (si_tryacpi)
3582                 spmi_find_bmc();
3583 #endif
3584
3585 #ifdef CONFIG_PARISC
3586         register_parisc_driver(&ipmi_parisc_driver);
3587         parisc_registered = true;
3588         /* poking PC IO addresses will crash machine, don't do it */
3589         si_trydefaults = 0;
3590 #endif
3591
3592         /* We prefer devices with interrupts, but in the case of a machine
3593            with multiple BMCs we assume that there will be several instances
3594            of a given type so if we succeed in registering a type then also
3595            try to register everything else of the same type */
3596
3597         mutex_lock(&smi_infos_lock);
3598         list_for_each_entry(e, &smi_infos, link) {
3599                 /* Try to register a device if it has an IRQ and we either
3600                    haven't successfully registered a device yet or this
3601                    device has the same type as one we successfully registered */
3602                 if (e->irq && (!type || e->addr_source == type)) {
3603                         if (!try_smi_init(e)) {
3604                                 type = e->addr_source;
3605                         }
3606                 }
3607         }
3608
3609         /* type will only have been set if we successfully registered an si */
3610         if (type) {
3611                 mutex_unlock(&smi_infos_lock);
3612                 return 0;
3613         }
3614
3615         /* Fall back to the preferred device */
3616
3617         list_for_each_entry(e, &smi_infos, link) {
3618                 if (!e->irq && (!type || e->addr_source == type)) {
3619                         if (!try_smi_init(e)) {
3620                                 type = e->addr_source;
3621                         }
3622                 }
3623         }
3624         mutex_unlock(&smi_infos_lock);
3625
3626         if (type)
3627                 return 0;
3628
3629         if (si_trydefaults) {
3630                 mutex_lock(&smi_infos_lock);
3631                 if (list_empty(&smi_infos)) {
3632                         /* No BMC was found, try defaults. */
3633                         mutex_unlock(&smi_infos_lock);
3634                         default_find_bmc();
3635                 } else
3636                         mutex_unlock(&smi_infos_lock);
3637         }
3638
3639         mutex_lock(&smi_infos_lock);
3640         if (unload_when_empty && list_empty(&smi_infos)) {
3641                 mutex_unlock(&smi_infos_lock);
3642                 cleanup_ipmi_si();
3643                 printk(KERN_WARNING PFX
3644                        "Unable to find any System Interface(s)\n");
3645                 return -ENODEV;
3646         } else {
3647                 mutex_unlock(&smi_infos_lock);
3648                 return 0;
3649         }
3650 }
3651 module_init(init_ipmi_si);
3652
3653 static void cleanup_one_si(struct smi_info *to_clean)
3654 {
3655         int           rv = 0;
3656         unsigned long flags;
3657
3658         if (!to_clean)
3659                 return;
3660
3661         if (to_clean->dev)
3662                 dev_set_drvdata(to_clean->dev, NULL);
3663
3664         list_del(&to_clean->link);
3665
3666         /* Tell the driver that we are shutting down. */
3667         atomic_inc(&to_clean->stop_operation);
3668
3669         /*
3670          * Make sure the timer and thread are stopped and will not run
3671          * again.
3672          */
3673         wait_for_timer_and_thread(to_clean);
3674
3675         /*
3676          * Timeouts are stopped, now make sure the interrupts are off
3677          * for the device.  A little tricky with locks to make sure
3678          * there are no races.
3679          */
3680         spin_lock_irqsave(&to_clean->si_lock, flags);
3681         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3682                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3683                 poll(to_clean);
3684                 schedule_timeout_uninterruptible(1);
3685                 spin_lock_irqsave(&to_clean->si_lock, flags);
3686         }
3687         disable_si_irq(to_clean);
3688         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3689         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3690                 poll(to_clean);
3691                 schedule_timeout_uninterruptible(1);
3692         }
3693
3694         /* Clean up interrupts and make sure that everything is done. */
3695         if (to_clean->irq_cleanup)
3696                 to_clean->irq_cleanup(to_clean);
3697         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3698                 poll(to_clean);
3699                 schedule_timeout_uninterruptible(1);
3700         }
3701
3702         if (to_clean->intf)
3703                 rv = ipmi_unregister_smi(to_clean->intf);
3704
3705         if (rv) {
3706                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3707                        rv);
3708         }
3709
3710         if (to_clean->handlers)
3711                 to_clean->handlers->cleanup(to_clean->si_sm);
3712
3713         kfree(to_clean->si_sm);
3714
3715         if (to_clean->addr_source_cleanup)
3716                 to_clean->addr_source_cleanup(to_clean);
3717         if (to_clean->io_cleanup)
3718                 to_clean->io_cleanup(to_clean);
3719
3720         if (to_clean->dev_registered)
3721                 platform_device_unregister(to_clean->pdev);
3722
3723         kfree(to_clean);
3724 }
3725
3726 static void cleanup_ipmi_si(void)
3727 {
3728         struct smi_info *e, *tmp_e;
3729
3730         if (!initialized)
3731                 return;
3732
3733 #ifdef CONFIG_PCI
3734         if (pci_registered)
3735                 pci_unregister_driver(&ipmi_pci_driver);
3736 #endif
3737 #ifdef CONFIG_ACPI
3738         if (pnp_registered)
3739                 pnp_unregister_driver(&ipmi_pnp_driver);
3740 #endif
3741 #ifdef CONFIG_PARISC
3742         if (parisc_registered)
3743                 unregister_parisc_driver(&ipmi_parisc_driver);
3744 #endif
3745
3746         platform_driver_unregister(&ipmi_driver);
3747
3748         mutex_lock(&smi_infos_lock);
3749         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3750                 cleanup_one_si(e);
3751         mutex_unlock(&smi_infos_lock);
3752 }
3753 module_exit(cleanup_ipmi_si);
3754
3755 MODULE_LICENSE("GPL");
3756 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3757 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3758                    " system interfaces.");