Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / clocksource / fsl_ftm_timer.c
1 /*
2  * Freescale FlexTimer Module (FTM) timer driver.
3  *
4  * Copyright 2014 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11
12 #include <linux/clk.h>
13 #include <linux/clockchips.h>
14 #include <linux/clocksource.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/sched_clock.h>
21 #include <linux/slab.h>
22
23 #define FTM_SC          0x00
24 #define FTM_SC_CLK_SHIFT        3
25 #define FTM_SC_CLK_MASK (0x3 << FTM_SC_CLK_SHIFT)
26 #define FTM_SC_CLK(c)   ((c) << FTM_SC_CLK_SHIFT)
27 #define FTM_SC_PS_MASK  0x7
28 #define FTM_SC_TOIE     BIT(6)
29 #define FTM_SC_TOF      BIT(7)
30
31 #define FTM_CNT         0x04
32 #define FTM_MOD         0x08
33 #define FTM_CNTIN       0x4C
34
35 #define FTM_PS_MAX      7
36
37 struct ftm_clock_device {
38         void __iomem *clksrc_base;
39         void __iomem *clkevt_base;
40         unsigned long periodic_cyc;
41         unsigned long ps;
42         bool big_endian;
43 };
44
45 static struct ftm_clock_device *priv;
46
47 static inline u32 ftm_readl(void __iomem *addr)
48 {
49         if (priv->big_endian)
50                 return ioread32be(addr);
51         else
52                 return ioread32(addr);
53 }
54
55 static inline void ftm_writel(u32 val, void __iomem *addr)
56 {
57         if (priv->big_endian)
58                 iowrite32be(val, addr);
59         else
60                 iowrite32(val, addr);
61 }
62
63 static inline void ftm_counter_enable(void __iomem *base)
64 {
65         u32 val;
66
67         /* select and enable counter clock source */
68         val = ftm_readl(base + FTM_SC);
69         val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
70         val |= priv->ps | FTM_SC_CLK(1);
71         ftm_writel(val, base + FTM_SC);
72 }
73
74 static inline void ftm_counter_disable(void __iomem *base)
75 {
76         u32 val;
77
78         /* disable counter clock source */
79         val = ftm_readl(base + FTM_SC);
80         val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
81         ftm_writel(val, base + FTM_SC);
82 }
83
84 static inline void ftm_irq_acknowledge(void __iomem *base)
85 {
86         u32 val;
87
88         val = ftm_readl(base + FTM_SC);
89         val &= ~FTM_SC_TOF;
90         ftm_writel(val, base + FTM_SC);
91 }
92
93 static inline void ftm_irq_enable(void __iomem *base)
94 {
95         u32 val;
96
97         val = ftm_readl(base + FTM_SC);
98         val |= FTM_SC_TOIE;
99         ftm_writel(val, base + FTM_SC);
100 }
101
102 static inline void ftm_irq_disable(void __iomem *base)
103 {
104         u32 val;
105
106         val = ftm_readl(base + FTM_SC);
107         val &= ~FTM_SC_TOIE;
108         ftm_writel(val, base + FTM_SC);
109 }
110
111 static inline void ftm_reset_counter(void __iomem *base)
112 {
113         /*
114          * The CNT register contains the FTM counter value.
115          * Reset clears the CNT register. Writing any value to COUNT
116          * updates the counter with its initial value, CNTIN.
117          */
118         ftm_writel(0x00, base + FTM_CNT);
119 }
120
121 static u64 ftm_read_sched_clock(void)
122 {
123         return ftm_readl(priv->clksrc_base + FTM_CNT);
124 }
125
126 static int ftm_set_next_event(unsigned long delta,
127                                 struct clock_event_device *unused)
128 {
129         /*
130          * The CNNIN and MOD are all double buffer registers, writing
131          * to the MOD register latches the value into a buffer. The MOD
132          * register is updated with the value of its write buffer with
133          * the following scenario:
134          * a, the counter source clock is diabled.
135          */
136         ftm_counter_disable(priv->clkevt_base);
137
138         /* Force the value of CNTIN to be loaded into the FTM counter */
139         ftm_reset_counter(priv->clkevt_base);
140
141         /*
142          * The counter increments until the value of MOD is reached,
143          * at which point the counter is reloaded with the value of CNTIN.
144          * The TOF (the overflow flag) bit is set when the FTM counter
145          * changes from MOD to CNTIN. So we should using the delta - 1.
146          */
147         ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
148
149         ftm_counter_enable(priv->clkevt_base);
150
151         ftm_irq_enable(priv->clkevt_base);
152
153         return 0;
154 }
155
156 static void ftm_set_mode(enum clock_event_mode mode,
157                                 struct clock_event_device *evt)
158 {
159         switch (mode) {
160         case CLOCK_EVT_MODE_PERIODIC:
161                 ftm_set_next_event(priv->periodic_cyc, evt);
162                 break;
163         case CLOCK_EVT_MODE_ONESHOT:
164                 ftm_counter_disable(priv->clkevt_base);
165                 break;
166         default:
167                 return;
168         }
169 }
170
171 static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
172 {
173         struct clock_event_device *evt = dev_id;
174
175         ftm_irq_acknowledge(priv->clkevt_base);
176
177         if (likely(evt->mode == CLOCK_EVT_MODE_ONESHOT)) {
178                 ftm_irq_disable(priv->clkevt_base);
179                 ftm_counter_disable(priv->clkevt_base);
180         }
181
182         evt->event_handler(evt);
183
184         return IRQ_HANDLED;
185 }
186
187 static struct clock_event_device ftm_clockevent = {
188         .name           = "Freescale ftm timer",
189         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
190         .set_mode       = ftm_set_mode,
191         .set_next_event = ftm_set_next_event,
192         .rating         = 300,
193 };
194
195 static struct irqaction ftm_timer_irq = {
196         .name           = "Freescale ftm timer",
197         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
198         .handler        = ftm_evt_interrupt,
199         .dev_id         = &ftm_clockevent,
200 };
201
202 static int __init ftm_clockevent_init(unsigned long freq, int irq)
203 {
204         int err;
205
206         ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
207         ftm_writel(~0UL, priv->clkevt_base + FTM_MOD);
208
209         ftm_reset_counter(priv->clkevt_base);
210
211         err = setup_irq(irq, &ftm_timer_irq);
212         if (err) {
213                 pr_err("ftm: setup irq failed: %d\n", err);
214                 return err;
215         }
216
217         ftm_clockevent.cpumask = cpumask_of(0);
218         ftm_clockevent.irq = irq;
219
220         clockevents_config_and_register(&ftm_clockevent,
221                                         freq / (1 << priv->ps),
222                                         1, 0xffff);
223
224         ftm_counter_enable(priv->clkevt_base);
225
226         return 0;
227 }
228
229 static int __init ftm_clocksource_init(unsigned long freq)
230 {
231         int err;
232
233         ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
234         ftm_writel(~0UL, priv->clksrc_base + FTM_MOD);
235
236         ftm_reset_counter(priv->clksrc_base);
237
238         sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
239         err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
240                                     freq / (1 << priv->ps), 300, 16,
241                                     clocksource_mmio_readl_up);
242         if (err) {
243                 pr_err("ftm: init clock source mmio failed: %d\n", err);
244                 return err;
245         }
246
247         ftm_counter_enable(priv->clksrc_base);
248
249         return 0;
250 }
251
252 static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
253                                  char *ftm_name)
254 {
255         struct clk *clk;
256         int err;
257
258         clk = of_clk_get_by_name(np, cnt_name);
259         if (IS_ERR(clk)) {
260                 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
261                 return PTR_ERR(clk);
262         }
263         err = clk_prepare_enable(clk);
264         if (err) {
265                 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
266                         cnt_name, err);
267                 return err;
268         }
269
270         clk = of_clk_get_by_name(np, ftm_name);
271         if (IS_ERR(clk)) {
272                 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
273                 return PTR_ERR(clk);
274         }
275         err = clk_prepare_enable(clk);
276         if (err)
277                 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
278                         ftm_name, err);
279
280         return clk_get_rate(clk);
281 }
282
283 static unsigned long __init ftm_clk_init(struct device_node *np)
284 {
285         unsigned long freq;
286
287         freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
288         if (freq <= 0)
289                 return 0;
290
291         freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
292         if (freq <= 0)
293                 return 0;
294
295         return freq;
296 }
297
298 static int __init ftm_calc_closest_round_cyc(unsigned long freq)
299 {
300         priv->ps = 0;
301
302         /* The counter register is only using the lower 16 bits, and
303          * if the 'freq' value is to big here, then the periodic_cyc
304          * may exceed 0xFFFF.
305          */
306         do {
307                 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
308                                                 HZ * (1 << priv->ps++));
309         } while (priv->periodic_cyc > 0xFFFF);
310
311         if (priv->ps > FTM_PS_MAX) {
312                 pr_err("ftm: the prescaler is %lu > %d\n",
313                                 priv->ps, FTM_PS_MAX);
314                 return -EINVAL;
315         }
316
317         return 0;
318 }
319
320 static void __init ftm_timer_init(struct device_node *np)
321 {
322         unsigned long freq;
323         int irq;
324
325         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
326         if (!priv)
327                 return;
328
329         priv->clkevt_base = of_iomap(np, 0);
330         if (!priv->clkevt_base) {
331                 pr_err("ftm: unable to map event timer registers\n");
332                 goto err;
333         }
334
335         priv->clksrc_base = of_iomap(np, 1);
336         if (!priv->clksrc_base) {
337                 pr_err("ftm: unable to map source timer registers\n");
338                 goto err;
339         }
340
341         irq = irq_of_parse_and_map(np, 0);
342         if (irq <= 0) {
343                 pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
344                 goto err;
345         }
346
347         priv->big_endian = of_property_read_bool(np, "big-endian");
348
349         freq = ftm_clk_init(np);
350         if (!freq)
351                 goto err;
352
353         if (ftm_calc_closest_round_cyc(freq))
354                 goto err;
355
356         if (ftm_clocksource_init(freq))
357                 goto err;
358
359         if (ftm_clockevent_init(freq, irq))
360                 goto err;
361
362         return;
363
364 err:
365         kfree(priv);
366 }
367 CLOCKSOURCE_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);