Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 struct sh_cmt_device;
36
37 /*
38  * The CMT comes in 5 different identified flavours, depending not only on the
39  * SoC but also on the particular instance. The following table lists the main
40  * characteristics of those flavours.
41  *
42  *                      16B     32B     32B-F   48B     48B-2
43  * -----------------------------------------------------------------------------
44  * Channels             2       1/4     1       6       2/8
45  * Control Width        16      16      16      16      32
46  * Counter Width        16      32      32      32/48   32/48
47  * Shared Start/Stop    Y       Y       Y       Y       N
48  *
49  * The 48-bit gen2 version has a per-channel start/stop register located in the
50  * channel registers block. All other versions have a shared start/stop register
51  * located in the global space.
52  *
53  * Channels are indexed from 0 to N-1 in the documentation. The channel index
54  * infers the start/stop bit position in the control register and the channel
55  * registers block address. Some CMT instances have a subset of channels
56  * available, in which case the index in the documentation doesn't match the
57  * "real" index as implemented in hardware. This is for instance the case with
58  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59  * in the documentation but using start/stop bit 5 and having its registers
60  * block at 0x60.
61  *
62  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64  */
65
66 enum sh_cmt_model {
67         SH_CMT_16BIT,
68         SH_CMT_32BIT,
69         SH_CMT_32BIT_FAST,
70         SH_CMT_48BIT,
71         SH_CMT_48BIT_GEN2,
72 };
73
74 struct sh_cmt_info {
75         enum sh_cmt_model model;
76
77         unsigned long width; /* 16 or 32 bit version of hardware block */
78         unsigned long overflow_bit;
79         unsigned long clear_bits;
80
81         /* callbacks for CMSTR and CMCSR access */
82         unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83         void (*write_control)(void __iomem *base, unsigned long offs,
84                               unsigned long value);
85
86         /* callbacks for CMCNT and CMCOR access */
87         unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88         void (*write_count)(void __iomem *base, unsigned long offs,
89                             unsigned long value);
90 };
91
92 struct sh_cmt_channel {
93         struct sh_cmt_device *cmt;
94
95         unsigned int index;     /* Index in the documentation */
96         unsigned int hwidx;     /* Real hardware index */
97
98         void __iomem *iostart;
99         void __iomem *ioctrl;
100
101         unsigned int timer_bit;
102         unsigned long flags;
103         unsigned long match_value;
104         unsigned long next_match_value;
105         unsigned long max_match_value;
106         unsigned long rate;
107         raw_spinlock_t lock;
108         struct clock_event_device ced;
109         struct clocksource cs;
110         unsigned long total_cycles;
111         bool cs_enabled;
112 };
113
114 struct sh_cmt_device {
115         struct platform_device *pdev;
116
117         const struct sh_cmt_info *info;
118
119         void __iomem *mapbase;
120         struct clk *clk;
121
122         raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124         struct sh_cmt_channel *channels;
125         unsigned int num_channels;
126         unsigned int hw_channels;
127
128         bool has_clockevent;
129         bool has_clocksource;
130 };
131
132 #define SH_CMT16_CMCSR_CMF              (1 << 7)
133 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
134 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
135 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
136 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
137 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
139
140 #define SH_CMT32_CMCSR_CMF              (1 << 15)
141 #define SH_CMT32_CMCSR_OVF              (1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
143 #define SH_CMT32_CMCSR_STTF             (1 << 12)
144 #define SH_CMT32_CMCSR_STPF             (1 << 11)
145 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
146 #define SH_CMT32_CMCSR_CMS              (1 << 9)
147 #define SH_CMT32_CMCSR_CMM              (1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
159
160 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162         return ioread16(base + (offs << 1));
163 }
164
165 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167         return ioread32(base + (offs << 2));
168 }
169
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171                            unsigned long value)
172 {
173         iowrite16(value, base + (offs << 1));
174 }
175
176 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177                            unsigned long value)
178 {
179         iowrite32(value, base + (offs << 2));
180 }
181
182 static const struct sh_cmt_info sh_cmt_info[] = {
183         [SH_CMT_16BIT] = {
184                 .model = SH_CMT_16BIT,
185                 .width = 16,
186                 .overflow_bit = SH_CMT16_CMCSR_CMF,
187                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188                 .read_control = sh_cmt_read16,
189                 .write_control = sh_cmt_write16,
190                 .read_count = sh_cmt_read16,
191                 .write_count = sh_cmt_write16,
192         },
193         [SH_CMT_32BIT] = {
194                 .model = SH_CMT_32BIT,
195                 .width = 32,
196                 .overflow_bit = SH_CMT32_CMCSR_CMF,
197                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198                 .read_control = sh_cmt_read16,
199                 .write_control = sh_cmt_write16,
200                 .read_count = sh_cmt_read32,
201                 .write_count = sh_cmt_write32,
202         },
203         [SH_CMT_32BIT_FAST] = {
204                 .model = SH_CMT_32BIT_FAST,
205                 .width = 32,
206                 .overflow_bit = SH_CMT32_CMCSR_CMF,
207                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208                 .read_control = sh_cmt_read16,
209                 .write_control = sh_cmt_write16,
210                 .read_count = sh_cmt_read32,
211                 .write_count = sh_cmt_write32,
212         },
213         [SH_CMT_48BIT] = {
214                 .model = SH_CMT_48BIT,
215                 .width = 32,
216                 .overflow_bit = SH_CMT32_CMCSR_CMF,
217                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218                 .read_control = sh_cmt_read32,
219                 .write_control = sh_cmt_write32,
220                 .read_count = sh_cmt_read32,
221                 .write_count = sh_cmt_write32,
222         },
223         [SH_CMT_48BIT_GEN2] = {
224                 .model = SH_CMT_48BIT_GEN2,
225                 .width = 32,
226                 .overflow_bit = SH_CMT32_CMCSR_CMF,
227                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228                 .read_control = sh_cmt_read32,
229                 .write_control = sh_cmt_write32,
230                 .read_count = sh_cmt_read32,
231                 .write_count = sh_cmt_write32,
232         },
233 };
234
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238
239 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240 {
241         if (ch->iostart)
242                 return ch->cmt->info->read_control(ch->iostart, 0);
243         else
244                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245 }
246
247 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248                                       unsigned long value)
249 {
250         if (ch->iostart)
251                 ch->cmt->info->write_control(ch->iostart, 0, value);
252         else
253                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255
256 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262                                       unsigned long value)
263 {
264         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265 }
266
267 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268 {
269         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270 }
271
272 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273                                       unsigned long value)
274 {
275         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279                                       unsigned long value)
280 {
281         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282 }
283
284 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285                                         int *has_wrapped)
286 {
287         unsigned long v1, v2, v3;
288         int o1, o2;
289
290         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291
292         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293         do {
294                 o2 = o1;
295                 v1 = sh_cmt_read_cmcnt(ch);
296                 v2 = sh_cmt_read_cmcnt(ch);
297                 v3 = sh_cmt_read_cmcnt(ch);
298                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301
302         *has_wrapped = o1;
303         return v2;
304 }
305
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308         unsigned long flags, value;
309
310         /* start stop register shared by multiple timer channels */
311         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312         value = sh_cmt_read_cmstr(ch);
313
314         if (start)
315                 value |= 1 << ch->timer_bit;
316         else
317                 value &= ~(1 << ch->timer_bit);
318
319         sh_cmt_write_cmstr(ch, value);
320         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321 }
322
323 static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
324 {
325         int k, ret;
326
327         pm_runtime_get_sync(&ch->cmt->pdev->dev);
328         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329
330         /* enable clock */
331         ret = clk_enable(ch->cmt->clk);
332         if (ret) {
333                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334                         ch->index);
335                 goto err0;
336         }
337
338         /* make sure channel is disabled */
339         sh_cmt_start_stop_ch(ch, 0);
340
341         /* configure channel, periodic mode and maximum timeout */
342         if (ch->cmt->info->width == 16) {
343                 *rate = clk_get_rate(ch->cmt->clk) / 512;
344                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345                                    SH_CMT16_CMCSR_CKS512);
346         } else {
347                 *rate = clk_get_rate(ch->cmt->clk) / 8;
348                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349                                    SH_CMT32_CMCSR_CMTOUT_IE |
350                                    SH_CMT32_CMCSR_CMR_IRQ |
351                                    SH_CMT32_CMCSR_CKS_RCLK8);
352         }
353
354         sh_cmt_write_cmcor(ch, 0xffffffff);
355         sh_cmt_write_cmcnt(ch, 0);
356
357         /*
358          * According to the sh73a0 user's manual, as CMCNT can be operated
359          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360          * modifying CMCNT register; two RCLK cycles are necessary before
361          * this register is either read or any modification of the value
362          * it holds is reflected in the LSI's actual operation.
363          *
364          * While at it, we're supposed to clear out the CMCNT as of this
365          * moment, so make sure it's processed properly here.  This will
366          * take RCLKx2 at maximum.
367          */
368         for (k = 0; k < 100; k++) {
369                 if (!sh_cmt_read_cmcnt(ch))
370                         break;
371                 udelay(1);
372         }
373
374         if (sh_cmt_read_cmcnt(ch)) {
375                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376                         ch->index);
377                 ret = -ETIMEDOUT;
378                 goto err1;
379         }
380
381         /* enable channel */
382         sh_cmt_start_stop_ch(ch, 1);
383         return 0;
384  err1:
385         /* stop clock */
386         clk_disable(ch->cmt->clk);
387
388  err0:
389         return ret;
390 }
391
392 static void sh_cmt_disable(struct sh_cmt_channel *ch)
393 {
394         /* disable channel */
395         sh_cmt_start_stop_ch(ch, 0);
396
397         /* disable interrupts in CMT block */
398         sh_cmt_write_cmcsr(ch, 0);
399
400         /* stop clock */
401         clk_disable(ch->cmt->clk);
402
403         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404         pm_runtime_put(&ch->cmt->pdev->dev);
405 }
406
407 /* private flags */
408 #define FLAG_CLOCKEVENT (1 << 0)
409 #define FLAG_CLOCKSOURCE (1 << 1)
410 #define FLAG_REPROGRAM (1 << 2)
411 #define FLAG_SKIPEVENT (1 << 3)
412 #define FLAG_IRQCONTEXT (1 << 4)
413
414 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
415                                               int absolute)
416 {
417         unsigned long new_match;
418         unsigned long value = ch->next_match_value;
419         unsigned long delay = 0;
420         unsigned long now = 0;
421         int has_wrapped;
422
423         now = sh_cmt_get_counter(ch, &has_wrapped);
424         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
425
426         if (has_wrapped) {
427                 /* we're competing with the interrupt handler.
428                  *  -> let the interrupt handler reprogram the timer.
429                  *  -> interrupt number two handles the event.
430                  */
431                 ch->flags |= FLAG_SKIPEVENT;
432                 return;
433         }
434
435         if (absolute)
436                 now = 0;
437
438         do {
439                 /* reprogram the timer hardware,
440                  * but don't save the new match value yet.
441                  */
442                 new_match = now + value + delay;
443                 if (new_match > ch->max_match_value)
444                         new_match = ch->max_match_value;
445
446                 sh_cmt_write_cmcor(ch, new_match);
447
448                 now = sh_cmt_get_counter(ch, &has_wrapped);
449                 if (has_wrapped && (new_match > ch->match_value)) {
450                         /* we are changing to a greater match value,
451                          * so this wrap must be caused by the counter
452                          * matching the old value.
453                          * -> first interrupt reprograms the timer.
454                          * -> interrupt number two handles the event.
455                          */
456                         ch->flags |= FLAG_SKIPEVENT;
457                         break;
458                 }
459
460                 if (has_wrapped) {
461                         /* we are changing to a smaller match value,
462                          * so the wrap must be caused by the counter
463                          * matching the new value.
464                          * -> save programmed match value.
465                          * -> let isr handle the event.
466                          */
467                         ch->match_value = new_match;
468                         break;
469                 }
470
471                 /* be safe: verify hardware settings */
472                 if (now < new_match) {
473                         /* timer value is below match value, all good.
474                          * this makes sure we won't miss any match events.
475                          * -> save programmed match value.
476                          * -> let isr handle the event.
477                          */
478                         ch->match_value = new_match;
479                         break;
480                 }
481
482                 /* the counter has reached a value greater
483                  * than our new match value. and since the
484                  * has_wrapped flag isn't set we must have
485                  * programmed a too close event.
486                  * -> increase delay and retry.
487                  */
488                 if (delay)
489                         delay <<= 1;
490                 else
491                         delay = 1;
492
493                 if (!delay)
494                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495                                  ch->index);
496
497         } while (delay);
498 }
499
500 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
501 {
502         if (delta > ch->max_match_value)
503                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504                          ch->index);
505
506         ch->next_match_value = delta;
507         sh_cmt_clock_event_program_verify(ch, 0);
508 }
509
510 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 {
512         unsigned long flags;
513
514         raw_spin_lock_irqsave(&ch->lock, flags);
515         __sh_cmt_set_next(ch, delta);
516         raw_spin_unlock_irqrestore(&ch->lock, flags);
517 }
518
519 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520 {
521         struct sh_cmt_channel *ch = dev_id;
522
523         /* clear flags */
524         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525                            ch->cmt->info->clear_bits);
526
527         /* update clock source counter to begin with if enabled
528          * the wrap flag should be cleared by the timer specific
529          * isr before we end up here.
530          */
531         if (ch->flags & FLAG_CLOCKSOURCE)
532                 ch->total_cycles += ch->match_value + 1;
533
534         if (!(ch->flags & FLAG_REPROGRAM))
535                 ch->next_match_value = ch->max_match_value;
536
537         ch->flags |= FLAG_IRQCONTEXT;
538
539         if (ch->flags & FLAG_CLOCKEVENT) {
540                 if (!(ch->flags & FLAG_SKIPEVENT)) {
541                         if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
542                                 ch->next_match_value = ch->max_match_value;
543                                 ch->flags |= FLAG_REPROGRAM;
544                         }
545
546                         ch->ced.event_handler(&ch->ced);
547                 }
548         }
549
550         ch->flags &= ~FLAG_SKIPEVENT;
551
552         if (ch->flags & FLAG_REPROGRAM) {
553                 ch->flags &= ~FLAG_REPROGRAM;
554                 sh_cmt_clock_event_program_verify(ch, 1);
555
556                 if (ch->flags & FLAG_CLOCKEVENT)
557                         if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
558                             || (ch->match_value == ch->next_match_value))
559                                 ch->flags &= ~FLAG_REPROGRAM;
560         }
561
562         ch->flags &= ~FLAG_IRQCONTEXT;
563
564         return IRQ_HANDLED;
565 }
566
567 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
568 {
569         int ret = 0;
570         unsigned long flags;
571
572         raw_spin_lock_irqsave(&ch->lock, flags);
573
574         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575                 ret = sh_cmt_enable(ch, &ch->rate);
576
577         if (ret)
578                 goto out;
579         ch->flags |= flag;
580
581         /* setup timeout if no clockevent */
582         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583                 __sh_cmt_set_next(ch, ch->max_match_value);
584  out:
585         raw_spin_unlock_irqrestore(&ch->lock, flags);
586
587         return ret;
588 }
589
590 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591 {
592         unsigned long flags;
593         unsigned long f;
594
595         raw_spin_lock_irqsave(&ch->lock, flags);
596
597         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598         ch->flags &= ~flag;
599
600         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601                 sh_cmt_disable(ch);
602
603         /* adjust the timeout to maximum if only clocksource left */
604         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605                 __sh_cmt_set_next(ch, ch->max_match_value);
606
607         raw_spin_unlock_irqrestore(&ch->lock, flags);
608 }
609
610 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
611 {
612         return container_of(cs, struct sh_cmt_channel, cs);
613 }
614
615 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
616 {
617         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618         unsigned long flags, raw;
619         unsigned long value;
620         int has_wrapped;
621
622         raw_spin_lock_irqsave(&ch->lock, flags);
623         value = ch->total_cycles;
624         raw = sh_cmt_get_counter(ch, &has_wrapped);
625
626         if (unlikely(has_wrapped))
627                 raw += ch->match_value + 1;
628         raw_spin_unlock_irqrestore(&ch->lock, flags);
629
630         return value + raw;
631 }
632
633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
634 {
635         int ret;
636         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637
638         WARN_ON(ch->cs_enabled);
639
640         ch->total_cycles = 0;
641
642         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643         if (!ret) {
644                 __clocksource_updatefreq_hz(cs, ch->rate);
645                 ch->cs_enabled = true;
646         }
647         return ret;
648 }
649
650 static void sh_cmt_clocksource_disable(struct clocksource *cs)
651 {
652         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653
654         WARN_ON(!ch->cs_enabled);
655
656         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657         ch->cs_enabled = false;
658 }
659
660 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661 {
662         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663
664         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671
672         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
673         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
674 }
675
676 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
677                                        const char *name)
678 {
679         struct clocksource *cs = &ch->cs;
680
681         cs->name = name;
682         cs->rating = 125;
683         cs->read = sh_cmt_clocksource_read;
684         cs->enable = sh_cmt_clocksource_enable;
685         cs->disable = sh_cmt_clocksource_disable;
686         cs->suspend = sh_cmt_clocksource_suspend;
687         cs->resume = sh_cmt_clocksource_resume;
688         cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
689         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
690
691         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
692                  ch->index);
693
694         /* Register with dummy 1 Hz value, gets updated in ->enable() */
695         clocksource_register_hz(cs, 1);
696         return 0;
697 }
698
699 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
700 {
701         return container_of(ced, struct sh_cmt_channel, ced);
702 }
703
704 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
705 {
706         struct clock_event_device *ced = &ch->ced;
707
708         sh_cmt_start(ch, FLAG_CLOCKEVENT);
709
710         /* TODO: calculate good shift from rate and counter bit width */
711
712         ced->shift = 32;
713         ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
714         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
715         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
716
717         if (periodic)
718                 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
719         else
720                 sh_cmt_set_next(ch, ch->max_match_value);
721 }
722
723 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
724                                     struct clock_event_device *ced)
725 {
726         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
727
728         /* deal with old setting first */
729         switch (ced->mode) {
730         case CLOCK_EVT_MODE_PERIODIC:
731         case CLOCK_EVT_MODE_ONESHOT:
732                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
733                 break;
734         default:
735                 break;
736         }
737
738         switch (mode) {
739         case CLOCK_EVT_MODE_PERIODIC:
740                 dev_info(&ch->cmt->pdev->dev,
741                          "ch%u: used for periodic clock events\n", ch->index);
742                 sh_cmt_clock_event_start(ch, 1);
743                 break;
744         case CLOCK_EVT_MODE_ONESHOT:
745                 dev_info(&ch->cmt->pdev->dev,
746                          "ch%u: used for oneshot clock events\n", ch->index);
747                 sh_cmt_clock_event_start(ch, 0);
748                 break;
749         case CLOCK_EVT_MODE_SHUTDOWN:
750         case CLOCK_EVT_MODE_UNUSED:
751                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752                 break;
753         default:
754                 break;
755         }
756 }
757
758 static int sh_cmt_clock_event_next(unsigned long delta,
759                                    struct clock_event_device *ced)
760 {
761         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763         BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
764         if (likely(ch->flags & FLAG_IRQCONTEXT))
765                 ch->next_match_value = delta - 1;
766         else
767                 sh_cmt_set_next(ch, delta - 1);
768
769         return 0;
770 }
771
772 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
773 {
774         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
775
776         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
777         clk_unprepare(ch->cmt->clk);
778 }
779
780 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
781 {
782         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783
784         clk_prepare(ch->cmt->clk);
785         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
786 }
787
788 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789                                       const char *name)
790 {
791         struct clock_event_device *ced = &ch->ced;
792         int irq;
793         int ret;
794
795         irq = platform_get_irq(ch->cmt->pdev, ch->index);
796         if (irq < 0) {
797                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
798                         ch->index);
799                 return irq;
800         }
801
802         ret = request_irq(irq, sh_cmt_interrupt,
803                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
804                           dev_name(&ch->cmt->pdev->dev), ch);
805         if (ret) {
806                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
807                         ch->index, irq);
808                 return ret;
809         }
810
811         ced->name = name;
812         ced->features = CLOCK_EVT_FEAT_PERIODIC;
813         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
814         ced->rating = 125;
815         ced->cpumask = cpu_possible_mask;
816         ced->set_next_event = sh_cmt_clock_event_next;
817         ced->set_mode = sh_cmt_clock_event_mode;
818         ced->suspend = sh_cmt_clock_event_suspend;
819         ced->resume = sh_cmt_clock_event_resume;
820
821         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822                  ch->index);
823         clockevents_register_device(ced);
824
825         return 0;
826 }
827
828 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829                            bool clockevent, bool clocksource)
830 {
831         int ret;
832
833         if (clockevent) {
834                 ch->cmt->has_clockevent = true;
835                 ret = sh_cmt_register_clockevent(ch, name);
836                 if (ret < 0)
837                         return ret;
838         }
839
840         if (clocksource) {
841                 ch->cmt->has_clocksource = true;
842                 sh_cmt_register_clocksource(ch, name);
843         }
844
845         return 0;
846 }
847
848 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849                                 unsigned int hwidx, bool clockevent,
850                                 bool clocksource, struct sh_cmt_device *cmt)
851 {
852         int ret;
853
854         /* Skip unused channels. */
855         if (!clockevent && !clocksource)
856                 return 0;
857
858         ch->cmt = cmt;
859         ch->index = index;
860         ch->hwidx = hwidx;
861
862         /*
863          * Compute the address of the channel control register block. For the
864          * timers with a per-channel start/stop register, compute its address
865          * as well.
866          */
867         switch (cmt->info->model) {
868         case SH_CMT_16BIT:
869                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
870                 break;
871         case SH_CMT_32BIT:
872         case SH_CMT_48BIT:
873                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
874                 break;
875         case SH_CMT_32BIT_FAST:
876                 /*
877                  * The 32-bit "fast" timer has a single channel at hwidx 5 but
878                  * is located at offset 0x40 instead of 0x60 for some reason.
879                  */
880                 ch->ioctrl = cmt->mapbase + 0x40;
881                 break;
882         case SH_CMT_48BIT_GEN2:
883                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
884                 ch->ioctrl = ch->iostart + 0x10;
885                 break;
886         }
887
888         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
889                 ch->max_match_value = ~0;
890         else
891                 ch->max_match_value = (1 << cmt->info->width) - 1;
892
893         ch->match_value = ch->max_match_value;
894         raw_spin_lock_init(&ch->lock);
895
896         ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
897
898         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
899                               clockevent, clocksource);
900         if (ret) {
901                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
902                         ch->index);
903                 return ret;
904         }
905         ch->cs_enabled = false;
906
907         return 0;
908 }
909
910 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
911 {
912         struct resource *mem;
913
914         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
915         if (!mem) {
916                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
917                 return -ENXIO;
918         }
919
920         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
921         if (cmt->mapbase == NULL) {
922                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
923                 return -ENXIO;
924         }
925
926         return 0;
927 }
928
929 static const struct platform_device_id sh_cmt_id_table[] = {
930         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
931         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
932         { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
933         { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
934         { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
935         { }
936 };
937 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
938
939 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
940         { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
941         { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
942         { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
943         { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
944         { }
945 };
946 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
947
948 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
949 {
950         struct device_node *np = cmt->pdev->dev.of_node;
951
952         return of_property_read_u32(np, "renesas,channels-mask",
953                                     &cmt->hw_channels);
954 }
955
956 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
957 {
958         unsigned int mask;
959         unsigned int i;
960         int ret;
961
962         memset(cmt, 0, sizeof(*cmt));
963         cmt->pdev = pdev;
964         raw_spin_lock_init(&cmt->lock);
965
966         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
967                 const struct of_device_id *id;
968
969                 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
970                 cmt->info = id->data;
971
972                 ret = sh_cmt_parse_dt(cmt);
973                 if (ret < 0)
974                         return ret;
975         } else if (pdev->dev.platform_data) {
976                 struct sh_timer_config *cfg = pdev->dev.platform_data;
977                 const struct platform_device_id *id = pdev->id_entry;
978
979                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
980                 cmt->hw_channels = cfg->channels_mask;
981         } else {
982                 dev_err(&cmt->pdev->dev, "missing platform data\n");
983                 return -ENXIO;
984         }
985
986         /* Get hold of clock. */
987         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988         if (IS_ERR(cmt->clk)) {
989                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
990                 return PTR_ERR(cmt->clk);
991         }
992
993         ret = clk_prepare(cmt->clk);
994         if (ret < 0)
995                 goto err_clk_put;
996
997         /* Map the memory resource(s). */
998         ret = sh_cmt_map_memory(cmt);
999         if (ret < 0)
1000                 goto err_clk_unprepare;
1001
1002         /* Allocate and setup the channels. */
1003         cmt->num_channels = hweight8(cmt->hw_channels);
1004         cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1005                                 GFP_KERNEL);
1006         if (cmt->channels == NULL) {
1007                 ret = -ENOMEM;
1008                 goto err_unmap;
1009         }
1010
1011         /*
1012          * Use the first channel as a clock event device and the second channel
1013          * as a clock source. If only one channel is available use it for both.
1014          */
1015         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1016                 unsigned int hwidx = ffs(mask) - 1;
1017                 bool clocksource = i == 1 || cmt->num_channels == 1;
1018                 bool clockevent = i == 0;
1019
1020                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1021                                            clockevent, clocksource, cmt);
1022                 if (ret < 0)
1023                         goto err_unmap;
1024
1025                 mask &= ~(1 << hwidx);
1026         }
1027
1028         platform_set_drvdata(pdev, cmt);
1029
1030         return 0;
1031
1032 err_unmap:
1033         kfree(cmt->channels);
1034         iounmap(cmt->mapbase);
1035 err_clk_unprepare:
1036         clk_unprepare(cmt->clk);
1037 err_clk_put:
1038         clk_put(cmt->clk);
1039         return ret;
1040 }
1041
1042 static int sh_cmt_probe(struct platform_device *pdev)
1043 {
1044         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1045         int ret;
1046
1047         if (!is_early_platform_device(pdev)) {
1048                 pm_runtime_set_active(&pdev->dev);
1049                 pm_runtime_enable(&pdev->dev);
1050         }
1051
1052         if (cmt) {
1053                 dev_info(&pdev->dev, "kept as earlytimer\n");
1054                 goto out;
1055         }
1056
1057         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1058         if (cmt == NULL)
1059                 return -ENOMEM;
1060
1061         ret = sh_cmt_setup(cmt, pdev);
1062         if (ret) {
1063                 kfree(cmt);
1064                 pm_runtime_idle(&pdev->dev);
1065                 return ret;
1066         }
1067         if (is_early_platform_device(pdev))
1068                 return 0;
1069
1070  out:
1071         if (cmt->has_clockevent || cmt->has_clocksource)
1072                 pm_runtime_irq_safe(&pdev->dev);
1073         else
1074                 pm_runtime_idle(&pdev->dev);
1075
1076         return 0;
1077 }
1078
1079 static int sh_cmt_remove(struct platform_device *pdev)
1080 {
1081         return -EBUSY; /* cannot unregister clockevent and clocksource */
1082 }
1083
1084 static struct platform_driver sh_cmt_device_driver = {
1085         .probe          = sh_cmt_probe,
1086         .remove         = sh_cmt_remove,
1087         .driver         = {
1088                 .name   = "sh_cmt",
1089                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1090         },
1091         .id_table       = sh_cmt_id_table,
1092 };
1093
1094 static int __init sh_cmt_init(void)
1095 {
1096         return platform_driver_register(&sh_cmt_device_driver);
1097 }
1098
1099 static void __exit sh_cmt_exit(void)
1100 {
1101         platform_driver_unregister(&sh_cmt_device_driver);
1102 }
1103
1104 early_platform_init("earlytimer", &sh_cmt_device_driver);
1105 subsys_initcall(sh_cmt_init);
1106 module_exit(sh_cmt_exit);
1107
1108 MODULE_AUTHOR("Magnus Damm");
1109 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1110 MODULE_LICENSE("GPL v2");