Merge tag 'iwlwifi-next-for-kalle-2014-12-30' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / coresight / coresight-etm3x.c
1 /* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/io.h>
19 #include <linux/err.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/smp.h>
24 #include <linux/sysfs.h>
25 #include <linux/stat.h>
26 #include <linux/clk.h>
27 #include <linux/cpu.h>
28 #include <linux/of.h>
29 #include <linux/coresight.h>
30 #include <linux/amba/bus.h>
31 #include <linux/seq_file.h>
32 #include <linux/uaccess.h>
33 #include <asm/sections.h>
34
35 #include "coresight-etm.h"
36
37 #ifdef CONFIG_CORESIGHT_SOURCE_ETM_DEFAULT_ENABLE
38 static int boot_enable = 1;
39 #else
40 static int boot_enable;
41 #endif
42 module_param_named(
43         boot_enable, boot_enable, int, S_IRUGO
44 );
45
46 /* The number of ETM/PTM currently registered */
47 static int etm_count;
48 static struct etm_drvdata *etmdrvdata[NR_CPUS];
49
50 static inline void etm_writel(struct etm_drvdata *drvdata,
51                               u32 val, u32 off)
52 {
53         if (drvdata->use_cp14) {
54                 if (etm_writel_cp14(off, val)) {
55                         dev_err(drvdata->dev,
56                                 "invalid CP14 access to ETM reg: %#x", off);
57                 }
58         } else {
59                 writel_relaxed(val, drvdata->base + off);
60         }
61 }
62
63 static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off)
64 {
65         u32 val;
66
67         if (drvdata->use_cp14) {
68                 if (etm_readl_cp14(off, &val)) {
69                         dev_err(drvdata->dev,
70                                 "invalid CP14 access to ETM reg: %#x", off);
71                 }
72         } else {
73                 val = readl_relaxed(drvdata->base + off);
74         }
75
76         return val;
77 }
78
79 /*
80  * Memory mapped writes to clear os lock are not supported on some processors
81  * and OS lock must be unlocked before any memory mapped access on such
82  * processors, otherwise memory mapped reads/writes will be invalid.
83  */
84 static void etm_os_unlock(void *info)
85 {
86         struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
87         /* Writing any value to ETMOSLAR unlocks the trace registers */
88         etm_writel(drvdata, 0x0, ETMOSLAR);
89         isb();
90 }
91
92 static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
93 {
94         u32 etmcr;
95
96         /* Ensure pending cp14 accesses complete before setting pwrdwn */
97         mb();
98         isb();
99         etmcr = etm_readl(drvdata, ETMCR);
100         etmcr |= ETMCR_PWD_DWN;
101         etm_writel(drvdata, etmcr, ETMCR);
102 }
103
104 static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
105 {
106         u32 etmcr;
107
108         etmcr = etm_readl(drvdata, ETMCR);
109         etmcr &= ~ETMCR_PWD_DWN;
110         etm_writel(drvdata, etmcr, ETMCR);
111         /* Ensure pwrup completes before subsequent cp14 accesses */
112         mb();
113         isb();
114 }
115
116 static void etm_set_pwrup(struct etm_drvdata *drvdata)
117 {
118         u32 etmpdcr;
119
120         etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
121         etmpdcr |= ETMPDCR_PWD_UP;
122         writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
123         /* Ensure pwrup completes before subsequent cp14 accesses */
124         mb();
125         isb();
126 }
127
128 static void etm_clr_pwrup(struct etm_drvdata *drvdata)
129 {
130         u32 etmpdcr;
131
132         /* Ensure pending cp14 accesses complete before clearing pwrup */
133         mb();
134         isb();
135         etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
136         etmpdcr &= ~ETMPDCR_PWD_UP;
137         writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
138 }
139
140 /**
141  * coresight_timeout_etm - loop until a bit has changed to a specific state.
142  * @drvdata: etm's private data structure.
143  * @offset: address of a register, starting from @addr.
144  * @position: the position of the bit of interest.
145  * @value: the value the bit should have.
146  *
147  * Basically the same as @coresight_timeout except for the register access
148  * method where we have to account for CP14 configurations.
149
150  * Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
151  * TIMEOUT_US has elapsed, which ever happens first.
152  */
153
154 static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
155                                   int position, int value)
156 {
157         int i;
158         u32 val;
159
160         for (i = TIMEOUT_US; i > 0; i--) {
161                 val = etm_readl(drvdata, offset);
162                 /* Waiting on the bit to go from 0 to 1 */
163                 if (value) {
164                         if (val & BIT(position))
165                                 return 0;
166                 /* Waiting on the bit to go from 1 to 0 */
167                 } else {
168                         if (!(val & BIT(position)))
169                                 return 0;
170                 }
171
172                 /*
173                  * Delay is arbitrary - the specification doesn't say how long
174                  * we are expected to wait.  Extra check required to make sure
175                  * we don't wait needlessly on the last iteration.
176                  */
177                 if (i - 1)
178                         udelay(1);
179         }
180
181         return -EAGAIN;
182 }
183
184
185 static void etm_set_prog(struct etm_drvdata *drvdata)
186 {
187         u32 etmcr;
188
189         etmcr = etm_readl(drvdata, ETMCR);
190         etmcr |= ETMCR_ETM_PRG;
191         etm_writel(drvdata, etmcr, ETMCR);
192         /*
193          * Recommended by spec for cp14 accesses to ensure etmcr write is
194          * complete before polling etmsr
195          */
196         isb();
197         if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
198                 dev_err(drvdata->dev,
199                         "timeout observed when probing at offset %#x\n", ETMSR);
200         }
201 }
202
203 static void etm_clr_prog(struct etm_drvdata *drvdata)
204 {
205         u32 etmcr;
206
207         etmcr = etm_readl(drvdata, ETMCR);
208         etmcr &= ~ETMCR_ETM_PRG;
209         etm_writel(drvdata, etmcr, ETMCR);
210         /*
211          * Recommended by spec for cp14 accesses to ensure etmcr write is
212          * complete before polling etmsr
213          */
214         isb();
215         if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
216                 dev_err(drvdata->dev,
217                         "timeout observed when probing at offset %#x\n", ETMSR);
218         }
219 }
220
221 static void etm_set_default(struct etm_drvdata *drvdata)
222 {
223         int i;
224
225         drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
226         drvdata->enable_event = ETM_HARD_WIRE_RES_A;
227
228         drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
229         drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
230         drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
231         drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
232         drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
233         drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
234         drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;
235
236         for (i = 0; i < drvdata->nr_cntr; i++) {
237                 drvdata->cntr_rld_val[i] = 0x0;
238                 drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
239                 drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
240                 drvdata->cntr_val[i] = 0x0;
241         }
242
243         drvdata->seq_curr_state = 0x0;
244         drvdata->ctxid_idx = 0x0;
245         for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
246                 drvdata->ctxid_val[i] = 0x0;
247         drvdata->ctxid_mask = 0x0;
248 }
249
250 static void etm_enable_hw(void *info)
251 {
252         int i;
253         u32 etmcr;
254         struct etm_drvdata *drvdata = info;
255
256         CS_UNLOCK(drvdata->base);
257
258         /* Turn engine on */
259         etm_clr_pwrdwn(drvdata);
260         /* Apply power to trace registers */
261         etm_set_pwrup(drvdata);
262         /* Make sure all registers are accessible */
263         etm_os_unlock(drvdata);
264
265         etm_set_prog(drvdata);
266
267         etmcr = etm_readl(drvdata, ETMCR);
268         etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
269         etmcr |= drvdata->port_size;
270         etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
271         etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
272         etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
273         etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
274         etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
275         etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
276         for (i = 0; i < drvdata->nr_addr_cmp; i++) {
277                 etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
278                 etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
279         }
280         for (i = 0; i < drvdata->nr_cntr; i++) {
281                 etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
282                 etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
283                 etm_writel(drvdata, drvdata->cntr_rld_event[i],
284                            ETMCNTRLDEVRn(i));
285                 etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
286         }
287         etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
288         etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
289         etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
290         etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
291         etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
292         etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
293         etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
294         for (i = 0; i < drvdata->nr_ext_out; i++)
295                 etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
296         for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
297                 etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
298         etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
299         etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
300         /* No external input selected */
301         etm_writel(drvdata, 0x0, ETMEXTINSELR);
302         etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
303         /* No auxiliary control selected */
304         etm_writel(drvdata, 0x0, ETMAUXCR);
305         etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
306         /* No VMID comparator value selected */
307         etm_writel(drvdata, 0x0, ETMVMIDCVR);
308
309         /* Ensures trace output is enabled from this ETM */
310         etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);
311
312         etm_clr_prog(drvdata);
313         CS_LOCK(drvdata->base);
314
315         dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
316 }
317
318 static int etm_trace_id_simple(struct etm_drvdata *drvdata)
319 {
320         if (!drvdata->enable)
321                 return drvdata->traceid;
322
323         return (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
324 }
325
326 static int etm_trace_id(struct coresight_device *csdev)
327 {
328         struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
329         unsigned long flags;
330         int trace_id = -1;
331
332         if (!drvdata->enable)
333                 return drvdata->traceid;
334
335         if (clk_prepare_enable(drvdata->clk))
336                 goto out;
337
338         spin_lock_irqsave(&drvdata->spinlock, flags);
339
340         CS_UNLOCK(drvdata->base);
341         trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
342         CS_LOCK(drvdata->base);
343
344         spin_unlock_irqrestore(&drvdata->spinlock, flags);
345         clk_disable_unprepare(drvdata->clk);
346 out:
347         return trace_id;
348 }
349
350 static int etm_enable(struct coresight_device *csdev)
351 {
352         struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
353         int ret;
354
355         ret = clk_prepare_enable(drvdata->clk);
356         if (ret)
357                 goto err_clk;
358
359         spin_lock(&drvdata->spinlock);
360
361         /*
362          * Configure the ETM only if the CPU is online.  If it isn't online
363          * hw configuration will take place when 'CPU_STARTING' is received
364          * in @etm_cpu_callback.
365          */
366         if (cpu_online(drvdata->cpu)) {
367                 ret = smp_call_function_single(drvdata->cpu,
368                                                etm_enable_hw, drvdata, 1);
369                 if (ret)
370                         goto err;
371         }
372
373         drvdata->enable = true;
374         drvdata->sticky_enable = true;
375
376         spin_unlock(&drvdata->spinlock);
377
378         dev_info(drvdata->dev, "ETM tracing enabled\n");
379         return 0;
380 err:
381         spin_unlock(&drvdata->spinlock);
382         clk_disable_unprepare(drvdata->clk);
383 err_clk:
384         return ret;
385 }
386
387 static void etm_disable_hw(void *info)
388 {
389         int i;
390         struct etm_drvdata *drvdata = info;
391
392         CS_UNLOCK(drvdata->base);
393         etm_set_prog(drvdata);
394
395         /* Program trace enable to low by using always false event */
396         etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);
397
398         /* Read back sequencer and counters for post trace analysis */
399         drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
400
401         for (i = 0; i < drvdata->nr_cntr; i++)
402                 drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));
403
404         etm_set_pwrdwn(drvdata);
405         CS_LOCK(drvdata->base);
406
407         dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
408 }
409
410 static void etm_disable(struct coresight_device *csdev)
411 {
412         struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
413
414         /*
415          * Taking hotplug lock here protects from clocks getting disabled
416          * with tracing being left on (crash scenario) if user disable occurs
417          * after cpu online mask indicates the cpu is offline but before the
418          * DYING hotplug callback is serviced by the ETM driver.
419          */
420         get_online_cpus();
421         spin_lock(&drvdata->spinlock);
422
423         /*
424          * Executing etm_disable_hw on the cpu whose ETM is being disabled
425          * ensures that register writes occur when cpu is powered.
426          */
427         smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
428         drvdata->enable = false;
429
430         spin_unlock(&drvdata->spinlock);
431         put_online_cpus();
432
433         clk_disable_unprepare(drvdata->clk);
434
435         dev_info(drvdata->dev, "ETM tracing disabled\n");
436 }
437
438 static const struct coresight_ops_source etm_source_ops = {
439         .trace_id       = etm_trace_id,
440         .enable         = etm_enable,
441         .disable        = etm_disable,
442 };
443
444 static const struct coresight_ops etm_cs_ops = {
445         .source_ops     = &etm_source_ops,
446 };
447
448 static ssize_t nr_addr_cmp_show(struct device *dev,
449                                 struct device_attribute *attr, char *buf)
450 {
451         unsigned long val;
452         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
453
454         val = drvdata->nr_addr_cmp;
455         return sprintf(buf, "%#lx\n", val);
456 }
457 static DEVICE_ATTR_RO(nr_addr_cmp);
458
459 static ssize_t nr_cntr_show(struct device *dev,
460                             struct device_attribute *attr, char *buf)
461 {       unsigned long val;
462         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
463
464         val = drvdata->nr_cntr;
465         return sprintf(buf, "%#lx\n", val);
466 }
467 static DEVICE_ATTR_RO(nr_cntr);
468
469 static ssize_t nr_ctxid_cmp_show(struct device *dev,
470                                  struct device_attribute *attr, char *buf)
471 {
472         unsigned long val;
473         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
474
475         val = drvdata->nr_ctxid_cmp;
476         return sprintf(buf, "%#lx\n", val);
477 }
478 static DEVICE_ATTR_RO(nr_ctxid_cmp);
479
480 static ssize_t etmsr_show(struct device *dev,
481                           struct device_attribute *attr, char *buf)
482 {
483         int ret;
484         unsigned long flags, val;
485         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
486
487         ret = clk_prepare_enable(drvdata->clk);
488         if (ret)
489                 return ret;
490
491         spin_lock_irqsave(&drvdata->spinlock, flags);
492         CS_UNLOCK(drvdata->base);
493
494         val = etm_readl(drvdata, ETMSR);
495
496         CS_LOCK(drvdata->base);
497         spin_unlock_irqrestore(&drvdata->spinlock, flags);
498         clk_disable_unprepare(drvdata->clk);
499
500         return sprintf(buf, "%#lx\n", val);
501 }
502 static DEVICE_ATTR_RO(etmsr);
503
504 static ssize_t reset_store(struct device *dev,
505                            struct device_attribute *attr,
506                            const char *buf, size_t size)
507 {
508         int i, ret;
509         unsigned long val;
510         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
511
512         ret = kstrtoul(buf, 16, &val);
513         if (ret)
514                 return ret;
515
516         if (val) {
517                 spin_lock(&drvdata->spinlock);
518                 drvdata->mode = ETM_MODE_EXCLUDE;
519                 drvdata->ctrl = 0x0;
520                 drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
521                 drvdata->startstop_ctrl = 0x0;
522                 drvdata->addr_idx = 0x0;
523                 for (i = 0; i < drvdata->nr_addr_cmp; i++) {
524                         drvdata->addr_val[i] = 0x0;
525                         drvdata->addr_acctype[i] = 0x0;
526                         drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
527                 }
528                 drvdata->cntr_idx = 0x0;
529
530                 etm_set_default(drvdata);
531                 spin_unlock(&drvdata->spinlock);
532         }
533
534         return size;
535 }
536 static DEVICE_ATTR_WO(reset);
537
538 static ssize_t mode_show(struct device *dev,
539                          struct device_attribute *attr, char *buf)
540 {
541         unsigned long val;
542         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
543
544         val = drvdata->mode;
545         return sprintf(buf, "%#lx\n", val);
546 }
547
548 static ssize_t mode_store(struct device *dev,
549                           struct device_attribute *attr,
550                           const char *buf, size_t size)
551 {
552         int ret;
553         unsigned long val;
554         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
555
556         ret = kstrtoul(buf, 16, &val);
557         if (ret)
558                 return ret;
559
560         spin_lock(&drvdata->spinlock);
561         drvdata->mode = val & ETM_MODE_ALL;
562
563         if (drvdata->mode & ETM_MODE_EXCLUDE)
564                 drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
565         else
566                 drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;
567
568         if (drvdata->mode & ETM_MODE_CYCACC)
569                 drvdata->ctrl |= ETMCR_CYC_ACC;
570         else
571                 drvdata->ctrl &= ~ETMCR_CYC_ACC;
572
573         if (drvdata->mode & ETM_MODE_STALL) {
574                 if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
575                         dev_warn(drvdata->dev, "stall mode not supported\n");
576                         return -EINVAL;
577                 }
578                 drvdata->ctrl |= ETMCR_STALL_MODE;
579          } else
580                 drvdata->ctrl &= ~ETMCR_STALL_MODE;
581
582         if (drvdata->mode & ETM_MODE_TIMESTAMP) {
583                 if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
584                         dev_warn(drvdata->dev, "timestamp not supported\n");
585                         return -EINVAL;
586                 }
587                 drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
588         } else
589                 drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;
590
591         if (drvdata->mode & ETM_MODE_CTXID)
592                 drvdata->ctrl |= ETMCR_CTXID_SIZE;
593         else
594                 drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
595         spin_unlock(&drvdata->spinlock);
596
597         return size;
598 }
599 static DEVICE_ATTR_RW(mode);
600
601 static ssize_t trigger_event_show(struct device *dev,
602                                   struct device_attribute *attr, char *buf)
603 {
604         unsigned long val;
605         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
606
607         val = drvdata->trigger_event;
608         return sprintf(buf, "%#lx\n", val);
609 }
610
611 static ssize_t trigger_event_store(struct device *dev,
612                                    struct device_attribute *attr,
613                                    const char *buf, size_t size)
614 {
615         int ret;
616         unsigned long val;
617         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
618
619         ret = kstrtoul(buf, 16, &val);
620         if (ret)
621                 return ret;
622
623         drvdata->trigger_event = val & ETM_EVENT_MASK;
624
625         return size;
626 }
627 static DEVICE_ATTR_RW(trigger_event);
628
629 static ssize_t enable_event_show(struct device *dev,
630                                  struct device_attribute *attr, char *buf)
631 {
632         unsigned long val;
633         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
634
635         val = drvdata->enable_event;
636         return sprintf(buf, "%#lx\n", val);
637 }
638
639 static ssize_t enable_event_store(struct device *dev,
640                                   struct device_attribute *attr,
641                                   const char *buf, size_t size)
642 {
643         int ret;
644         unsigned long val;
645         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
646
647         ret = kstrtoul(buf, 16, &val);
648         if (ret)
649                 return ret;
650
651         drvdata->enable_event = val & ETM_EVENT_MASK;
652
653         return size;
654 }
655 static DEVICE_ATTR_RW(enable_event);
656
657 static ssize_t fifofull_level_show(struct device *dev,
658                                    struct device_attribute *attr, char *buf)
659 {
660         unsigned long val;
661         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
662
663         val = drvdata->fifofull_level;
664         return sprintf(buf, "%#lx\n", val);
665 }
666
667 static ssize_t fifofull_level_store(struct device *dev,
668                                     struct device_attribute *attr,
669                                     const char *buf, size_t size)
670 {
671         int ret;
672         unsigned long val;
673         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
674
675         ret = kstrtoul(buf, 16, &val);
676         if (ret)
677                 return ret;
678
679         drvdata->fifofull_level = val;
680
681         return size;
682 }
683 static DEVICE_ATTR_RW(fifofull_level);
684
685 static ssize_t addr_idx_show(struct device *dev,
686                              struct device_attribute *attr, char *buf)
687 {
688         unsigned long val;
689         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
690
691         val = drvdata->addr_idx;
692         return sprintf(buf, "%#lx\n", val);
693 }
694
695 static ssize_t addr_idx_store(struct device *dev,
696                               struct device_attribute *attr,
697                               const char *buf, size_t size)
698 {
699         int ret;
700         unsigned long val;
701         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
702
703         ret = kstrtoul(buf, 16, &val);
704         if (ret)
705                 return ret;
706
707         if (val >= drvdata->nr_addr_cmp)
708                 return -EINVAL;
709
710         /*
711          * Use spinlock to ensure index doesn't change while it gets
712          * dereferenced multiple times within a spinlock block elsewhere.
713          */
714         spin_lock(&drvdata->spinlock);
715         drvdata->addr_idx = val;
716         spin_unlock(&drvdata->spinlock);
717
718         return size;
719 }
720 static DEVICE_ATTR_RW(addr_idx);
721
722 static ssize_t addr_single_show(struct device *dev,
723                                 struct device_attribute *attr, char *buf)
724 {
725         u8 idx;
726         unsigned long val;
727         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
728
729         spin_lock(&drvdata->spinlock);
730         idx = drvdata->addr_idx;
731         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
732               drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
733                 spin_unlock(&drvdata->spinlock);
734                 return -EINVAL;
735         }
736
737         val = drvdata->addr_val[idx];
738         spin_unlock(&drvdata->spinlock);
739
740         return sprintf(buf, "%#lx\n", val);
741 }
742
743 static ssize_t addr_single_store(struct device *dev,
744                                  struct device_attribute *attr,
745                                  const char *buf, size_t size)
746 {
747         u8 idx;
748         int ret;
749         unsigned long val;
750         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
751
752         ret = kstrtoul(buf, 16, &val);
753         if (ret)
754                 return ret;
755
756         spin_lock(&drvdata->spinlock);
757         idx = drvdata->addr_idx;
758         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
759               drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
760                 spin_unlock(&drvdata->spinlock);
761                 return -EINVAL;
762         }
763
764         drvdata->addr_val[idx] = val;
765         drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
766         spin_unlock(&drvdata->spinlock);
767
768         return size;
769 }
770 static DEVICE_ATTR_RW(addr_single);
771
772 static ssize_t addr_range_show(struct device *dev,
773                                struct device_attribute *attr, char *buf)
774 {
775         u8 idx;
776         unsigned long val1, val2;
777         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
778
779         spin_lock(&drvdata->spinlock);
780         idx = drvdata->addr_idx;
781         if (idx % 2 != 0) {
782                 spin_unlock(&drvdata->spinlock);
783                 return -EPERM;
784         }
785         if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
786                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
787               (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
788                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
789                 spin_unlock(&drvdata->spinlock);
790                 return -EPERM;
791         }
792
793         val1 = drvdata->addr_val[idx];
794         val2 = drvdata->addr_val[idx + 1];
795         spin_unlock(&drvdata->spinlock);
796
797         return sprintf(buf, "%#lx %#lx\n", val1, val2);
798 }
799
800 static ssize_t addr_range_store(struct device *dev,
801                               struct device_attribute *attr,
802                               const char *buf, size_t size)
803 {
804         u8 idx;
805         unsigned long val1, val2;
806         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
807
808         if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
809                 return -EINVAL;
810         /* Lower address comparator cannot have a higher address value */
811         if (val1 > val2)
812                 return -EINVAL;
813
814         spin_lock(&drvdata->spinlock);
815         idx = drvdata->addr_idx;
816         if (idx % 2 != 0) {
817                 spin_unlock(&drvdata->spinlock);
818                 return -EPERM;
819         }
820         if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
821                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
822               (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
823                drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
824                 spin_unlock(&drvdata->spinlock);
825                 return -EPERM;
826         }
827
828         drvdata->addr_val[idx] = val1;
829         drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
830         drvdata->addr_val[idx + 1] = val2;
831         drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
832         drvdata->enable_ctrl1 |= (1 << (idx/2));
833         spin_unlock(&drvdata->spinlock);
834
835         return size;
836 }
837 static DEVICE_ATTR_RW(addr_range);
838
839 static ssize_t addr_start_show(struct device *dev,
840                                struct device_attribute *attr, char *buf)
841 {
842         u8 idx;
843         unsigned long val;
844         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
845
846         spin_lock(&drvdata->spinlock);
847         idx = drvdata->addr_idx;
848         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
849               drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
850                 spin_unlock(&drvdata->spinlock);
851                 return -EPERM;
852         }
853
854         val = drvdata->addr_val[idx];
855         spin_unlock(&drvdata->spinlock);
856
857         return sprintf(buf, "%#lx\n", val);
858 }
859
860 static ssize_t addr_start_store(struct device *dev,
861                                 struct device_attribute *attr,
862                                 const char *buf, size_t size)
863 {
864         u8 idx;
865         int ret;
866         unsigned long val;
867         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
868
869         ret = kstrtoul(buf, 16, &val);
870         if (ret)
871                 return ret;
872
873         spin_lock(&drvdata->spinlock);
874         idx = drvdata->addr_idx;
875         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
876               drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
877                 spin_unlock(&drvdata->spinlock);
878                 return -EPERM;
879         }
880
881         drvdata->addr_val[idx] = val;
882         drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
883         drvdata->startstop_ctrl |= (1 << idx);
884         drvdata->enable_ctrl1 |= BIT(25);
885         spin_unlock(&drvdata->spinlock);
886
887         return size;
888 }
889 static DEVICE_ATTR_RW(addr_start);
890
891 static ssize_t addr_stop_show(struct device *dev,
892                               struct device_attribute *attr, char *buf)
893 {
894         u8 idx;
895         unsigned long val;
896         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
897
898         spin_lock(&drvdata->spinlock);
899         idx = drvdata->addr_idx;
900         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
901               drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
902                 spin_unlock(&drvdata->spinlock);
903                 return -EPERM;
904         }
905
906         val = drvdata->addr_val[idx];
907         spin_unlock(&drvdata->spinlock);
908
909         return sprintf(buf, "%#lx\n", val);
910 }
911
912 static ssize_t addr_stop_store(struct device *dev,
913                                struct device_attribute *attr,
914                                const char *buf, size_t size)
915 {
916         u8 idx;
917         int ret;
918         unsigned long val;
919         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
920
921         ret = kstrtoul(buf, 16, &val);
922         if (ret)
923                 return ret;
924
925         spin_lock(&drvdata->spinlock);
926         idx = drvdata->addr_idx;
927         if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
928               drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
929                 spin_unlock(&drvdata->spinlock);
930                 return -EPERM;
931         }
932
933         drvdata->addr_val[idx] = val;
934         drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
935         drvdata->startstop_ctrl |= (1 << (idx + 16));
936         drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
937         spin_unlock(&drvdata->spinlock);
938
939         return size;
940 }
941 static DEVICE_ATTR_RW(addr_stop);
942
943 static ssize_t addr_acctype_show(struct device *dev,
944                                  struct device_attribute *attr, char *buf)
945 {
946         unsigned long val;
947         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
948
949         spin_lock(&drvdata->spinlock);
950         val = drvdata->addr_acctype[drvdata->addr_idx];
951         spin_unlock(&drvdata->spinlock);
952
953         return sprintf(buf, "%#lx\n", val);
954 }
955
956 static ssize_t addr_acctype_store(struct device *dev,
957                                   struct device_attribute *attr,
958                                   const char *buf, size_t size)
959 {
960         int ret;
961         unsigned long val;
962         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
963
964         ret = kstrtoul(buf, 16, &val);
965         if (ret)
966                 return ret;
967
968         spin_lock(&drvdata->spinlock);
969         drvdata->addr_acctype[drvdata->addr_idx] = val;
970         spin_unlock(&drvdata->spinlock);
971
972         return size;
973 }
974 static DEVICE_ATTR_RW(addr_acctype);
975
976 static ssize_t cntr_idx_show(struct device *dev,
977                              struct device_attribute *attr, char *buf)
978 {
979         unsigned long val;
980         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
981
982         val = drvdata->cntr_idx;
983         return sprintf(buf, "%#lx\n", val);
984 }
985
986 static ssize_t cntr_idx_store(struct device *dev,
987                               struct device_attribute *attr,
988                               const char *buf, size_t size)
989 {
990         int ret;
991         unsigned long val;
992         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
993
994         ret = kstrtoul(buf, 16, &val);
995         if (ret)
996                 return ret;
997
998         if (val >= drvdata->nr_cntr)
999                 return -EINVAL;
1000         /*
1001          * Use spinlock to ensure index doesn't change while it gets
1002          * dereferenced multiple times within a spinlock block elsewhere.
1003          */
1004         spin_lock(&drvdata->spinlock);
1005         drvdata->cntr_idx = val;
1006         spin_unlock(&drvdata->spinlock);
1007
1008         return size;
1009 }
1010 static DEVICE_ATTR_RW(cntr_idx);
1011
1012 static ssize_t cntr_rld_val_show(struct device *dev,
1013                                  struct device_attribute *attr, char *buf)
1014 {
1015         unsigned long val;
1016         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1017
1018         spin_lock(&drvdata->spinlock);
1019         val = drvdata->cntr_rld_val[drvdata->cntr_idx];
1020         spin_unlock(&drvdata->spinlock);
1021
1022         return sprintf(buf, "%#lx\n", val);
1023 }
1024
1025 static ssize_t cntr_rld_val_store(struct device *dev,
1026                                   struct device_attribute *attr,
1027                                   const char *buf, size_t size)
1028 {
1029         int ret;
1030         unsigned long val;
1031         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1032
1033         ret = kstrtoul(buf, 16, &val);
1034         if (ret)
1035                 return ret;
1036
1037         spin_lock(&drvdata->spinlock);
1038         drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
1039         spin_unlock(&drvdata->spinlock);
1040
1041         return size;
1042 }
1043 static DEVICE_ATTR_RW(cntr_rld_val);
1044
1045 static ssize_t cntr_event_show(struct device *dev,
1046                                struct device_attribute *attr, char *buf)
1047 {
1048         unsigned long val;
1049         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1050
1051         spin_lock(&drvdata->spinlock);
1052         val = drvdata->cntr_event[drvdata->cntr_idx];
1053         spin_unlock(&drvdata->spinlock);
1054
1055         return sprintf(buf, "%#lx\n", val);
1056 }
1057
1058 static ssize_t cntr_event_store(struct device *dev,
1059                                 struct device_attribute *attr,
1060                                 const char *buf, size_t size)
1061 {
1062         int ret;
1063         unsigned long val;
1064         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1065
1066         ret = kstrtoul(buf, 16, &val);
1067         if (ret)
1068                 return ret;
1069
1070         spin_lock(&drvdata->spinlock);
1071         drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
1072         spin_unlock(&drvdata->spinlock);
1073
1074         return size;
1075 }
1076 static DEVICE_ATTR_RW(cntr_event);
1077
1078 static ssize_t cntr_rld_event_show(struct device *dev,
1079                                    struct device_attribute *attr, char *buf)
1080 {
1081         unsigned long val;
1082         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1083
1084         spin_lock(&drvdata->spinlock);
1085         val = drvdata->cntr_rld_event[drvdata->cntr_idx];
1086         spin_unlock(&drvdata->spinlock);
1087
1088         return sprintf(buf, "%#lx\n", val);
1089 }
1090
1091 static ssize_t cntr_rld_event_store(struct device *dev,
1092                                     struct device_attribute *attr,
1093                                     const char *buf, size_t size)
1094 {
1095         int ret;
1096         unsigned long val;
1097         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1098
1099         ret = kstrtoul(buf, 16, &val);
1100         if (ret)
1101                 return ret;
1102
1103         spin_lock(&drvdata->spinlock);
1104         drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
1105         spin_unlock(&drvdata->spinlock);
1106
1107         return size;
1108 }
1109 static DEVICE_ATTR_RW(cntr_rld_event);
1110
1111 static ssize_t cntr_val_show(struct device *dev,
1112                              struct device_attribute *attr, char *buf)
1113 {
1114         int i, ret = 0;
1115         u32 val;
1116         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1117
1118         if (!drvdata->enable) {
1119                 spin_lock(&drvdata->spinlock);
1120                 for (i = 0; i < drvdata->nr_cntr; i++)
1121                         ret += sprintf(buf, "counter %d: %x\n",
1122                                        i, drvdata->cntr_val[i]);
1123                 spin_unlock(&drvdata->spinlock);
1124                 return ret;
1125         }
1126
1127         for (i = 0; i < drvdata->nr_cntr; i++) {
1128                 val = etm_readl(drvdata, ETMCNTVRn(i));
1129                 ret += sprintf(buf, "counter %d: %x\n", i, val);
1130         }
1131
1132         return ret;
1133 }
1134
1135 static ssize_t cntr_val_store(struct device *dev,
1136                               struct device_attribute *attr,
1137                               const char *buf, size_t size)
1138 {
1139         int ret;
1140         unsigned long val;
1141         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1142
1143         ret = kstrtoul(buf, 16, &val);
1144         if (ret)
1145                 return ret;
1146
1147         spin_lock(&drvdata->spinlock);
1148         drvdata->cntr_val[drvdata->cntr_idx] = val;
1149         spin_unlock(&drvdata->spinlock);
1150
1151         return size;
1152 }
1153 static DEVICE_ATTR_RW(cntr_val);
1154
1155 static ssize_t seq_12_event_show(struct device *dev,
1156                                  struct device_attribute *attr, char *buf)
1157 {
1158         unsigned long val;
1159         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1160
1161         val = drvdata->seq_12_event;
1162         return sprintf(buf, "%#lx\n", val);
1163 }
1164
1165 static ssize_t seq_12_event_store(struct device *dev,
1166                                   struct device_attribute *attr,
1167                                   const char *buf, size_t size)
1168 {
1169         int ret;
1170         unsigned long val;
1171         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1172
1173         ret = kstrtoul(buf, 16, &val);
1174         if (ret)
1175                 return ret;
1176
1177         drvdata->seq_12_event = val & ETM_EVENT_MASK;
1178         return size;
1179 }
1180 static DEVICE_ATTR_RW(seq_12_event);
1181
1182 static ssize_t seq_21_event_show(struct device *dev,
1183                                  struct device_attribute *attr, char *buf)
1184 {
1185         unsigned long val;
1186         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1187
1188         val = drvdata->seq_21_event;
1189         return sprintf(buf, "%#lx\n", val);
1190 }
1191
1192 static ssize_t seq_21_event_store(struct device *dev,
1193                                   struct device_attribute *attr,
1194                                   const char *buf, size_t size)
1195 {
1196         int ret;
1197         unsigned long val;
1198         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1199
1200         ret = kstrtoul(buf, 16, &val);
1201         if (ret)
1202                 return ret;
1203
1204         drvdata->seq_21_event = val & ETM_EVENT_MASK;
1205         return size;
1206 }
1207 static DEVICE_ATTR_RW(seq_21_event);
1208
1209 static ssize_t seq_23_event_show(struct device *dev,
1210                                  struct device_attribute *attr, char *buf)
1211 {
1212         unsigned long val;
1213         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1214
1215         val = drvdata->seq_23_event;
1216         return sprintf(buf, "%#lx\n", val);
1217 }
1218
1219 static ssize_t seq_23_event_store(struct device *dev,
1220                                   struct device_attribute *attr,
1221                                   const char *buf, size_t size)
1222 {
1223         int ret;
1224         unsigned long val;
1225         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1226
1227         ret = kstrtoul(buf, 16, &val);
1228         if (ret)
1229                 return ret;
1230
1231         drvdata->seq_23_event = val & ETM_EVENT_MASK;
1232         return size;
1233 }
1234 static DEVICE_ATTR_RW(seq_23_event);
1235
1236 static ssize_t seq_31_event_show(struct device *dev,
1237                                  struct device_attribute *attr, char *buf)
1238 {
1239         unsigned long val;
1240         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1241
1242         val = drvdata->seq_31_event;
1243         return sprintf(buf, "%#lx\n", val);
1244 }
1245
1246 static ssize_t seq_31_event_store(struct device *dev,
1247                                   struct device_attribute *attr,
1248                                   const char *buf, size_t size)
1249 {
1250         int ret;
1251         unsigned long val;
1252         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1253
1254         ret = kstrtoul(buf, 16, &val);
1255         if (ret)
1256                 return ret;
1257
1258         drvdata->seq_31_event = val & ETM_EVENT_MASK;
1259         return size;
1260 }
1261 static DEVICE_ATTR_RW(seq_31_event);
1262
1263 static ssize_t seq_32_event_show(struct device *dev,
1264                                  struct device_attribute *attr, char *buf)
1265 {
1266         unsigned long val;
1267         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1268
1269         val = drvdata->seq_32_event;
1270         return sprintf(buf, "%#lx\n", val);
1271 }
1272
1273 static ssize_t seq_32_event_store(struct device *dev,
1274                                   struct device_attribute *attr,
1275                                   const char *buf, size_t size)
1276 {
1277         int ret;
1278         unsigned long val;
1279         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1280
1281         ret = kstrtoul(buf, 16, &val);
1282         if (ret)
1283                 return ret;
1284
1285         drvdata->seq_32_event = val & ETM_EVENT_MASK;
1286         return size;
1287 }
1288 static DEVICE_ATTR_RW(seq_32_event);
1289
1290 static ssize_t seq_13_event_show(struct device *dev,
1291                                  struct device_attribute *attr, char *buf)
1292 {
1293         unsigned long val;
1294         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1295
1296         val = drvdata->seq_13_event;
1297         return sprintf(buf, "%#lx\n", val);
1298 }
1299
1300 static ssize_t seq_13_event_store(struct device *dev,
1301                                   struct device_attribute *attr,
1302                                   const char *buf, size_t size)
1303 {
1304         int ret;
1305         unsigned long val;
1306         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1307
1308         ret = kstrtoul(buf, 16, &val);
1309         if (ret)
1310                 return ret;
1311
1312         drvdata->seq_13_event = val & ETM_EVENT_MASK;
1313         return size;
1314 }
1315 static DEVICE_ATTR_RW(seq_13_event);
1316
1317 static ssize_t seq_curr_state_show(struct device *dev,
1318                                    struct device_attribute *attr, char *buf)
1319 {
1320         int ret;
1321         unsigned long val, flags;
1322         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1323
1324         if (!drvdata->enable) {
1325                 val = drvdata->seq_curr_state;
1326                 goto out;
1327         }
1328
1329         ret = clk_prepare_enable(drvdata->clk);
1330         if (ret)
1331                 return ret;
1332
1333         spin_lock_irqsave(&drvdata->spinlock, flags);
1334
1335         CS_UNLOCK(drvdata->base);
1336         val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
1337         CS_LOCK(drvdata->base);
1338
1339         spin_unlock_irqrestore(&drvdata->spinlock, flags);
1340         clk_disable_unprepare(drvdata->clk);
1341 out:
1342         return sprintf(buf, "%#lx\n", val);
1343 }
1344
1345 static ssize_t seq_curr_state_store(struct device *dev,
1346                                     struct device_attribute *attr,
1347                                     const char *buf, size_t size)
1348 {
1349         int ret;
1350         unsigned long val;
1351         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1352
1353         ret = kstrtoul(buf, 16, &val);
1354         if (ret)
1355                 return ret;
1356
1357         if (val > ETM_SEQ_STATE_MAX_VAL)
1358                 return -EINVAL;
1359
1360         drvdata->seq_curr_state = val;
1361
1362         return size;
1363 }
1364 static DEVICE_ATTR_RW(seq_curr_state);
1365
1366 static ssize_t ctxid_idx_show(struct device *dev,
1367                               struct device_attribute *attr, char *buf)
1368 {
1369         unsigned long val;
1370         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1371
1372         val = drvdata->ctxid_idx;
1373         return sprintf(buf, "%#lx\n", val);
1374 }
1375
1376 static ssize_t ctxid_idx_store(struct device *dev,
1377                                 struct device_attribute *attr,
1378                                 const char *buf, size_t size)
1379 {
1380         int ret;
1381         unsigned long val;
1382         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1383
1384         ret = kstrtoul(buf, 16, &val);
1385         if (ret)
1386                 return ret;
1387
1388         if (val >= drvdata->nr_ctxid_cmp)
1389                 return -EINVAL;
1390
1391         /*
1392          * Use spinlock to ensure index doesn't change while it gets
1393          * dereferenced multiple times within a spinlock block elsewhere.
1394          */
1395         spin_lock(&drvdata->spinlock);
1396         drvdata->ctxid_idx = val;
1397         spin_unlock(&drvdata->spinlock);
1398
1399         return size;
1400 }
1401 static DEVICE_ATTR_RW(ctxid_idx);
1402
1403 static ssize_t ctxid_val_show(struct device *dev,
1404                               struct device_attribute *attr, char *buf)
1405 {
1406         unsigned long val;
1407         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1408
1409         spin_lock(&drvdata->spinlock);
1410         val = drvdata->ctxid_val[drvdata->ctxid_idx];
1411         spin_unlock(&drvdata->spinlock);
1412
1413         return sprintf(buf, "%#lx\n", val);
1414 }
1415
1416 static ssize_t ctxid_val_store(struct device *dev,
1417                                struct device_attribute *attr,
1418                                const char *buf, size_t size)
1419 {
1420         int ret;
1421         unsigned long val;
1422         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1423
1424         ret = kstrtoul(buf, 16, &val);
1425         if (ret)
1426                 return ret;
1427
1428         spin_lock(&drvdata->spinlock);
1429         drvdata->ctxid_val[drvdata->ctxid_idx] = val;
1430         spin_unlock(&drvdata->spinlock);
1431
1432         return size;
1433 }
1434 static DEVICE_ATTR_RW(ctxid_val);
1435
1436 static ssize_t ctxid_mask_show(struct device *dev,
1437                                struct device_attribute *attr, char *buf)
1438 {
1439         unsigned long val;
1440         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1441
1442         val = drvdata->ctxid_mask;
1443         return sprintf(buf, "%#lx\n", val);
1444 }
1445
1446 static ssize_t ctxid_mask_store(struct device *dev,
1447                                 struct device_attribute *attr,
1448                                 const char *buf, size_t size)
1449 {
1450         int ret;
1451         unsigned long val;
1452         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1453
1454         ret = kstrtoul(buf, 16, &val);
1455         if (ret)
1456                 return ret;
1457
1458         drvdata->ctxid_mask = val;
1459         return size;
1460 }
1461 static DEVICE_ATTR_RW(ctxid_mask);
1462
1463 static ssize_t sync_freq_show(struct device *dev,
1464                               struct device_attribute *attr, char *buf)
1465 {
1466         unsigned long val;
1467         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1468
1469         val = drvdata->sync_freq;
1470         return sprintf(buf, "%#lx\n", val);
1471 }
1472
1473 static ssize_t sync_freq_store(struct device *dev,
1474                                struct device_attribute *attr,
1475                                const char *buf, size_t size)
1476 {
1477         int ret;
1478         unsigned long val;
1479         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1480
1481         ret = kstrtoul(buf, 16, &val);
1482         if (ret)
1483                 return ret;
1484
1485         drvdata->sync_freq = val & ETM_SYNC_MASK;
1486         return size;
1487 }
1488 static DEVICE_ATTR_RW(sync_freq);
1489
1490 static ssize_t timestamp_event_show(struct device *dev,
1491                                     struct device_attribute *attr, char *buf)
1492 {
1493         unsigned long val;
1494         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1495
1496         val = drvdata->timestamp_event;
1497         return sprintf(buf, "%#lx\n", val);
1498 }
1499
1500 static ssize_t timestamp_event_store(struct device *dev,
1501                                      struct device_attribute *attr,
1502                                      const char *buf, size_t size)
1503 {
1504         int ret;
1505         unsigned long val;
1506         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1507
1508         ret = kstrtoul(buf, 16, &val);
1509         if (ret)
1510                 return ret;
1511
1512         drvdata->timestamp_event = val & ETM_EVENT_MASK;
1513         return size;
1514 }
1515 static DEVICE_ATTR_RW(timestamp_event);
1516
1517 static ssize_t status_show(struct device *dev,
1518                            struct device_attribute *attr, char *buf)
1519 {
1520         int ret;
1521         unsigned long flags;
1522         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1523
1524         ret = clk_prepare_enable(drvdata->clk);
1525         if (ret)
1526                 return ret;
1527
1528         spin_lock_irqsave(&drvdata->spinlock, flags);
1529
1530         CS_UNLOCK(drvdata->base);
1531         ret = sprintf(buf,
1532                       "ETMCCR: 0x%08x\n"
1533                       "ETMCCER: 0x%08x\n"
1534                       "ETMSCR: 0x%08x\n"
1535                       "ETMIDR: 0x%08x\n"
1536                       "ETMCR: 0x%08x\n"
1537                       "ETMTRACEIDR: 0x%08x\n"
1538                       "Enable event: 0x%08x\n"
1539                       "Enable start/stop: 0x%08x\n"
1540                       "Enable control: CR1 0x%08x CR2 0x%08x\n"
1541                       "CPU affinity: %d\n",
1542                       drvdata->etmccr, drvdata->etmccer,
1543                       etm_readl(drvdata, ETMSCR), etm_readl(drvdata, ETMIDR),
1544                       etm_readl(drvdata, ETMCR), etm_trace_id_simple(drvdata),
1545                       etm_readl(drvdata, ETMTEEVR),
1546                       etm_readl(drvdata, ETMTSSCR),
1547                       etm_readl(drvdata, ETMTECR1),
1548                       etm_readl(drvdata, ETMTECR2),
1549                       drvdata->cpu);
1550         CS_LOCK(drvdata->base);
1551
1552         spin_unlock_irqrestore(&drvdata->spinlock, flags);
1553         clk_disable_unprepare(drvdata->clk);
1554
1555         return ret;
1556 }
1557 static DEVICE_ATTR_RO(status);
1558
1559 static ssize_t traceid_show(struct device *dev,
1560                             struct device_attribute *attr, char *buf)
1561 {
1562         int ret;
1563         unsigned long val, flags;
1564         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1565
1566         if (!drvdata->enable) {
1567                 val = drvdata->traceid;
1568                 goto out;
1569         }
1570
1571         ret = clk_prepare_enable(drvdata->clk);
1572         if (ret)
1573                 return ret;
1574
1575         spin_lock_irqsave(&drvdata->spinlock, flags);
1576         CS_UNLOCK(drvdata->base);
1577
1578         val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
1579
1580         CS_LOCK(drvdata->base);
1581         spin_unlock_irqrestore(&drvdata->spinlock, flags);
1582         clk_disable_unprepare(drvdata->clk);
1583 out:
1584         return sprintf(buf, "%#lx\n", val);
1585 }
1586
1587 static ssize_t traceid_store(struct device *dev,
1588                              struct device_attribute *attr,
1589                              const char *buf, size_t size)
1590 {
1591         int ret;
1592         unsigned long val;
1593         struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
1594
1595         ret = kstrtoul(buf, 16, &val);
1596         if (ret)
1597                 return ret;
1598
1599         drvdata->traceid = val & ETM_TRACEID_MASK;
1600         return size;
1601 }
1602 static DEVICE_ATTR_RW(traceid);
1603
1604 static struct attribute *coresight_etm_attrs[] = {
1605         &dev_attr_nr_addr_cmp.attr,
1606         &dev_attr_nr_cntr.attr,
1607         &dev_attr_nr_ctxid_cmp.attr,
1608         &dev_attr_etmsr.attr,
1609         &dev_attr_reset.attr,
1610         &dev_attr_mode.attr,
1611         &dev_attr_trigger_event.attr,
1612         &dev_attr_enable_event.attr,
1613         &dev_attr_fifofull_level.attr,
1614         &dev_attr_addr_idx.attr,
1615         &dev_attr_addr_single.attr,
1616         &dev_attr_addr_range.attr,
1617         &dev_attr_addr_start.attr,
1618         &dev_attr_addr_stop.attr,
1619         &dev_attr_addr_acctype.attr,
1620         &dev_attr_cntr_idx.attr,
1621         &dev_attr_cntr_rld_val.attr,
1622         &dev_attr_cntr_event.attr,
1623         &dev_attr_cntr_rld_event.attr,
1624         &dev_attr_cntr_val.attr,
1625         &dev_attr_seq_12_event.attr,
1626         &dev_attr_seq_21_event.attr,
1627         &dev_attr_seq_23_event.attr,
1628         &dev_attr_seq_31_event.attr,
1629         &dev_attr_seq_32_event.attr,
1630         &dev_attr_seq_13_event.attr,
1631         &dev_attr_seq_curr_state.attr,
1632         &dev_attr_ctxid_idx.attr,
1633         &dev_attr_ctxid_val.attr,
1634         &dev_attr_ctxid_mask.attr,
1635         &dev_attr_sync_freq.attr,
1636         &dev_attr_timestamp_event.attr,
1637         &dev_attr_status.attr,
1638         &dev_attr_traceid.attr,
1639         NULL,
1640 };
1641 ATTRIBUTE_GROUPS(coresight_etm);
1642
1643 static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
1644                             void *hcpu)
1645 {
1646         unsigned int cpu = (unsigned long)hcpu;
1647
1648         if (!etmdrvdata[cpu])
1649                 goto out;
1650
1651         switch (action & (~CPU_TASKS_FROZEN)) {
1652         case CPU_STARTING:
1653                 spin_lock(&etmdrvdata[cpu]->spinlock);
1654                 if (!etmdrvdata[cpu]->os_unlock) {
1655                         etm_os_unlock(etmdrvdata[cpu]);
1656                         etmdrvdata[cpu]->os_unlock = true;
1657                 }
1658
1659                 if (etmdrvdata[cpu]->enable)
1660                         etm_enable_hw(etmdrvdata[cpu]);
1661                 spin_unlock(&etmdrvdata[cpu]->spinlock);
1662                 break;
1663
1664         case CPU_ONLINE:
1665                 if (etmdrvdata[cpu]->boot_enable &&
1666                     !etmdrvdata[cpu]->sticky_enable)
1667                         coresight_enable(etmdrvdata[cpu]->csdev);
1668                 break;
1669
1670         case CPU_DYING:
1671                 spin_lock(&etmdrvdata[cpu]->spinlock);
1672                 if (etmdrvdata[cpu]->enable)
1673                         etm_disable_hw(etmdrvdata[cpu]);
1674                 spin_unlock(&etmdrvdata[cpu]->spinlock);
1675                 break;
1676         }
1677 out:
1678         return NOTIFY_OK;
1679 }
1680
1681 static struct notifier_block etm_cpu_notifier = {
1682         .notifier_call = etm_cpu_callback,
1683 };
1684
1685 static bool etm_arch_supported(u8 arch)
1686 {
1687         switch (arch) {
1688         case ETM_ARCH_V3_3:
1689                 break;
1690         case ETM_ARCH_V3_5:
1691                 break;
1692         case PFT_ARCH_V1_0:
1693                 break;
1694         case PFT_ARCH_V1_1:
1695                 break;
1696         default:
1697                 return false;
1698         }
1699         return true;
1700 }
1701
1702 static void etm_init_arch_data(void *info)
1703 {
1704         u32 etmidr;
1705         u32 etmccr;
1706         struct etm_drvdata *drvdata = info;
1707
1708         CS_UNLOCK(drvdata->base);
1709
1710         /* First dummy read */
1711         (void)etm_readl(drvdata, ETMPDSR);
1712         /* Provide power to ETM: ETMPDCR[3] == 1 */
1713         etm_set_pwrup(drvdata);
1714         /*
1715          * Clear power down bit since when this bit is set writes to
1716          * certain registers might be ignored.
1717          */
1718         etm_clr_pwrdwn(drvdata);
1719         /*
1720          * Set prog bit. It will be set from reset but this is included to
1721          * ensure it is set
1722          */
1723         etm_set_prog(drvdata);
1724
1725         /* Find all capabilities */
1726         etmidr = etm_readl(drvdata, ETMIDR);
1727         drvdata->arch = BMVAL(etmidr, 4, 11);
1728         drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;
1729
1730         drvdata->etmccer = etm_readl(drvdata, ETMCCER);
1731         etmccr = etm_readl(drvdata, ETMCCR);
1732         drvdata->etmccr = etmccr;
1733         drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
1734         drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
1735         drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
1736         drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
1737         drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
1738
1739         etm_set_pwrdwn(drvdata);
1740         etm_clr_pwrup(drvdata);
1741         CS_LOCK(drvdata->base);
1742 }
1743
1744 static void etm_init_default_data(struct etm_drvdata *drvdata)
1745 {
1746         static int etm3x_traceid;
1747
1748         u32 flags = (1 << 0 | /* instruction execute*/
1749                      3 << 3 | /* ARM instruction */
1750                      0 << 5 | /* No data value comparison */
1751                      0 << 7 | /* No exact mach */
1752                      0 << 8 | /* Ignore context ID */
1753                      0 << 10); /* Security ignored */
1754
1755         /*
1756          * Initial configuration only - guarantees sources handled by
1757          * this driver have a unique ID at startup time but not between
1758          * all other types of sources.  For that we lean on the core
1759          * framework.
1760          */
1761         drvdata->traceid = etm3x_traceid++;
1762         drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
1763         drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
1764         if (drvdata->nr_addr_cmp >= 2) {
1765                 drvdata->addr_val[0] = (u32) _stext;
1766                 drvdata->addr_val[1] = (u32) _etext;
1767                 drvdata->addr_acctype[0] = flags;
1768                 drvdata->addr_acctype[1] = flags;
1769                 drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
1770                 drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
1771         }
1772
1773         etm_set_default(drvdata);
1774 }
1775
1776 static int etm_probe(struct amba_device *adev, const struct amba_id *id)
1777 {
1778         int ret;
1779         void __iomem *base;
1780         struct device *dev = &adev->dev;
1781         struct coresight_platform_data *pdata = NULL;
1782         struct etm_drvdata *drvdata;
1783         struct resource *res = &adev->res;
1784         struct coresight_desc *desc;
1785         struct device_node *np = adev->dev.of_node;
1786
1787         desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
1788         if (!desc)
1789                 return -ENOMEM;
1790
1791         drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
1792         if (!drvdata)
1793                 return -ENOMEM;
1794
1795         if (np) {
1796                 pdata = of_get_coresight_platform_data(dev, np);
1797                 if (IS_ERR(pdata))
1798                         return PTR_ERR(pdata);
1799
1800                 adev->dev.platform_data = pdata;
1801                 drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
1802         }
1803
1804         drvdata->dev = &adev->dev;
1805         dev_set_drvdata(dev, drvdata);
1806
1807         /* Validity for the resource is already checked by the AMBA core */
1808         base = devm_ioremap_resource(dev, res);
1809         if (IS_ERR(base))
1810                 return PTR_ERR(base);
1811
1812         drvdata->base = base;
1813
1814         spin_lock_init(&drvdata->spinlock);
1815
1816         drvdata->clk = adev->pclk;
1817         ret = clk_prepare_enable(drvdata->clk);
1818         if (ret)
1819                 return ret;
1820
1821         drvdata->cpu = pdata ? pdata->cpu : 0;
1822
1823         get_online_cpus();
1824         etmdrvdata[drvdata->cpu] = drvdata;
1825
1826         if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
1827                 drvdata->os_unlock = true;
1828
1829         if (smp_call_function_single(drvdata->cpu,
1830                                      etm_init_arch_data,  drvdata, 1))
1831                 dev_err(dev, "ETM arch init failed\n");
1832
1833         if (!etm_count++)
1834                 register_hotcpu_notifier(&etm_cpu_notifier);
1835
1836         put_online_cpus();
1837
1838         if (etm_arch_supported(drvdata->arch) == false) {
1839                 ret = -EINVAL;
1840                 goto err_arch_supported;
1841         }
1842         etm_init_default_data(drvdata);
1843
1844         clk_disable_unprepare(drvdata->clk);
1845
1846         desc->type = CORESIGHT_DEV_TYPE_SOURCE;
1847         desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
1848         desc->ops = &etm_cs_ops;
1849         desc->pdata = pdata;
1850         desc->dev = dev;
1851         desc->groups = coresight_etm_groups;
1852         drvdata->csdev = coresight_register(desc);
1853         if (IS_ERR(drvdata->csdev)) {
1854                 ret = PTR_ERR(drvdata->csdev);
1855                 goto err_arch_supported;
1856         }
1857
1858         dev_info(dev, "ETM initialized\n");
1859
1860         if (boot_enable) {
1861                 coresight_enable(drvdata->csdev);
1862                 drvdata->boot_enable = true;
1863         }
1864
1865         return 0;
1866
1867 err_arch_supported:
1868         clk_disable_unprepare(drvdata->clk);
1869         if (--etm_count == 0)
1870                 unregister_hotcpu_notifier(&etm_cpu_notifier);
1871         return ret;
1872 }
1873
1874 static int etm_remove(struct amba_device *adev)
1875 {
1876         struct etm_drvdata *drvdata = amba_get_drvdata(adev);
1877
1878         coresight_unregister(drvdata->csdev);
1879         if (--etm_count == 0)
1880                 unregister_hotcpu_notifier(&etm_cpu_notifier);
1881
1882         return 0;
1883 }
1884
1885 static struct amba_id etm_ids[] = {
1886         {       /* ETM 3.3 */
1887                 .id     = 0x0003b921,
1888                 .mask   = 0x0003ffff,
1889         },
1890         {       /* ETM 3.5 */
1891                 .id     = 0x0003b956,
1892                 .mask   = 0x0003ffff,
1893         },
1894         {       /* PTM 1.0 */
1895                 .id     = 0x0003b950,
1896                 .mask   = 0x0003ffff,
1897         },
1898         {       /* PTM 1.1 */
1899                 .id     = 0x0003b95f,
1900                 .mask   = 0x0003ffff,
1901         },
1902         { 0, 0},
1903 };
1904
1905 static struct amba_driver etm_driver = {
1906         .drv = {
1907                 .name   = "coresight-etm3x",
1908                 .owner  = THIS_MODULE,
1909         },
1910         .probe          = etm_probe,
1911         .remove         = etm_remove,
1912         .id_table       = etm_ids,
1913 };
1914
1915 int __init etm_init(void)
1916 {
1917         return amba_driver_register(&etm_driver);
1918 }
1919 module_init(etm_init);
1920
1921 void __exit etm_exit(void)
1922 {
1923         amba_driver_unregister(&etm_driver);
1924 }
1925 module_exit(etm_exit);
1926
1927 MODULE_LICENSE("GPL v2");
1928 MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");