Merge branch 'parisc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[cascardo/linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44
45 #include <acpi/processor.h>
46
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50
51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
52 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
53 MODULE_LICENSE("GPL");
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64
65 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
66
67 struct acpi_cpufreq_data {
68         unsigned int resume;
69         unsigned int cpu_feature;
70         unsigned int acpi_perf_cpu;
71         cpumask_var_t freqdomain_cpus;
72         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
73         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
74 };
75
76 /* acpi_perf_data is a pointer to percpu data. */
77 static struct acpi_processor_performance __percpu *acpi_perf_data;
78
79 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
80 {
81         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
82 }
83
84 static struct cpufreq_driver acpi_cpufreq_driver;
85
86 static unsigned int acpi_pstate_strict;
87 static struct msr __percpu *msrs;
88
89 static bool boost_state(unsigned int cpu)
90 {
91         u32 lo, hi;
92         u64 msr;
93
94         switch (boot_cpu_data.x86_vendor) {
95         case X86_VENDOR_INTEL:
96                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
97                 msr = lo | ((u64)hi << 32);
98                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
99         case X86_VENDOR_AMD:
100                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
101                 msr = lo | ((u64)hi << 32);
102                 return !(msr & MSR_K7_HWCR_CPB_DIS);
103         }
104         return false;
105 }
106
107 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
108 {
109         u32 cpu;
110         u32 msr_addr;
111         u64 msr_mask;
112
113         switch (boot_cpu_data.x86_vendor) {
114         case X86_VENDOR_INTEL:
115                 msr_addr = MSR_IA32_MISC_ENABLE;
116                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
117                 break;
118         case X86_VENDOR_AMD:
119                 msr_addr = MSR_K7_HWCR;
120                 msr_mask = MSR_K7_HWCR_CPB_DIS;
121                 break;
122         default:
123                 return;
124         }
125
126         rdmsr_on_cpus(cpumask, msr_addr, msrs);
127
128         for_each_cpu(cpu, cpumask) {
129                 struct msr *reg = per_cpu_ptr(msrs, cpu);
130                 if (enable)
131                         reg->q &= ~msr_mask;
132                 else
133                         reg->q |= msr_mask;
134         }
135
136         wrmsr_on_cpus(cpumask, msr_addr, msrs);
137 }
138
139 static int set_boost(int val)
140 {
141         get_online_cpus();
142         boost_set_msrs(val, cpu_online_mask);
143         put_online_cpus();
144         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
145
146         return 0;
147 }
148
149 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
150 {
151         struct acpi_cpufreq_data *data = policy->driver_data;
152
153         if (unlikely(!data))
154                 return -ENODEV;
155
156         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
157 }
158
159 cpufreq_freq_attr_ro(freqdomain_cpus);
160
161 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
162 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
163                          size_t count)
164 {
165         int ret;
166         unsigned int val = 0;
167
168         if (!acpi_cpufreq_driver.set_boost)
169                 return -EINVAL;
170
171         ret = kstrtouint(buf, 10, &val);
172         if (ret || val > 1)
173                 return -EINVAL;
174
175         set_boost(val);
176
177         return count;
178 }
179
180 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
181 {
182         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
183 }
184
185 cpufreq_freq_attr_rw(cpb);
186 #endif
187
188 static int check_est_cpu(unsigned int cpuid)
189 {
190         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
191
192         return cpu_has(cpu, X86_FEATURE_EST);
193 }
194
195 static int check_amd_hwpstate_cpu(unsigned int cpuid)
196 {
197         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
198
199         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
200 }
201
202 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
203 {
204         struct acpi_cpufreq_data *data = policy->driver_data;
205         struct acpi_processor_performance *perf;
206         int i;
207
208         perf = to_perf_data(data);
209
210         for (i = 0; i < perf->state_count; i++) {
211                 if (value == perf->states[i].status)
212                         return policy->freq_table[i].frequency;
213         }
214         return 0;
215 }
216
217 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
218 {
219         struct acpi_cpufreq_data *data = policy->driver_data;
220         struct cpufreq_frequency_table *pos;
221         struct acpi_processor_performance *perf;
222
223         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
224                 msr &= AMD_MSR_RANGE;
225         else
226                 msr &= INTEL_MSR_RANGE;
227
228         perf = to_perf_data(data);
229
230         cpufreq_for_each_entry(pos, policy->freq_table)
231                 if (msr == perf->states[pos->driver_data].status)
232                         return pos->frequency;
233         return policy->freq_table[0].frequency;
234 }
235
236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
237 {
238         struct acpi_cpufreq_data *data = policy->driver_data;
239
240         switch (data->cpu_feature) {
241         case SYSTEM_INTEL_MSR_CAPABLE:
242         case SYSTEM_AMD_MSR_CAPABLE:
243                 return extract_msr(policy, val);
244         case SYSTEM_IO_CAPABLE:
245                 return extract_io(policy, val);
246         default:
247                 return 0;
248         }
249 }
250
251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
252 {
253         u32 val, dummy;
254
255         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
256         return val;
257 }
258
259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
260 {
261         u32 lo, hi;
262
263         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
266 }
267
268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
269 {
270         u32 val, dummy;
271
272         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
273         return val;
274 }
275
276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
277 {
278         wrmsr(MSR_AMD_PERF_CTL, val, 0);
279 }
280
281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
282 {
283         u32 val;
284
285         acpi_os_read_port(reg->address, &val, reg->bit_width);
286         return val;
287 }
288
289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
290 {
291         acpi_os_write_port(reg->address, val, reg->bit_width);
292 }
293
294 struct drv_cmd {
295         struct acpi_pct_register *reg;
296         u32 val;
297         union {
298                 void (*write)(struct acpi_pct_register *reg, u32 val);
299                 u32 (*read)(struct acpi_pct_register *reg);
300         } func;
301 };
302
303 /* Called via smp_call_function_single(), on the target CPU */
304 static void do_drv_read(void *_cmd)
305 {
306         struct drv_cmd *cmd = _cmd;
307
308         cmd->val = cmd->func.read(cmd->reg);
309 }
310
311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
312 {
313         struct acpi_processor_performance *perf = to_perf_data(data);
314         struct drv_cmd cmd = {
315                 .reg = &perf->control_register,
316                 .func.read = data->cpu_freq_read,
317         };
318         int err;
319
320         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
322         return cmd.val;
323 }
324
325 /* Called via smp_call_function_many(), on the target CPUs */
326 static void do_drv_write(void *_cmd)
327 {
328         struct drv_cmd *cmd = _cmd;
329
330         cmd->func.write(cmd->reg, cmd->val);
331 }
332
333 static void drv_write(struct acpi_cpufreq_data *data,
334                       const struct cpumask *mask, u32 val)
335 {
336         struct acpi_processor_performance *perf = to_perf_data(data);
337         struct drv_cmd cmd = {
338                 .reg = &perf->control_register,
339                 .val = val,
340                 .func.write = data->cpu_freq_write,
341         };
342         int this_cpu;
343
344         this_cpu = get_cpu();
345         if (cpumask_test_cpu(this_cpu, mask))
346                 do_drv_write(&cmd);
347
348         smp_call_function_many(mask, do_drv_write, &cmd, 1);
349         put_cpu();
350 }
351
352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
353 {
354         u32 val;
355
356         if (unlikely(cpumask_empty(mask)))
357                 return 0;
358
359         val = drv_read(data, mask);
360
361         pr_debug("get_cur_val = %u\n", val);
362
363         return val;
364 }
365
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
367 {
368         struct acpi_cpufreq_data *data;
369         struct cpufreq_policy *policy;
370         unsigned int freq;
371         unsigned int cached_freq;
372
373         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
374
375         policy = cpufreq_cpu_get_raw(cpu);
376         if (unlikely(!policy))
377                 return 0;
378
379         data = policy->driver_data;
380         if (unlikely(!data || !policy->freq_table))
381                 return 0;
382
383         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385         if (freq != cached_freq) {
386                 /*
387                  * The dreaded BIOS frequency change behind our back.
388                  * Force set the frequency on next target call.
389                  */
390                 data->resume = 1;
391         }
392
393         pr_debug("cur freq = %u\n", freq);
394
395         return freq;
396 }
397
398 static unsigned int check_freqs(struct cpufreq_policy *policy,
399                                 const struct cpumask *mask, unsigned int freq)
400 {
401         struct acpi_cpufreq_data *data = policy->driver_data;
402         unsigned int cur_freq;
403         unsigned int i;
404
405         for (i = 0; i < 100; i++) {
406                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
407                 if (cur_freq == freq)
408                         return 1;
409                 udelay(10);
410         }
411         return 0;
412 }
413
414 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
415                                unsigned int index)
416 {
417         struct acpi_cpufreq_data *data = policy->driver_data;
418         struct acpi_processor_performance *perf;
419         const struct cpumask *mask;
420         unsigned int next_perf_state = 0; /* Index into perf table */
421         int result = 0;
422
423         if (unlikely(!data)) {
424                 return -ENODEV;
425         }
426
427         perf = to_perf_data(data);
428         next_perf_state = policy->freq_table[index].driver_data;
429         if (perf->state == next_perf_state) {
430                 if (unlikely(data->resume)) {
431                         pr_debug("Called after resume, resetting to P%d\n",
432                                 next_perf_state);
433                         data->resume = 0;
434                 } else {
435                         pr_debug("Already at target state (P%d)\n",
436                                 next_perf_state);
437                         return 0;
438                 }
439         }
440
441         /*
442          * The core won't allow CPUs to go away until the governor has been
443          * stopped, so we can rely on the stability of policy->cpus.
444          */
445         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446                 cpumask_of(policy->cpu) : policy->cpus;
447
448         drv_write(data, mask, perf->states[next_perf_state].control);
449
450         if (acpi_pstate_strict) {
451                 if (!check_freqs(policy, mask,
452                                  policy->freq_table[index].frequency)) {
453                         pr_debug("acpi_cpufreq_target failed (%d)\n",
454                                 policy->cpu);
455                         result = -EAGAIN;
456                 }
457         }
458
459         if (!result)
460                 perf->state = next_perf_state;
461
462         return result;
463 }
464
465 unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
466                                       unsigned int target_freq)
467 {
468         struct acpi_cpufreq_data *data = policy->driver_data;
469         struct acpi_processor_performance *perf;
470         struct cpufreq_frequency_table *entry;
471         unsigned int next_perf_state, next_freq, index;
472
473         /*
474          * Find the closest frequency above target_freq.
475          */
476         if (policy->cached_target_freq == target_freq)
477                 index = policy->cached_resolved_idx;
478         else
479                 index = cpufreq_table_find_index_dl(policy, target_freq);
480
481         entry = &policy->freq_table[index];
482         next_freq = entry->frequency;
483         next_perf_state = entry->driver_data;
484
485         perf = to_perf_data(data);
486         if (perf->state == next_perf_state) {
487                 if (unlikely(data->resume))
488                         data->resume = 0;
489                 else
490                         return next_freq;
491         }
492
493         data->cpu_freq_write(&perf->control_register,
494                              perf->states[next_perf_state].control);
495         perf->state = next_perf_state;
496         return next_freq;
497 }
498
499 static unsigned long
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501 {
502         struct acpi_processor_performance *perf;
503
504         perf = to_perf_data(data);
505         if (cpu_khz) {
506                 /* search the closest match to cpu_khz */
507                 unsigned int i;
508                 unsigned long freq;
509                 unsigned long freqn = perf->states[0].core_frequency * 1000;
510
511                 for (i = 0; i < (perf->state_count-1); i++) {
512                         freq = freqn;
513                         freqn = perf->states[i+1].core_frequency * 1000;
514                         if ((2 * cpu_khz) > (freqn + freq)) {
515                                 perf->state = i;
516                                 return freq;
517                         }
518                 }
519                 perf->state = perf->state_count-1;
520                 return freqn;
521         } else {
522                 /* assume CPU is at P0... */
523                 perf->state = 0;
524                 return perf->states[0].core_frequency * 1000;
525         }
526 }
527
528 static void free_acpi_perf_data(void)
529 {
530         unsigned int i;
531
532         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533         for_each_possible_cpu(i)
534                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
535                                  ->shared_cpu_map);
536         free_percpu(acpi_perf_data);
537 }
538
539 static int boost_notify(struct notifier_block *nb, unsigned long action,
540                       void *hcpu)
541 {
542         unsigned cpu = (long)hcpu;
543         const struct cpumask *cpumask;
544
545         cpumask = get_cpu_mask(cpu);
546
547         /*
548          * Clear the boost-disable bit on the CPU_DOWN path so that
549          * this cpu cannot block the remaining ones from boosting. On
550          * the CPU_UP path we simply keep the boost-disable flag in
551          * sync with the current global state.
552          */
553
554         switch (action) {
555         case CPU_DOWN_FAILED:
556         case CPU_DOWN_FAILED_FROZEN:
557         case CPU_ONLINE:
558         case CPU_ONLINE_FROZEN:
559                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
560                 break;
561
562         case CPU_DOWN_PREPARE:
563         case CPU_DOWN_PREPARE_FROZEN:
564                 boost_set_msrs(1, cpumask);
565                 break;
566
567         default:
568                 break;
569         }
570
571         return NOTIFY_OK;
572 }
573
574
575 static struct notifier_block boost_nb = {
576         .notifier_call          = boost_notify,
577 };
578
579 /*
580  * acpi_cpufreq_early_init - initialize ACPI P-States library
581  *
582  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
583  * in order to determine correct frequency and voltage pairings. We can
584  * do _PDC and _PSD and find out the processor dependency for the
585  * actual init that will happen later...
586  */
587 static int __init acpi_cpufreq_early_init(void)
588 {
589         unsigned int i;
590         pr_debug("acpi_cpufreq_early_init\n");
591
592         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
593         if (!acpi_perf_data) {
594                 pr_debug("Memory allocation error for acpi_perf_data.\n");
595                 return -ENOMEM;
596         }
597         for_each_possible_cpu(i) {
598                 if (!zalloc_cpumask_var_node(
599                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
600                         GFP_KERNEL, cpu_to_node(i))) {
601
602                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
603                         free_acpi_perf_data();
604                         return -ENOMEM;
605                 }
606         }
607
608         /* Do initialization in ACPI core */
609         acpi_processor_preregister_performance(acpi_perf_data);
610         return 0;
611 }
612
613 #ifdef CONFIG_SMP
614 /*
615  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
616  * or do it in BIOS firmware and won't inform about it to OS. If not
617  * detected, this has a side effect of making CPU run at a different speed
618  * than OS intended it to run at. Detect it and handle it cleanly.
619  */
620 static int bios_with_sw_any_bug;
621
622 static int sw_any_bug_found(const struct dmi_system_id *d)
623 {
624         bios_with_sw_any_bug = 1;
625         return 0;
626 }
627
628 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
629         {
630                 .callback = sw_any_bug_found,
631                 .ident = "Supermicro Server X6DLP",
632                 .matches = {
633                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
634                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
635                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
636                 },
637         },
638         { }
639 };
640
641 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
642 {
643         /* Intel Xeon Processor 7100 Series Specification Update
644          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
645          * AL30: A Machine Check Exception (MCE) Occurring during an
646          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
647          * Both Processor Cores to Lock Up. */
648         if (c->x86_vendor == X86_VENDOR_INTEL) {
649                 if ((c->x86 == 15) &&
650                     (c->x86_model == 6) &&
651                     (c->x86_mask == 8)) {
652                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
653                         return -ENODEV;
654                     }
655                 }
656         return 0;
657 }
658 #endif
659
660 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
661 {
662         unsigned int i;
663         unsigned int valid_states = 0;
664         unsigned int cpu = policy->cpu;
665         struct acpi_cpufreq_data *data;
666         unsigned int result = 0;
667         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
668         struct acpi_processor_performance *perf;
669         struct cpufreq_frequency_table *freq_table;
670 #ifdef CONFIG_SMP
671         static int blacklisted;
672 #endif
673
674         pr_debug("acpi_cpufreq_cpu_init\n");
675
676 #ifdef CONFIG_SMP
677         if (blacklisted)
678                 return blacklisted;
679         blacklisted = acpi_cpufreq_blacklist(c);
680         if (blacklisted)
681                 return blacklisted;
682 #endif
683
684         data = kzalloc(sizeof(*data), GFP_KERNEL);
685         if (!data)
686                 return -ENOMEM;
687
688         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
689                 result = -ENOMEM;
690                 goto err_free;
691         }
692
693         perf = per_cpu_ptr(acpi_perf_data, cpu);
694         data->acpi_perf_cpu = cpu;
695         policy->driver_data = data;
696
697         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
698                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
699
700         result = acpi_processor_register_performance(perf, cpu);
701         if (result)
702                 goto err_free_mask;
703
704         policy->shared_type = perf->shared_type;
705
706         /*
707          * Will let policy->cpus know about dependency only when software
708          * coordination is required.
709          */
710         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
711             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
712                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
713         }
714         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
715
716 #ifdef CONFIG_SMP
717         dmi_check_system(sw_any_bug_dmi_table);
718         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
719                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
720                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
721         }
722
723         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
724                 cpumask_clear(policy->cpus);
725                 cpumask_set_cpu(cpu, policy->cpus);
726                 cpumask_copy(data->freqdomain_cpus,
727                              topology_sibling_cpumask(cpu));
728                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
729                 pr_info_once("overriding BIOS provided _PSD data\n");
730         }
731 #endif
732
733         /* capability check */
734         if (perf->state_count <= 1) {
735                 pr_debug("No P-States\n");
736                 result = -ENODEV;
737                 goto err_unreg;
738         }
739
740         if (perf->control_register.space_id != perf->status_register.space_id) {
741                 result = -ENODEV;
742                 goto err_unreg;
743         }
744
745         switch (perf->control_register.space_id) {
746         case ACPI_ADR_SPACE_SYSTEM_IO:
747                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
748                     boot_cpu_data.x86 == 0xf) {
749                         pr_debug("AMD K8 systems must use native drivers.\n");
750                         result = -ENODEV;
751                         goto err_unreg;
752                 }
753                 pr_debug("SYSTEM IO addr space\n");
754                 data->cpu_feature = SYSTEM_IO_CAPABLE;
755                 data->cpu_freq_read = cpu_freq_read_io;
756                 data->cpu_freq_write = cpu_freq_write_io;
757                 break;
758         case ACPI_ADR_SPACE_FIXED_HARDWARE:
759                 pr_debug("HARDWARE addr space\n");
760                 if (check_est_cpu(cpu)) {
761                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
762                         data->cpu_freq_read = cpu_freq_read_intel;
763                         data->cpu_freq_write = cpu_freq_write_intel;
764                         break;
765                 }
766                 if (check_amd_hwpstate_cpu(cpu)) {
767                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
768                         data->cpu_freq_read = cpu_freq_read_amd;
769                         data->cpu_freq_write = cpu_freq_write_amd;
770                         break;
771                 }
772                 result = -ENODEV;
773                 goto err_unreg;
774         default:
775                 pr_debug("Unknown addr space %d\n",
776                         (u32) (perf->control_register.space_id));
777                 result = -ENODEV;
778                 goto err_unreg;
779         }
780
781         freq_table = kzalloc(sizeof(*freq_table) *
782                     (perf->state_count+1), GFP_KERNEL);
783         if (!freq_table) {
784                 result = -ENOMEM;
785                 goto err_unreg;
786         }
787
788         /* detect transition latency */
789         policy->cpuinfo.transition_latency = 0;
790         for (i = 0; i < perf->state_count; i++) {
791                 if ((perf->states[i].transition_latency * 1000) >
792                     policy->cpuinfo.transition_latency)
793                         policy->cpuinfo.transition_latency =
794                             perf->states[i].transition_latency * 1000;
795         }
796
797         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
798         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
799             policy->cpuinfo.transition_latency > 20 * 1000) {
800                 policy->cpuinfo.transition_latency = 20 * 1000;
801                 pr_info_once("P-state transition latency capped at 20 uS\n");
802         }
803
804         /* table init */
805         for (i = 0; i < perf->state_count; i++) {
806                 if (i > 0 && perf->states[i].core_frequency >=
807                     freq_table[valid_states-1].frequency / 1000)
808                         continue;
809
810                 freq_table[valid_states].driver_data = i;
811                 freq_table[valid_states].frequency =
812                     perf->states[i].core_frequency * 1000;
813                 valid_states++;
814         }
815         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
816         perf->state = 0;
817
818         result = cpufreq_table_validate_and_show(policy, freq_table);
819         if (result)
820                 goto err_freqfree;
821
822         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
823                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
824
825         switch (perf->control_register.space_id) {
826         case ACPI_ADR_SPACE_SYSTEM_IO:
827                 /*
828                  * The core will not set policy->cur, because
829                  * cpufreq_driver->get is NULL, so we need to set it here.
830                  * However, we have to guess it, because the current speed is
831                  * unknown and not detectable via IO ports.
832                  */
833                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
834                 break;
835         case ACPI_ADR_SPACE_FIXED_HARDWARE:
836                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
837                 break;
838         default:
839                 break;
840         }
841
842         /* notify BIOS that we exist */
843         acpi_processor_notify_smm(THIS_MODULE);
844
845         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
846         for (i = 0; i < perf->state_count; i++)
847                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
848                         (i == perf->state ? '*' : ' '), i,
849                         (u32) perf->states[i].core_frequency,
850                         (u32) perf->states[i].power,
851                         (u32) perf->states[i].transition_latency);
852
853         /*
854          * the first call to ->target() should result in us actually
855          * writing something to the appropriate registers.
856          */
857         data->resume = 1;
858
859         policy->fast_switch_possible = !acpi_pstate_strict &&
860                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
861
862         return result;
863
864 err_freqfree:
865         kfree(freq_table);
866 err_unreg:
867         acpi_processor_unregister_performance(cpu);
868 err_free_mask:
869         free_cpumask_var(data->freqdomain_cpus);
870 err_free:
871         kfree(data);
872         policy->driver_data = NULL;
873
874         return result;
875 }
876
877 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
878 {
879         struct acpi_cpufreq_data *data = policy->driver_data;
880
881         pr_debug("acpi_cpufreq_cpu_exit\n");
882
883         policy->fast_switch_possible = false;
884         policy->driver_data = NULL;
885         acpi_processor_unregister_performance(data->acpi_perf_cpu);
886         free_cpumask_var(data->freqdomain_cpus);
887         kfree(policy->freq_table);
888         kfree(data);
889
890         return 0;
891 }
892
893 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
894 {
895         struct acpi_cpufreq_data *data = policy->driver_data;
896
897         pr_debug("acpi_cpufreq_resume\n");
898
899         data->resume = 1;
900
901         return 0;
902 }
903
904 static struct freq_attr *acpi_cpufreq_attr[] = {
905         &cpufreq_freq_attr_scaling_available_freqs,
906         &freqdomain_cpus,
907 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
908         &cpb,
909 #endif
910         NULL,
911 };
912
913 static struct cpufreq_driver acpi_cpufreq_driver = {
914         .verify         = cpufreq_generic_frequency_table_verify,
915         .target_index   = acpi_cpufreq_target,
916         .fast_switch    = acpi_cpufreq_fast_switch,
917         .bios_limit     = acpi_processor_get_bios_limit,
918         .init           = acpi_cpufreq_cpu_init,
919         .exit           = acpi_cpufreq_cpu_exit,
920         .resume         = acpi_cpufreq_resume,
921         .name           = "acpi-cpufreq",
922         .attr           = acpi_cpufreq_attr,
923 };
924
925 static void __init acpi_cpufreq_boost_init(void)
926 {
927         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
928                 msrs = msrs_alloc();
929
930                 if (!msrs)
931                         return;
932
933                 acpi_cpufreq_driver.set_boost = set_boost;
934                 acpi_cpufreq_driver.boost_enabled = boost_state(0);
935
936                 cpu_notifier_register_begin();
937
938                 /* Force all MSRs to the same value */
939                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
940                                cpu_online_mask);
941
942                 __register_cpu_notifier(&boost_nb);
943
944                 cpu_notifier_register_done();
945         }
946 }
947
948 static void acpi_cpufreq_boost_exit(void)
949 {
950         if (msrs) {
951                 unregister_cpu_notifier(&boost_nb);
952
953                 msrs_free(msrs);
954                 msrs = NULL;
955         }
956 }
957
958 static int __init acpi_cpufreq_init(void)
959 {
960         int ret;
961
962         if (acpi_disabled)
963                 return -ENODEV;
964
965         /* don't keep reloading if cpufreq_driver exists */
966         if (cpufreq_get_current_driver())
967                 return -EEXIST;
968
969         pr_debug("acpi_cpufreq_init\n");
970
971         ret = acpi_cpufreq_early_init();
972         if (ret)
973                 return ret;
974
975 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
976         /* this is a sysfs file with a strange name and an even stranger
977          * semantic - per CPU instantiation, but system global effect.
978          * Lets enable it only on AMD CPUs for compatibility reasons and
979          * only if configured. This is considered legacy code, which
980          * will probably be removed at some point in the future.
981          */
982         if (!check_amd_hwpstate_cpu(0)) {
983                 struct freq_attr **attr;
984
985                 pr_debug("CPB unsupported, do not expose it\n");
986
987                 for (attr = acpi_cpufreq_attr; *attr; attr++)
988                         if (*attr == &cpb) {
989                                 *attr = NULL;
990                                 break;
991                         }
992         }
993 #endif
994         acpi_cpufreq_boost_init();
995
996         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
997         if (ret) {
998                 free_acpi_perf_data();
999                 acpi_cpufreq_boost_exit();
1000         }
1001         return ret;
1002 }
1003
1004 static void __exit acpi_cpufreq_exit(void)
1005 {
1006         pr_debug("acpi_cpufreq_exit\n");
1007
1008         acpi_cpufreq_boost_exit();
1009
1010         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1011
1012         free_acpi_perf_data();
1013 }
1014
1015 module_param(acpi_pstate_strict, uint, 0644);
1016 MODULE_PARM_DESC(acpi_pstate_strict,
1017         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1018         "performed during frequency changes.");
1019
1020 late_initcall(acpi_cpufreq_init);
1021 module_exit(acpi_cpufreq_exit);
1022
1023 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1024         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1025         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1026         {}
1027 };
1028 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1029
1030 static const struct acpi_device_id processor_device_ids[] = {
1031         {ACPI_PROCESSOR_OBJECT_HID, },
1032         {ACPI_PROCESSOR_DEVICE_HID, },
1033         {},
1034 };
1035 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1036
1037 MODULE_ALIAS("acpi");