cpufreq: Convert printk(KERN_<LEVEL> to pr_<level>
[cascardo/linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52
53 #define PFX "acpi-cpufreq: "
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64
65 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
66
67 struct acpi_cpufreq_data {
68         struct cpufreq_frequency_table *freq_table;
69         unsigned int resume;
70         unsigned int cpu_feature;
71         unsigned int acpi_perf_cpu;
72         cpumask_var_t freqdomain_cpus;
73         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75 };
76
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79
80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81 {
82         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 }
84
85 static struct cpufreq_driver acpi_cpufreq_driver;
86
87 static unsigned int acpi_pstate_strict;
88 static struct msr __percpu *msrs;
89
90 static bool boost_state(unsigned int cpu)
91 {
92         u32 lo, hi;
93         u64 msr;
94
95         switch (boot_cpu_data.x86_vendor) {
96         case X86_VENDOR_INTEL:
97                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
98                 msr = lo | ((u64)hi << 32);
99                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
100         case X86_VENDOR_AMD:
101                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102                 msr = lo | ((u64)hi << 32);
103                 return !(msr & MSR_K7_HWCR_CPB_DIS);
104         }
105         return false;
106 }
107
108 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109 {
110         u32 cpu;
111         u32 msr_addr;
112         u64 msr_mask;
113
114         switch (boot_cpu_data.x86_vendor) {
115         case X86_VENDOR_INTEL:
116                 msr_addr = MSR_IA32_MISC_ENABLE;
117                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118                 break;
119         case X86_VENDOR_AMD:
120                 msr_addr = MSR_K7_HWCR;
121                 msr_mask = MSR_K7_HWCR_CPB_DIS;
122                 break;
123         default:
124                 return;
125         }
126
127         rdmsr_on_cpus(cpumask, msr_addr, msrs);
128
129         for_each_cpu(cpu, cpumask) {
130                 struct msr *reg = per_cpu_ptr(msrs, cpu);
131                 if (enable)
132                         reg->q &= ~msr_mask;
133                 else
134                         reg->q |= msr_mask;
135         }
136
137         wrmsr_on_cpus(cpumask, msr_addr, msrs);
138 }
139
140 static int set_boost(int val)
141 {
142         get_online_cpus();
143         boost_set_msrs(val, cpu_online_mask);
144         put_online_cpus();
145         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146
147         return 0;
148 }
149
150 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151 {
152         struct acpi_cpufreq_data *data = policy->driver_data;
153
154         if (unlikely(!data))
155                 return -ENODEV;
156
157         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158 }
159
160 cpufreq_freq_attr_ro(freqdomain_cpus);
161
162 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164                          size_t count)
165 {
166         int ret;
167         unsigned int val = 0;
168
169         if (!acpi_cpufreq_driver.set_boost)
170                 return -EINVAL;
171
172         ret = kstrtouint(buf, 10, &val);
173         if (ret || val > 1)
174                 return -EINVAL;
175
176         set_boost(val);
177
178         return count;
179 }
180
181 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182 {
183         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184 }
185
186 cpufreq_freq_attr_rw(cpb);
187 #endif
188
189 static int check_est_cpu(unsigned int cpuid)
190 {
191         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193         return cpu_has(cpu, X86_FEATURE_EST);
194 }
195
196 static int check_amd_hwpstate_cpu(unsigned int cpuid)
197 {
198         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199
200         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201 }
202
203 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204 {
205         struct acpi_processor_performance *perf;
206         int i;
207
208         perf = to_perf_data(data);
209
210         for (i = 0; i < perf->state_count; i++) {
211                 if (value == perf->states[i].status)
212                         return data->freq_table[i].frequency;
213         }
214         return 0;
215 }
216
217 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218 {
219         struct cpufreq_frequency_table *pos;
220         struct acpi_processor_performance *perf;
221
222         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223                 msr &= AMD_MSR_RANGE;
224         else
225                 msr &= INTEL_MSR_RANGE;
226
227         perf = to_perf_data(data);
228
229         cpufreq_for_each_entry(pos, data->freq_table)
230                 if (msr == perf->states[pos->driver_data].status)
231                         return pos->frequency;
232         return data->freq_table[0].frequency;
233 }
234
235 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236 {
237         switch (data->cpu_feature) {
238         case SYSTEM_INTEL_MSR_CAPABLE:
239         case SYSTEM_AMD_MSR_CAPABLE:
240                 return extract_msr(val, data);
241         case SYSTEM_IO_CAPABLE:
242                 return extract_io(val, data);
243         default:
244                 return 0;
245         }
246 }
247
248 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249 {
250         u32 val, dummy;
251
252         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253         return val;
254 }
255
256 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257 {
258         u32 lo, hi;
259
260         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263 }
264
265 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266 {
267         u32 val, dummy;
268
269         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270         return val;
271 }
272
273 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274 {
275         wrmsr(MSR_AMD_PERF_CTL, val, 0);
276 }
277
278 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279 {
280         u32 val;
281
282         acpi_os_read_port(reg->address, &val, reg->bit_width);
283         return val;
284 }
285
286 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287 {
288         acpi_os_write_port(reg->address, val, reg->bit_width);
289 }
290
291 struct drv_cmd {
292         struct acpi_pct_register *reg;
293         u32 val;
294         union {
295                 void (*write)(struct acpi_pct_register *reg, u32 val);
296                 u32 (*read)(struct acpi_pct_register *reg);
297         } func;
298 };
299
300 /* Called via smp_call_function_single(), on the target CPU */
301 static void do_drv_read(void *_cmd)
302 {
303         struct drv_cmd *cmd = _cmd;
304
305         cmd->val = cmd->func.read(cmd->reg);
306 }
307
308 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
309 {
310         struct acpi_processor_performance *perf = to_perf_data(data);
311         struct drv_cmd cmd = {
312                 .reg = &perf->control_register,
313                 .func.read = data->cpu_freq_read,
314         };
315         int err;
316
317         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
319         return cmd.val;
320 }
321
322 /* Called via smp_call_function_many(), on the target CPUs */
323 static void do_drv_write(void *_cmd)
324 {
325         struct drv_cmd *cmd = _cmd;
326
327         cmd->func.write(cmd->reg, cmd->val);
328 }
329
330 static void drv_write(struct acpi_cpufreq_data *data,
331                       const struct cpumask *mask, u32 val)
332 {
333         struct acpi_processor_performance *perf = to_perf_data(data);
334         struct drv_cmd cmd = {
335                 .reg = &perf->control_register,
336                 .val = val,
337                 .func.write = data->cpu_freq_write,
338         };
339         int this_cpu;
340
341         this_cpu = get_cpu();
342         if (cpumask_test_cpu(this_cpu, mask))
343                 do_drv_write(&cmd);
344
345         smp_call_function_many(mask, do_drv_write, &cmd, 1);
346         put_cpu();
347 }
348
349 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350 {
351         u32 val;
352
353         if (unlikely(cpumask_empty(mask)))
354                 return 0;
355
356         val = drv_read(data, mask);
357
358         pr_debug("get_cur_val = %u\n", val);
359
360         return val;
361 }
362
363 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364 {
365         struct acpi_cpufreq_data *data;
366         struct cpufreq_policy *policy;
367         unsigned int freq;
368         unsigned int cached_freq;
369
370         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371
372         policy = cpufreq_cpu_get_raw(cpu);
373         if (unlikely(!policy))
374                 return 0;
375
376         data = policy->driver_data;
377         if (unlikely(!data || !data->freq_table))
378                 return 0;
379
380         cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381         freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382         if (freq != cached_freq) {
383                 /*
384                  * The dreaded BIOS frequency change behind our back.
385                  * Force set the frequency on next target call.
386                  */
387                 data->resume = 1;
388         }
389
390         pr_debug("cur freq = %u\n", freq);
391
392         return freq;
393 }
394
395 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396                                 struct acpi_cpufreq_data *data)
397 {
398         unsigned int cur_freq;
399         unsigned int i;
400
401         for (i = 0; i < 100; i++) {
402                 cur_freq = extract_freq(get_cur_val(mask, data), data);
403                 if (cur_freq == freq)
404                         return 1;
405                 udelay(10);
406         }
407         return 0;
408 }
409
410 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411                                unsigned int index)
412 {
413         struct acpi_cpufreq_data *data = policy->driver_data;
414         struct acpi_processor_performance *perf;
415         const struct cpumask *mask;
416         unsigned int next_perf_state = 0; /* Index into perf table */
417         int result = 0;
418
419         if (unlikely(data == NULL || data->freq_table == NULL)) {
420                 return -ENODEV;
421         }
422
423         perf = to_perf_data(data);
424         next_perf_state = data->freq_table[index].driver_data;
425         if (perf->state == next_perf_state) {
426                 if (unlikely(data->resume)) {
427                         pr_debug("Called after resume, resetting to P%d\n",
428                                 next_perf_state);
429                         data->resume = 0;
430                 } else {
431                         pr_debug("Already at target state (P%d)\n",
432                                 next_perf_state);
433                         return 0;
434                 }
435         }
436
437         /*
438          * The core won't allow CPUs to go away until the governor has been
439          * stopped, so we can rely on the stability of policy->cpus.
440          */
441         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442                 cpumask_of(policy->cpu) : policy->cpus;
443
444         drv_write(data, mask, perf->states[next_perf_state].control);
445
446         if (acpi_pstate_strict) {
447                 if (!check_freqs(mask, data->freq_table[index].frequency,
448                                         data)) {
449                         pr_debug("acpi_cpufreq_target failed (%d)\n",
450                                 policy->cpu);
451                         result = -EAGAIN;
452                 }
453         }
454
455         if (!result)
456                 perf->state = next_perf_state;
457
458         return result;
459 }
460
461 unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
462                                       unsigned int target_freq)
463 {
464         struct acpi_cpufreq_data *data = policy->driver_data;
465         struct acpi_processor_performance *perf;
466         struct cpufreq_frequency_table *entry;
467         unsigned int next_perf_state, next_freq, freq;
468
469         /*
470          * Find the closest frequency above target_freq.
471          *
472          * The table is sorted in the reverse order with respect to the
473          * frequency and all of the entries are valid (see the initialization).
474          */
475         entry = data->freq_table;
476         do {
477                 entry++;
478                 freq = entry->frequency;
479         } while (freq >= target_freq && freq != CPUFREQ_TABLE_END);
480         entry--;
481         next_freq = entry->frequency;
482         next_perf_state = entry->driver_data;
483
484         perf = to_perf_data(data);
485         if (perf->state == next_perf_state) {
486                 if (unlikely(data->resume))
487                         data->resume = 0;
488                 else
489                         return next_freq;
490         }
491
492         data->cpu_freq_write(&perf->control_register,
493                              perf->states[next_perf_state].control);
494         perf->state = next_perf_state;
495         return next_freq;
496 }
497
498 static unsigned long
499 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
500 {
501         struct acpi_processor_performance *perf;
502
503         perf = to_perf_data(data);
504         if (cpu_khz) {
505                 /* search the closest match to cpu_khz */
506                 unsigned int i;
507                 unsigned long freq;
508                 unsigned long freqn = perf->states[0].core_frequency * 1000;
509
510                 for (i = 0; i < (perf->state_count-1); i++) {
511                         freq = freqn;
512                         freqn = perf->states[i+1].core_frequency * 1000;
513                         if ((2 * cpu_khz) > (freqn + freq)) {
514                                 perf->state = i;
515                                 return freq;
516                         }
517                 }
518                 perf->state = perf->state_count-1;
519                 return freqn;
520         } else {
521                 /* assume CPU is at P0... */
522                 perf->state = 0;
523                 return perf->states[0].core_frequency * 1000;
524         }
525 }
526
527 static void free_acpi_perf_data(void)
528 {
529         unsigned int i;
530
531         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
532         for_each_possible_cpu(i)
533                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
534                                  ->shared_cpu_map);
535         free_percpu(acpi_perf_data);
536 }
537
538 static int boost_notify(struct notifier_block *nb, unsigned long action,
539                       void *hcpu)
540 {
541         unsigned cpu = (long)hcpu;
542         const struct cpumask *cpumask;
543
544         cpumask = get_cpu_mask(cpu);
545
546         /*
547          * Clear the boost-disable bit on the CPU_DOWN path so that
548          * this cpu cannot block the remaining ones from boosting. On
549          * the CPU_UP path we simply keep the boost-disable flag in
550          * sync with the current global state.
551          */
552
553         switch (action) {
554         case CPU_DOWN_FAILED:
555         case CPU_DOWN_FAILED_FROZEN:
556         case CPU_ONLINE:
557         case CPU_ONLINE_FROZEN:
558                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
559                 break;
560
561         case CPU_DOWN_PREPARE:
562         case CPU_DOWN_PREPARE_FROZEN:
563                 boost_set_msrs(1, cpumask);
564                 break;
565
566         default:
567                 break;
568         }
569
570         return NOTIFY_OK;
571 }
572
573
574 static struct notifier_block boost_nb = {
575         .notifier_call          = boost_notify,
576 };
577
578 /*
579  * acpi_cpufreq_early_init - initialize ACPI P-States library
580  *
581  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
582  * in order to determine correct frequency and voltage pairings. We can
583  * do _PDC and _PSD and find out the processor dependency for the
584  * actual init that will happen later...
585  */
586 static int __init acpi_cpufreq_early_init(void)
587 {
588         unsigned int i;
589         pr_debug("acpi_cpufreq_early_init\n");
590
591         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
592         if (!acpi_perf_data) {
593                 pr_debug("Memory allocation error for acpi_perf_data.\n");
594                 return -ENOMEM;
595         }
596         for_each_possible_cpu(i) {
597                 if (!zalloc_cpumask_var_node(
598                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
599                         GFP_KERNEL, cpu_to_node(i))) {
600
601                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
602                         free_acpi_perf_data();
603                         return -ENOMEM;
604                 }
605         }
606
607         /* Do initialization in ACPI core */
608         acpi_processor_preregister_performance(acpi_perf_data);
609         return 0;
610 }
611
612 #ifdef CONFIG_SMP
613 /*
614  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
615  * or do it in BIOS firmware and won't inform about it to OS. If not
616  * detected, this has a side effect of making CPU run at a different speed
617  * than OS intended it to run at. Detect it and handle it cleanly.
618  */
619 static int bios_with_sw_any_bug;
620
621 static int sw_any_bug_found(const struct dmi_system_id *d)
622 {
623         bios_with_sw_any_bug = 1;
624         return 0;
625 }
626
627 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
628         {
629                 .callback = sw_any_bug_found,
630                 .ident = "Supermicro Server X6DLP",
631                 .matches = {
632                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
633                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
634                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
635                 },
636         },
637         { }
638 };
639
640 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
641 {
642         /* Intel Xeon Processor 7100 Series Specification Update
643          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
644          * AL30: A Machine Check Exception (MCE) Occurring during an
645          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
646          * Both Processor Cores to Lock Up. */
647         if (c->x86_vendor == X86_VENDOR_INTEL) {
648                 if ((c->x86 == 15) &&
649                     (c->x86_model == 6) &&
650                     (c->x86_mask == 8)) {
651                         pr_info("acpi-cpufreq: Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
652                         return -ENODEV;
653                     }
654                 }
655         return 0;
656 }
657 #endif
658
659 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
660 {
661         unsigned int i;
662         unsigned int valid_states = 0;
663         unsigned int cpu = policy->cpu;
664         struct acpi_cpufreq_data *data;
665         unsigned int result = 0;
666         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
667         struct acpi_processor_performance *perf;
668 #ifdef CONFIG_SMP
669         static int blacklisted;
670 #endif
671
672         pr_debug("acpi_cpufreq_cpu_init\n");
673
674 #ifdef CONFIG_SMP
675         if (blacklisted)
676                 return blacklisted;
677         blacklisted = acpi_cpufreq_blacklist(c);
678         if (blacklisted)
679                 return blacklisted;
680 #endif
681
682         data = kzalloc(sizeof(*data), GFP_KERNEL);
683         if (!data)
684                 return -ENOMEM;
685
686         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
687                 result = -ENOMEM;
688                 goto err_free;
689         }
690
691         perf = per_cpu_ptr(acpi_perf_data, cpu);
692         data->acpi_perf_cpu = cpu;
693         policy->driver_data = data;
694
695         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
696                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
697
698         result = acpi_processor_register_performance(perf, cpu);
699         if (result)
700                 goto err_free_mask;
701
702         policy->shared_type = perf->shared_type;
703
704         /*
705          * Will let policy->cpus know about dependency only when software
706          * coordination is required.
707          */
708         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
709             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
710                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
711         }
712         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
713
714 #ifdef CONFIG_SMP
715         dmi_check_system(sw_any_bug_dmi_table);
716         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
717                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
718                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
719         }
720
721         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
722                 cpumask_clear(policy->cpus);
723                 cpumask_set_cpu(cpu, policy->cpus);
724                 cpumask_copy(data->freqdomain_cpus,
725                              topology_sibling_cpumask(cpu));
726                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
727                 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
728         }
729 #endif
730
731         /* capability check */
732         if (perf->state_count <= 1) {
733                 pr_debug("No P-States\n");
734                 result = -ENODEV;
735                 goto err_unreg;
736         }
737
738         if (perf->control_register.space_id != perf->status_register.space_id) {
739                 result = -ENODEV;
740                 goto err_unreg;
741         }
742
743         switch (perf->control_register.space_id) {
744         case ACPI_ADR_SPACE_SYSTEM_IO:
745                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
746                     boot_cpu_data.x86 == 0xf) {
747                         pr_debug("AMD K8 systems must use native drivers.\n");
748                         result = -ENODEV;
749                         goto err_unreg;
750                 }
751                 pr_debug("SYSTEM IO addr space\n");
752                 data->cpu_feature = SYSTEM_IO_CAPABLE;
753                 data->cpu_freq_read = cpu_freq_read_io;
754                 data->cpu_freq_write = cpu_freq_write_io;
755                 break;
756         case ACPI_ADR_SPACE_FIXED_HARDWARE:
757                 pr_debug("HARDWARE addr space\n");
758                 if (check_est_cpu(cpu)) {
759                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
760                         data->cpu_freq_read = cpu_freq_read_intel;
761                         data->cpu_freq_write = cpu_freq_write_intel;
762                         break;
763                 }
764                 if (check_amd_hwpstate_cpu(cpu)) {
765                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
766                         data->cpu_freq_read = cpu_freq_read_amd;
767                         data->cpu_freq_write = cpu_freq_write_amd;
768                         break;
769                 }
770                 result = -ENODEV;
771                 goto err_unreg;
772         default:
773                 pr_debug("Unknown addr space %d\n",
774                         (u32) (perf->control_register.space_id));
775                 result = -ENODEV;
776                 goto err_unreg;
777         }
778
779         data->freq_table = kzalloc(sizeof(*data->freq_table) *
780                     (perf->state_count+1), GFP_KERNEL);
781         if (!data->freq_table) {
782                 result = -ENOMEM;
783                 goto err_unreg;
784         }
785
786         /* detect transition latency */
787         policy->cpuinfo.transition_latency = 0;
788         for (i = 0; i < perf->state_count; i++) {
789                 if ((perf->states[i].transition_latency * 1000) >
790                     policy->cpuinfo.transition_latency)
791                         policy->cpuinfo.transition_latency =
792                             perf->states[i].transition_latency * 1000;
793         }
794
795         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
796         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
797             policy->cpuinfo.transition_latency > 20 * 1000) {
798                 policy->cpuinfo.transition_latency = 20 * 1000;
799                 pr_info_once("P-state transition latency capped at 20 uS\n");
800         }
801
802         /* table init */
803         for (i = 0; i < perf->state_count; i++) {
804                 if (i > 0 && perf->states[i].core_frequency >=
805                     data->freq_table[valid_states-1].frequency / 1000)
806                         continue;
807
808                 data->freq_table[valid_states].driver_data = i;
809                 data->freq_table[valid_states].frequency =
810                     perf->states[i].core_frequency * 1000;
811                 valid_states++;
812         }
813         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
814         perf->state = 0;
815
816         result = cpufreq_table_validate_and_show(policy, data->freq_table);
817         if (result)
818                 goto err_freqfree;
819
820         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
821                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
822
823         switch (perf->control_register.space_id) {
824         case ACPI_ADR_SPACE_SYSTEM_IO:
825                 /*
826                  * The core will not set policy->cur, because
827                  * cpufreq_driver->get is NULL, so we need to set it here.
828                  * However, we have to guess it, because the current speed is
829                  * unknown and not detectable via IO ports.
830                  */
831                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
832                 break;
833         case ACPI_ADR_SPACE_FIXED_HARDWARE:
834                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
835                 break;
836         default:
837                 break;
838         }
839
840         /* notify BIOS that we exist */
841         acpi_processor_notify_smm(THIS_MODULE);
842
843         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
844         for (i = 0; i < perf->state_count; i++)
845                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
846                         (i == perf->state ? '*' : ' '), i,
847                         (u32) perf->states[i].core_frequency,
848                         (u32) perf->states[i].power,
849                         (u32) perf->states[i].transition_latency);
850
851         /*
852          * the first call to ->target() should result in us actually
853          * writing something to the appropriate registers.
854          */
855         data->resume = 1;
856
857         policy->fast_switch_possible = !acpi_pstate_strict &&
858                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
859
860         return result;
861
862 err_freqfree:
863         kfree(data->freq_table);
864 err_unreg:
865         acpi_processor_unregister_performance(cpu);
866 err_free_mask:
867         free_cpumask_var(data->freqdomain_cpus);
868 err_free:
869         kfree(data);
870         policy->driver_data = NULL;
871
872         return result;
873 }
874
875 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
876 {
877         struct acpi_cpufreq_data *data = policy->driver_data;
878
879         pr_debug("acpi_cpufreq_cpu_exit\n");
880
881         if (data) {
882                 policy->fast_switch_possible = false;
883                 policy->driver_data = NULL;
884                 acpi_processor_unregister_performance(data->acpi_perf_cpu);
885                 free_cpumask_var(data->freqdomain_cpus);
886                 kfree(data->freq_table);
887                 kfree(data);
888         }
889
890         return 0;
891 }
892
893 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
894 {
895         struct acpi_cpufreq_data *data = policy->driver_data;
896
897         pr_debug("acpi_cpufreq_resume\n");
898
899         data->resume = 1;
900
901         return 0;
902 }
903
904 static struct freq_attr *acpi_cpufreq_attr[] = {
905         &cpufreq_freq_attr_scaling_available_freqs,
906         &freqdomain_cpus,
907 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
908         &cpb,
909 #endif
910         NULL,
911 };
912
913 static struct cpufreq_driver acpi_cpufreq_driver = {
914         .verify         = cpufreq_generic_frequency_table_verify,
915         .target_index   = acpi_cpufreq_target,
916         .fast_switch    = acpi_cpufreq_fast_switch,
917         .bios_limit     = acpi_processor_get_bios_limit,
918         .init           = acpi_cpufreq_cpu_init,
919         .exit           = acpi_cpufreq_cpu_exit,
920         .resume         = acpi_cpufreq_resume,
921         .name           = "acpi-cpufreq",
922         .attr           = acpi_cpufreq_attr,
923 };
924
925 static void __init acpi_cpufreq_boost_init(void)
926 {
927         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
928                 msrs = msrs_alloc();
929
930                 if (!msrs)
931                         return;
932
933                 acpi_cpufreq_driver.set_boost = set_boost;
934                 acpi_cpufreq_driver.boost_enabled = boost_state(0);
935
936                 cpu_notifier_register_begin();
937
938                 /* Force all MSRs to the same value */
939                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
940                                cpu_online_mask);
941
942                 __register_cpu_notifier(&boost_nb);
943
944                 cpu_notifier_register_done();
945         }
946 }
947
948 static void acpi_cpufreq_boost_exit(void)
949 {
950         if (msrs) {
951                 unregister_cpu_notifier(&boost_nb);
952
953                 msrs_free(msrs);
954                 msrs = NULL;
955         }
956 }
957
958 static int __init acpi_cpufreq_init(void)
959 {
960         int ret;
961
962         if (acpi_disabled)
963                 return -ENODEV;
964
965         /* don't keep reloading if cpufreq_driver exists */
966         if (cpufreq_get_current_driver())
967                 return -EEXIST;
968
969         pr_debug("acpi_cpufreq_init\n");
970
971         ret = acpi_cpufreq_early_init();
972         if (ret)
973                 return ret;
974
975 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
976         /* this is a sysfs file with a strange name and an even stranger
977          * semantic - per CPU instantiation, but system global effect.
978          * Lets enable it only on AMD CPUs for compatibility reasons and
979          * only if configured. This is considered legacy code, which
980          * will probably be removed at some point in the future.
981          */
982         if (!check_amd_hwpstate_cpu(0)) {
983                 struct freq_attr **attr;
984
985                 pr_debug("CPB unsupported, do not expose it\n");
986
987                 for (attr = acpi_cpufreq_attr; *attr; attr++)
988                         if (*attr == &cpb) {
989                                 *attr = NULL;
990                                 break;
991                         }
992         }
993 #endif
994         acpi_cpufreq_boost_init();
995
996         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
997         if (ret) {
998                 free_acpi_perf_data();
999                 acpi_cpufreq_boost_exit();
1000         }
1001         return ret;
1002 }
1003
1004 static void __exit acpi_cpufreq_exit(void)
1005 {
1006         pr_debug("acpi_cpufreq_exit\n");
1007
1008         acpi_cpufreq_boost_exit();
1009
1010         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1011
1012         free_acpi_perf_data();
1013 }
1014
1015 module_param(acpi_pstate_strict, uint, 0644);
1016 MODULE_PARM_DESC(acpi_pstate_strict,
1017         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1018         "performed during frequency changes.");
1019
1020 late_initcall(acpi_cpufreq_init);
1021 module_exit(acpi_cpufreq_exit);
1022
1023 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1024         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1025         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1026         {}
1027 };
1028 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1029
1030 static const struct acpi_device_id processor_device_ids[] = {
1031         {ACPI_PROCESSOR_OBJECT_HID, },
1032         {ACPI_PROCESSOR_DEVICE_HID, },
1033         {},
1034 };
1035 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1036
1037 MODULE_ALIAS("acpi");