fde97d6e31d6d9749698aaf91bfae821f1a72f9f
[cascardo/linux.git] / drivers / cpufreq / cpufreq-dt.c
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
16
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31
32 struct private_data {
33         struct device *cpu_dev;
34         struct regulator *cpu_reg;
35         struct thermal_cooling_device *cdev;
36         unsigned int voltage_tolerance; /* in percentage */
37 };
38
39 static int set_target(struct cpufreq_policy *policy, unsigned int index)
40 {
41         struct dev_pm_opp *opp;
42         struct cpufreq_frequency_table *freq_table = policy->freq_table;
43         struct clk *cpu_clk = policy->clk;
44         struct private_data *priv = policy->driver_data;
45         struct device *cpu_dev = priv->cpu_dev;
46         struct regulator *cpu_reg = priv->cpu_reg;
47         unsigned long volt = 0, volt_old = 0, tol = 0;
48         unsigned int old_freq, new_freq;
49         long freq_Hz, freq_exact;
50         int ret;
51
52         freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
53         if (freq_Hz <= 0)
54                 freq_Hz = freq_table[index].frequency * 1000;
55
56         freq_exact = freq_Hz;
57         new_freq = freq_Hz / 1000;
58         old_freq = clk_get_rate(cpu_clk) / 1000;
59
60         if (!IS_ERR(cpu_reg)) {
61                 unsigned long opp_freq;
62
63                 rcu_read_lock();
64                 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
65                 if (IS_ERR(opp)) {
66                         rcu_read_unlock();
67                         dev_err(cpu_dev, "failed to find OPP for %ld\n",
68                                 freq_Hz);
69                         return PTR_ERR(opp);
70                 }
71                 volt = dev_pm_opp_get_voltage(opp);
72                 opp_freq = dev_pm_opp_get_freq(opp);
73                 rcu_read_unlock();
74                 tol = volt * priv->voltage_tolerance / 100;
75                 volt_old = regulator_get_voltage(cpu_reg);
76                 dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
77                         opp_freq / 1000, volt);
78         }
79
80         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
81                 old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
82                 new_freq / 1000, volt ? volt / 1000 : -1);
83
84         /* scaling up?  scale voltage before frequency */
85         if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
86                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
87                 if (ret) {
88                         dev_err(cpu_dev, "failed to scale voltage up: %d\n",
89                                 ret);
90                         return ret;
91                 }
92         }
93
94         ret = clk_set_rate(cpu_clk, freq_exact);
95         if (ret) {
96                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
97                 if (!IS_ERR(cpu_reg) && volt_old > 0)
98                         regulator_set_voltage_tol(cpu_reg, volt_old, tol);
99                 return ret;
100         }
101
102         /* scaling down?  scale voltage after frequency */
103         if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
104                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
105                 if (ret) {
106                         dev_err(cpu_dev, "failed to scale voltage down: %d\n",
107                                 ret);
108                         clk_set_rate(cpu_clk, old_freq * 1000);
109                 }
110         }
111
112         return ret;
113 }
114
115 static int allocate_resources(int cpu, struct device **cdev,
116                               struct regulator **creg, struct clk **cclk)
117 {
118         struct device *cpu_dev;
119         struct regulator *cpu_reg;
120         struct clk *cpu_clk;
121         int ret = 0;
122         char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
123
124         cpu_dev = get_cpu_device(cpu);
125         if (!cpu_dev) {
126                 pr_err("failed to get cpu%d device\n", cpu);
127                 return -ENODEV;
128         }
129
130         /* Try "cpu0" for older DTs */
131         if (!cpu)
132                 reg = reg_cpu0;
133         else
134                 reg = reg_cpu;
135
136 try_again:
137         cpu_reg = regulator_get_optional(cpu_dev, reg);
138         if (IS_ERR(cpu_reg)) {
139                 /*
140                  * If cpu's regulator supply node is present, but regulator is
141                  * not yet registered, we should try defering probe.
142                  */
143                 if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
144                         dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
145                                 cpu);
146                         return -EPROBE_DEFER;
147                 }
148
149                 /* Try with "cpu-supply" */
150                 if (reg == reg_cpu0) {
151                         reg = reg_cpu;
152                         goto try_again;
153                 }
154
155                 dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
156                         cpu, PTR_ERR(cpu_reg));
157         }
158
159         cpu_clk = clk_get(cpu_dev, NULL);
160         if (IS_ERR(cpu_clk)) {
161                 /* put regulator */
162                 if (!IS_ERR(cpu_reg))
163                         regulator_put(cpu_reg);
164
165                 ret = PTR_ERR(cpu_clk);
166
167                 /*
168                  * If cpu's clk node is present, but clock is not yet
169                  * registered, we should try defering probe.
170                  */
171                 if (ret == -EPROBE_DEFER)
172                         dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
173                 else
174                         dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
175                                 ret);
176         } else {
177                 *cdev = cpu_dev;
178                 *creg = cpu_reg;
179                 *cclk = cpu_clk;
180         }
181
182         return ret;
183 }
184
185 static int cpufreq_init(struct cpufreq_policy *policy)
186 {
187         struct cpufreq_dt_platform_data *pd;
188         struct cpufreq_frequency_table *freq_table;
189         struct device_node *np;
190         struct private_data *priv;
191         struct device *cpu_dev;
192         struct regulator *cpu_reg;
193         struct clk *cpu_clk;
194         unsigned long min_uV = ~0, max_uV = 0;
195         unsigned int transition_latency;
196         int ret;
197
198         ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
199         if (ret) {
200                 pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
201                 return ret;
202         }
203
204         np = of_node_get(cpu_dev->of_node);
205         if (!np) {
206                 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
207                 ret = -ENOENT;
208                 goto out_put_reg_clk;
209         }
210
211         /* OPPs might be populated at runtime, don't check for error here */
212         of_init_opp_table(cpu_dev);
213
214         /*
215          * But we need OPP table to function so if it is not there let's
216          * give platform code chance to provide it for us.
217          */
218         ret = dev_pm_opp_get_opp_count(cpu_dev);
219         if (ret <= 0) {
220                 pr_debug("OPP table is not ready, deferring probe\n");
221                 ret = -EPROBE_DEFER;
222                 goto out_free_opp;
223         }
224
225         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
226         if (!priv) {
227                 ret = -ENOMEM;
228                 goto out_free_opp;
229         }
230
231         of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
232
233         if (of_property_read_u32(np, "clock-latency", &transition_latency))
234                 transition_latency = CPUFREQ_ETERNAL;
235
236         if (!IS_ERR(cpu_reg)) {
237                 unsigned long opp_freq = 0;
238
239                 /*
240                  * Disable any OPPs where the connected regulator isn't able to
241                  * provide the specified voltage and record minimum and maximum
242                  * voltage levels.
243                  */
244                 while (1) {
245                         struct dev_pm_opp *opp;
246                         unsigned long opp_uV, tol_uV;
247
248                         rcu_read_lock();
249                         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
250                         if (IS_ERR(opp)) {
251                                 rcu_read_unlock();
252                                 break;
253                         }
254                         opp_uV = dev_pm_opp_get_voltage(opp);
255                         rcu_read_unlock();
256
257                         tol_uV = opp_uV * priv->voltage_tolerance / 100;
258                         if (regulator_is_supported_voltage(cpu_reg, opp_uV,
259                                                            opp_uV + tol_uV)) {
260                                 if (opp_uV < min_uV)
261                                         min_uV = opp_uV;
262                                 if (opp_uV > max_uV)
263                                         max_uV = opp_uV;
264                         } else {
265                                 dev_pm_opp_disable(cpu_dev, opp_freq);
266                         }
267
268                         opp_freq++;
269                 }
270
271                 ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
272                 if (ret > 0)
273                         transition_latency += ret * 1000;
274         }
275
276         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
277         if (ret) {
278                 pr_err("failed to init cpufreq table: %d\n", ret);
279                 goto out_free_priv;
280         }
281
282         priv->cpu_dev = cpu_dev;
283         priv->cpu_reg = cpu_reg;
284         policy->driver_data = priv;
285
286         policy->clk = cpu_clk;
287         ret = cpufreq_table_validate_and_show(policy, freq_table);
288         if (ret) {
289                 dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
290                         ret);
291                 goto out_free_cpufreq_table;
292         }
293
294         policy->cpuinfo.transition_latency = transition_latency;
295
296         pd = cpufreq_get_driver_data();
297         if (!pd || !pd->independent_clocks)
298                 cpumask_setall(policy->cpus);
299
300         of_node_put(np);
301
302         return 0;
303
304 out_free_cpufreq_table:
305         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
306 out_free_priv:
307         kfree(priv);
308 out_free_opp:
309         of_free_opp_table(cpu_dev);
310         of_node_put(np);
311 out_put_reg_clk:
312         clk_put(cpu_clk);
313         if (!IS_ERR(cpu_reg))
314                 regulator_put(cpu_reg);
315
316         return ret;
317 }
318
319 static int cpufreq_exit(struct cpufreq_policy *policy)
320 {
321         struct private_data *priv = policy->driver_data;
322
323         if (priv->cdev)
324                 cpufreq_cooling_unregister(priv->cdev);
325         dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
326         of_free_opp_table(priv->cpu_dev);
327         clk_put(policy->clk);
328         if (!IS_ERR(priv->cpu_reg))
329                 regulator_put(priv->cpu_reg);
330         kfree(priv);
331
332         return 0;
333 }
334
335 static void cpufreq_ready(struct cpufreq_policy *policy)
336 {
337         struct private_data *priv = policy->driver_data;
338         struct device_node *np = of_node_get(priv->cpu_dev->of_node);
339
340         if (WARN_ON(!np))
341                 return;
342
343         /*
344          * For now, just loading the cooling device;
345          * thermal DT code takes care of matching them.
346          */
347         if (of_find_property(np, "#cooling-cells", NULL)) {
348                 priv->cdev = of_cpufreq_cooling_register(np,
349                                                          policy->related_cpus);
350                 if (IS_ERR(priv->cdev)) {
351                         dev_err(priv->cpu_dev,
352                                 "running cpufreq without cooling device: %ld\n",
353                                 PTR_ERR(priv->cdev));
354
355                         priv->cdev = NULL;
356                 }
357         }
358
359         of_node_put(np);
360 }
361
362 static struct cpufreq_driver dt_cpufreq_driver = {
363         .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
364         .verify = cpufreq_generic_frequency_table_verify,
365         .target_index = set_target,
366         .get = cpufreq_generic_get,
367         .init = cpufreq_init,
368         .exit = cpufreq_exit,
369         .ready = cpufreq_ready,
370         .name = "cpufreq-dt",
371         .attr = cpufreq_generic_attr,
372 };
373
374 static int dt_cpufreq_probe(struct platform_device *pdev)
375 {
376         struct device *cpu_dev;
377         struct regulator *cpu_reg;
378         struct clk *cpu_clk;
379         int ret;
380
381         /*
382          * All per-cluster (CPUs sharing clock/voltages) initialization is done
383          * from ->init(). In probe(), we just need to make sure that clk and
384          * regulators are available. Else defer probe and retry.
385          *
386          * FIXME: Is checking this only for CPU0 sufficient ?
387          */
388         ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
389         if (ret)
390                 return ret;
391
392         clk_put(cpu_clk);
393         if (!IS_ERR(cpu_reg))
394                 regulator_put(cpu_reg);
395
396         dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
397
398         ret = cpufreq_register_driver(&dt_cpufreq_driver);
399         if (ret)
400                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
401
402         return ret;
403 }
404
405 static int dt_cpufreq_remove(struct platform_device *pdev)
406 {
407         cpufreq_unregister_driver(&dt_cpufreq_driver);
408         return 0;
409 }
410
411 static struct platform_driver dt_cpufreq_platdrv = {
412         .driver = {
413                 .name   = "cpufreq-dt",
414         },
415         .probe          = dt_cpufreq_probe,
416         .remove         = dt_cpufreq_remove,
417 };
418 module_platform_driver(dt_cpufreq_platdrv);
419
420 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
421 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
422 MODULE_DESCRIPTION("Generic cpufreq driver");
423 MODULE_LICENSE("GPL");