Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38         return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)                     \
43         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44                 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy)                \
47         for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)              \
49         for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy)                       \
52         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)                           \
57         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98         init_cpufreq_transition_notifier_list_called = true;
99         return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106         return off;
107 }
108 void disable_cpufreq(void)
109 {
110         off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122         if (have_governor_per_policy())
123                 return &policy->kobj;
124         else
125                 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131         u64 idle_time;
132         u64 cur_wall_time;
133         u64 busy_time;
134
135         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
136
137         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144         idle_time = cur_wall_time - busy_time;
145         if (wall)
146                 *wall = cputime_to_usecs(cur_wall_time);
147
148         return cputime_to_usecs(idle_time);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155         if (idle_time == -1ULL)
156                 return get_cpu_idle_time_jiffy(cpu, wall);
157         else if (!io_busy)
158                 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160         return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165  * This is a generic cpufreq init() routine which can be used by cpufreq
166  * drivers of SMP systems. It will do following:
167  * - validate & show freq table passed
168  * - set policies transition latency
169  * - policy->cpus with all possible CPUs
170  */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172                 struct cpufreq_frequency_table *table,
173                 unsigned int transition_latency)
174 {
175         int ret;
176
177         ret = cpufreq_table_validate_and_show(policy, table);
178         if (ret) {
179                 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180                 return ret;
181         }
182
183         policy->cpuinfo.transition_latency = transition_latency;
184
185         /*
186          * The driver only supports the SMP configuration where all processors
187          * share the clock and voltage and clock.
188          */
189         cpumask_setall(policy->cpus);
190
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207         if (!policy || IS_ERR(policy->clk)) {
208                 pr_err("%s: No %s associated to cpu: %d\n",
209                        __func__, policy ? "clk" : "policy", cpu);
210                 return 0;
211         }
212
213         return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219  *
220  * @cpu: cpu to find policy for.
221  *
222  * This returns policy for 'cpu', returns NULL if it doesn't exist.
223  * It also increments the kobject reference count to mark it busy and so would
224  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226  * freed as that depends on the kobj count.
227  *
228  * Return: A valid policy on success, otherwise NULL on failure.
229  */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232         struct cpufreq_policy *policy = NULL;
233         unsigned long flags;
234
235         if (WARN_ON(cpu >= nr_cpu_ids))
236                 return NULL;
237
238         /* get the cpufreq driver */
239         read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241         if (cpufreq_driver) {
242                 /* get the CPU */
243                 policy = cpufreq_cpu_get_raw(cpu);
244                 if (policy)
245                         kobject_get(&policy->kobj);
246         }
247
248         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250         return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255  * cpufreq_cpu_put: Decrements the usage count of a policy
256  *
257  * @policy: policy earlier returned by cpufreq_cpu_get().
258  *
259  * This decrements the kobject reference count incremented earlier by calling
260  * cpufreq_cpu_get().
261  */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264         kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
270  *********************************************************************/
271
272 /**
273  * adjust_jiffies - adjust the system "loops_per_jiffy"
274  *
275  * This function alters the system "loops_per_jiffy" for the clock
276  * speed change. Note that loops_per_jiffy cannot be updated on SMP
277  * systems as each CPU might be scaled differently. So, use the arch
278  * per-CPU loops_per_jiffy value wherever possible.
279  */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283         static unsigned long l_p_j_ref;
284         static unsigned int l_p_j_ref_freq;
285
286         if (ci->flags & CPUFREQ_CONST_LOOPS)
287                 return;
288
289         if (!l_p_j_ref_freq) {
290                 l_p_j_ref = loops_per_jiffy;
291                 l_p_j_ref_freq = ci->old;
292                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293                          l_p_j_ref, l_p_j_ref_freq);
294         }
295         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297                                                                 ci->new);
298                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299                          loops_per_jiffy, ci->new);
300         }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305                 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307         BUG_ON(irqs_disabled());
308
309         if (cpufreq_disabled())
310                 return;
311
312         freqs->flags = cpufreq_driver->flags;
313         pr_debug("notification %u of frequency transition to %u kHz\n",
314                  state, freqs->new);
315
316         switch (state) {
317
318         case CPUFREQ_PRECHANGE:
319                 /* detect if the driver reported a value as "old frequency"
320                  * which is not equal to what the cpufreq core thinks is
321                  * "old frequency".
322                  */
323                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324                         if ((policy) && (policy->cpu == freqs->cpu) &&
325                             (policy->cur) && (policy->cur != freqs->old)) {
326                                 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327                                          freqs->old, policy->cur);
328                                 freqs->old = policy->cur;
329                         }
330                 }
331                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332                                 CPUFREQ_PRECHANGE, freqs);
333                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334                 break;
335
336         case CPUFREQ_POSTCHANGE:
337                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338                 pr_debug("FREQ: %lu - CPU: %lu\n",
339                          (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340                 trace_cpu_frequency(freqs->new, freqs->cpu);
341                 cpufreq_stats_record_transition(policy, freqs->new);
342                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343                                 CPUFREQ_POSTCHANGE, freqs);
344                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345                         policy->cur = freqs->new;
346                 break;
347         }
348 }
349
350 /**
351  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352  * on frequency transition.
353  *
354  * This function calls the transition notifiers and the "adjust_jiffies"
355  * function. It is called twice on all CPU frequency changes that have
356  * external effects.
357  */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359                 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361         for_each_cpu(freqs->cpu, policy->cpus)
362                 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367                 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370         if (!transition_failed)
371                 return;
372
373         swap(freqs->old, freqs->new);
374         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379                 struct cpufreq_freqs *freqs)
380 {
381
382         /*
383          * Catch double invocations of _begin() which lead to self-deadlock.
384          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385          * doesn't invoke _begin() on their behalf, and hence the chances of
386          * double invocations are very low. Moreover, there are scenarios
387          * where these checks can emit false-positive warnings in these
388          * drivers; so we avoid that by skipping them altogether.
389          */
390         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391                                 && current == policy->transition_task);
392
393 wait:
394         wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396         spin_lock(&policy->transition_lock);
397
398         if (unlikely(policy->transition_ongoing)) {
399                 spin_unlock(&policy->transition_lock);
400                 goto wait;
401         }
402
403         policy->transition_ongoing = true;
404         policy->transition_task = current;
405
406         spin_unlock(&policy->transition_lock);
407
408         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413                 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415         if (unlikely(WARN_ON(!policy->transition_ongoing)))
416                 return;
417
418         cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420         policy->transition_ongoing = false;
421         policy->transition_task = NULL;
422
423         wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428  * Fast frequency switching status count.  Positive means "enabled", negative
429  * means "disabled" and 0 means "not decided yet".
430  */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436         struct notifier_block *nb;
437
438         pr_info("Registered transition notifiers:\n");
439
440         mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443                 pr_info("%pF\n", nb->notifier_call);
444
445         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450  * @policy: cpufreq policy to enable fast frequency switching for.
451  *
452  * Try to enable fast frequency switching for @policy.
453  *
454  * The attempt will fail if there is at least one transition notifier registered
455  * at this point, as fast frequency switching is quite fundamentally at odds
456  * with transition notifiers.  Thus if successful, it will make registration of
457  * transition notifiers fail going forward.
458  */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461         lockdep_assert_held(&policy->rwsem);
462
463         if (!policy->fast_switch_possible)
464                 return;
465
466         mutex_lock(&cpufreq_fast_switch_lock);
467         if (cpufreq_fast_switch_count >= 0) {
468                 cpufreq_fast_switch_count++;
469                 policy->fast_switch_enabled = true;
470         } else {
471                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472                         policy->cpu);
473                 cpufreq_list_transition_notifiers();
474         }
475         mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481  * @policy: cpufreq policy to disable fast frequency switching for.
482  */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485         mutex_lock(&cpufreq_fast_switch_lock);
486         if (policy->fast_switch_enabled) {
487                 policy->fast_switch_enabled = false;
488                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489                         cpufreq_fast_switch_count--;
490         }
491         mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497  * one.
498  * @target_freq: target frequency to resolve.
499  *
500  * The target to driver frequency mapping is cached in the policy.
501  *
502  * Return: Lowest driver-supported frequency greater than or equal to the
503  * given target_freq, subject to policy (min/max) and driver limitations.
504  */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506                                          unsigned int target_freq)
507 {
508         target_freq = clamp_val(target_freq, policy->min, policy->max);
509         policy->cached_target_freq = target_freq;
510
511         if (cpufreq_driver->target_index) {
512                 int idx;
513
514                 idx = cpufreq_frequency_table_target(policy, target_freq,
515                                                      CPUFREQ_RELATION_L);
516                 policy->cached_resolved_idx = idx;
517                 return policy->freq_table[idx].frequency;
518         }
519
520         if (cpufreq_driver->resolve_freq)
521                 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523         return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 /*********************************************************************
528  *                          SYSFS INTERFACE                          *
529  *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531                                  struct attribute *attr, char *buf)
532 {
533         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537                                   const char *buf, size_t count)
538 {
539         int ret, enable;
540
541         ret = sscanf(buf, "%d", &enable);
542         if (ret != 1 || enable < 0 || enable > 1)
543                 return -EINVAL;
544
545         if (cpufreq_boost_trigger_state(enable)) {
546                 pr_err("%s: Cannot %s BOOST!\n",
547                        __func__, enable ? "enable" : "disable");
548                 return -EINVAL;
549         }
550
551         pr_debug("%s: cpufreq BOOST %s\n",
552                  __func__, enable ? "enabled" : "disabled");
553
554         return count;
555 }
556 define_one_global_rw(boost);
557
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560         struct cpufreq_governor *t;
561
562         for_each_governor(t)
563                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564                         return t;
565
566         return NULL;
567 }
568
569 /**
570  * cpufreq_parse_governor - parse a governor string
571  */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573                                 struct cpufreq_governor **governor)
574 {
575         int err = -EINVAL;
576
577         if (cpufreq_driver->setpolicy) {
578                 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579                         *policy = CPUFREQ_POLICY_PERFORMANCE;
580                         err = 0;
581                 } else if (!strncasecmp(str_governor, "powersave",
582                                                 CPUFREQ_NAME_LEN)) {
583                         *policy = CPUFREQ_POLICY_POWERSAVE;
584                         err = 0;
585                 }
586         } else {
587                 struct cpufreq_governor *t;
588
589                 mutex_lock(&cpufreq_governor_mutex);
590
591                 t = find_governor(str_governor);
592
593                 if (t == NULL) {
594                         int ret;
595
596                         mutex_unlock(&cpufreq_governor_mutex);
597                         ret = request_module("cpufreq_%s", str_governor);
598                         mutex_lock(&cpufreq_governor_mutex);
599
600                         if (ret == 0)
601                                 t = find_governor(str_governor);
602                 }
603
604                 if (t != NULL) {
605                         *governor = t;
606                         err = 0;
607                 }
608
609                 mutex_unlock(&cpufreq_governor_mutex);
610         }
611         return err;
612 }
613
614 /**
615  * cpufreq_per_cpu_attr_read() / show_##file_name() -
616  * print out cpufreq information
617  *
618  * Write out information from cpufreq_driver->policy[cpu]; object must be
619  * "unsigned int".
620  */
621
622 #define show_one(file_name, object)                     \
623 static ssize_t show_##file_name                         \
624 (struct cpufreq_policy *policy, char *buf)              \
625 {                                                       \
626         return sprintf(buf, "%u\n", policy->object);    \
627 }
628
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634
635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
636 {
637         ssize_t ret;
638
639         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
640                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
641         else
642                 ret = sprintf(buf, "%u\n", policy->cur);
643         return ret;
644 }
645
646 static int cpufreq_set_policy(struct cpufreq_policy *policy,
647                                 struct cpufreq_policy *new_policy);
648
649 /**
650  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
651  */
652 #define store_one(file_name, object)                    \
653 static ssize_t store_##file_name                                        \
654 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
655 {                                                                       \
656         int ret, temp;                                                  \
657         struct cpufreq_policy new_policy;                               \
658                                                                         \
659         memcpy(&new_policy, policy, sizeof(*policy));                   \
660                                                                         \
661         ret = sscanf(buf, "%u", &new_policy.object);                    \
662         if (ret != 1)                                                   \
663                 return -EINVAL;                                         \
664                                                                         \
665         temp = new_policy.object;                                       \
666         ret = cpufreq_set_policy(policy, &new_policy);          \
667         if (!ret)                                                       \
668                 policy->user_policy.object = temp;                      \
669                                                                         \
670         return ret ? ret : count;                                       \
671 }
672
673 store_one(scaling_min_freq, min);
674 store_one(scaling_max_freq, max);
675
676 /**
677  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
678  */
679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
680                                         char *buf)
681 {
682         unsigned int cur_freq = __cpufreq_get(policy);
683         if (!cur_freq)
684                 return sprintf(buf, "<unknown>");
685         return sprintf(buf, "%u\n", cur_freq);
686 }
687
688 /**
689  * show_scaling_governor - show the current policy for the specified CPU
690  */
691 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
692 {
693         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
694                 return sprintf(buf, "powersave\n");
695         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
696                 return sprintf(buf, "performance\n");
697         else if (policy->governor)
698                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
699                                 policy->governor->name);
700         return -EINVAL;
701 }
702
703 /**
704  * store_scaling_governor - store policy for the specified CPU
705  */
706 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
707                                         const char *buf, size_t count)
708 {
709         int ret;
710         char    str_governor[16];
711         struct cpufreq_policy new_policy;
712
713         memcpy(&new_policy, policy, sizeof(*policy));
714
715         ret = sscanf(buf, "%15s", str_governor);
716         if (ret != 1)
717                 return -EINVAL;
718
719         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
720                                                 &new_policy.governor))
721                 return -EINVAL;
722
723         ret = cpufreq_set_policy(policy, &new_policy);
724         return ret ? ret : count;
725 }
726
727 /**
728  * show_scaling_driver - show the cpufreq driver currently loaded
729  */
730 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
731 {
732         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
733 }
734
735 /**
736  * show_scaling_available_governors - show the available CPUfreq governors
737  */
738 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
739                                                 char *buf)
740 {
741         ssize_t i = 0;
742         struct cpufreq_governor *t;
743
744         if (!has_target()) {
745                 i += sprintf(buf, "performance powersave");
746                 goto out;
747         }
748
749         for_each_governor(t) {
750                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
751                     - (CPUFREQ_NAME_LEN + 2)))
752                         goto out;
753                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
754         }
755 out:
756         i += sprintf(&buf[i], "\n");
757         return i;
758 }
759
760 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
761 {
762         ssize_t i = 0;
763         unsigned int cpu;
764
765         for_each_cpu(cpu, mask) {
766                 if (i)
767                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
768                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
769                 if (i >= (PAGE_SIZE - 5))
770                         break;
771         }
772         i += sprintf(&buf[i], "\n");
773         return i;
774 }
775 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
776
777 /**
778  * show_related_cpus - show the CPUs affected by each transition even if
779  * hw coordination is in use
780  */
781 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
782 {
783         return cpufreq_show_cpus(policy->related_cpus, buf);
784 }
785
786 /**
787  * show_affected_cpus - show the CPUs affected by each transition
788  */
789 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
790 {
791         return cpufreq_show_cpus(policy->cpus, buf);
792 }
793
794 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
795                                         const char *buf, size_t count)
796 {
797         unsigned int freq = 0;
798         unsigned int ret;
799
800         if (!policy->governor || !policy->governor->store_setspeed)
801                 return -EINVAL;
802
803         ret = sscanf(buf, "%u", &freq);
804         if (ret != 1)
805                 return -EINVAL;
806
807         policy->governor->store_setspeed(policy, freq);
808
809         return count;
810 }
811
812 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
813 {
814         if (!policy->governor || !policy->governor->show_setspeed)
815                 return sprintf(buf, "<unsupported>\n");
816
817         return policy->governor->show_setspeed(policy, buf);
818 }
819
820 /**
821  * show_bios_limit - show the current cpufreq HW/BIOS limitation
822  */
823 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
824 {
825         unsigned int limit;
826         int ret;
827         if (cpufreq_driver->bios_limit) {
828                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
829                 if (!ret)
830                         return sprintf(buf, "%u\n", limit);
831         }
832         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
833 }
834
835 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
836 cpufreq_freq_attr_ro(cpuinfo_min_freq);
837 cpufreq_freq_attr_ro(cpuinfo_max_freq);
838 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
839 cpufreq_freq_attr_ro(scaling_available_governors);
840 cpufreq_freq_attr_ro(scaling_driver);
841 cpufreq_freq_attr_ro(scaling_cur_freq);
842 cpufreq_freq_attr_ro(bios_limit);
843 cpufreq_freq_attr_ro(related_cpus);
844 cpufreq_freq_attr_ro(affected_cpus);
845 cpufreq_freq_attr_rw(scaling_min_freq);
846 cpufreq_freq_attr_rw(scaling_max_freq);
847 cpufreq_freq_attr_rw(scaling_governor);
848 cpufreq_freq_attr_rw(scaling_setspeed);
849
850 static struct attribute *default_attrs[] = {
851         &cpuinfo_min_freq.attr,
852         &cpuinfo_max_freq.attr,
853         &cpuinfo_transition_latency.attr,
854         &scaling_min_freq.attr,
855         &scaling_max_freq.attr,
856         &affected_cpus.attr,
857         &related_cpus.attr,
858         &scaling_governor.attr,
859         &scaling_driver.attr,
860         &scaling_available_governors.attr,
861         &scaling_setspeed.attr,
862         NULL
863 };
864
865 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
866 #define to_attr(a) container_of(a, struct freq_attr, attr)
867
868 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
869 {
870         struct cpufreq_policy *policy = to_policy(kobj);
871         struct freq_attr *fattr = to_attr(attr);
872         ssize_t ret;
873
874         down_read(&policy->rwsem);
875         ret = fattr->show(policy, buf);
876         up_read(&policy->rwsem);
877
878         return ret;
879 }
880
881 static ssize_t store(struct kobject *kobj, struct attribute *attr,
882                      const char *buf, size_t count)
883 {
884         struct cpufreq_policy *policy = to_policy(kobj);
885         struct freq_attr *fattr = to_attr(attr);
886         ssize_t ret = -EINVAL;
887
888         get_online_cpus();
889
890         if (cpu_online(policy->cpu)) {
891                 down_write(&policy->rwsem);
892                 ret = fattr->store(policy, buf, count);
893                 up_write(&policy->rwsem);
894         }
895
896         put_online_cpus();
897
898         return ret;
899 }
900
901 static void cpufreq_sysfs_release(struct kobject *kobj)
902 {
903         struct cpufreq_policy *policy = to_policy(kobj);
904         pr_debug("last reference is dropped\n");
905         complete(&policy->kobj_unregister);
906 }
907
908 static const struct sysfs_ops sysfs_ops = {
909         .show   = show,
910         .store  = store,
911 };
912
913 static struct kobj_type ktype_cpufreq = {
914         .sysfs_ops      = &sysfs_ops,
915         .default_attrs  = default_attrs,
916         .release        = cpufreq_sysfs_release,
917 };
918
919 static int add_cpu_dev_symlink(struct cpufreq_policy *policy,
920                                struct device *dev)
921 {
922         dev_dbg(dev, "%s: Adding symlink\n", __func__);
923         return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
924 }
925
926 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
927                                    struct device *dev)
928 {
929         dev_dbg(dev, "%s: Removing symlink\n", __func__);
930         sysfs_remove_link(&dev->kobj, "cpufreq");
931 }
932
933 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
934 {
935         struct freq_attr **drv_attr;
936         int ret = 0;
937
938         /* set up files for this cpu device */
939         drv_attr = cpufreq_driver->attr;
940         while (drv_attr && *drv_attr) {
941                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
942                 if (ret)
943                         return ret;
944                 drv_attr++;
945         }
946         if (cpufreq_driver->get) {
947                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
948                 if (ret)
949                         return ret;
950         }
951
952         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
953         if (ret)
954                 return ret;
955
956         if (cpufreq_driver->bios_limit) {
957                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
958                 if (ret)
959                         return ret;
960         }
961
962         return 0;
963 }
964
965 __weak struct cpufreq_governor *cpufreq_default_governor(void)
966 {
967         return NULL;
968 }
969
970 static int cpufreq_init_policy(struct cpufreq_policy *policy)
971 {
972         struct cpufreq_governor *gov = NULL;
973         struct cpufreq_policy new_policy;
974
975         memcpy(&new_policy, policy, sizeof(*policy));
976
977         /* Update governor of new_policy to the governor used before hotplug */
978         gov = find_governor(policy->last_governor);
979         if (gov) {
980                 pr_debug("Restoring governor %s for cpu %d\n",
981                                 policy->governor->name, policy->cpu);
982         } else {
983                 gov = cpufreq_default_governor();
984                 if (!gov)
985                         return -ENODATA;
986         }
987
988         new_policy.governor = gov;
989
990         /* Use the default policy if there is no last_policy. */
991         if (cpufreq_driver->setpolicy) {
992                 if (policy->last_policy)
993                         new_policy.policy = policy->last_policy;
994                 else
995                         cpufreq_parse_governor(gov->name, &new_policy.policy,
996                                                NULL);
997         }
998         /* set default policy */
999         return cpufreq_set_policy(policy, &new_policy);
1000 }
1001
1002 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1003 {
1004         int ret = 0;
1005
1006         /* Has this CPU been taken care of already? */
1007         if (cpumask_test_cpu(cpu, policy->cpus))
1008                 return 0;
1009
1010         down_write(&policy->rwsem);
1011         if (has_target())
1012                 cpufreq_stop_governor(policy);
1013
1014         cpumask_set_cpu(cpu, policy->cpus);
1015
1016         if (has_target()) {
1017                 ret = cpufreq_start_governor(policy);
1018                 if (ret)
1019                         pr_err("%s: Failed to start governor\n", __func__);
1020         }
1021         up_write(&policy->rwsem);
1022         return ret;
1023 }
1024
1025 static void handle_update(struct work_struct *work)
1026 {
1027         struct cpufreq_policy *policy =
1028                 container_of(work, struct cpufreq_policy, update);
1029         unsigned int cpu = policy->cpu;
1030         pr_debug("handle_update for cpu %u called\n", cpu);
1031         cpufreq_update_policy(cpu);
1032 }
1033
1034 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1035 {
1036         struct cpufreq_policy *policy;
1037         int ret;
1038
1039         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1040         if (!policy)
1041                 return NULL;
1042
1043         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1044                 goto err_free_policy;
1045
1046         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1047                 goto err_free_cpumask;
1048
1049         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1050                 goto err_free_rcpumask;
1051
1052         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1053                                    cpufreq_global_kobject, "policy%u", cpu);
1054         if (ret) {
1055                 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1056                 goto err_free_real_cpus;
1057         }
1058
1059         INIT_LIST_HEAD(&policy->policy_list);
1060         init_rwsem(&policy->rwsem);
1061         spin_lock_init(&policy->transition_lock);
1062         init_waitqueue_head(&policy->transition_wait);
1063         init_completion(&policy->kobj_unregister);
1064         INIT_WORK(&policy->update, handle_update);
1065
1066         policy->cpu = cpu;
1067         return policy;
1068
1069 err_free_real_cpus:
1070         free_cpumask_var(policy->real_cpus);
1071 err_free_rcpumask:
1072         free_cpumask_var(policy->related_cpus);
1073 err_free_cpumask:
1074         free_cpumask_var(policy->cpus);
1075 err_free_policy:
1076         kfree(policy);
1077
1078         return NULL;
1079 }
1080
1081 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1082 {
1083         struct kobject *kobj;
1084         struct completion *cmp;
1085
1086         if (notify)
1087                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1088                                              CPUFREQ_REMOVE_POLICY, policy);
1089
1090         down_write(&policy->rwsem);
1091         cpufreq_stats_free_table(policy);
1092         kobj = &policy->kobj;
1093         cmp = &policy->kobj_unregister;
1094         up_write(&policy->rwsem);
1095         kobject_put(kobj);
1096
1097         /*
1098          * We need to make sure that the underlying kobj is
1099          * actually not referenced anymore by anybody before we
1100          * proceed with unloading.
1101          */
1102         pr_debug("waiting for dropping of refcount\n");
1103         wait_for_completion(cmp);
1104         pr_debug("wait complete\n");
1105 }
1106
1107 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1108 {
1109         unsigned long flags;
1110         int cpu;
1111
1112         /* Remove policy from list */
1113         write_lock_irqsave(&cpufreq_driver_lock, flags);
1114         list_del(&policy->policy_list);
1115
1116         for_each_cpu(cpu, policy->related_cpus)
1117                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1118         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1119
1120         cpufreq_policy_put_kobj(policy, notify);
1121         free_cpumask_var(policy->real_cpus);
1122         free_cpumask_var(policy->related_cpus);
1123         free_cpumask_var(policy->cpus);
1124         kfree(policy);
1125 }
1126
1127 static int cpufreq_online(unsigned int cpu)
1128 {
1129         struct cpufreq_policy *policy;
1130         bool new_policy;
1131         unsigned long flags;
1132         unsigned int j;
1133         int ret;
1134
1135         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1136
1137         /* Check if this CPU already has a policy to manage it */
1138         policy = per_cpu(cpufreq_cpu_data, cpu);
1139         if (policy) {
1140                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1141                 if (!policy_is_inactive(policy))
1142                         return cpufreq_add_policy_cpu(policy, cpu);
1143
1144                 /* This is the only online CPU for the policy.  Start over. */
1145                 new_policy = false;
1146                 down_write(&policy->rwsem);
1147                 policy->cpu = cpu;
1148                 policy->governor = NULL;
1149                 up_write(&policy->rwsem);
1150         } else {
1151                 new_policy = true;
1152                 policy = cpufreq_policy_alloc(cpu);
1153                 if (!policy)
1154                         return -ENOMEM;
1155         }
1156
1157         cpumask_copy(policy->cpus, cpumask_of(cpu));
1158
1159         /* call driver. From then on the cpufreq must be able
1160          * to accept all calls to ->verify and ->setpolicy for this CPU
1161          */
1162         ret = cpufreq_driver->init(policy);
1163         if (ret) {
1164                 pr_debug("initialization failed\n");
1165                 goto out_free_policy;
1166         }
1167
1168         down_write(&policy->rwsem);
1169
1170         if (new_policy) {
1171                 /* related_cpus should at least include policy->cpus. */
1172                 cpumask_copy(policy->related_cpus, policy->cpus);
1173                 /* Clear mask of registered CPUs */
1174                 cpumask_clear(policy->real_cpus);
1175         }
1176
1177         /*
1178          * affected cpus must always be the one, which are online. We aren't
1179          * managing offline cpus here.
1180          */
1181         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1182
1183         if (new_policy) {
1184                 policy->user_policy.min = policy->min;
1185                 policy->user_policy.max = policy->max;
1186
1187                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1188                 for_each_cpu(j, policy->related_cpus)
1189                         per_cpu(cpufreq_cpu_data, j) = policy;
1190                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1191         }
1192
1193         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1194                 policy->cur = cpufreq_driver->get(policy->cpu);
1195                 if (!policy->cur) {
1196                         pr_err("%s: ->get() failed\n", __func__);
1197                         goto out_exit_policy;
1198                 }
1199         }
1200
1201         /*
1202          * Sometimes boot loaders set CPU frequency to a value outside of
1203          * frequency table present with cpufreq core. In such cases CPU might be
1204          * unstable if it has to run on that frequency for long duration of time
1205          * and so its better to set it to a frequency which is specified in
1206          * freq-table. This also makes cpufreq stats inconsistent as
1207          * cpufreq-stats would fail to register because current frequency of CPU
1208          * isn't found in freq-table.
1209          *
1210          * Because we don't want this change to effect boot process badly, we go
1211          * for the next freq which is >= policy->cur ('cur' must be set by now,
1212          * otherwise we will end up setting freq to lowest of the table as 'cur'
1213          * is initialized to zero).
1214          *
1215          * We are passing target-freq as "policy->cur - 1" otherwise
1216          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1217          * equal to target-freq.
1218          */
1219         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1220             && has_target()) {
1221                 /* Are we running at unknown frequency ? */
1222                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1223                 if (ret == -EINVAL) {
1224                         /* Warn user and fix it */
1225                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1226                                 __func__, policy->cpu, policy->cur);
1227                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1228                                 CPUFREQ_RELATION_L);
1229
1230                         /*
1231                          * Reaching here after boot in a few seconds may not
1232                          * mean that system will remain stable at "unknown"
1233                          * frequency for longer duration. Hence, a BUG_ON().
1234                          */
1235                         BUG_ON(ret);
1236                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1237                                 __func__, policy->cpu, policy->cur);
1238                 }
1239         }
1240
1241         if (new_policy) {
1242                 ret = cpufreq_add_dev_interface(policy);
1243                 if (ret)
1244                         goto out_exit_policy;
1245
1246                 cpufreq_stats_create_table(policy);
1247                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1248                                 CPUFREQ_CREATE_POLICY, policy);
1249
1250                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1251                 list_add(&policy->policy_list, &cpufreq_policy_list);
1252                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1253         }
1254
1255         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1256                                      CPUFREQ_START, policy);
1257
1258         ret = cpufreq_init_policy(policy);
1259         if (ret) {
1260                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1261                        __func__, cpu, ret);
1262                 /* cpufreq_policy_free() will notify based on this */
1263                 new_policy = false;
1264                 goto out_exit_policy;
1265         }
1266
1267         up_write(&policy->rwsem);
1268
1269         kobject_uevent(&policy->kobj, KOBJ_ADD);
1270
1271         /* Callback for handling stuff after policy is ready */
1272         if (cpufreq_driver->ready)
1273                 cpufreq_driver->ready(policy);
1274
1275         pr_debug("initialization complete\n");
1276
1277         return 0;
1278
1279 out_exit_policy:
1280         up_write(&policy->rwsem);
1281
1282         if (cpufreq_driver->exit)
1283                 cpufreq_driver->exit(policy);
1284 out_free_policy:
1285         cpufreq_policy_free(policy, !new_policy);
1286         return ret;
1287 }
1288
1289 static void cpufreq_offline(unsigned int cpu);
1290
1291 /**
1292  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1293  * @dev: CPU device.
1294  * @sif: Subsystem interface structure pointer (not used)
1295  */
1296 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1297 {
1298         struct cpufreq_policy *policy;
1299         unsigned cpu = dev->id;
1300         int ret;
1301
1302         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1303
1304         if (cpu_online(cpu)) {
1305                 ret = cpufreq_online(cpu);
1306                 if (ret)
1307                         return ret;
1308         }
1309
1310         /* Create sysfs link on CPU registration */
1311         policy = per_cpu(cpufreq_cpu_data, cpu);
1312         if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1313                 return 0;
1314
1315         ret = add_cpu_dev_symlink(policy, dev);
1316         if (ret) {
1317                 cpumask_clear_cpu(cpu, policy->real_cpus);
1318                 cpufreq_offline(cpu);
1319         }
1320
1321         return ret;
1322 }
1323
1324 static void cpufreq_offline(unsigned int cpu)
1325 {
1326         struct cpufreq_policy *policy;
1327         int ret;
1328
1329         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1330
1331         policy = cpufreq_cpu_get_raw(cpu);
1332         if (!policy) {
1333                 pr_debug("%s: No cpu_data found\n", __func__);
1334                 return;
1335         }
1336
1337         down_write(&policy->rwsem);
1338         if (has_target())
1339                 cpufreq_stop_governor(policy);
1340
1341         cpumask_clear_cpu(cpu, policy->cpus);
1342
1343         if (policy_is_inactive(policy)) {
1344                 if (has_target())
1345                         strncpy(policy->last_governor, policy->governor->name,
1346                                 CPUFREQ_NAME_LEN);
1347                 else
1348                         policy->last_policy = policy->policy;
1349         } else if (cpu == policy->cpu) {
1350                 /* Nominate new CPU */
1351                 policy->cpu = cpumask_any(policy->cpus);
1352         }
1353
1354         /* Start governor again for active policy */
1355         if (!policy_is_inactive(policy)) {
1356                 if (has_target()) {
1357                         ret = cpufreq_start_governor(policy);
1358                         if (ret)
1359                                 pr_err("%s: Failed to start governor\n", __func__);
1360                 }
1361
1362                 goto unlock;
1363         }
1364
1365         if (cpufreq_driver->stop_cpu)
1366                 cpufreq_driver->stop_cpu(policy);
1367
1368         if (has_target())
1369                 cpufreq_exit_governor(policy);
1370
1371         /*
1372          * Perform the ->exit() even during light-weight tear-down,
1373          * since this is a core component, and is essential for the
1374          * subsequent light-weight ->init() to succeed.
1375          */
1376         if (cpufreq_driver->exit) {
1377                 cpufreq_driver->exit(policy);
1378                 policy->freq_table = NULL;
1379         }
1380
1381 unlock:
1382         up_write(&policy->rwsem);
1383 }
1384
1385 /**
1386  * cpufreq_remove_dev - remove a CPU device
1387  *
1388  * Removes the cpufreq interface for a CPU device.
1389  */
1390 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1391 {
1392         unsigned int cpu = dev->id;
1393         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1394
1395         if (!policy)
1396                 return;
1397
1398         if (cpu_online(cpu))
1399                 cpufreq_offline(cpu);
1400
1401         cpumask_clear_cpu(cpu, policy->real_cpus);
1402         remove_cpu_dev_symlink(policy, dev);
1403
1404         if (cpumask_empty(policy->real_cpus))
1405                 cpufreq_policy_free(policy, true);
1406 }
1407
1408 /**
1409  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1410  *      in deep trouble.
1411  *      @policy: policy managing CPUs
1412  *      @new_freq: CPU frequency the CPU actually runs at
1413  *
1414  *      We adjust to current frequency first, and need to clean up later.
1415  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1416  */
1417 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1418                                 unsigned int new_freq)
1419 {
1420         struct cpufreq_freqs freqs;
1421
1422         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1423                  policy->cur, new_freq);
1424
1425         freqs.old = policy->cur;
1426         freqs.new = new_freq;
1427
1428         cpufreq_freq_transition_begin(policy, &freqs);
1429         cpufreq_freq_transition_end(policy, &freqs, 0);
1430 }
1431
1432 /**
1433  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1434  * @cpu: CPU number
1435  *
1436  * This is the last known freq, without actually getting it from the driver.
1437  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1438  */
1439 unsigned int cpufreq_quick_get(unsigned int cpu)
1440 {
1441         struct cpufreq_policy *policy;
1442         unsigned int ret_freq = 0;
1443         unsigned long flags;
1444
1445         read_lock_irqsave(&cpufreq_driver_lock, flags);
1446
1447         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1448                 ret_freq = cpufreq_driver->get(cpu);
1449                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1450                 return ret_freq;
1451         }
1452
1453         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1454
1455         policy = cpufreq_cpu_get(cpu);
1456         if (policy) {
1457                 ret_freq = policy->cur;
1458                 cpufreq_cpu_put(policy);
1459         }
1460
1461         return ret_freq;
1462 }
1463 EXPORT_SYMBOL(cpufreq_quick_get);
1464
1465 /**
1466  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1467  * @cpu: CPU number
1468  *
1469  * Just return the max possible frequency for a given CPU.
1470  */
1471 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1472 {
1473         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1474         unsigned int ret_freq = 0;
1475
1476         if (policy) {
1477                 ret_freq = policy->max;
1478                 cpufreq_cpu_put(policy);
1479         }
1480
1481         return ret_freq;
1482 }
1483 EXPORT_SYMBOL(cpufreq_quick_get_max);
1484
1485 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1486 {
1487         unsigned int ret_freq = 0;
1488
1489         if (!cpufreq_driver->get)
1490                 return ret_freq;
1491
1492         ret_freq = cpufreq_driver->get(policy->cpu);
1493
1494         /*
1495          * Updating inactive policies is invalid, so avoid doing that.  Also
1496          * if fast frequency switching is used with the given policy, the check
1497          * against policy->cur is pointless, so skip it in that case too.
1498          */
1499         if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1500                 return ret_freq;
1501
1502         if (ret_freq && policy->cur &&
1503                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1504                 /* verify no discrepancy between actual and
1505                                         saved value exists */
1506                 if (unlikely(ret_freq != policy->cur)) {
1507                         cpufreq_out_of_sync(policy, ret_freq);
1508                         schedule_work(&policy->update);
1509                 }
1510         }
1511
1512         return ret_freq;
1513 }
1514
1515 /**
1516  * cpufreq_get - get the current CPU frequency (in kHz)
1517  * @cpu: CPU number
1518  *
1519  * Get the CPU current (static) CPU frequency
1520  */
1521 unsigned int cpufreq_get(unsigned int cpu)
1522 {
1523         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1524         unsigned int ret_freq = 0;
1525
1526         if (policy) {
1527                 down_read(&policy->rwsem);
1528                 ret_freq = __cpufreq_get(policy);
1529                 up_read(&policy->rwsem);
1530
1531                 cpufreq_cpu_put(policy);
1532         }
1533
1534         return ret_freq;
1535 }
1536 EXPORT_SYMBOL(cpufreq_get);
1537
1538 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1539 {
1540         unsigned int new_freq;
1541
1542         new_freq = cpufreq_driver->get(policy->cpu);
1543         if (!new_freq)
1544                 return 0;
1545
1546         if (!policy->cur) {
1547                 pr_debug("cpufreq: Driver did not initialize current freq\n");
1548                 policy->cur = new_freq;
1549         } else if (policy->cur != new_freq && has_target()) {
1550                 cpufreq_out_of_sync(policy, new_freq);
1551         }
1552
1553         return new_freq;
1554 }
1555
1556 static struct subsys_interface cpufreq_interface = {
1557         .name           = "cpufreq",
1558         .subsys         = &cpu_subsys,
1559         .add_dev        = cpufreq_add_dev,
1560         .remove_dev     = cpufreq_remove_dev,
1561 };
1562
1563 /*
1564  * In case platform wants some specific frequency to be configured
1565  * during suspend..
1566  */
1567 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1568 {
1569         int ret;
1570
1571         if (!policy->suspend_freq) {
1572                 pr_debug("%s: suspend_freq not defined\n", __func__);
1573                 return 0;
1574         }
1575
1576         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1577                         policy->suspend_freq);
1578
1579         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1580                         CPUFREQ_RELATION_H);
1581         if (ret)
1582                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1583                                 __func__, policy->suspend_freq, ret);
1584
1585         return ret;
1586 }
1587 EXPORT_SYMBOL(cpufreq_generic_suspend);
1588
1589 /**
1590  * cpufreq_suspend() - Suspend CPUFreq governors
1591  *
1592  * Called during system wide Suspend/Hibernate cycles for suspending governors
1593  * as some platforms can't change frequency after this point in suspend cycle.
1594  * Because some of the devices (like: i2c, regulators, etc) they use for
1595  * changing frequency are suspended quickly after this point.
1596  */
1597 void cpufreq_suspend(void)
1598 {
1599         struct cpufreq_policy *policy;
1600
1601         if (!cpufreq_driver)
1602                 return;
1603
1604         if (!has_target() && !cpufreq_driver->suspend)
1605                 goto suspend;
1606
1607         pr_debug("%s: Suspending Governors\n", __func__);
1608
1609         for_each_active_policy(policy) {
1610                 if (has_target()) {
1611                         down_write(&policy->rwsem);
1612                         cpufreq_stop_governor(policy);
1613                         up_write(&policy->rwsem);
1614                 }
1615
1616                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1617                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1618                                 policy);
1619         }
1620
1621 suspend:
1622         cpufreq_suspended = true;
1623 }
1624
1625 /**
1626  * cpufreq_resume() - Resume CPUFreq governors
1627  *
1628  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1629  * are suspended with cpufreq_suspend().
1630  */
1631 void cpufreq_resume(void)
1632 {
1633         struct cpufreq_policy *policy;
1634         int ret;
1635
1636         if (!cpufreq_driver)
1637                 return;
1638
1639         cpufreq_suspended = false;
1640
1641         if (!has_target() && !cpufreq_driver->resume)
1642                 return;
1643
1644         pr_debug("%s: Resuming Governors\n", __func__);
1645
1646         for_each_active_policy(policy) {
1647                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1648                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1649                                 policy);
1650                 } else if (has_target()) {
1651                         down_write(&policy->rwsem);
1652                         ret = cpufreq_start_governor(policy);
1653                         up_write(&policy->rwsem);
1654
1655                         if (ret)
1656                                 pr_err("%s: Failed to start governor for policy: %p\n",
1657                                        __func__, policy);
1658                 }
1659         }
1660 }
1661
1662 /**
1663  *      cpufreq_get_current_driver - return current driver's name
1664  *
1665  *      Return the name string of the currently loaded cpufreq driver
1666  *      or NULL, if none.
1667  */
1668 const char *cpufreq_get_current_driver(void)
1669 {
1670         if (cpufreq_driver)
1671                 return cpufreq_driver->name;
1672
1673         return NULL;
1674 }
1675 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1676
1677 /**
1678  *      cpufreq_get_driver_data - return current driver data
1679  *
1680  *      Return the private data of the currently loaded cpufreq
1681  *      driver, or NULL if no cpufreq driver is loaded.
1682  */
1683 void *cpufreq_get_driver_data(void)
1684 {
1685         if (cpufreq_driver)
1686                 return cpufreq_driver->driver_data;
1687
1688         return NULL;
1689 }
1690 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1691
1692 /*********************************************************************
1693  *                     NOTIFIER LISTS INTERFACE                      *
1694  *********************************************************************/
1695
1696 /**
1697  *      cpufreq_register_notifier - register a driver with cpufreq
1698  *      @nb: notifier function to register
1699  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1700  *
1701  *      Add a driver to one of two lists: either a list of drivers that
1702  *      are notified about clock rate changes (once before and once after
1703  *      the transition), or a list of drivers that are notified about
1704  *      changes in cpufreq policy.
1705  *
1706  *      This function may sleep, and has the same return conditions as
1707  *      blocking_notifier_chain_register.
1708  */
1709 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1710 {
1711         int ret;
1712
1713         if (cpufreq_disabled())
1714                 return -EINVAL;
1715
1716         WARN_ON(!init_cpufreq_transition_notifier_list_called);
1717
1718         switch (list) {
1719         case CPUFREQ_TRANSITION_NOTIFIER:
1720                 mutex_lock(&cpufreq_fast_switch_lock);
1721
1722                 if (cpufreq_fast_switch_count > 0) {
1723                         mutex_unlock(&cpufreq_fast_switch_lock);
1724                         return -EBUSY;
1725                 }
1726                 ret = srcu_notifier_chain_register(
1727                                 &cpufreq_transition_notifier_list, nb);
1728                 if (!ret)
1729                         cpufreq_fast_switch_count--;
1730
1731                 mutex_unlock(&cpufreq_fast_switch_lock);
1732                 break;
1733         case CPUFREQ_POLICY_NOTIFIER:
1734                 ret = blocking_notifier_chain_register(
1735                                 &cpufreq_policy_notifier_list, nb);
1736                 break;
1737         default:
1738                 ret = -EINVAL;
1739         }
1740
1741         return ret;
1742 }
1743 EXPORT_SYMBOL(cpufreq_register_notifier);
1744
1745 /**
1746  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1747  *      @nb: notifier block to be unregistered
1748  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1749  *
1750  *      Remove a driver from the CPU frequency notifier list.
1751  *
1752  *      This function may sleep, and has the same return conditions as
1753  *      blocking_notifier_chain_unregister.
1754  */
1755 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1756 {
1757         int ret;
1758
1759         if (cpufreq_disabled())
1760                 return -EINVAL;
1761
1762         switch (list) {
1763         case CPUFREQ_TRANSITION_NOTIFIER:
1764                 mutex_lock(&cpufreq_fast_switch_lock);
1765
1766                 ret = srcu_notifier_chain_unregister(
1767                                 &cpufreq_transition_notifier_list, nb);
1768                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1769                         cpufreq_fast_switch_count++;
1770
1771                 mutex_unlock(&cpufreq_fast_switch_lock);
1772                 break;
1773         case CPUFREQ_POLICY_NOTIFIER:
1774                 ret = blocking_notifier_chain_unregister(
1775                                 &cpufreq_policy_notifier_list, nb);
1776                 break;
1777         default:
1778                 ret = -EINVAL;
1779         }
1780
1781         return ret;
1782 }
1783 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1784
1785
1786 /*********************************************************************
1787  *                              GOVERNORS                            *
1788  *********************************************************************/
1789
1790 /**
1791  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1792  * @policy: cpufreq policy to switch the frequency for.
1793  * @target_freq: New frequency to set (may be approximate).
1794  *
1795  * Carry out a fast frequency switch without sleeping.
1796  *
1797  * The driver's ->fast_switch() callback invoked by this function must be
1798  * suitable for being called from within RCU-sched read-side critical sections
1799  * and it is expected to select the minimum available frequency greater than or
1800  * equal to @target_freq (CPUFREQ_RELATION_L).
1801  *
1802  * This function must not be called if policy->fast_switch_enabled is unset.
1803  *
1804  * Governors calling this function must guarantee that it will never be invoked
1805  * twice in parallel for the same policy and that it will never be called in
1806  * parallel with either ->target() or ->target_index() for the same policy.
1807  *
1808  * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1809  * callback to indicate an error condition, the hardware configuration must be
1810  * preserved.
1811  */
1812 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1813                                         unsigned int target_freq)
1814 {
1815         target_freq = clamp_val(target_freq, policy->min, policy->max);
1816
1817         return cpufreq_driver->fast_switch(policy, target_freq);
1818 }
1819 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1820
1821 /* Must set freqs->new to intermediate frequency */
1822 static int __target_intermediate(struct cpufreq_policy *policy,
1823                                  struct cpufreq_freqs *freqs, int index)
1824 {
1825         int ret;
1826
1827         freqs->new = cpufreq_driver->get_intermediate(policy, index);
1828
1829         /* We don't need to switch to intermediate freq */
1830         if (!freqs->new)
1831                 return 0;
1832
1833         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1834                  __func__, policy->cpu, freqs->old, freqs->new);
1835
1836         cpufreq_freq_transition_begin(policy, freqs);
1837         ret = cpufreq_driver->target_intermediate(policy, index);
1838         cpufreq_freq_transition_end(policy, freqs, ret);
1839
1840         if (ret)
1841                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1842                        __func__, ret);
1843
1844         return ret;
1845 }
1846
1847 static int __target_index(struct cpufreq_policy *policy, int index)
1848 {
1849         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1850         unsigned int intermediate_freq = 0;
1851         unsigned int newfreq = policy->freq_table[index].frequency;
1852         int retval = -EINVAL;
1853         bool notify;
1854
1855         if (newfreq == policy->cur)
1856                 return 0;
1857
1858         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1859         if (notify) {
1860                 /* Handle switching to intermediate frequency */
1861                 if (cpufreq_driver->get_intermediate) {
1862                         retval = __target_intermediate(policy, &freqs, index);
1863                         if (retval)
1864                                 return retval;
1865
1866                         intermediate_freq = freqs.new;
1867                         /* Set old freq to intermediate */
1868                         if (intermediate_freq)
1869                                 freqs.old = freqs.new;
1870                 }
1871
1872                 freqs.new = newfreq;
1873                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1874                          __func__, policy->cpu, freqs.old, freqs.new);
1875
1876                 cpufreq_freq_transition_begin(policy, &freqs);
1877         }
1878
1879         retval = cpufreq_driver->target_index(policy, index);
1880         if (retval)
1881                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1882                        retval);
1883
1884         if (notify) {
1885                 cpufreq_freq_transition_end(policy, &freqs, retval);
1886
1887                 /*
1888                  * Failed after setting to intermediate freq? Driver should have
1889                  * reverted back to initial frequency and so should we. Check
1890                  * here for intermediate_freq instead of get_intermediate, in
1891                  * case we haven't switched to intermediate freq at all.
1892                  */
1893                 if (unlikely(retval && intermediate_freq)) {
1894                         freqs.old = intermediate_freq;
1895                         freqs.new = policy->restore_freq;
1896                         cpufreq_freq_transition_begin(policy, &freqs);
1897                         cpufreq_freq_transition_end(policy, &freqs, 0);
1898                 }
1899         }
1900
1901         return retval;
1902 }
1903
1904 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1905                             unsigned int target_freq,
1906                             unsigned int relation)
1907 {
1908         unsigned int old_target_freq = target_freq;
1909         int index;
1910
1911         if (cpufreq_disabled())
1912                 return -ENODEV;
1913
1914         /* Make sure that target_freq is within supported range */
1915         target_freq = clamp_val(target_freq, policy->min, policy->max);
1916
1917         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1918                  policy->cpu, target_freq, relation, old_target_freq);
1919
1920         /*
1921          * This might look like a redundant call as we are checking it again
1922          * after finding index. But it is left intentionally for cases where
1923          * exactly same freq is called again and so we can save on few function
1924          * calls.
1925          */
1926         if (target_freq == policy->cur)
1927                 return 0;
1928
1929         /* Save last value to restore later on errors */
1930         policy->restore_freq = policy->cur;
1931
1932         if (cpufreq_driver->target)
1933                 return cpufreq_driver->target(policy, target_freq, relation);
1934
1935         if (!cpufreq_driver->target_index)
1936                 return -EINVAL;
1937
1938         index = cpufreq_frequency_table_target(policy, target_freq, relation);
1939
1940         return __target_index(policy, index);
1941 }
1942 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1943
1944 int cpufreq_driver_target(struct cpufreq_policy *policy,
1945                           unsigned int target_freq,
1946                           unsigned int relation)
1947 {
1948         int ret = -EINVAL;
1949
1950         down_write(&policy->rwsem);
1951
1952         ret = __cpufreq_driver_target(policy, target_freq, relation);
1953
1954         up_write(&policy->rwsem);
1955
1956         return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1959
1960 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1961 {
1962         return NULL;
1963 }
1964
1965 static int cpufreq_init_governor(struct cpufreq_policy *policy)
1966 {
1967         int ret;
1968
1969         /* Don't start any governor operations if we are entering suspend */
1970         if (cpufreq_suspended)
1971                 return 0;
1972         /*
1973          * Governor might not be initiated here if ACPI _PPC changed
1974          * notification happened, so check it.
1975          */
1976         if (!policy->governor)
1977                 return -EINVAL;
1978
1979         if (policy->governor->max_transition_latency &&
1980             policy->cpuinfo.transition_latency >
1981             policy->governor->max_transition_latency) {
1982                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
1983
1984                 if (gov) {
1985                         pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1986                                 policy->governor->name, gov->name);
1987                         policy->governor = gov;
1988                 } else {
1989                         return -EINVAL;
1990                 }
1991         }
1992
1993         if (!try_module_get(policy->governor->owner))
1994                 return -EINVAL;
1995
1996         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
1997
1998         if (policy->governor->init) {
1999                 ret = policy->governor->init(policy);
2000                 if (ret) {
2001                         module_put(policy->governor->owner);
2002                         return ret;
2003                 }
2004         }
2005
2006         return 0;
2007 }
2008
2009 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2010 {
2011         if (cpufreq_suspended || !policy->governor)
2012                 return;
2013
2014         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2015
2016         if (policy->governor->exit)
2017                 policy->governor->exit(policy);
2018
2019         module_put(policy->governor->owner);
2020 }
2021
2022 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2023 {
2024         int ret;
2025
2026         if (cpufreq_suspended)
2027                 return 0;
2028
2029         if (!policy->governor)
2030                 return -EINVAL;
2031
2032         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2033
2034         if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2035                 cpufreq_update_current_freq(policy);
2036
2037         if (policy->governor->start) {
2038                 ret = policy->governor->start(policy);
2039                 if (ret)
2040                         return ret;
2041         }
2042
2043         if (policy->governor->limits)
2044                 policy->governor->limits(policy);
2045
2046         return 0;
2047 }
2048
2049 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2050 {
2051         if (cpufreq_suspended || !policy->governor)
2052                 return;
2053
2054         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2055
2056         if (policy->governor->stop)
2057                 policy->governor->stop(policy);
2058 }
2059
2060 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2061 {
2062         if (cpufreq_suspended || !policy->governor)
2063                 return;
2064
2065         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2066
2067         if (policy->governor->limits)
2068                 policy->governor->limits(policy);
2069 }
2070
2071 int cpufreq_register_governor(struct cpufreq_governor *governor)
2072 {
2073         int err;
2074
2075         if (!governor)
2076                 return -EINVAL;
2077
2078         if (cpufreq_disabled())
2079                 return -ENODEV;
2080
2081         mutex_lock(&cpufreq_governor_mutex);
2082
2083         err = -EBUSY;
2084         if (!find_governor(governor->name)) {
2085                 err = 0;
2086                 list_add(&governor->governor_list, &cpufreq_governor_list);
2087         }
2088
2089         mutex_unlock(&cpufreq_governor_mutex);
2090         return err;
2091 }
2092 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2093
2094 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2095 {
2096         struct cpufreq_policy *policy;
2097         unsigned long flags;
2098
2099         if (!governor)
2100                 return;
2101
2102         if (cpufreq_disabled())
2103                 return;
2104
2105         /* clear last_governor for all inactive policies */
2106         read_lock_irqsave(&cpufreq_driver_lock, flags);
2107         for_each_inactive_policy(policy) {
2108                 if (!strcmp(policy->last_governor, governor->name)) {
2109                         policy->governor = NULL;
2110                         strcpy(policy->last_governor, "\0");
2111                 }
2112         }
2113         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2114
2115         mutex_lock(&cpufreq_governor_mutex);
2116         list_del(&governor->governor_list);
2117         mutex_unlock(&cpufreq_governor_mutex);
2118         return;
2119 }
2120 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2121
2122
2123 /*********************************************************************
2124  *                          POLICY INTERFACE                         *
2125  *********************************************************************/
2126
2127 /**
2128  * cpufreq_get_policy - get the current cpufreq_policy
2129  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2130  *      is written
2131  *
2132  * Reads the current cpufreq policy.
2133  */
2134 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2135 {
2136         struct cpufreq_policy *cpu_policy;
2137         if (!policy)
2138                 return -EINVAL;
2139
2140         cpu_policy = cpufreq_cpu_get(cpu);
2141         if (!cpu_policy)
2142                 return -EINVAL;
2143
2144         memcpy(policy, cpu_policy, sizeof(*policy));
2145
2146         cpufreq_cpu_put(cpu_policy);
2147         return 0;
2148 }
2149 EXPORT_SYMBOL(cpufreq_get_policy);
2150
2151 /*
2152  * policy : current policy.
2153  * new_policy: policy to be set.
2154  */
2155 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2156                                 struct cpufreq_policy *new_policy)
2157 {
2158         struct cpufreq_governor *old_gov;
2159         int ret;
2160
2161         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2162                  new_policy->cpu, new_policy->min, new_policy->max);
2163
2164         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2165
2166         /*
2167         * This check works well when we store new min/max freq attributes,
2168         * because new_policy is a copy of policy with one field updated.
2169         */
2170         if (new_policy->min > new_policy->max)
2171                 return -EINVAL;
2172
2173         /* verify the cpu speed can be set within this limit */
2174         ret = cpufreq_driver->verify(new_policy);
2175         if (ret)
2176                 return ret;
2177
2178         /* adjust if necessary - all reasons */
2179         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2180                         CPUFREQ_ADJUST, new_policy);
2181
2182         /*
2183          * verify the cpu speed can be set within this limit, which might be
2184          * different to the first one
2185          */
2186         ret = cpufreq_driver->verify(new_policy);
2187         if (ret)
2188                 return ret;
2189
2190         /* notification of the new policy */
2191         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2192                         CPUFREQ_NOTIFY, new_policy);
2193
2194         policy->min = new_policy->min;
2195         policy->max = new_policy->max;
2196
2197         policy->cached_target_freq = UINT_MAX;
2198
2199         pr_debug("new min and max freqs are %u - %u kHz\n",
2200                  policy->min, policy->max);
2201
2202         if (cpufreq_driver->setpolicy) {
2203                 policy->policy = new_policy->policy;
2204                 pr_debug("setting range\n");
2205                 return cpufreq_driver->setpolicy(new_policy);
2206         }
2207
2208         if (new_policy->governor == policy->governor) {
2209                 pr_debug("cpufreq: governor limits update\n");
2210                 cpufreq_governor_limits(policy);
2211                 return 0;
2212         }
2213
2214         pr_debug("governor switch\n");
2215
2216         /* save old, working values */
2217         old_gov = policy->governor;
2218         /* end old governor */
2219         if (old_gov) {
2220                 cpufreq_stop_governor(policy);
2221                 cpufreq_exit_governor(policy);
2222         }
2223
2224         /* start new governor */
2225         policy->governor = new_policy->governor;
2226         ret = cpufreq_init_governor(policy);
2227         if (!ret) {
2228                 ret = cpufreq_start_governor(policy);
2229                 if (!ret) {
2230                         pr_debug("cpufreq: governor change\n");
2231                         return 0;
2232                 }
2233                 cpufreq_exit_governor(policy);
2234         }
2235
2236         /* new governor failed, so re-start old one */
2237         pr_debug("starting governor %s failed\n", policy->governor->name);
2238         if (old_gov) {
2239                 policy->governor = old_gov;
2240                 if (cpufreq_init_governor(policy))
2241                         policy->governor = NULL;
2242                 else
2243                         cpufreq_start_governor(policy);
2244         }
2245
2246         return ret;
2247 }
2248
2249 /**
2250  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2251  *      @cpu: CPU which shall be re-evaluated
2252  *
2253  *      Useful for policy notifiers which have different necessities
2254  *      at different times.
2255  */
2256 int cpufreq_update_policy(unsigned int cpu)
2257 {
2258         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2259         struct cpufreq_policy new_policy;
2260         int ret;
2261
2262         if (!policy)
2263                 return -ENODEV;
2264
2265         down_write(&policy->rwsem);
2266
2267         pr_debug("updating policy for CPU %u\n", cpu);
2268         memcpy(&new_policy, policy, sizeof(*policy));
2269         new_policy.min = policy->user_policy.min;
2270         new_policy.max = policy->user_policy.max;
2271
2272         /*
2273          * BIOS might change freq behind our back
2274          * -> ask driver for current freq and notify governors about a change
2275          */
2276         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2277                 if (cpufreq_suspended) {
2278                         ret = -EAGAIN;
2279                         goto unlock;
2280                 }
2281                 new_policy.cur = cpufreq_update_current_freq(policy);
2282                 if (WARN_ON(!new_policy.cur)) {
2283                         ret = -EIO;
2284                         goto unlock;
2285                 }
2286         }
2287
2288         ret = cpufreq_set_policy(policy, &new_policy);
2289
2290 unlock:
2291         up_write(&policy->rwsem);
2292
2293         cpufreq_cpu_put(policy);
2294         return ret;
2295 }
2296 EXPORT_SYMBOL(cpufreq_update_policy);
2297
2298 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2299                                         unsigned long action, void *hcpu)
2300 {
2301         unsigned int cpu = (unsigned long)hcpu;
2302
2303         switch (action & ~CPU_TASKS_FROZEN) {
2304         case CPU_ONLINE:
2305         case CPU_DOWN_FAILED:
2306                 cpufreq_online(cpu);
2307                 break;
2308
2309         case CPU_DOWN_PREPARE:
2310                 cpufreq_offline(cpu);
2311                 break;
2312         }
2313         return NOTIFY_OK;
2314 }
2315
2316 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2317         .notifier_call = cpufreq_cpu_callback,
2318 };
2319
2320 /*********************************************************************
2321  *               BOOST                                               *
2322  *********************************************************************/
2323 static int cpufreq_boost_set_sw(int state)
2324 {
2325         struct cpufreq_policy *policy;
2326         int ret = -EINVAL;
2327
2328         for_each_active_policy(policy) {
2329                 if (!policy->freq_table)
2330                         continue;
2331
2332                 ret = cpufreq_frequency_table_cpuinfo(policy,
2333                                                       policy->freq_table);
2334                 if (ret) {
2335                         pr_err("%s: Policy frequency update failed\n",
2336                                __func__);
2337                         break;
2338                 }
2339
2340                 down_write(&policy->rwsem);
2341                 policy->user_policy.max = policy->max;
2342                 cpufreq_governor_limits(policy);
2343                 up_write(&policy->rwsem);
2344         }
2345
2346         return ret;
2347 }
2348
2349 int cpufreq_boost_trigger_state(int state)
2350 {
2351         unsigned long flags;
2352         int ret = 0;
2353
2354         if (cpufreq_driver->boost_enabled == state)
2355                 return 0;
2356
2357         write_lock_irqsave(&cpufreq_driver_lock, flags);
2358         cpufreq_driver->boost_enabled = state;
2359         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2360
2361         ret = cpufreq_driver->set_boost(state);
2362         if (ret) {
2363                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2364                 cpufreq_driver->boost_enabled = !state;
2365                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2366
2367                 pr_err("%s: Cannot %s BOOST\n",
2368                        __func__, state ? "enable" : "disable");
2369         }
2370
2371         return ret;
2372 }
2373
2374 static bool cpufreq_boost_supported(void)
2375 {
2376         return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2377 }
2378
2379 static int create_boost_sysfs_file(void)
2380 {
2381         int ret;
2382
2383         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2384         if (ret)
2385                 pr_err("%s: cannot register global BOOST sysfs file\n",
2386                        __func__);
2387
2388         return ret;
2389 }
2390
2391 static void remove_boost_sysfs_file(void)
2392 {
2393         if (cpufreq_boost_supported())
2394                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2395 }
2396
2397 int cpufreq_enable_boost_support(void)
2398 {
2399         if (!cpufreq_driver)
2400                 return -EINVAL;
2401
2402         if (cpufreq_boost_supported())
2403                 return 0;
2404
2405         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2406
2407         /* This will get removed on driver unregister */
2408         return create_boost_sysfs_file();
2409 }
2410 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2411
2412 int cpufreq_boost_enabled(void)
2413 {
2414         return cpufreq_driver->boost_enabled;
2415 }
2416 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2417
2418 /*********************************************************************
2419  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2420  *********************************************************************/
2421
2422 /**
2423  * cpufreq_register_driver - register a CPU Frequency driver
2424  * @driver_data: A struct cpufreq_driver containing the values#
2425  * submitted by the CPU Frequency driver.
2426  *
2427  * Registers a CPU Frequency driver to this core code. This code
2428  * returns zero on success, -EEXIST when another driver got here first
2429  * (and isn't unregistered in the meantime).
2430  *
2431  */
2432 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2433 {
2434         unsigned long flags;
2435         int ret;
2436
2437         if (cpufreq_disabled())
2438                 return -ENODEV;
2439
2440         if (!driver_data || !driver_data->verify || !driver_data->init ||
2441             !(driver_data->setpolicy || driver_data->target_index ||
2442                     driver_data->target) ||
2443              (driver_data->setpolicy && (driver_data->target_index ||
2444                     driver_data->target)) ||
2445              (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2446                 return -EINVAL;
2447
2448         pr_debug("trying to register driver %s\n", driver_data->name);
2449
2450         /* Protect against concurrent CPU online/offline. */
2451         get_online_cpus();
2452
2453         write_lock_irqsave(&cpufreq_driver_lock, flags);
2454         if (cpufreq_driver) {
2455                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2456                 ret = -EEXIST;
2457                 goto out;
2458         }
2459         cpufreq_driver = driver_data;
2460         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2461
2462         if (driver_data->setpolicy)
2463                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2464
2465         if (cpufreq_boost_supported()) {
2466                 ret = create_boost_sysfs_file();
2467                 if (ret)
2468                         goto err_null_driver;
2469         }
2470
2471         ret = subsys_interface_register(&cpufreq_interface);
2472         if (ret)
2473                 goto err_boost_unreg;
2474
2475         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2476             list_empty(&cpufreq_policy_list)) {
2477                 /* if all ->init() calls failed, unregister */
2478                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2479                          driver_data->name);
2480                 goto err_if_unreg;
2481         }
2482
2483         register_hotcpu_notifier(&cpufreq_cpu_notifier);
2484         pr_debug("driver %s up and running\n", driver_data->name);
2485         goto out;
2486
2487 err_if_unreg:
2488         subsys_interface_unregister(&cpufreq_interface);
2489 err_boost_unreg:
2490         remove_boost_sysfs_file();
2491 err_null_driver:
2492         write_lock_irqsave(&cpufreq_driver_lock, flags);
2493         cpufreq_driver = NULL;
2494         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2495 out:
2496         put_online_cpus();
2497         return ret;
2498 }
2499 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2500
2501 /**
2502  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2503  *
2504  * Unregister the current CPUFreq driver. Only call this if you have
2505  * the right to do so, i.e. if you have succeeded in initialising before!
2506  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2507  * currently not initialised.
2508  */
2509 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2510 {
2511         unsigned long flags;
2512
2513         if (!cpufreq_driver || (driver != cpufreq_driver))
2514                 return -EINVAL;
2515
2516         pr_debug("unregistering driver %s\n", driver->name);
2517
2518         /* Protect against concurrent cpu hotplug */
2519         get_online_cpus();
2520         subsys_interface_unregister(&cpufreq_interface);
2521         remove_boost_sysfs_file();
2522         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2523
2524         write_lock_irqsave(&cpufreq_driver_lock, flags);
2525
2526         cpufreq_driver = NULL;
2527
2528         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2529         put_online_cpus();
2530
2531         return 0;
2532 }
2533 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2534
2535 /*
2536  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2537  * or mutexes when secondary CPUs are halted.
2538  */
2539 static struct syscore_ops cpufreq_syscore_ops = {
2540         .shutdown = cpufreq_suspend,
2541 };
2542
2543 struct kobject *cpufreq_global_kobject;
2544 EXPORT_SYMBOL(cpufreq_global_kobject);
2545
2546 static int __init cpufreq_core_init(void)
2547 {
2548         if (cpufreq_disabled())
2549                 return -ENODEV;
2550
2551         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2552         BUG_ON(!cpufreq_global_kobject);
2553
2554         register_syscore_ops(&cpufreq_syscore_ops);
2555
2556         return 0;
2557 }
2558 core_initcall(cpufreq_core_init);