cpufreq: Fix NULL reference crash while accessing policy->governor_data
[cascardo/linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy = cdbs->shared->policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         /* Get Absolute Load */
64         for_each_cpu(j, policy->cpus) {
65                 struct cpu_dbs_info *j_cdbs;
66                 u64 cur_wall_time, cur_idle_time;
67                 unsigned int idle_time, wall_time;
68                 unsigned int load;
69                 int io_busy = 0;
70
71                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72
73                 /*
74                  * For the purpose of ondemand, waiting for disk IO is
75                  * an indication that you're performance critical, and
76                  * not that the system is actually idle. So do not add
77                  * the iowait time to the cpu idle time.
78                  */
79                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
80                         io_busy = od_tuners->io_is_busy;
81                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82
83                 wall_time = (unsigned int)
84                         (cur_wall_time - j_cdbs->prev_cpu_wall);
85                 j_cdbs->prev_cpu_wall = cur_wall_time;
86
87                 if (cur_idle_time < j_cdbs->prev_cpu_idle)
88                         cur_idle_time = j_cdbs->prev_cpu_idle;
89
90                 idle_time = (unsigned int)
91                         (cur_idle_time - j_cdbs->prev_cpu_idle);
92                 j_cdbs->prev_cpu_idle = cur_idle_time;
93
94                 if (ignore_nice) {
95                         u64 cur_nice;
96                         unsigned long cur_nice_jiffies;
97
98                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
99                                          cdbs->prev_cpu_nice;
100                         /*
101                          * Assumption: nice time between sampling periods will
102                          * be less than 2^32 jiffies for 32 bit sys
103                          */
104                         cur_nice_jiffies = (unsigned long)
105                                         cputime64_to_jiffies64(cur_nice);
106
107                         cdbs->prev_cpu_nice =
108                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
110                 }
111
112                 if (unlikely(!wall_time || wall_time < idle_time))
113                         continue;
114
115                 /*
116                  * If the CPU had gone completely idle, and a task just woke up
117                  * on this CPU now, it would be unfair to calculate 'load' the
118                  * usual way for this elapsed time-window, because it will show
119                  * near-zero load, irrespective of how CPU intensive that task
120                  * actually is. This is undesirable for latency-sensitive bursty
121                  * workloads.
122                  *
123                  * To avoid this, we reuse the 'load' from the previous
124                  * time-window and give this task a chance to start with a
125                  * reasonably high CPU frequency. (However, we shouldn't over-do
126                  * this copy, lest we get stuck at a high load (high frequency)
127                  * for too long, even when the current system load has actually
128                  * dropped down. So we perform the copy only once, upon the
129                  * first wake-up from idle.)
130                  *
131                  * Detecting this situation is easy: the governor's deferrable
132                  * timer would not have fired during CPU-idle periods. Hence
133                  * an unusually large 'wall_time' (as compared to the sampling
134                  * rate) indicates this scenario.
135                  *
136                  * prev_load can be zero in two cases and we must recalculate it
137                  * for both cases:
138                  * - during long idle intervals
139                  * - explicitly set to zero
140                  */
141                 if (unlikely(wall_time > (2 * sampling_rate) &&
142                              j_cdbs->prev_load)) {
143                         load = j_cdbs->prev_load;
144
145                         /*
146                          * Perform a destructive copy, to ensure that we copy
147                          * the previous load only once, upon the first wake-up
148                          * from idle.
149                          */
150                         j_cdbs->prev_load = 0;
151                 } else {
152                         load = 100 * (wall_time - idle_time) / wall_time;
153                         j_cdbs->prev_load = load;
154                 }
155
156                 if (load > max_load)
157                         max_load = load;
158         }
159
160         dbs_data->cdata->gov_check_cpu(cpu, max_load);
161 }
162 EXPORT_SYMBOL_GPL(dbs_check_cpu);
163
164 void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
165 {
166         struct dbs_data *dbs_data = policy->governor_data;
167         struct cpu_dbs_info *cdbs;
168         int cpu;
169
170         for_each_cpu(cpu, policy->cpus) {
171                 cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
172                 cdbs->timer.expires = jiffies + delay;
173                 add_timer_on(&cdbs->timer, cpu);
174         }
175 }
176 EXPORT_SYMBOL_GPL(gov_add_timers);
177
178 static inline void gov_cancel_timers(struct cpufreq_policy *policy)
179 {
180         struct dbs_data *dbs_data = policy->governor_data;
181         struct cpu_dbs_info *cdbs;
182         int i;
183
184         for_each_cpu(i, policy->cpus) {
185                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
186                 del_timer_sync(&cdbs->timer);
187         }
188 }
189
190 void gov_cancel_work(struct cpu_common_dbs_info *shared)
191 {
192         /* Tell dbs_timer_handler() to skip queuing up work items. */
193         atomic_inc(&shared->skip_work);
194         /*
195          * If dbs_timer_handler() is already running, it may not notice the
196          * incremented skip_work, so wait for it to complete to prevent its work
197          * item from being queued up after the cancel_work_sync() below.
198          */
199         gov_cancel_timers(shared->policy);
200         /*
201          * In case dbs_timer_handler() managed to run and spawn a work item
202          * before the timers have been canceled, wait for that work item to
203          * complete and then cancel all of the timers set up by it.  If
204          * dbs_timer_handler() runs again at that point, it will see the
205          * positive value of skip_work and won't spawn any more work items.
206          */
207         cancel_work_sync(&shared->work);
208         gov_cancel_timers(shared->policy);
209         atomic_set(&shared->skip_work, 0);
210 }
211 EXPORT_SYMBOL_GPL(gov_cancel_work);
212
213 /* Will return if we need to evaluate cpu load again or not */
214 static bool need_load_eval(struct cpu_common_dbs_info *shared,
215                            unsigned int sampling_rate)
216 {
217         if (policy_is_shared(shared->policy)) {
218                 ktime_t time_now = ktime_get();
219                 s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
220
221                 /* Do nothing if we recently have sampled */
222                 if (delta_us < (s64)(sampling_rate / 2))
223                         return false;
224                 else
225                         shared->time_stamp = time_now;
226         }
227
228         return true;
229 }
230
231 static void dbs_work_handler(struct work_struct *work)
232 {
233         struct cpu_common_dbs_info *shared = container_of(work, struct
234                                         cpu_common_dbs_info, work);
235         struct cpufreq_policy *policy;
236         struct dbs_data *dbs_data;
237         unsigned int sampling_rate, delay;
238         bool eval_load;
239
240         policy = shared->policy;
241         dbs_data = policy->governor_data;
242
243         /* Kill all timers */
244         gov_cancel_timers(policy);
245
246         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
247                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
248
249                 sampling_rate = cs_tuners->sampling_rate;
250         } else {
251                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
252
253                 sampling_rate = od_tuners->sampling_rate;
254         }
255
256         eval_load = need_load_eval(shared, sampling_rate);
257
258         /*
259          * Make sure cpufreq_governor_limits() isn't evaluating load in
260          * parallel.
261          */
262         mutex_lock(&shared->timer_mutex);
263         delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
264         mutex_unlock(&shared->timer_mutex);
265
266         atomic_dec(&shared->skip_work);
267
268         gov_add_timers(policy, delay);
269 }
270
271 static void dbs_timer_handler(unsigned long data)
272 {
273         struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
274         struct cpu_common_dbs_info *shared = cdbs->shared;
275
276         /*
277          * Timer handler may not be allowed to queue the work at the moment,
278          * because:
279          * - Another timer handler has done that
280          * - We are stopping the governor
281          * - Or we are updating the sampling rate of the ondemand governor
282          */
283         if (atomic_inc_return(&shared->skip_work) > 1)
284                 atomic_dec(&shared->skip_work);
285         else
286                 queue_work(system_wq, &shared->work);
287 }
288
289 static void set_sampling_rate(struct dbs_data *dbs_data,
290                 unsigned int sampling_rate)
291 {
292         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
293                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
294                 cs_tuners->sampling_rate = sampling_rate;
295         } else {
296                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
297                 od_tuners->sampling_rate = sampling_rate;
298         }
299 }
300
301 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
302                                  struct common_dbs_data *cdata)
303 {
304         struct cpu_common_dbs_info *shared;
305         int j;
306
307         /* Allocate memory for the common information for policy->cpus */
308         shared = kzalloc(sizeof(*shared), GFP_KERNEL);
309         if (!shared)
310                 return -ENOMEM;
311
312         /* Set shared for all CPUs, online+offline */
313         for_each_cpu(j, policy->related_cpus)
314                 cdata->get_cpu_cdbs(j)->shared = shared;
315
316         mutex_init(&shared->timer_mutex);
317         atomic_set(&shared->skip_work, 0);
318         INIT_WORK(&shared->work, dbs_work_handler);
319         return 0;
320 }
321
322 static void free_common_dbs_info(struct cpufreq_policy *policy,
323                                  struct common_dbs_data *cdata)
324 {
325         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
326         struct cpu_common_dbs_info *shared = cdbs->shared;
327         int j;
328
329         mutex_destroy(&shared->timer_mutex);
330
331         for_each_cpu(j, policy->cpus)
332                 cdata->get_cpu_cdbs(j)->shared = NULL;
333
334         kfree(shared);
335 }
336
337 static int cpufreq_governor_init(struct cpufreq_policy *policy,
338                                  struct dbs_data *dbs_data,
339                                  struct common_dbs_data *cdata)
340 {
341         unsigned int latency;
342         int ret;
343
344         /* State should be equivalent to EXIT */
345         if (policy->governor_data)
346                 return -EBUSY;
347
348         if (dbs_data) {
349                 if (WARN_ON(have_governor_per_policy()))
350                         return -EINVAL;
351
352                 ret = alloc_common_dbs_info(policy, cdata);
353                 if (ret)
354                         return ret;
355
356                 dbs_data->usage_count++;
357                 policy->governor_data = dbs_data;
358                 return 0;
359         }
360
361         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
362         if (!dbs_data)
363                 return -ENOMEM;
364
365         ret = alloc_common_dbs_info(policy, cdata);
366         if (ret)
367                 goto free_dbs_data;
368
369         dbs_data->cdata = cdata;
370         dbs_data->usage_count = 1;
371
372         ret = cdata->init(dbs_data, !policy->governor->initialized);
373         if (ret)
374                 goto free_common_dbs_info;
375
376         /* policy latency is in ns. Convert it to us first */
377         latency = policy->cpuinfo.transition_latency / 1000;
378         if (latency == 0)
379                 latency = 1;
380
381         /* Bring kernel and HW constraints together */
382         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
383                                           MIN_LATENCY_MULTIPLIER * latency);
384         set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
385                                         latency * LATENCY_MULTIPLIER));
386
387         if (!have_governor_per_policy())
388                 cdata->gdbs_data = dbs_data;
389
390         policy->governor_data = dbs_data;
391
392         ret = sysfs_create_group(get_governor_parent_kobj(policy),
393                                  get_sysfs_attr(dbs_data));
394         if (ret)
395                 goto reset_gdbs_data;
396
397         return 0;
398
399 reset_gdbs_data:
400         policy->governor_data = NULL;
401
402         if (!have_governor_per_policy())
403                 cdata->gdbs_data = NULL;
404         cdata->exit(dbs_data, !policy->governor->initialized);
405 free_common_dbs_info:
406         free_common_dbs_info(policy, cdata);
407 free_dbs_data:
408         kfree(dbs_data);
409         return ret;
410 }
411
412 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
413                                  struct dbs_data *dbs_data)
414 {
415         struct common_dbs_data *cdata = dbs_data->cdata;
416         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
417
418         /* State should be equivalent to INIT */
419         if (!cdbs->shared || cdbs->shared->policy)
420                 return -EBUSY;
421
422         if (!--dbs_data->usage_count) {
423                 sysfs_remove_group(get_governor_parent_kobj(policy),
424                                    get_sysfs_attr(dbs_data));
425
426                 policy->governor_data = NULL;
427
428                 if (!have_governor_per_policy())
429                         cdata->gdbs_data = NULL;
430
431                 cdata->exit(dbs_data, policy->governor->initialized == 1);
432                 kfree(dbs_data);
433         } else {
434                 policy->governor_data = NULL;
435         }
436
437         free_common_dbs_info(policy, cdata);
438         return 0;
439 }
440
441 static int cpufreq_governor_start(struct cpufreq_policy *policy,
442                                   struct dbs_data *dbs_data)
443 {
444         struct common_dbs_data *cdata = dbs_data->cdata;
445         unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
446         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
447         struct cpu_common_dbs_info *shared = cdbs->shared;
448         int io_busy = 0;
449
450         if (!policy->cur)
451                 return -EINVAL;
452
453         /* State should be equivalent to INIT */
454         if (!shared || shared->policy)
455                 return -EBUSY;
456
457         if (cdata->governor == GOV_CONSERVATIVE) {
458                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
459
460                 sampling_rate = cs_tuners->sampling_rate;
461                 ignore_nice = cs_tuners->ignore_nice_load;
462         } else {
463                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
464
465                 sampling_rate = od_tuners->sampling_rate;
466                 ignore_nice = od_tuners->ignore_nice_load;
467                 io_busy = od_tuners->io_is_busy;
468         }
469
470         shared->policy = policy;
471         shared->time_stamp = ktime_get();
472
473         for_each_cpu(j, policy->cpus) {
474                 struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
475                 unsigned int prev_load;
476
477                 j_cdbs->prev_cpu_idle =
478                         get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
479
480                 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
481                                             j_cdbs->prev_cpu_idle);
482                 j_cdbs->prev_load = 100 * prev_load /
483                                     (unsigned int)j_cdbs->prev_cpu_wall;
484
485                 if (ignore_nice)
486                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
487
488                 __setup_timer(&j_cdbs->timer, dbs_timer_handler,
489                               (unsigned long)j_cdbs,
490                               TIMER_DEFERRABLE | TIMER_IRQSAFE);
491         }
492
493         if (cdata->governor == GOV_CONSERVATIVE) {
494                 struct cs_cpu_dbs_info_s *cs_dbs_info =
495                         cdata->get_cpu_dbs_info_s(cpu);
496
497                 cs_dbs_info->down_skip = 0;
498                 cs_dbs_info->requested_freq = policy->cur;
499         } else {
500                 struct od_ops *od_ops = cdata->gov_ops;
501                 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
502
503                 od_dbs_info->rate_mult = 1;
504                 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
505                 od_ops->powersave_bias_init_cpu(cpu);
506         }
507
508         gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
509         return 0;
510 }
511
512 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
513                                  struct dbs_data *dbs_data)
514 {
515         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
516         struct cpu_common_dbs_info *shared = cdbs->shared;
517
518         /* State should be equivalent to START */
519         if (!shared || !shared->policy)
520                 return -EBUSY;
521
522         gov_cancel_work(shared);
523         shared->policy = NULL;
524
525         return 0;
526 }
527
528 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
529                                    struct dbs_data *dbs_data)
530 {
531         struct common_dbs_data *cdata = dbs_data->cdata;
532         unsigned int cpu = policy->cpu;
533         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
534
535         /* State should be equivalent to START */
536         if (!cdbs->shared || !cdbs->shared->policy)
537                 return -EBUSY;
538
539         mutex_lock(&cdbs->shared->timer_mutex);
540         if (policy->max < cdbs->shared->policy->cur)
541                 __cpufreq_driver_target(cdbs->shared->policy, policy->max,
542                                         CPUFREQ_RELATION_H);
543         else if (policy->min > cdbs->shared->policy->cur)
544                 __cpufreq_driver_target(cdbs->shared->policy, policy->min,
545                                         CPUFREQ_RELATION_L);
546         dbs_check_cpu(dbs_data, cpu);
547         mutex_unlock(&cdbs->shared->timer_mutex);
548
549         return 0;
550 }
551
552 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
553                          struct common_dbs_data *cdata, unsigned int event)
554 {
555         struct dbs_data *dbs_data;
556         int ret;
557
558         /* Lock governor to block concurrent initialization of governor */
559         mutex_lock(&cdata->mutex);
560
561         if (have_governor_per_policy())
562                 dbs_data = policy->governor_data;
563         else
564                 dbs_data = cdata->gdbs_data;
565
566         if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
567                 ret = -EINVAL;
568                 goto unlock;
569         }
570
571         switch (event) {
572         case CPUFREQ_GOV_POLICY_INIT:
573                 ret = cpufreq_governor_init(policy, dbs_data, cdata);
574                 break;
575         case CPUFREQ_GOV_POLICY_EXIT:
576                 ret = cpufreq_governor_exit(policy, dbs_data);
577                 break;
578         case CPUFREQ_GOV_START:
579                 ret = cpufreq_governor_start(policy, dbs_data);
580                 break;
581         case CPUFREQ_GOV_STOP:
582                 ret = cpufreq_governor_stop(policy, dbs_data);
583                 break;
584         case CPUFREQ_GOV_LIMITS:
585                 ret = cpufreq_governor_limits(policy, dbs_data);
586                 break;
587         default:
588                 ret = -EINVAL;
589         }
590
591 unlock:
592         mutex_unlock(&cdata->mutex);
593
594         return ret;
595 }
596 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);