Linux-2.6.12-rc2
[cascardo/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30
31 /*
32  * dbs is used in this file as a shortform for demandbased switching
33  * It helps to keep variable names smaller, simpler
34  */
35
36 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
37 #define MIN_FREQUENCY_UP_THRESHOLD              (0)
38 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
39
40 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
41 #define MIN_FREQUENCY_DOWN_THRESHOLD            (0)
42 #define MAX_FREQUENCY_DOWN_THRESHOLD            (100)
43
44 /* 
45  * The polling frequency of this governor depends on the capability of 
46  * the processor. Default polling frequency is 1000 times the transition
47  * latency of the processor. The governor will work on any processor with 
48  * transition latency <= 10mS, using appropriate sampling 
49  * rate.
50  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
51  * this governor will not work.
52  * All times here are in uS.
53  */
54 static unsigned int                             def_sampling_rate;
55 #define MIN_SAMPLING_RATE                       (def_sampling_rate / 2)
56 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR                (10)
59 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
60 #define sampling_rate_in_HZ(x)                  (((x * HZ) < (1000 * 1000))?1:((x * HZ) / (1000 * 1000)))
61
62 static void do_dbs_timer(void *data);
63
64 struct cpu_dbs_info_s {
65         struct cpufreq_policy   *cur_policy;
66         unsigned int            prev_cpu_idle_up;
67         unsigned int            prev_cpu_idle_down;
68         unsigned int            enable;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
73
74 static DECLARE_MUTEX    (dbs_sem);
75 static DECLARE_WORK     (dbs_work, do_dbs_timer, NULL);
76
77 struct dbs_tuners {
78         unsigned int            sampling_rate;
79         unsigned int            sampling_down_factor;
80         unsigned int            up_threshold;
81         unsigned int            down_threshold;
82 };
83
84 static struct dbs_tuners dbs_tuners_ins = {
85         .up_threshold           = DEF_FREQUENCY_UP_THRESHOLD,
86         .down_threshold         = DEF_FREQUENCY_DOWN_THRESHOLD,
87         .sampling_down_factor   = DEF_SAMPLING_DOWN_FACTOR,
88 };
89
90 /************************** sysfs interface ************************/
91 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
92 {
93         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
94 }
95
96 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
97 {
98         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
99 }
100
101 #define define_one_ro(_name)                                    \
102 static struct freq_attr _name =                                 \
103 __ATTR(_name, 0444, show_##_name, NULL)
104
105 define_one_ro(sampling_rate_max);
106 define_one_ro(sampling_rate_min);
107
108 /* cpufreq_ondemand Governor Tunables */
109 #define show_one(file_name, object)                                     \
110 static ssize_t show_##file_name                                         \
111 (struct cpufreq_policy *unused, char *buf)                              \
112 {                                                                       \
113         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
114 }
115 show_one(sampling_rate, sampling_rate);
116 show_one(sampling_down_factor, sampling_down_factor);
117 show_one(up_threshold, up_threshold);
118 show_one(down_threshold, down_threshold);
119
120 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
121                 const char *buf, size_t count)
122 {
123         unsigned int input;
124         int ret;
125         ret = sscanf (buf, "%u", &input);
126         if (ret != 1 )
127                 return -EINVAL;
128
129         down(&dbs_sem);
130         dbs_tuners_ins.sampling_down_factor = input;
131         up(&dbs_sem);
132
133         return count;
134 }
135
136 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
137                 const char *buf, size_t count)
138 {
139         unsigned int input;
140         int ret;
141         ret = sscanf (buf, "%u", &input);
142
143         down(&dbs_sem);
144         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
145                 up(&dbs_sem);
146                 return -EINVAL;
147         }
148
149         dbs_tuners_ins.sampling_rate = input;
150         up(&dbs_sem);
151
152         return count;
153 }
154
155 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
156                 const char *buf, size_t count)
157 {
158         unsigned int input;
159         int ret;
160         ret = sscanf (buf, "%u", &input);
161
162         down(&dbs_sem);
163         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 
164                         input < MIN_FREQUENCY_UP_THRESHOLD ||
165                         input <= dbs_tuners_ins.down_threshold) {
166                 up(&dbs_sem);
167                 return -EINVAL;
168         }
169
170         dbs_tuners_ins.up_threshold = input;
171         up(&dbs_sem);
172
173         return count;
174 }
175
176 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
177                 const char *buf, size_t count)
178 {
179         unsigned int input;
180         int ret;
181         ret = sscanf (buf, "%u", &input);
182
183         down(&dbs_sem);
184         if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || 
185                         input < MIN_FREQUENCY_DOWN_THRESHOLD ||
186                         input >= dbs_tuners_ins.up_threshold) {
187                 up(&dbs_sem);
188                 return -EINVAL;
189         }
190
191         dbs_tuners_ins.down_threshold = input;
192         up(&dbs_sem);
193
194         return count;
195 }
196
197 #define define_one_rw(_name) \
198 static struct freq_attr _name = \
199 __ATTR(_name, 0644, show_##_name, store_##_name)
200
201 define_one_rw(sampling_rate);
202 define_one_rw(sampling_down_factor);
203 define_one_rw(up_threshold);
204 define_one_rw(down_threshold);
205
206 static struct attribute * dbs_attributes[] = {
207         &sampling_rate_max.attr,
208         &sampling_rate_min.attr,
209         &sampling_rate.attr,
210         &sampling_down_factor.attr,
211         &up_threshold.attr,
212         &down_threshold.attr,
213         NULL
214 };
215
216 static struct attribute_group dbs_attr_group = {
217         .attrs = dbs_attributes,
218         .name = "ondemand",
219 };
220
221 /************************** sysfs end ************************/
222
223 static void dbs_check_cpu(int cpu)
224 {
225         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
226         unsigned int total_idle_ticks;
227         unsigned int freq_down_step;
228         unsigned int freq_down_sampling_rate;
229         static int down_skip[NR_CPUS];
230         struct cpu_dbs_info_s *this_dbs_info;
231
232         struct cpufreq_policy *policy;
233         unsigned int j;
234
235         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
236         if (!this_dbs_info->enable)
237                 return;
238
239         policy = this_dbs_info->cur_policy;
240         /* 
241          * The default safe range is 20% to 80% 
242          * Every sampling_rate, we check
243          *      - If current idle time is less than 20%, then we try to 
244          *        increase frequency
245          * Every sampling_rate*sampling_down_factor, we check
246          *      - If current idle time is more than 80%, then we try to
247          *        decrease frequency
248          *
249          * Any frequency increase takes it to the maximum frequency. 
250          * Frequency reduction happens at minimum steps of 
251          * 5% of max_frequency 
252          */
253
254         /* Check for frequency increase */
255         total_idle_ticks = kstat_cpu(cpu).cpustat.idle +
256                 kstat_cpu(cpu).cpustat.iowait;
257         idle_ticks = total_idle_ticks -
258                 this_dbs_info->prev_cpu_idle_up;
259         this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
260         
261
262         for_each_cpu_mask(j, policy->cpus) {
263                 unsigned int tmp_idle_ticks;
264                 struct cpu_dbs_info_s *j_dbs_info;
265
266                 if (j == cpu)
267                         continue;
268
269                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
270                 /* Check for frequency increase */
271                 total_idle_ticks = kstat_cpu(j).cpustat.idle +
272                         kstat_cpu(j).cpustat.iowait;
273                 tmp_idle_ticks = total_idle_ticks -
274                         j_dbs_info->prev_cpu_idle_up;
275                 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
276
277                 if (tmp_idle_ticks < idle_ticks)
278                         idle_ticks = tmp_idle_ticks;
279         }
280
281         /* Scale idle ticks by 100 and compare with up and down ticks */
282         idle_ticks *= 100;
283         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
284                         sampling_rate_in_HZ(dbs_tuners_ins.sampling_rate);
285
286         if (idle_ticks < up_idle_ticks) {
287                 __cpufreq_driver_target(policy, policy->max, 
288                         CPUFREQ_RELATION_H);
289                 down_skip[cpu] = 0;
290                 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
291                 return;
292         }
293
294         /* Check for frequency decrease */
295         down_skip[cpu]++;
296         if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
297                 return;
298
299         total_idle_ticks = kstat_cpu(cpu).cpustat.idle +
300                 kstat_cpu(cpu).cpustat.iowait;
301         idle_ticks = total_idle_ticks -
302                 this_dbs_info->prev_cpu_idle_down;
303         this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
304
305         for_each_cpu_mask(j, policy->cpus) {
306                 unsigned int tmp_idle_ticks;
307                 struct cpu_dbs_info_s *j_dbs_info;
308
309                 if (j == cpu)
310                         continue;
311
312                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
313                 /* Check for frequency increase */
314                 total_idle_ticks = kstat_cpu(j).cpustat.idle +
315                         kstat_cpu(j).cpustat.iowait;
316                 tmp_idle_ticks = total_idle_ticks -
317                         j_dbs_info->prev_cpu_idle_down;
318                 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
319
320                 if (tmp_idle_ticks < idle_ticks)
321                         idle_ticks = tmp_idle_ticks;
322         }
323
324         /* Scale idle ticks by 100 and compare with up and down ticks */
325         idle_ticks *= 100;
326         down_skip[cpu] = 0;
327
328         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
329                 dbs_tuners_ins.sampling_down_factor;
330         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
331                         sampling_rate_in_HZ(freq_down_sampling_rate);
332
333         if (idle_ticks > down_idle_ticks ) {
334                 freq_down_step = (5 * policy->max) / 100;
335
336                 /* max freq cannot be less than 100. But who knows.... */
337                 if (unlikely(freq_down_step == 0))
338                         freq_down_step = 5;
339
340                 __cpufreq_driver_target(policy,
341                         policy->cur - freq_down_step, 
342                         CPUFREQ_RELATION_H);
343                 return;
344         }
345 }
346
347 static void do_dbs_timer(void *data)
348
349         int i;
350         down(&dbs_sem);
351         for (i = 0; i < NR_CPUS; i++)
352                 if (cpu_online(i))
353                         dbs_check_cpu(i);
354         schedule_delayed_work(&dbs_work, 
355                         sampling_rate_in_HZ(dbs_tuners_ins.sampling_rate));
356         up(&dbs_sem);
357
358
359 static inline void dbs_timer_init(void)
360 {
361         INIT_WORK(&dbs_work, do_dbs_timer, NULL);
362         schedule_delayed_work(&dbs_work,
363                         sampling_rate_in_HZ(dbs_tuners_ins.sampling_rate));
364         return;
365 }
366
367 static inline void dbs_timer_exit(void)
368 {
369         cancel_delayed_work(&dbs_work);
370         return;
371 }
372
373 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
374                                    unsigned int event)
375 {
376         unsigned int cpu = policy->cpu;
377         struct cpu_dbs_info_s *this_dbs_info;
378         unsigned int j;
379
380         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
381
382         switch (event) {
383         case CPUFREQ_GOV_START:
384                 if ((!cpu_online(cpu)) || 
385                     (!policy->cur))
386                         return -EINVAL;
387
388                 if (policy->cpuinfo.transition_latency >
389                                 (TRANSITION_LATENCY_LIMIT * 1000))
390                         return -EINVAL;
391                 if (this_dbs_info->enable) /* Already enabled */
392                         break;
393                  
394                 down(&dbs_sem);
395                 for_each_cpu_mask(j, policy->cpus) {
396                         struct cpu_dbs_info_s *j_dbs_info;
397                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
398                         j_dbs_info->cur_policy = policy;
399                 
400                         j_dbs_info->prev_cpu_idle_up = 
401                                 kstat_cpu(j).cpustat.idle +
402                                 kstat_cpu(j).cpustat.iowait;
403                         j_dbs_info->prev_cpu_idle_down = 
404                                 kstat_cpu(j).cpustat.idle +
405                                 kstat_cpu(j).cpustat.iowait;
406                 }
407                 this_dbs_info->enable = 1;
408                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
409                 dbs_enable++;
410                 /*
411                  * Start the timerschedule work, when this governor
412                  * is used for first time
413                  */
414                 if (dbs_enable == 1) {
415                         unsigned int latency;
416                         /* policy latency is in nS. Convert it to uS first */
417
418                         latency = policy->cpuinfo.transition_latency;
419                         if (latency < 1000)
420                                 latency = 1000;
421
422                         def_sampling_rate = (latency / 1000) *
423                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
424                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
425
426                         dbs_timer_init();
427                 }
428                 
429                 up(&dbs_sem);
430                 break;
431
432         case CPUFREQ_GOV_STOP:
433                 down(&dbs_sem);
434                 this_dbs_info->enable = 0;
435                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
436                 dbs_enable--;
437                 /*
438                  * Stop the timerschedule work, when this governor
439                  * is used for first time
440                  */
441                 if (dbs_enable == 0) 
442                         dbs_timer_exit();
443                 
444                 up(&dbs_sem);
445
446                 break;
447
448         case CPUFREQ_GOV_LIMITS:
449                 down(&dbs_sem);
450                 if (policy->max < this_dbs_info->cur_policy->cur)
451                         __cpufreq_driver_target(
452                                         this_dbs_info->cur_policy,
453                                         policy->max, CPUFREQ_RELATION_H);
454                 else if (policy->min > this_dbs_info->cur_policy->cur)
455                         __cpufreq_driver_target(
456                                         this_dbs_info->cur_policy,
457                                         policy->min, CPUFREQ_RELATION_L);
458                 up(&dbs_sem);
459                 break;
460         }
461         return 0;
462 }
463
464 struct cpufreq_governor cpufreq_gov_dbs = {
465         .name           = "ondemand",
466         .governor       = cpufreq_governor_dbs,
467         .owner          = THIS_MODULE,
468 };
469 EXPORT_SYMBOL(cpufreq_gov_dbs);
470
471 static int __init cpufreq_gov_dbs_init(void)
472 {
473         return cpufreq_register_governor(&cpufreq_gov_dbs);
474 }
475
476 static void __exit cpufreq_gov_dbs_exit(void)
477 {
478         /* Make sure that the scheduled work is indeed not running */
479         flush_scheduled_work();
480
481         cpufreq_unregister_governor(&cpufreq_gov_dbs);
482 }
483
484
485 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
486 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
487                 "Low Latency Frequency Transition capable processors");
488 MODULE_LICENSE ("GPL");
489
490 module_init(cpufreq_gov_dbs_init);
491 module_exit(cpufreq_gov_dbs_exit);