cpufreq: Convert printk(KERN_<LEVEL> to pr_<level>
[cascardo/linux.git] / drivers / cpufreq / ia64-acpi-cpufreq.c
1 /*
2  * This file provides the ACPI based P-state support. This
3  * module works with generic cpufreq infrastructure. Most of
4  * the code is based on i386 version
5  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
6  *
7  * Copyright (C) 2005 Intel Corp
8  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/cpufreq.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <asm/io.h>
19 #include <asm/uaccess.h>
20 #include <asm/pal.h>
21
22 #include <linux/acpi.h>
23 #include <acpi/processor.h>
24
25 MODULE_AUTHOR("Venkatesh Pallipadi");
26 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
27 MODULE_LICENSE("GPL");
28
29
30 struct cpufreq_acpi_io {
31         struct acpi_processor_performance       acpi_data;
32         unsigned int                            resume;
33 };
34
35 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
36
37 static struct cpufreq_driver acpi_cpufreq_driver;
38
39
40 static int
41 processor_set_pstate (
42         u32     value)
43 {
44         s64 retval;
45
46         pr_debug("processor_set_pstate\n");
47
48         retval = ia64_pal_set_pstate((u64)value);
49
50         if (retval) {
51                 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
52                         value, retval);
53                 return -ENODEV;
54         }
55         return (int)retval;
56 }
57
58
59 static int
60 processor_get_pstate (
61         u32     *value)
62 {
63         u64     pstate_index = 0;
64         s64     retval;
65
66         pr_debug("processor_get_pstate\n");
67
68         retval = ia64_pal_get_pstate(&pstate_index,
69                                      PAL_GET_PSTATE_TYPE_INSTANT);
70         *value = (u32) pstate_index;
71
72         if (retval)
73                 pr_debug("Failed to get current freq with "
74                         "error 0x%lx, idx 0x%x\n", retval, *value);
75
76         return (int)retval;
77 }
78
79
80 /* To be used only after data->acpi_data is initialized */
81 static unsigned
82 extract_clock (
83         struct cpufreq_acpi_io *data,
84         unsigned value,
85         unsigned int cpu)
86 {
87         unsigned long i;
88
89         pr_debug("extract_clock\n");
90
91         for (i = 0; i < data->acpi_data.state_count; i++) {
92                 if (value == data->acpi_data.states[i].status)
93                         return data->acpi_data.states[i].core_frequency;
94         }
95         return data->acpi_data.states[i-1].core_frequency;
96 }
97
98
99 static unsigned int
100 processor_get_freq (
101         struct cpufreq_acpi_io  *data,
102         unsigned int            cpu)
103 {
104         int                     ret = 0;
105         u32                     value = 0;
106         cpumask_t               saved_mask;
107         unsigned long           clock_freq;
108
109         pr_debug("processor_get_freq\n");
110
111         saved_mask = current->cpus_allowed;
112         set_cpus_allowed_ptr(current, cpumask_of(cpu));
113         if (smp_processor_id() != cpu)
114                 goto migrate_end;
115
116         /* processor_get_pstate gets the instantaneous frequency */
117         ret = processor_get_pstate(&value);
118
119         if (ret) {
120                 set_cpus_allowed_ptr(current, &saved_mask);
121                 pr_warn("get performance failed with error %d\n", ret);
122                 ret = 0;
123                 goto migrate_end;
124         }
125         clock_freq = extract_clock(data, value, cpu);
126         ret = (clock_freq*1000);
127
128 migrate_end:
129         set_cpus_allowed_ptr(current, &saved_mask);
130         return ret;
131 }
132
133
134 static int
135 processor_set_freq (
136         struct cpufreq_acpi_io  *data,
137         struct cpufreq_policy   *policy,
138         int                     state)
139 {
140         int                     ret = 0;
141         u32                     value = 0;
142         cpumask_t               saved_mask;
143         int                     retval;
144
145         pr_debug("processor_set_freq\n");
146
147         saved_mask = current->cpus_allowed;
148         set_cpus_allowed_ptr(current, cpumask_of(policy->cpu));
149         if (smp_processor_id() != policy->cpu) {
150                 retval = -EAGAIN;
151                 goto migrate_end;
152         }
153
154         if (state == data->acpi_data.state) {
155                 if (unlikely(data->resume)) {
156                         pr_debug("Called after resume, resetting to P%d\n", state);
157                         data->resume = 0;
158                 } else {
159                         pr_debug("Already at target state (P%d)\n", state);
160                         retval = 0;
161                         goto migrate_end;
162                 }
163         }
164
165         pr_debug("Transitioning from P%d to P%d\n",
166                 data->acpi_data.state, state);
167
168         /*
169          * First we write the target state's 'control' value to the
170          * control_register.
171          */
172
173         value = (u32) data->acpi_data.states[state].control;
174
175         pr_debug("Transitioning to state: 0x%08x\n", value);
176
177         ret = processor_set_pstate(value);
178         if (ret) {
179                 pr_warn("Transition failed with error %d\n", ret);
180                 retval = -ENODEV;
181                 goto migrate_end;
182         }
183
184         data->acpi_data.state = state;
185
186         retval = 0;
187
188 migrate_end:
189         set_cpus_allowed_ptr(current, &saved_mask);
190         return (retval);
191 }
192
193
194 static unsigned int
195 acpi_cpufreq_get (
196         unsigned int            cpu)
197 {
198         struct cpufreq_acpi_io *data = acpi_io_data[cpu];
199
200         pr_debug("acpi_cpufreq_get\n");
201
202         return processor_get_freq(data, cpu);
203 }
204
205
206 static int
207 acpi_cpufreq_target (
208         struct cpufreq_policy   *policy,
209         unsigned int index)
210 {
211         return processor_set_freq(acpi_io_data[policy->cpu], policy, index);
212 }
213
214 static int
215 acpi_cpufreq_cpu_init (
216         struct cpufreq_policy   *policy)
217 {
218         unsigned int            i;
219         unsigned int            cpu = policy->cpu;
220         struct cpufreq_acpi_io  *data;
221         unsigned int            result = 0;
222         struct cpufreq_frequency_table *freq_table;
223
224         pr_debug("acpi_cpufreq_cpu_init\n");
225
226         data = kzalloc(sizeof(*data), GFP_KERNEL);
227         if (!data)
228                 return (-ENOMEM);
229
230         acpi_io_data[cpu] = data;
231
232         result = acpi_processor_register_performance(&data->acpi_data, cpu);
233
234         if (result)
235                 goto err_free;
236
237         /* capability check */
238         if (data->acpi_data.state_count <= 1) {
239                 pr_debug("No P-States\n");
240                 result = -ENODEV;
241                 goto err_unreg;
242         }
243
244         if ((data->acpi_data.control_register.space_id !=
245                                         ACPI_ADR_SPACE_FIXED_HARDWARE) ||
246             (data->acpi_data.status_register.space_id !=
247                                         ACPI_ADR_SPACE_FIXED_HARDWARE)) {
248                 pr_debug("Unsupported address space [%d, %d]\n",
249                         (u32) (data->acpi_data.control_register.space_id),
250                         (u32) (data->acpi_data.status_register.space_id));
251                 result = -ENODEV;
252                 goto err_unreg;
253         }
254
255         /* alloc freq_table */
256         freq_table = kzalloc(sizeof(*freq_table) *
257                                    (data->acpi_data.state_count + 1),
258                                    GFP_KERNEL);
259         if (!freq_table) {
260                 result = -ENOMEM;
261                 goto err_unreg;
262         }
263
264         /* detect transition latency */
265         policy->cpuinfo.transition_latency = 0;
266         for (i=0; i<data->acpi_data.state_count; i++) {
267                 if ((data->acpi_data.states[i].transition_latency * 1000) >
268                     policy->cpuinfo.transition_latency) {
269                         policy->cpuinfo.transition_latency =
270                             data->acpi_data.states[i].transition_latency * 1000;
271                 }
272         }
273
274         /* table init */
275         for (i = 0; i <= data->acpi_data.state_count; i++)
276         {
277                 if (i < data->acpi_data.state_count) {
278                         freq_table[i].frequency =
279                               data->acpi_data.states[i].core_frequency * 1000;
280                 } else {
281                         freq_table[i].frequency = CPUFREQ_TABLE_END;
282                 }
283         }
284
285         result = cpufreq_table_validate_and_show(policy, freq_table);
286         if (result) {
287                 goto err_freqfree;
288         }
289
290         /* notify BIOS that we exist */
291         acpi_processor_notify_smm(THIS_MODULE);
292
293         pr_info("acpi-cpufreq: CPU%u - ACPI performance management activated\n",
294                 cpu);
295
296         for (i = 0; i < data->acpi_data.state_count; i++)
297                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
298                         (i == data->acpi_data.state?'*':' '), i,
299                         (u32) data->acpi_data.states[i].core_frequency,
300                         (u32) data->acpi_data.states[i].power,
301                         (u32) data->acpi_data.states[i].transition_latency,
302                         (u32) data->acpi_data.states[i].bus_master_latency,
303                         (u32) data->acpi_data.states[i].status,
304                         (u32) data->acpi_data.states[i].control);
305
306         /* the first call to ->target() should result in us actually
307          * writing something to the appropriate registers. */
308         data->resume = 1;
309
310         return (result);
311
312  err_freqfree:
313         kfree(freq_table);
314  err_unreg:
315         acpi_processor_unregister_performance(cpu);
316  err_free:
317         kfree(data);
318         acpi_io_data[cpu] = NULL;
319
320         return (result);
321 }
322
323
324 static int
325 acpi_cpufreq_cpu_exit (
326         struct cpufreq_policy   *policy)
327 {
328         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
329
330         pr_debug("acpi_cpufreq_cpu_exit\n");
331
332         if (data) {
333                 acpi_io_data[policy->cpu] = NULL;
334                 acpi_processor_unregister_performance(policy->cpu);
335                 kfree(policy->freq_table);
336                 kfree(data);
337         }
338
339         return (0);
340 }
341
342
343 static struct cpufreq_driver acpi_cpufreq_driver = {
344         .verify         = cpufreq_generic_frequency_table_verify,
345         .target_index   = acpi_cpufreq_target,
346         .get            = acpi_cpufreq_get,
347         .init           = acpi_cpufreq_cpu_init,
348         .exit           = acpi_cpufreq_cpu_exit,
349         .name           = "acpi-cpufreq",
350         .attr           = cpufreq_generic_attr,
351 };
352
353
354 static int __init
355 acpi_cpufreq_init (void)
356 {
357         pr_debug("acpi_cpufreq_init\n");
358
359         return cpufreq_register_driver(&acpi_cpufreq_driver);
360 }
361
362
363 static void __exit
364 acpi_cpufreq_exit (void)
365 {
366         pr_debug("acpi_cpufreq_exit\n");
367
368         cpufreq_unregister_driver(&acpi_cpufreq_driver);
369         return;
370 }
371
372
373 late_initcall(acpi_cpufreq_init);
374 module_exit(acpi_cpufreq_exit);
375