intel_pstate: Use pr_fmt
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS             0x66a
40 #define ATOM_VIDS               0x66b
41 #define ATOM_TURBO_RATIOS       0x66c
42 #define ATOM_TURBO_VIDS         0x66d
43
44 #define FRAC_BITS 8
45 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
46 #define fp_toint(X) ((X) >> FRAC_BITS)
47
48 static inline int32_t mul_fp(int32_t x, int32_t y)
49 {
50         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51 }
52
53 static inline int32_t div_fp(s64 x, s64 y)
54 {
55         return div64_s64((int64_t)x << FRAC_BITS, y);
56 }
57
58 static inline int ceiling_fp(int32_t x)
59 {
60         int mask, ret;
61
62         ret = fp_toint(x);
63         mask = (1 << FRAC_BITS) - 1;
64         if (x & mask)
65                 ret += 1;
66         return ret;
67 }
68
69 /**
70  * struct sample -      Store performance sample
71  * @core_pct_busy:      Ratio of APERF/MPERF in percent, which is actual
72  *                      performance during last sample period
73  * @busy_scaled:        Scaled busy value which is used to calculate next
74  *                      P state. This can be different than core_pct_busy
75  *                      to account for cpu idle period
76  * @aperf:              Difference of actual performance frequency clock count
77  *                      read from APERF MSR between last and current sample
78  * @mperf:              Difference of maximum performance frequency clock count
79  *                      read from MPERF MSR between last and current sample
80  * @tsc:                Difference of time stamp counter between last and
81  *                      current sample
82  * @freq:               Effective frequency calculated from APERF/MPERF
83  * @time:               Current time from scheduler
84  *
85  * This structure is used in the cpudata structure to store performance sample
86  * data for choosing next P State.
87  */
88 struct sample {
89         int32_t core_pct_busy;
90         int32_t busy_scaled;
91         u64 aperf;
92         u64 mperf;
93         u64 tsc;
94         int freq;
95         u64 time;
96 };
97
98 /**
99  * struct pstate_data - Store P state data
100  * @current_pstate:     Current requested P state
101  * @min_pstate:         Min P state possible for this platform
102  * @max_pstate:         Max P state possible for this platform
103  * @max_pstate_physical:This is physical Max P state for a processor
104  *                      This can be higher than the max_pstate which can
105  *                      be limited by platform thermal design power limits
106  * @scaling:            Scaling factor to  convert frequency to cpufreq
107  *                      frequency units
108  * @turbo_pstate:       Max Turbo P state possible for this platform
109  *
110  * Stores the per cpu model P state limits and current P state.
111  */
112 struct pstate_data {
113         int     current_pstate;
114         int     min_pstate;
115         int     max_pstate;
116         int     max_pstate_physical;
117         int     scaling;
118         int     turbo_pstate;
119 };
120
121 /**
122  * struct vid_data -    Stores voltage information data
123  * @min:                VID data for this platform corresponding to
124  *                      the lowest P state
125  * @max:                VID data corresponding to the highest P State.
126  * @turbo:              VID data for turbo P state
127  * @ratio:              Ratio of (vid max - vid min) /
128  *                      (max P state - Min P State)
129  *
130  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
131  * This data is used in Atom platforms, where in addition to target P state,
132  * the voltage data needs to be specified to select next P State.
133  */
134 struct vid_data {
135         int min;
136         int max;
137         int turbo;
138         int32_t ratio;
139 };
140
141 /**
142  * struct _pid -        Stores PID data
143  * @setpoint:           Target set point for busyness or performance
144  * @integral:           Storage for accumulated error values
145  * @p_gain:             PID proportional gain
146  * @i_gain:             PID integral gain
147  * @d_gain:             PID derivative gain
148  * @deadband:           PID deadband
149  * @last_err:           Last error storage for integral part of PID calculation
150  *
151  * Stores PID coefficients and last error for PID controller.
152  */
153 struct _pid {
154         int setpoint;
155         int32_t integral;
156         int32_t p_gain;
157         int32_t i_gain;
158         int32_t d_gain;
159         int deadband;
160         int32_t last_err;
161 };
162
163 /**
164  * struct cpudata -     Per CPU instance data storage
165  * @cpu:                CPU number for this instance data
166  * @update_util:        CPUFreq utility callback information
167  * @pstate:             Stores P state limits for this CPU
168  * @vid:                Stores VID limits for this CPU
169  * @pid:                Stores PID parameters for this CPU
170  * @last_sample_time:   Last Sample time
171  * @prev_aperf:         Last APERF value read from APERF MSR
172  * @prev_mperf:         Last MPERF value read from MPERF MSR
173  * @prev_tsc:           Last timestamp counter (TSC) value
174  * @prev_cummulative_iowait: IO Wait time difference from last and
175  *                      current sample
176  * @sample:             Storage for storing last Sample data
177  *
178  * This structure stores per CPU instance data for all CPUs.
179  */
180 struct cpudata {
181         int cpu;
182
183         struct update_util_data update_util;
184
185         struct pstate_data pstate;
186         struct vid_data vid;
187         struct _pid pid;
188
189         u64     last_sample_time;
190         u64     prev_aperf;
191         u64     prev_mperf;
192         u64     prev_tsc;
193         u64     prev_cummulative_iowait;
194         struct sample sample;
195 };
196
197 static struct cpudata **all_cpu_data;
198
199 /**
200  * struct pid_adjust_policy - Stores static PID configuration data
201  * @sample_rate_ms:     PID calculation sample rate in ms
202  * @sample_rate_ns:     Sample rate calculation in ns
203  * @deadband:           PID deadband
204  * @setpoint:           PID Setpoint
205  * @p_gain_pct:         PID proportional gain
206  * @i_gain_pct:         PID integral gain
207  * @d_gain_pct:         PID derivative gain
208  *
209  * Stores per CPU model static PID configuration data.
210  */
211 struct pstate_adjust_policy {
212         int sample_rate_ms;
213         s64 sample_rate_ns;
214         int deadband;
215         int setpoint;
216         int p_gain_pct;
217         int d_gain_pct;
218         int i_gain_pct;
219 };
220
221 /**
222  * struct pstate_funcs - Per CPU model specific callbacks
223  * @get_max:            Callback to get maximum non turbo effective P state
224  * @get_max_physical:   Callback to get maximum non turbo physical P state
225  * @get_min:            Callback to get minimum P state
226  * @get_turbo:          Callback to get turbo P state
227  * @get_scaling:        Callback to get frequency scaling factor
228  * @get_val:            Callback to convert P state to actual MSR write value
229  * @get_vid:            Callback to get VID data for Atom platforms
230  * @get_target_pstate:  Callback to a function to calculate next P state to use
231  *
232  * Core and Atom CPU models have different way to get P State limits. This
233  * structure is used to store those callbacks.
234  */
235 struct pstate_funcs {
236         int (*get_max)(void);
237         int (*get_max_physical)(void);
238         int (*get_min)(void);
239         int (*get_turbo)(void);
240         int (*get_scaling)(void);
241         u64 (*get_val)(struct cpudata*, int pstate);
242         void (*get_vid)(struct cpudata *);
243         int32_t (*get_target_pstate)(struct cpudata *);
244 };
245
246 /**
247  * struct cpu_defaults- Per CPU model default config data
248  * @pid_policy: PID config data
249  * @funcs:              Callback function data
250  */
251 struct cpu_defaults {
252         struct pstate_adjust_policy pid_policy;
253         struct pstate_funcs funcs;
254 };
255
256 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
257 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
258
259 static struct pstate_adjust_policy pid_params;
260 static struct pstate_funcs pstate_funcs;
261 static int hwp_active;
262
263
264 /**
265  * struct perf_limits - Store user and policy limits
266  * @no_turbo:           User requested turbo state from intel_pstate sysfs
267  * @turbo_disabled:     Platform turbo status either from msr
268  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
269  *                      matches the maximum turbo pstate
270  * @max_perf_pct:       Effective maximum performance limit in percentage, this
271  *                      is minimum of either limits enforced by cpufreq policy
272  *                      or limits from user set limits via intel_pstate sysfs
273  * @min_perf_pct:       Effective minimum performance limit in percentage, this
274  *                      is maximum of either limits enforced by cpufreq policy
275  *                      or limits from user set limits via intel_pstate sysfs
276  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
277  *                      This value is used to limit max pstate
278  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
279  *                      This value is used to limit min pstate
280  * @max_policy_pct:     The maximum performance in percentage enforced by
281  *                      cpufreq setpolicy interface
282  * @max_sysfs_pct:      The maximum performance in percentage enforced by
283  *                      intel pstate sysfs interface
284  * @min_policy_pct:     The minimum performance in percentage enforced by
285  *                      cpufreq setpolicy interface
286  * @min_sysfs_pct:      The minimum performance in percentage enforced by
287  *                      intel pstate sysfs interface
288  *
289  * Storage for user and policy defined limits.
290  */
291 struct perf_limits {
292         int no_turbo;
293         int turbo_disabled;
294         int max_perf_pct;
295         int min_perf_pct;
296         int32_t max_perf;
297         int32_t min_perf;
298         int max_policy_pct;
299         int max_sysfs_pct;
300         int min_policy_pct;
301         int min_sysfs_pct;
302 };
303
304 static struct perf_limits performance_limits = {
305         .no_turbo = 0,
306         .turbo_disabled = 0,
307         .max_perf_pct = 100,
308         .max_perf = int_tofp(1),
309         .min_perf_pct = 100,
310         .min_perf = int_tofp(1),
311         .max_policy_pct = 100,
312         .max_sysfs_pct = 100,
313         .min_policy_pct = 0,
314         .min_sysfs_pct = 0,
315 };
316
317 static struct perf_limits powersave_limits = {
318         .no_turbo = 0,
319         .turbo_disabled = 0,
320         .max_perf_pct = 100,
321         .max_perf = int_tofp(1),
322         .min_perf_pct = 0,
323         .min_perf = 0,
324         .max_policy_pct = 100,
325         .max_sysfs_pct = 100,
326         .min_policy_pct = 0,
327         .min_sysfs_pct = 0,
328 };
329
330 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
331 static struct perf_limits *limits = &performance_limits;
332 #else
333 static struct perf_limits *limits = &powersave_limits;
334 #endif
335
336 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
337                              int deadband, int integral) {
338         pid->setpoint = int_tofp(setpoint);
339         pid->deadband  = int_tofp(deadband);
340         pid->integral  = int_tofp(integral);
341         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
342 }
343
344 static inline void pid_p_gain_set(struct _pid *pid, int percent)
345 {
346         pid->p_gain = div_fp(percent, 100);
347 }
348
349 static inline void pid_i_gain_set(struct _pid *pid, int percent)
350 {
351         pid->i_gain = div_fp(percent, 100);
352 }
353
354 static inline void pid_d_gain_set(struct _pid *pid, int percent)
355 {
356         pid->d_gain = div_fp(percent, 100);
357 }
358
359 static signed int pid_calc(struct _pid *pid, int32_t busy)
360 {
361         signed int result;
362         int32_t pterm, dterm, fp_error;
363         int32_t integral_limit;
364
365         fp_error = pid->setpoint - busy;
366
367         if (abs(fp_error) <= pid->deadband)
368                 return 0;
369
370         pterm = mul_fp(pid->p_gain, fp_error);
371
372         pid->integral += fp_error;
373
374         /*
375          * We limit the integral here so that it will never
376          * get higher than 30.  This prevents it from becoming
377          * too large an input over long periods of time and allows
378          * it to get factored out sooner.
379          *
380          * The value of 30 was chosen through experimentation.
381          */
382         integral_limit = int_tofp(30);
383         if (pid->integral > integral_limit)
384                 pid->integral = integral_limit;
385         if (pid->integral < -integral_limit)
386                 pid->integral = -integral_limit;
387
388         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
389         pid->last_err = fp_error;
390
391         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
392         result = result + (1 << (FRAC_BITS-1));
393         return (signed int)fp_toint(result);
394 }
395
396 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
397 {
398         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
399         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
400         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
401
402         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
403 }
404
405 static inline void intel_pstate_reset_all_pid(void)
406 {
407         unsigned int cpu;
408
409         for_each_online_cpu(cpu) {
410                 if (all_cpu_data[cpu])
411                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
412         }
413 }
414
415 static inline void update_turbo_state(void)
416 {
417         u64 misc_en;
418         struct cpudata *cpu;
419
420         cpu = all_cpu_data[0];
421         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
422         limits->turbo_disabled =
423                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
424                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
425 }
426
427 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
428 {
429         int min, hw_min, max, hw_max, cpu, range, adj_range;
430         u64 value, cap;
431
432         rdmsrl(MSR_HWP_CAPABILITIES, cap);
433         hw_min = HWP_LOWEST_PERF(cap);
434         hw_max = HWP_HIGHEST_PERF(cap);
435         range = hw_max - hw_min;
436
437         for_each_cpu(cpu, cpumask) {
438                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
439                 adj_range = limits->min_perf_pct * range / 100;
440                 min = hw_min + adj_range;
441                 value &= ~HWP_MIN_PERF(~0L);
442                 value |= HWP_MIN_PERF(min);
443
444                 adj_range = limits->max_perf_pct * range / 100;
445                 max = hw_min + adj_range;
446                 if (limits->no_turbo) {
447                         hw_max = HWP_GUARANTEED_PERF(cap);
448                         if (hw_max < max)
449                                 max = hw_max;
450                 }
451
452                 value &= ~HWP_MAX_PERF(~0L);
453                 value |= HWP_MAX_PERF(max);
454                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
455         }
456 }
457
458 static void intel_pstate_hwp_set_online_cpus(void)
459 {
460         get_online_cpus();
461         intel_pstate_hwp_set(cpu_online_mask);
462         put_online_cpus();
463 }
464
465 /************************** debugfs begin ************************/
466 static int pid_param_set(void *data, u64 val)
467 {
468         *(u32 *)data = val;
469         intel_pstate_reset_all_pid();
470         return 0;
471 }
472
473 static int pid_param_get(void *data, u64 *val)
474 {
475         *val = *(u32 *)data;
476         return 0;
477 }
478 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
479
480 struct pid_param {
481         char *name;
482         void *value;
483 };
484
485 static struct pid_param pid_files[] = {
486         {"sample_rate_ms", &pid_params.sample_rate_ms},
487         {"d_gain_pct", &pid_params.d_gain_pct},
488         {"i_gain_pct", &pid_params.i_gain_pct},
489         {"deadband", &pid_params.deadband},
490         {"setpoint", &pid_params.setpoint},
491         {"p_gain_pct", &pid_params.p_gain_pct},
492         {NULL, NULL}
493 };
494
495 static void __init intel_pstate_debug_expose_params(void)
496 {
497         struct dentry *debugfs_parent;
498         int i = 0;
499
500         if (hwp_active)
501                 return;
502         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
503         if (IS_ERR_OR_NULL(debugfs_parent))
504                 return;
505         while (pid_files[i].name) {
506                 debugfs_create_file(pid_files[i].name, 0660,
507                                     debugfs_parent, pid_files[i].value,
508                                     &fops_pid_param);
509                 i++;
510         }
511 }
512
513 /************************** debugfs end ************************/
514
515 /************************** sysfs begin ************************/
516 #define show_one(file_name, object)                                     \
517         static ssize_t show_##file_name                                 \
518         (struct kobject *kobj, struct attribute *attr, char *buf)       \
519         {                                                               \
520                 return sprintf(buf, "%u\n", limits->object);            \
521         }
522
523 static ssize_t show_turbo_pct(struct kobject *kobj,
524                                 struct attribute *attr, char *buf)
525 {
526         struct cpudata *cpu;
527         int total, no_turbo, turbo_pct;
528         uint32_t turbo_fp;
529
530         cpu = all_cpu_data[0];
531
532         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
533         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
534         turbo_fp = div_fp(no_turbo, total);
535         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
536         return sprintf(buf, "%u\n", turbo_pct);
537 }
538
539 static ssize_t show_num_pstates(struct kobject *kobj,
540                                 struct attribute *attr, char *buf)
541 {
542         struct cpudata *cpu;
543         int total;
544
545         cpu = all_cpu_data[0];
546         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
547         return sprintf(buf, "%u\n", total);
548 }
549
550 static ssize_t show_no_turbo(struct kobject *kobj,
551                              struct attribute *attr, char *buf)
552 {
553         ssize_t ret;
554
555         update_turbo_state();
556         if (limits->turbo_disabled)
557                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
558         else
559                 ret = sprintf(buf, "%u\n", limits->no_turbo);
560
561         return ret;
562 }
563
564 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
565                               const char *buf, size_t count)
566 {
567         unsigned int input;
568         int ret;
569
570         ret = sscanf(buf, "%u", &input);
571         if (ret != 1)
572                 return -EINVAL;
573
574         update_turbo_state();
575         if (limits->turbo_disabled) {
576                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
577                 return -EPERM;
578         }
579
580         limits->no_turbo = clamp_t(int, input, 0, 1);
581
582         if (hwp_active)
583                 intel_pstate_hwp_set_online_cpus();
584
585         return count;
586 }
587
588 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
589                                   const char *buf, size_t count)
590 {
591         unsigned int input;
592         int ret;
593
594         ret = sscanf(buf, "%u", &input);
595         if (ret != 1)
596                 return -EINVAL;
597
598         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
599         limits->max_perf_pct = min(limits->max_policy_pct,
600                                    limits->max_sysfs_pct);
601         limits->max_perf_pct = max(limits->min_policy_pct,
602                                    limits->max_perf_pct);
603         limits->max_perf_pct = max(limits->min_perf_pct,
604                                    limits->max_perf_pct);
605         limits->max_perf = div_fp(limits->max_perf_pct, 100);
606
607         if (hwp_active)
608                 intel_pstate_hwp_set_online_cpus();
609         return count;
610 }
611
612 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
613                                   const char *buf, size_t count)
614 {
615         unsigned int input;
616         int ret;
617
618         ret = sscanf(buf, "%u", &input);
619         if (ret != 1)
620                 return -EINVAL;
621
622         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
623         limits->min_perf_pct = max(limits->min_policy_pct,
624                                    limits->min_sysfs_pct);
625         limits->min_perf_pct = min(limits->max_policy_pct,
626                                    limits->min_perf_pct);
627         limits->min_perf_pct = min(limits->max_perf_pct,
628                                    limits->min_perf_pct);
629         limits->min_perf = div_fp(limits->min_perf_pct, 100);
630
631         if (hwp_active)
632                 intel_pstate_hwp_set_online_cpus();
633         return count;
634 }
635
636 show_one(max_perf_pct, max_perf_pct);
637 show_one(min_perf_pct, min_perf_pct);
638
639 define_one_global_rw(no_turbo);
640 define_one_global_rw(max_perf_pct);
641 define_one_global_rw(min_perf_pct);
642 define_one_global_ro(turbo_pct);
643 define_one_global_ro(num_pstates);
644
645 static struct attribute *intel_pstate_attributes[] = {
646         &no_turbo.attr,
647         &max_perf_pct.attr,
648         &min_perf_pct.attr,
649         &turbo_pct.attr,
650         &num_pstates.attr,
651         NULL
652 };
653
654 static struct attribute_group intel_pstate_attr_group = {
655         .attrs = intel_pstate_attributes,
656 };
657
658 static void __init intel_pstate_sysfs_expose_params(void)
659 {
660         struct kobject *intel_pstate_kobject;
661         int rc;
662
663         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
664                                                 &cpu_subsys.dev_root->kobj);
665         BUG_ON(!intel_pstate_kobject);
666         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
667         BUG_ON(rc);
668 }
669 /************************** sysfs end ************************/
670
671 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
672 {
673         /* First disable HWP notification interrupt as we don't process them */
674         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
675
676         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
677 }
678
679 static int atom_get_min_pstate(void)
680 {
681         u64 value;
682
683         rdmsrl(ATOM_RATIOS, value);
684         return (value >> 8) & 0x7F;
685 }
686
687 static int atom_get_max_pstate(void)
688 {
689         u64 value;
690
691         rdmsrl(ATOM_RATIOS, value);
692         return (value >> 16) & 0x7F;
693 }
694
695 static int atom_get_turbo_pstate(void)
696 {
697         u64 value;
698
699         rdmsrl(ATOM_TURBO_RATIOS, value);
700         return value & 0x7F;
701 }
702
703 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
704 {
705         u64 val;
706         int32_t vid_fp;
707         u32 vid;
708
709         val = (u64)pstate << 8;
710         if (limits->no_turbo && !limits->turbo_disabled)
711                 val |= (u64)1 << 32;
712
713         vid_fp = cpudata->vid.min + mul_fp(
714                 int_tofp(pstate - cpudata->pstate.min_pstate),
715                 cpudata->vid.ratio);
716
717         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
718         vid = ceiling_fp(vid_fp);
719
720         if (pstate > cpudata->pstate.max_pstate)
721                 vid = cpudata->vid.turbo;
722
723         return val | vid;
724 }
725
726 static int silvermont_get_scaling(void)
727 {
728         u64 value;
729         int i;
730         /* Defined in Table 35-6 from SDM (Sept 2015) */
731         static int silvermont_freq_table[] = {
732                 83300, 100000, 133300, 116700, 80000};
733
734         rdmsrl(MSR_FSB_FREQ, value);
735         i = value & 0x7;
736         WARN_ON(i > 4);
737
738         return silvermont_freq_table[i];
739 }
740
741 static int airmont_get_scaling(void)
742 {
743         u64 value;
744         int i;
745         /* Defined in Table 35-10 from SDM (Sept 2015) */
746         static int airmont_freq_table[] = {
747                 83300, 100000, 133300, 116700, 80000,
748                 93300, 90000, 88900, 87500};
749
750         rdmsrl(MSR_FSB_FREQ, value);
751         i = value & 0xF;
752         WARN_ON(i > 8);
753
754         return airmont_freq_table[i];
755 }
756
757 static void atom_get_vid(struct cpudata *cpudata)
758 {
759         u64 value;
760
761         rdmsrl(ATOM_VIDS, value);
762         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
763         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
764         cpudata->vid.ratio = div_fp(
765                 cpudata->vid.max - cpudata->vid.min,
766                 int_tofp(cpudata->pstate.max_pstate -
767                         cpudata->pstate.min_pstate));
768
769         rdmsrl(ATOM_TURBO_VIDS, value);
770         cpudata->vid.turbo = value & 0x7f;
771 }
772
773 static int core_get_min_pstate(void)
774 {
775         u64 value;
776
777         rdmsrl(MSR_PLATFORM_INFO, value);
778         return (value >> 40) & 0xFF;
779 }
780
781 static int core_get_max_pstate_physical(void)
782 {
783         u64 value;
784
785         rdmsrl(MSR_PLATFORM_INFO, value);
786         return (value >> 8) & 0xFF;
787 }
788
789 static int core_get_max_pstate(void)
790 {
791         u64 tar;
792         u64 plat_info;
793         int max_pstate;
794         int err;
795
796         rdmsrl(MSR_PLATFORM_INFO, plat_info);
797         max_pstate = (plat_info >> 8) & 0xFF;
798
799         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
800         if (!err) {
801                 /* Do some sanity checking for safety */
802                 if (plat_info & 0x600000000) {
803                         u64 tdp_ctrl;
804                         u64 tdp_ratio;
805                         int tdp_msr;
806
807                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
808                         if (err)
809                                 goto skip_tar;
810
811                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
812                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
813                         if (err)
814                                 goto skip_tar;
815
816                         if (tdp_ratio - 1 == tar) {
817                                 max_pstate = tar;
818                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
819                         } else {
820                                 goto skip_tar;
821                         }
822                 }
823         }
824
825 skip_tar:
826         return max_pstate;
827 }
828
829 static int core_get_turbo_pstate(void)
830 {
831         u64 value;
832         int nont, ret;
833
834         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
835         nont = core_get_max_pstate();
836         ret = (value) & 255;
837         if (ret <= nont)
838                 ret = nont;
839         return ret;
840 }
841
842 static inline int core_get_scaling(void)
843 {
844         return 100000;
845 }
846
847 static u64 core_get_val(struct cpudata *cpudata, int pstate)
848 {
849         u64 val;
850
851         val = (u64)pstate << 8;
852         if (limits->no_turbo && !limits->turbo_disabled)
853                 val |= (u64)1 << 32;
854
855         return val;
856 }
857
858 static int knl_get_turbo_pstate(void)
859 {
860         u64 value;
861         int nont, ret;
862
863         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
864         nont = core_get_max_pstate();
865         ret = (((value) >> 8) & 0xFF);
866         if (ret <= nont)
867                 ret = nont;
868         return ret;
869 }
870
871 static struct cpu_defaults core_params = {
872         .pid_policy = {
873                 .sample_rate_ms = 10,
874                 .deadband = 0,
875                 .setpoint = 97,
876                 .p_gain_pct = 20,
877                 .d_gain_pct = 0,
878                 .i_gain_pct = 0,
879         },
880         .funcs = {
881                 .get_max = core_get_max_pstate,
882                 .get_max_physical = core_get_max_pstate_physical,
883                 .get_min = core_get_min_pstate,
884                 .get_turbo = core_get_turbo_pstate,
885                 .get_scaling = core_get_scaling,
886                 .get_val = core_get_val,
887                 .get_target_pstate = get_target_pstate_use_performance,
888         },
889 };
890
891 static struct cpu_defaults silvermont_params = {
892         .pid_policy = {
893                 .sample_rate_ms = 10,
894                 .deadband = 0,
895                 .setpoint = 60,
896                 .p_gain_pct = 14,
897                 .d_gain_pct = 0,
898                 .i_gain_pct = 4,
899         },
900         .funcs = {
901                 .get_max = atom_get_max_pstate,
902                 .get_max_physical = atom_get_max_pstate,
903                 .get_min = atom_get_min_pstate,
904                 .get_turbo = atom_get_turbo_pstate,
905                 .get_val = atom_get_val,
906                 .get_scaling = silvermont_get_scaling,
907                 .get_vid = atom_get_vid,
908                 .get_target_pstate = get_target_pstate_use_cpu_load,
909         },
910 };
911
912 static struct cpu_defaults airmont_params = {
913         .pid_policy = {
914                 .sample_rate_ms = 10,
915                 .deadband = 0,
916                 .setpoint = 60,
917                 .p_gain_pct = 14,
918                 .d_gain_pct = 0,
919                 .i_gain_pct = 4,
920         },
921         .funcs = {
922                 .get_max = atom_get_max_pstate,
923                 .get_max_physical = atom_get_max_pstate,
924                 .get_min = atom_get_min_pstate,
925                 .get_turbo = atom_get_turbo_pstate,
926                 .get_val = atom_get_val,
927                 .get_scaling = airmont_get_scaling,
928                 .get_vid = atom_get_vid,
929                 .get_target_pstate = get_target_pstate_use_cpu_load,
930         },
931 };
932
933 static struct cpu_defaults knl_params = {
934         .pid_policy = {
935                 .sample_rate_ms = 10,
936                 .deadband = 0,
937                 .setpoint = 97,
938                 .p_gain_pct = 20,
939                 .d_gain_pct = 0,
940                 .i_gain_pct = 0,
941         },
942         .funcs = {
943                 .get_max = core_get_max_pstate,
944                 .get_max_physical = core_get_max_pstate_physical,
945                 .get_min = core_get_min_pstate,
946                 .get_turbo = knl_get_turbo_pstate,
947                 .get_scaling = core_get_scaling,
948                 .get_val = core_get_val,
949                 .get_target_pstate = get_target_pstate_use_performance,
950         },
951 };
952
953 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
954 {
955         int max_perf = cpu->pstate.turbo_pstate;
956         int max_perf_adj;
957         int min_perf;
958
959         if (limits->no_turbo || limits->turbo_disabled)
960                 max_perf = cpu->pstate.max_pstate;
961
962         /*
963          * performance can be limited by user through sysfs, by cpufreq
964          * policy, or by cpu specific default values determined through
965          * experimentation.
966          */
967         max_perf_adj = fp_toint(max_perf * limits->max_perf);
968         *max = clamp_t(int, max_perf_adj,
969                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
970
971         min_perf = fp_toint(max_perf * limits->min_perf);
972         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
973 }
974
975 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
976 {
977         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
978         cpu->pstate.current_pstate = pstate;
979 }
980
981 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
982 {
983         int pstate = cpu->pstate.min_pstate;
984
985         intel_pstate_record_pstate(cpu, pstate);
986         /*
987          * Generally, there is no guarantee that this code will always run on
988          * the CPU being updated, so force the register update to run on the
989          * right CPU.
990          */
991         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
992                       pstate_funcs.get_val(cpu, pstate));
993 }
994
995 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
996 {
997         cpu->pstate.min_pstate = pstate_funcs.get_min();
998         cpu->pstate.max_pstate = pstate_funcs.get_max();
999         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1000         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1001         cpu->pstate.scaling = pstate_funcs.get_scaling();
1002
1003         if (pstate_funcs.get_vid)
1004                 pstate_funcs.get_vid(cpu);
1005
1006         intel_pstate_set_min_pstate(cpu);
1007 }
1008
1009 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1010 {
1011         struct sample *sample = &cpu->sample;
1012         int64_t core_pct;
1013
1014         core_pct = sample->aperf * int_tofp(100);
1015         core_pct = div64_u64(core_pct, sample->mperf);
1016
1017         sample->core_pct_busy = (int32_t)core_pct;
1018 }
1019
1020 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1021 {
1022         u64 aperf, mperf;
1023         unsigned long flags;
1024         u64 tsc;
1025
1026         local_irq_save(flags);
1027         rdmsrl(MSR_IA32_APERF, aperf);
1028         rdmsrl(MSR_IA32_MPERF, mperf);
1029         tsc = rdtsc();
1030         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1031                 local_irq_restore(flags);
1032                 return false;
1033         }
1034         local_irq_restore(flags);
1035
1036         cpu->last_sample_time = cpu->sample.time;
1037         cpu->sample.time = time;
1038         cpu->sample.aperf = aperf;
1039         cpu->sample.mperf = mperf;
1040         cpu->sample.tsc =  tsc;
1041         cpu->sample.aperf -= cpu->prev_aperf;
1042         cpu->sample.mperf -= cpu->prev_mperf;
1043         cpu->sample.tsc -= cpu->prev_tsc;
1044
1045         cpu->prev_aperf = aperf;
1046         cpu->prev_mperf = mperf;
1047         cpu->prev_tsc = tsc;
1048         /*
1049          * First time this function is invoked in a given cycle, all of the
1050          * previous sample data fields are equal to zero or stale and they must
1051          * be populated with meaningful numbers for things to work, so assume
1052          * that sample.time will always be reset before setting the utilization
1053          * update hook and make the caller skip the sample then.
1054          */
1055         return !!cpu->last_sample_time;
1056 }
1057
1058 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1059 {
1060         return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1061                 cpu->pstate.scaling, cpu->sample.mperf);
1062 }
1063
1064 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1065 {
1066         struct sample *sample = &cpu->sample;
1067         u64 cummulative_iowait, delta_iowait_us;
1068         u64 delta_iowait_mperf;
1069         u64 mperf, now;
1070         int32_t cpu_load;
1071
1072         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1073
1074         /*
1075          * Convert iowait time into number of IO cycles spent at max_freq.
1076          * IO is considered as busy only for the cpu_load algorithm. For
1077          * performance this is not needed since we always try to reach the
1078          * maximum P-State, so we are already boosting the IOs.
1079          */
1080         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1081         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1082                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1083
1084         mperf = cpu->sample.mperf + delta_iowait_mperf;
1085         cpu->prev_cummulative_iowait = cummulative_iowait;
1086
1087         /*
1088          * The load can be estimated as the ratio of the mperf counter
1089          * running at a constant frequency during active periods
1090          * (C0) and the time stamp counter running at the same frequency
1091          * also during C-states.
1092          */
1093         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1094         cpu->sample.busy_scaled = cpu_load;
1095
1096         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1097 }
1098
1099 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1100 {
1101         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1102         u64 duration_ns;
1103
1104         intel_pstate_calc_busy(cpu);
1105
1106         /*
1107          * core_busy is the ratio of actual performance to max
1108          * max_pstate is the max non turbo pstate available
1109          * current_pstate was the pstate that was requested during
1110          *      the last sample period.
1111          *
1112          * We normalize core_busy, which was our actual percent
1113          * performance to what we requested during the last sample
1114          * period. The result will be a percentage of busy at a
1115          * specified pstate.
1116          */
1117         core_busy = cpu->sample.core_pct_busy;
1118         max_pstate = cpu->pstate.max_pstate_physical;
1119         current_pstate = cpu->pstate.current_pstate;
1120         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1121
1122         /*
1123          * Since our utilization update callback will not run unless we are
1124          * in C0, check if the actual elapsed time is significantly greater (3x)
1125          * than our sample interval.  If it is, then we were idle for a long
1126          * enough period of time to adjust our busyness.
1127          */
1128         duration_ns = cpu->sample.time - cpu->last_sample_time;
1129         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1130                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1131                 core_busy = mul_fp(core_busy, sample_ratio);
1132         }
1133
1134         cpu->sample.busy_scaled = core_busy;
1135         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1136 }
1137
1138 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1139 {
1140         int max_perf, min_perf;
1141
1142         update_turbo_state();
1143
1144         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1145         pstate = clamp_t(int, pstate, min_perf, max_perf);
1146         if (pstate == cpu->pstate.current_pstate)
1147                 return;
1148
1149         intel_pstate_record_pstate(cpu, pstate);
1150         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1151 }
1152
1153 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1154 {
1155         int from, target_pstate;
1156         struct sample *sample;
1157
1158         from = cpu->pstate.current_pstate;
1159
1160         target_pstate = pstate_funcs.get_target_pstate(cpu);
1161
1162         intel_pstate_update_pstate(cpu, target_pstate);
1163
1164         sample = &cpu->sample;
1165         trace_pstate_sample(fp_toint(sample->core_pct_busy),
1166                 fp_toint(sample->busy_scaled),
1167                 from,
1168                 cpu->pstate.current_pstate,
1169                 sample->mperf,
1170                 sample->aperf,
1171                 sample->tsc,
1172                 get_avg_frequency(cpu));
1173 }
1174
1175 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1176                                      unsigned long util, unsigned long max)
1177 {
1178         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1179         u64 delta_ns = time - cpu->sample.time;
1180
1181         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1182                 bool sample_taken = intel_pstate_sample(cpu, time);
1183
1184                 if (sample_taken && !hwp_active)
1185                         intel_pstate_adjust_busy_pstate(cpu);
1186         }
1187 }
1188
1189 #define ICPU(model, policy) \
1190         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1191                         (unsigned long)&policy }
1192
1193 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1194         ICPU(0x2a, core_params),
1195         ICPU(0x2d, core_params),
1196         ICPU(0x37, silvermont_params),
1197         ICPU(0x3a, core_params),
1198         ICPU(0x3c, core_params),
1199         ICPU(0x3d, core_params),
1200         ICPU(0x3e, core_params),
1201         ICPU(0x3f, core_params),
1202         ICPU(0x45, core_params),
1203         ICPU(0x46, core_params),
1204         ICPU(0x47, core_params),
1205         ICPU(0x4c, airmont_params),
1206         ICPU(0x4e, core_params),
1207         ICPU(0x4f, core_params),
1208         ICPU(0x5e, core_params),
1209         ICPU(0x56, core_params),
1210         ICPU(0x57, knl_params),
1211         {}
1212 };
1213 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1214
1215 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1216         ICPU(0x56, core_params),
1217         {}
1218 };
1219
1220 static int intel_pstate_init_cpu(unsigned int cpunum)
1221 {
1222         struct cpudata *cpu;
1223
1224         if (!all_cpu_data[cpunum])
1225                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1226                                                GFP_KERNEL);
1227         if (!all_cpu_data[cpunum])
1228                 return -ENOMEM;
1229
1230         cpu = all_cpu_data[cpunum];
1231
1232         cpu->cpu = cpunum;
1233
1234         if (hwp_active) {
1235                 intel_pstate_hwp_enable(cpu);
1236                 pid_params.sample_rate_ms = 50;
1237                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1238         }
1239
1240         intel_pstate_get_cpu_pstates(cpu);
1241
1242         intel_pstate_busy_pid_reset(cpu);
1243
1244         pr_debug("controlling: cpu %d\n", cpunum);
1245
1246         return 0;
1247 }
1248
1249 static unsigned int intel_pstate_get(unsigned int cpu_num)
1250 {
1251         struct sample *sample;
1252         struct cpudata *cpu;
1253
1254         cpu = all_cpu_data[cpu_num];
1255         if (!cpu)
1256                 return 0;
1257         sample = &cpu->sample;
1258         return get_avg_frequency(cpu);
1259 }
1260
1261 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1262 {
1263         struct cpudata *cpu = all_cpu_data[cpu_num];
1264
1265         /* Prevent intel_pstate_update_util() from using stale data. */
1266         cpu->sample.time = 0;
1267         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1268                                      intel_pstate_update_util);
1269 }
1270
1271 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1272 {
1273         cpufreq_remove_update_util_hook(cpu);
1274         synchronize_sched();
1275 }
1276
1277 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1278 {
1279         limits->no_turbo = 0;
1280         limits->turbo_disabled = 0;
1281         limits->max_perf_pct = 100;
1282         limits->max_perf = int_tofp(1);
1283         limits->min_perf_pct = 100;
1284         limits->min_perf = int_tofp(1);
1285         limits->max_policy_pct = 100;
1286         limits->max_sysfs_pct = 100;
1287         limits->min_policy_pct = 0;
1288         limits->min_sysfs_pct = 0;
1289 }
1290
1291 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1292 {
1293         if (!policy->cpuinfo.max_freq)
1294                 return -ENODEV;
1295
1296         intel_pstate_clear_update_util_hook(policy->cpu);
1297
1298         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1299                 limits = &performance_limits;
1300                 if (policy->max >= policy->cpuinfo.max_freq) {
1301                         pr_debug("set performance\n");
1302                         intel_pstate_set_performance_limits(limits);
1303                         goto out;
1304                 }
1305         } else {
1306                 pr_debug("set powersave\n");
1307                 limits = &powersave_limits;
1308         }
1309
1310         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1311         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1312         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1313                                               policy->cpuinfo.max_freq);
1314         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1315
1316         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1317         limits->min_perf_pct = max(limits->min_policy_pct,
1318                                    limits->min_sysfs_pct);
1319         limits->min_perf_pct = min(limits->max_policy_pct,
1320                                    limits->min_perf_pct);
1321         limits->max_perf_pct = min(limits->max_policy_pct,
1322                                    limits->max_sysfs_pct);
1323         limits->max_perf_pct = max(limits->min_policy_pct,
1324                                    limits->max_perf_pct);
1325         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1326
1327         /* Make sure min_perf_pct <= max_perf_pct */
1328         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1329
1330         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1331         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1332
1333  out:
1334         intel_pstate_set_update_util_hook(policy->cpu);
1335
1336         if (hwp_active)
1337                 intel_pstate_hwp_set(policy->cpus);
1338
1339         return 0;
1340 }
1341
1342 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1343 {
1344         cpufreq_verify_within_cpu_limits(policy);
1345
1346         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1347             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1348                 return -EINVAL;
1349
1350         return 0;
1351 }
1352
1353 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1354 {
1355         int cpu_num = policy->cpu;
1356         struct cpudata *cpu = all_cpu_data[cpu_num];
1357
1358         pr_debug("CPU %d exiting\n", cpu_num);
1359
1360         intel_pstate_clear_update_util_hook(cpu_num);
1361
1362         if (hwp_active)
1363                 return;
1364
1365         intel_pstate_set_min_pstate(cpu);
1366 }
1367
1368 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1369 {
1370         struct cpudata *cpu;
1371         int rc;
1372
1373         rc = intel_pstate_init_cpu(policy->cpu);
1374         if (rc)
1375                 return rc;
1376
1377         cpu = all_cpu_data[policy->cpu];
1378
1379         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1380                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1381         else
1382                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1383
1384         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1385         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1386
1387         /* cpuinfo and default policy values */
1388         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1389         policy->cpuinfo.max_freq =
1390                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1391         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1392         cpumask_set_cpu(policy->cpu, policy->cpus);
1393
1394         return 0;
1395 }
1396
1397 static struct cpufreq_driver intel_pstate_driver = {
1398         .flags          = CPUFREQ_CONST_LOOPS,
1399         .verify         = intel_pstate_verify_policy,
1400         .setpolicy      = intel_pstate_set_policy,
1401         .get            = intel_pstate_get,
1402         .init           = intel_pstate_cpu_init,
1403         .stop_cpu       = intel_pstate_stop_cpu,
1404         .name           = "intel_pstate",
1405 };
1406
1407 static int __initdata no_load;
1408 static int __initdata no_hwp;
1409 static int __initdata hwp_only;
1410 static unsigned int force_load;
1411
1412 static int intel_pstate_msrs_not_valid(void)
1413 {
1414         if (!pstate_funcs.get_max() ||
1415             !pstate_funcs.get_min() ||
1416             !pstate_funcs.get_turbo())
1417                 return -ENODEV;
1418
1419         return 0;
1420 }
1421
1422 static void copy_pid_params(struct pstate_adjust_policy *policy)
1423 {
1424         pid_params.sample_rate_ms = policy->sample_rate_ms;
1425         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1426         pid_params.p_gain_pct = policy->p_gain_pct;
1427         pid_params.i_gain_pct = policy->i_gain_pct;
1428         pid_params.d_gain_pct = policy->d_gain_pct;
1429         pid_params.deadband = policy->deadband;
1430         pid_params.setpoint = policy->setpoint;
1431 }
1432
1433 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1434 {
1435         pstate_funcs.get_max   = funcs->get_max;
1436         pstate_funcs.get_max_physical = funcs->get_max_physical;
1437         pstate_funcs.get_min   = funcs->get_min;
1438         pstate_funcs.get_turbo = funcs->get_turbo;
1439         pstate_funcs.get_scaling = funcs->get_scaling;
1440         pstate_funcs.get_val   = funcs->get_val;
1441         pstate_funcs.get_vid   = funcs->get_vid;
1442         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1443
1444 }
1445
1446 #if IS_ENABLED(CONFIG_ACPI)
1447 #include <acpi/processor.h>
1448
1449 static bool intel_pstate_no_acpi_pss(void)
1450 {
1451         int i;
1452
1453         for_each_possible_cpu(i) {
1454                 acpi_status status;
1455                 union acpi_object *pss;
1456                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1457                 struct acpi_processor *pr = per_cpu(processors, i);
1458
1459                 if (!pr)
1460                         continue;
1461
1462                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1463                 if (ACPI_FAILURE(status))
1464                         continue;
1465
1466                 pss = buffer.pointer;
1467                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1468                         kfree(pss);
1469                         return false;
1470                 }
1471
1472                 kfree(pss);
1473         }
1474
1475         return true;
1476 }
1477
1478 static bool intel_pstate_has_acpi_ppc(void)
1479 {
1480         int i;
1481
1482         for_each_possible_cpu(i) {
1483                 struct acpi_processor *pr = per_cpu(processors, i);
1484
1485                 if (!pr)
1486                         continue;
1487                 if (acpi_has_method(pr->handle, "_PPC"))
1488                         return true;
1489         }
1490         return false;
1491 }
1492
1493 enum {
1494         PSS,
1495         PPC,
1496 };
1497
1498 struct hw_vendor_info {
1499         u16  valid;
1500         char oem_id[ACPI_OEM_ID_SIZE];
1501         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1502         int  oem_pwr_table;
1503 };
1504
1505 /* Hardware vendor-specific info that has its own power management modes */
1506 static struct hw_vendor_info vendor_info[] = {
1507         {1, "HP    ", "ProLiant", PSS},
1508         {1, "ORACLE", "X4-2    ", PPC},
1509         {1, "ORACLE", "X4-2L   ", PPC},
1510         {1, "ORACLE", "X4-2B   ", PPC},
1511         {1, "ORACLE", "X3-2    ", PPC},
1512         {1, "ORACLE", "X3-2L   ", PPC},
1513         {1, "ORACLE", "X3-2B   ", PPC},
1514         {1, "ORACLE", "X4470M2 ", PPC},
1515         {1, "ORACLE", "X4270M3 ", PPC},
1516         {1, "ORACLE", "X4270M2 ", PPC},
1517         {1, "ORACLE", "X4170M2 ", PPC},
1518         {1, "ORACLE", "X4170 M3", PPC},
1519         {1, "ORACLE", "X4275 M3", PPC},
1520         {1, "ORACLE", "X6-2    ", PPC},
1521         {1, "ORACLE", "Sudbury ", PPC},
1522         {0, "", ""},
1523 };
1524
1525 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1526 {
1527         struct acpi_table_header hdr;
1528         struct hw_vendor_info *v_info;
1529         const struct x86_cpu_id *id;
1530         u64 misc_pwr;
1531
1532         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1533         if (id) {
1534                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1535                 if ( misc_pwr & (1 << 8))
1536                         return true;
1537         }
1538
1539         if (acpi_disabled ||
1540             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1541                 return false;
1542
1543         for (v_info = vendor_info; v_info->valid; v_info++) {
1544                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1545                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1546                                                 ACPI_OEM_TABLE_ID_SIZE))
1547                         switch (v_info->oem_pwr_table) {
1548                         case PSS:
1549                                 return intel_pstate_no_acpi_pss();
1550                         case PPC:
1551                                 return intel_pstate_has_acpi_ppc() &&
1552                                         (!force_load);
1553                         }
1554         }
1555
1556         return false;
1557 }
1558 #else /* CONFIG_ACPI not enabled */
1559 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1560 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1561 #endif /* CONFIG_ACPI */
1562
1563 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1564         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1565         {}
1566 };
1567
1568 static int __init intel_pstate_init(void)
1569 {
1570         int cpu, rc = 0;
1571         const struct x86_cpu_id *id;
1572         struct cpu_defaults *cpu_def;
1573
1574         if (no_load)
1575                 return -ENODEV;
1576
1577         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1578                 copy_cpu_funcs(&core_params.funcs);
1579                 hwp_active++;
1580                 goto hwp_cpu_matched;
1581         }
1582
1583         id = x86_match_cpu(intel_pstate_cpu_ids);
1584         if (!id)
1585                 return -ENODEV;
1586
1587         cpu_def = (struct cpu_defaults *)id->driver_data;
1588
1589         copy_pid_params(&cpu_def->pid_policy);
1590         copy_cpu_funcs(&cpu_def->funcs);
1591
1592         if (intel_pstate_msrs_not_valid())
1593                 return -ENODEV;
1594
1595 hwp_cpu_matched:
1596         /*
1597          * The Intel pstate driver will be ignored if the platform
1598          * firmware has its own power management modes.
1599          */
1600         if (intel_pstate_platform_pwr_mgmt_exists())
1601                 return -ENODEV;
1602
1603         pr_info("Intel P-state driver initializing\n");
1604
1605         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1606         if (!all_cpu_data)
1607                 return -ENOMEM;
1608
1609         if (!hwp_active && hwp_only)
1610                 goto out;
1611
1612         rc = cpufreq_register_driver(&intel_pstate_driver);
1613         if (rc)
1614                 goto out;
1615
1616         intel_pstate_debug_expose_params();
1617         intel_pstate_sysfs_expose_params();
1618
1619         if (hwp_active)
1620                 pr_info("HWP enabled\n");
1621
1622         return rc;
1623 out:
1624         get_online_cpus();
1625         for_each_online_cpu(cpu) {
1626                 if (all_cpu_data[cpu]) {
1627                         intel_pstate_clear_update_util_hook(cpu);
1628                         kfree(all_cpu_data[cpu]);
1629                 }
1630         }
1631
1632         put_online_cpus();
1633         vfree(all_cpu_data);
1634         return -ENODEV;
1635 }
1636 device_initcall(intel_pstate_init);
1637
1638 static int __init intel_pstate_setup(char *str)
1639 {
1640         if (!str)
1641                 return -EINVAL;
1642
1643         if (!strcmp(str, "disable"))
1644                 no_load = 1;
1645         if (!strcmp(str, "no_hwp")) {
1646                 pr_info("HWP disabled\n");
1647                 no_hwp = 1;
1648         }
1649         if (!strcmp(str, "force"))
1650                 force_load = 1;
1651         if (!strcmp(str, "hwp_only"))
1652                 hwp_only = 1;
1653         return 0;
1654 }
1655 early_param("intel_pstate", intel_pstate_setup);
1656
1657 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1658 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1659 MODULE_LICENSE("GPL");