Merge branch 'linus' into x86/cpu, to pick up fixes
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS             0x66a
41 #define ATOM_VIDS               0x66b
42 #define ATOM_TURBO_RATIOS       0x66c
43 #define ATOM_TURBO_VIDS         0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88  * struct sample -      Store performance sample
89  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
90  *                      performance during last sample period
91  * @busy_scaled:        Scaled busy value which is used to calculate next
92  *                      P state. This can be different than core_avg_perf
93  *                      to account for cpu idle period
94  * @aperf:              Difference of actual performance frequency clock count
95  *                      read from APERF MSR between last and current sample
96  * @mperf:              Difference of maximum performance frequency clock count
97  *                      read from MPERF MSR between last and current sample
98  * @tsc:                Difference of time stamp counter between last and
99  *                      current sample
100  * @freq:               Effective frequency calculated from APERF/MPERF
101  * @time:               Current time from scheduler
102  *
103  * This structure is used in the cpudata structure to store performance sample
104  * data for choosing next P State.
105  */
106 struct sample {
107         int32_t core_avg_perf;
108         int32_t busy_scaled;
109         u64 aperf;
110         u64 mperf;
111         u64 tsc;
112         int freq;
113         u64 time;
114 };
115
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:     Current requested P state
119  * @min_pstate:         Min P state possible for this platform
120  * @max_pstate:         Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *                      This can be higher than the max_pstate which can
123  *                      be limited by platform thermal design power limits
124  * @scaling:            Scaling factor to  convert frequency to cpufreq
125  *                      frequency units
126  * @turbo_pstate:       Max Turbo P state possible for this platform
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131         int     current_pstate;
132         int     min_pstate;
133         int     max_pstate;
134         int     max_pstate_physical;
135         int     scaling;
136         int     turbo_pstate;
137 };
138
139 /**
140  * struct vid_data -    Stores voltage information data
141  * @min:                VID data for this platform corresponding to
142  *                      the lowest P state
143  * @max:                VID data corresponding to the highest P State.
144  * @turbo:              VID data for turbo P state
145  * @ratio:              Ratio of (vid max - vid min) /
146  *                      (max P state - Min P State)
147  *
148  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149  * This data is used in Atom platforms, where in addition to target P state,
150  * the voltage data needs to be specified to select next P State.
151  */
152 struct vid_data {
153         int min;
154         int max;
155         int turbo;
156         int32_t ratio;
157 };
158
159 /**
160  * struct _pid -        Stores PID data
161  * @setpoint:           Target set point for busyness or performance
162  * @integral:           Storage for accumulated error values
163  * @p_gain:             PID proportional gain
164  * @i_gain:             PID integral gain
165  * @d_gain:             PID derivative gain
166  * @deadband:           PID deadband
167  * @last_err:           Last error storage for integral part of PID calculation
168  *
169  * Stores PID coefficients and last error for PID controller.
170  */
171 struct _pid {
172         int setpoint;
173         int32_t integral;
174         int32_t p_gain;
175         int32_t i_gain;
176         int32_t d_gain;
177         int deadband;
178         int32_t last_err;
179 };
180
181 /**
182  * struct cpudata -     Per CPU instance data storage
183  * @cpu:                CPU number for this instance data
184  * @update_util:        CPUFreq utility callback information
185  * @update_util_set:    CPUFreq utility callback is set
186  * @pstate:             Stores P state limits for this CPU
187  * @vid:                Stores VID limits for this CPU
188  * @pid:                Stores PID parameters for this CPU
189  * @last_sample_time:   Last Sample time
190  * @prev_aperf:         Last APERF value read from APERF MSR
191  * @prev_mperf:         Last MPERF value read from MPERF MSR
192  * @prev_tsc:           Last timestamp counter (TSC) value
193  * @prev_cummulative_iowait: IO Wait time difference from last and
194  *                      current sample
195  * @sample:             Storage for storing last Sample data
196  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
197  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
198  *
199  * This structure stores per CPU instance data for all CPUs.
200  */
201 struct cpudata {
202         int cpu;
203
204         struct update_util_data update_util;
205         bool   update_util_set;
206
207         struct pstate_data pstate;
208         struct vid_data vid;
209         struct _pid pid;
210
211         u64     last_sample_time;
212         u64     prev_aperf;
213         u64     prev_mperf;
214         u64     prev_tsc;
215         u64     prev_cummulative_iowait;
216         struct sample sample;
217 #ifdef CONFIG_ACPI
218         struct acpi_processor_performance acpi_perf_data;
219         bool valid_pss_table;
220 #endif
221 };
222
223 static struct cpudata **all_cpu_data;
224
225 /**
226  * struct pid_adjust_policy - Stores static PID configuration data
227  * @sample_rate_ms:     PID calculation sample rate in ms
228  * @sample_rate_ns:     Sample rate calculation in ns
229  * @deadband:           PID deadband
230  * @setpoint:           PID Setpoint
231  * @p_gain_pct:         PID proportional gain
232  * @i_gain_pct:         PID integral gain
233  * @d_gain_pct:         PID derivative gain
234  *
235  * Stores per CPU model static PID configuration data.
236  */
237 struct pstate_adjust_policy {
238         int sample_rate_ms;
239         s64 sample_rate_ns;
240         int deadband;
241         int setpoint;
242         int p_gain_pct;
243         int d_gain_pct;
244         int i_gain_pct;
245 };
246
247 /**
248  * struct pstate_funcs - Per CPU model specific callbacks
249  * @get_max:            Callback to get maximum non turbo effective P state
250  * @get_max_physical:   Callback to get maximum non turbo physical P state
251  * @get_min:            Callback to get minimum P state
252  * @get_turbo:          Callback to get turbo P state
253  * @get_scaling:        Callback to get frequency scaling factor
254  * @get_val:            Callback to convert P state to actual MSR write value
255  * @get_vid:            Callback to get VID data for Atom platforms
256  * @get_target_pstate:  Callback to a function to calculate next P state to use
257  *
258  * Core and Atom CPU models have different way to get P State limits. This
259  * structure is used to store those callbacks.
260  */
261 struct pstate_funcs {
262         int (*get_max)(void);
263         int (*get_max_physical)(void);
264         int (*get_min)(void);
265         int (*get_turbo)(void);
266         int (*get_scaling)(void);
267         u64 (*get_val)(struct cpudata*, int pstate);
268         void (*get_vid)(struct cpudata *);
269         int32_t (*get_target_pstate)(struct cpudata *);
270 };
271
272 /**
273  * struct cpu_defaults- Per CPU model default config data
274  * @pid_policy: PID config data
275  * @funcs:              Callback function data
276  */
277 struct cpu_defaults {
278         struct pstate_adjust_policy pid_policy;
279         struct pstate_funcs funcs;
280 };
281
282 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284
285 static struct pstate_adjust_policy pid_params;
286 static struct pstate_funcs pstate_funcs;
287 static int hwp_active;
288
289 #ifdef CONFIG_ACPI
290 static bool acpi_ppc;
291 #endif
292
293 /**
294  * struct perf_limits - Store user and policy limits
295  * @no_turbo:           User requested turbo state from intel_pstate sysfs
296  * @turbo_disabled:     Platform turbo status either from msr
297  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
298  *                      matches the maximum turbo pstate
299  * @max_perf_pct:       Effective maximum performance limit in percentage, this
300  *                      is minimum of either limits enforced by cpufreq policy
301  *                      or limits from user set limits via intel_pstate sysfs
302  * @min_perf_pct:       Effective minimum performance limit in percentage, this
303  *                      is maximum of either limits enforced by cpufreq policy
304  *                      or limits from user set limits via intel_pstate sysfs
305  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
306  *                      This value is used to limit max pstate
307  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
308  *                      This value is used to limit min pstate
309  * @max_policy_pct:     The maximum performance in percentage enforced by
310  *                      cpufreq setpolicy interface
311  * @max_sysfs_pct:      The maximum performance in percentage enforced by
312  *                      intel pstate sysfs interface
313  * @min_policy_pct:     The minimum performance in percentage enforced by
314  *                      cpufreq setpolicy interface
315  * @min_sysfs_pct:      The minimum performance in percentage enforced by
316  *                      intel pstate sysfs interface
317  *
318  * Storage for user and policy defined limits.
319  */
320 struct perf_limits {
321         int no_turbo;
322         int turbo_disabled;
323         int max_perf_pct;
324         int min_perf_pct;
325         int32_t max_perf;
326         int32_t min_perf;
327         int max_policy_pct;
328         int max_sysfs_pct;
329         int min_policy_pct;
330         int min_sysfs_pct;
331 };
332
333 static struct perf_limits performance_limits = {
334         .no_turbo = 0,
335         .turbo_disabled = 0,
336         .max_perf_pct = 100,
337         .max_perf = int_tofp(1),
338         .min_perf_pct = 100,
339         .min_perf = int_tofp(1),
340         .max_policy_pct = 100,
341         .max_sysfs_pct = 100,
342         .min_policy_pct = 0,
343         .min_sysfs_pct = 0,
344 };
345
346 static struct perf_limits powersave_limits = {
347         .no_turbo = 0,
348         .turbo_disabled = 0,
349         .max_perf_pct = 100,
350         .max_perf = int_tofp(1),
351         .min_perf_pct = 0,
352         .min_perf = 0,
353         .max_policy_pct = 100,
354         .max_sysfs_pct = 100,
355         .min_policy_pct = 0,
356         .min_sysfs_pct = 0,
357 };
358
359 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360 static struct perf_limits *limits = &performance_limits;
361 #else
362 static struct perf_limits *limits = &powersave_limits;
363 #endif
364
365 #ifdef CONFIG_ACPI
366
367 static bool intel_pstate_get_ppc_enable_status(void)
368 {
369         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371                 return true;
372
373         return acpi_ppc;
374 }
375
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378         struct cpudata *cpu;
379         int ret;
380         int i;
381
382         if (hwp_active)
383                 return;
384
385         if (!intel_pstate_get_ppc_enable_status())
386                 return;
387
388         cpu = all_cpu_data[policy->cpu];
389
390         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391                                                   policy->cpu);
392         if (ret)
393                 return;
394
395         /*
396          * Check if the control value in _PSS is for PERF_CTL MSR, which should
397          * guarantee that the states returned by it map to the states in our
398          * list directly.
399          */
400         if (cpu->acpi_perf_data.control_register.space_id !=
401                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
402                 goto err;
403
404         /*
405          * If there is only one entry _PSS, simply ignore _PSS and continue as
406          * usual without taking _PSS into account
407          */
408         if (cpu->acpi_perf_data.state_count < 2)
409                 goto err;
410
411         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
414                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
416                          (u32) cpu->acpi_perf_data.states[i].power,
417                          (u32) cpu->acpi_perf_data.states[i].control);
418         }
419
420         /*
421          * The _PSS table doesn't contain whole turbo frequency range.
422          * This just contains +1 MHZ above the max non turbo frequency,
423          * with control value corresponding to max turbo ratio. But
424          * when cpufreq set policy is called, it will call with this
425          * max frequency, which will cause a reduced performance as
426          * this driver uses real max turbo frequency as the max
427          * frequency. So correct this frequency in _PSS table to
428          * correct max turbo frequency based on the turbo state.
429          * Also need to convert to MHz as _PSS freq is in MHz.
430          */
431         if (!limits->turbo_disabled)
432                 cpu->acpi_perf_data.states[0].core_frequency =
433                                         policy->cpuinfo.max_freq / 1000;
434         cpu->valid_pss_table = true;
435         pr_debug("_PPC limits will be enforced\n");
436
437         return;
438
439  err:
440         cpu->valid_pss_table = false;
441         acpi_processor_unregister_performance(policy->cpu);
442 }
443
444 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
445 {
446         struct cpudata *cpu;
447
448         cpu = all_cpu_data[policy->cpu];
449         if (!cpu->valid_pss_table)
450                 return;
451
452         acpi_processor_unregister_performance(policy->cpu);
453 }
454
455 #else
456 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
457 {
458 }
459
460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
461 {
462 }
463 #endif
464
465 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
466                              int deadband, int integral) {
467         pid->setpoint = int_tofp(setpoint);
468         pid->deadband  = int_tofp(deadband);
469         pid->integral  = int_tofp(integral);
470         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
471 }
472
473 static inline void pid_p_gain_set(struct _pid *pid, int percent)
474 {
475         pid->p_gain = div_fp(percent, 100);
476 }
477
478 static inline void pid_i_gain_set(struct _pid *pid, int percent)
479 {
480         pid->i_gain = div_fp(percent, 100);
481 }
482
483 static inline void pid_d_gain_set(struct _pid *pid, int percent)
484 {
485         pid->d_gain = div_fp(percent, 100);
486 }
487
488 static signed int pid_calc(struct _pid *pid, int32_t busy)
489 {
490         signed int result;
491         int32_t pterm, dterm, fp_error;
492         int32_t integral_limit;
493
494         fp_error = pid->setpoint - busy;
495
496         if (abs(fp_error) <= pid->deadband)
497                 return 0;
498
499         pterm = mul_fp(pid->p_gain, fp_error);
500
501         pid->integral += fp_error;
502
503         /*
504          * We limit the integral here so that it will never
505          * get higher than 30.  This prevents it from becoming
506          * too large an input over long periods of time and allows
507          * it to get factored out sooner.
508          *
509          * The value of 30 was chosen through experimentation.
510          */
511         integral_limit = int_tofp(30);
512         if (pid->integral > integral_limit)
513                 pid->integral = integral_limit;
514         if (pid->integral < -integral_limit)
515                 pid->integral = -integral_limit;
516
517         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
518         pid->last_err = fp_error;
519
520         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
521         result = result + (1 << (FRAC_BITS-1));
522         return (signed int)fp_toint(result);
523 }
524
525 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
526 {
527         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
528         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
529         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
530
531         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
532 }
533
534 static inline void intel_pstate_reset_all_pid(void)
535 {
536         unsigned int cpu;
537
538         for_each_online_cpu(cpu) {
539                 if (all_cpu_data[cpu])
540                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
541         }
542 }
543
544 static inline void update_turbo_state(void)
545 {
546         u64 misc_en;
547         struct cpudata *cpu;
548
549         cpu = all_cpu_data[0];
550         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
551         limits->turbo_disabled =
552                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
553                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
554 }
555
556 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
557 {
558         int min, hw_min, max, hw_max, cpu, range, adj_range;
559         u64 value, cap;
560
561         rdmsrl(MSR_HWP_CAPABILITIES, cap);
562         hw_min = HWP_LOWEST_PERF(cap);
563         hw_max = HWP_HIGHEST_PERF(cap);
564         range = hw_max - hw_min;
565
566         for_each_cpu(cpu, cpumask) {
567                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
568                 adj_range = limits->min_perf_pct * range / 100;
569                 min = hw_min + adj_range;
570                 value &= ~HWP_MIN_PERF(~0L);
571                 value |= HWP_MIN_PERF(min);
572
573                 adj_range = limits->max_perf_pct * range / 100;
574                 max = hw_min + adj_range;
575                 if (limits->no_turbo) {
576                         hw_max = HWP_GUARANTEED_PERF(cap);
577                         if (hw_max < max)
578                                 max = hw_max;
579                 }
580
581                 value &= ~HWP_MAX_PERF(~0L);
582                 value |= HWP_MAX_PERF(max);
583                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
584         }
585 }
586
587 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
588 {
589         if (hwp_active)
590                 intel_pstate_hwp_set(policy->cpus);
591
592         return 0;
593 }
594
595 static void intel_pstate_hwp_set_online_cpus(void)
596 {
597         get_online_cpus();
598         intel_pstate_hwp_set(cpu_online_mask);
599         put_online_cpus();
600 }
601
602 /************************** debugfs begin ************************/
603 static int pid_param_set(void *data, u64 val)
604 {
605         *(u32 *)data = val;
606         intel_pstate_reset_all_pid();
607         return 0;
608 }
609
610 static int pid_param_get(void *data, u64 *val)
611 {
612         *val = *(u32 *)data;
613         return 0;
614 }
615 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
616
617 struct pid_param {
618         char *name;
619         void *value;
620 };
621
622 static struct pid_param pid_files[] = {
623         {"sample_rate_ms", &pid_params.sample_rate_ms},
624         {"d_gain_pct", &pid_params.d_gain_pct},
625         {"i_gain_pct", &pid_params.i_gain_pct},
626         {"deadband", &pid_params.deadband},
627         {"setpoint", &pid_params.setpoint},
628         {"p_gain_pct", &pid_params.p_gain_pct},
629         {NULL, NULL}
630 };
631
632 static void __init intel_pstate_debug_expose_params(void)
633 {
634         struct dentry *debugfs_parent;
635         int i = 0;
636
637         if (hwp_active)
638                 return;
639         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
640         if (IS_ERR_OR_NULL(debugfs_parent))
641                 return;
642         while (pid_files[i].name) {
643                 debugfs_create_file(pid_files[i].name, 0660,
644                                     debugfs_parent, pid_files[i].value,
645                                     &fops_pid_param);
646                 i++;
647         }
648 }
649
650 /************************** debugfs end ************************/
651
652 /************************** sysfs begin ************************/
653 #define show_one(file_name, object)                                     \
654         static ssize_t show_##file_name                                 \
655         (struct kobject *kobj, struct attribute *attr, char *buf)       \
656         {                                                               \
657                 return sprintf(buf, "%u\n", limits->object);            \
658         }
659
660 static ssize_t show_turbo_pct(struct kobject *kobj,
661                                 struct attribute *attr, char *buf)
662 {
663         struct cpudata *cpu;
664         int total, no_turbo, turbo_pct;
665         uint32_t turbo_fp;
666
667         cpu = all_cpu_data[0];
668
669         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
670         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
671         turbo_fp = div_fp(no_turbo, total);
672         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
673         return sprintf(buf, "%u\n", turbo_pct);
674 }
675
676 static ssize_t show_num_pstates(struct kobject *kobj,
677                                 struct attribute *attr, char *buf)
678 {
679         struct cpudata *cpu;
680         int total;
681
682         cpu = all_cpu_data[0];
683         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
684         return sprintf(buf, "%u\n", total);
685 }
686
687 static ssize_t show_no_turbo(struct kobject *kobj,
688                              struct attribute *attr, char *buf)
689 {
690         ssize_t ret;
691
692         update_turbo_state();
693         if (limits->turbo_disabled)
694                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
695         else
696                 ret = sprintf(buf, "%u\n", limits->no_turbo);
697
698         return ret;
699 }
700
701 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
702                               const char *buf, size_t count)
703 {
704         unsigned int input;
705         int ret;
706
707         ret = sscanf(buf, "%u", &input);
708         if (ret != 1)
709                 return -EINVAL;
710
711         update_turbo_state();
712         if (limits->turbo_disabled) {
713                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
714                 return -EPERM;
715         }
716
717         limits->no_turbo = clamp_t(int, input, 0, 1);
718
719         if (hwp_active)
720                 intel_pstate_hwp_set_online_cpus();
721
722         return count;
723 }
724
725 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
726                                   const char *buf, size_t count)
727 {
728         unsigned int input;
729         int ret;
730
731         ret = sscanf(buf, "%u", &input);
732         if (ret != 1)
733                 return -EINVAL;
734
735         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
736         limits->max_perf_pct = min(limits->max_policy_pct,
737                                    limits->max_sysfs_pct);
738         limits->max_perf_pct = max(limits->min_policy_pct,
739                                    limits->max_perf_pct);
740         limits->max_perf_pct = max(limits->min_perf_pct,
741                                    limits->max_perf_pct);
742         limits->max_perf = div_fp(limits->max_perf_pct, 100);
743
744         if (hwp_active)
745                 intel_pstate_hwp_set_online_cpus();
746         return count;
747 }
748
749 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
750                                   const char *buf, size_t count)
751 {
752         unsigned int input;
753         int ret;
754
755         ret = sscanf(buf, "%u", &input);
756         if (ret != 1)
757                 return -EINVAL;
758
759         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
760         limits->min_perf_pct = max(limits->min_policy_pct,
761                                    limits->min_sysfs_pct);
762         limits->min_perf_pct = min(limits->max_policy_pct,
763                                    limits->min_perf_pct);
764         limits->min_perf_pct = min(limits->max_perf_pct,
765                                    limits->min_perf_pct);
766         limits->min_perf = div_fp(limits->min_perf_pct, 100);
767
768         if (hwp_active)
769                 intel_pstate_hwp_set_online_cpus();
770         return count;
771 }
772
773 show_one(max_perf_pct, max_perf_pct);
774 show_one(min_perf_pct, min_perf_pct);
775
776 define_one_global_rw(no_turbo);
777 define_one_global_rw(max_perf_pct);
778 define_one_global_rw(min_perf_pct);
779 define_one_global_ro(turbo_pct);
780 define_one_global_ro(num_pstates);
781
782 static struct attribute *intel_pstate_attributes[] = {
783         &no_turbo.attr,
784         &max_perf_pct.attr,
785         &min_perf_pct.attr,
786         &turbo_pct.attr,
787         &num_pstates.attr,
788         NULL
789 };
790
791 static struct attribute_group intel_pstate_attr_group = {
792         .attrs = intel_pstate_attributes,
793 };
794
795 static void __init intel_pstate_sysfs_expose_params(void)
796 {
797         struct kobject *intel_pstate_kobject;
798         int rc;
799
800         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
801                                                 &cpu_subsys.dev_root->kobj);
802         BUG_ON(!intel_pstate_kobject);
803         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
804         BUG_ON(rc);
805 }
806 /************************** sysfs end ************************/
807
808 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
809 {
810         /* First disable HWP notification interrupt as we don't process them */
811         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
812
813         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
814 }
815
816 static int atom_get_min_pstate(void)
817 {
818         u64 value;
819
820         rdmsrl(ATOM_RATIOS, value);
821         return (value >> 8) & 0x7F;
822 }
823
824 static int atom_get_max_pstate(void)
825 {
826         u64 value;
827
828         rdmsrl(ATOM_RATIOS, value);
829         return (value >> 16) & 0x7F;
830 }
831
832 static int atom_get_turbo_pstate(void)
833 {
834         u64 value;
835
836         rdmsrl(ATOM_TURBO_RATIOS, value);
837         return value & 0x7F;
838 }
839
840 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
841 {
842         u64 val;
843         int32_t vid_fp;
844         u32 vid;
845
846         val = (u64)pstate << 8;
847         if (limits->no_turbo && !limits->turbo_disabled)
848                 val |= (u64)1 << 32;
849
850         vid_fp = cpudata->vid.min + mul_fp(
851                 int_tofp(pstate - cpudata->pstate.min_pstate),
852                 cpudata->vid.ratio);
853
854         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
855         vid = ceiling_fp(vid_fp);
856
857         if (pstate > cpudata->pstate.max_pstate)
858                 vid = cpudata->vid.turbo;
859
860         return val | vid;
861 }
862
863 static int silvermont_get_scaling(void)
864 {
865         u64 value;
866         int i;
867         /* Defined in Table 35-6 from SDM (Sept 2015) */
868         static int silvermont_freq_table[] = {
869                 83300, 100000, 133300, 116700, 80000};
870
871         rdmsrl(MSR_FSB_FREQ, value);
872         i = value & 0x7;
873         WARN_ON(i > 4);
874
875         return silvermont_freq_table[i];
876 }
877
878 static int airmont_get_scaling(void)
879 {
880         u64 value;
881         int i;
882         /* Defined in Table 35-10 from SDM (Sept 2015) */
883         static int airmont_freq_table[] = {
884                 83300, 100000, 133300, 116700, 80000,
885                 93300, 90000, 88900, 87500};
886
887         rdmsrl(MSR_FSB_FREQ, value);
888         i = value & 0xF;
889         WARN_ON(i > 8);
890
891         return airmont_freq_table[i];
892 }
893
894 static void atom_get_vid(struct cpudata *cpudata)
895 {
896         u64 value;
897
898         rdmsrl(ATOM_VIDS, value);
899         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
900         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
901         cpudata->vid.ratio = div_fp(
902                 cpudata->vid.max - cpudata->vid.min,
903                 int_tofp(cpudata->pstate.max_pstate -
904                         cpudata->pstate.min_pstate));
905
906         rdmsrl(ATOM_TURBO_VIDS, value);
907         cpudata->vid.turbo = value & 0x7f;
908 }
909
910 static int core_get_min_pstate(void)
911 {
912         u64 value;
913
914         rdmsrl(MSR_PLATFORM_INFO, value);
915         return (value >> 40) & 0xFF;
916 }
917
918 static int core_get_max_pstate_physical(void)
919 {
920         u64 value;
921
922         rdmsrl(MSR_PLATFORM_INFO, value);
923         return (value >> 8) & 0xFF;
924 }
925
926 static int core_get_max_pstate(void)
927 {
928         u64 tar;
929         u64 plat_info;
930         int max_pstate;
931         int err;
932
933         rdmsrl(MSR_PLATFORM_INFO, plat_info);
934         max_pstate = (plat_info >> 8) & 0xFF;
935
936         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
937         if (!err) {
938                 /* Do some sanity checking for safety */
939                 if (plat_info & 0x600000000) {
940                         u64 tdp_ctrl;
941                         u64 tdp_ratio;
942                         int tdp_msr;
943
944                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
945                         if (err)
946                                 goto skip_tar;
947
948                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
949                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
950                         if (err)
951                                 goto skip_tar;
952
953                         /* For level 1 and 2, bits[23:16] contain the ratio */
954                         if (tdp_ctrl)
955                                 tdp_ratio >>= 16;
956
957                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
958                         if (tdp_ratio - 1 == tar) {
959                                 max_pstate = tar;
960                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
961                         } else {
962                                 goto skip_tar;
963                         }
964                 }
965         }
966
967 skip_tar:
968         return max_pstate;
969 }
970
971 static int core_get_turbo_pstate(void)
972 {
973         u64 value;
974         int nont, ret;
975
976         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
977         nont = core_get_max_pstate();
978         ret = (value) & 255;
979         if (ret <= nont)
980                 ret = nont;
981         return ret;
982 }
983
984 static inline int core_get_scaling(void)
985 {
986         return 100000;
987 }
988
989 static u64 core_get_val(struct cpudata *cpudata, int pstate)
990 {
991         u64 val;
992
993         val = (u64)pstate << 8;
994         if (limits->no_turbo && !limits->turbo_disabled)
995                 val |= (u64)1 << 32;
996
997         return val;
998 }
999
1000 static int knl_get_turbo_pstate(void)
1001 {
1002         u64 value;
1003         int nont, ret;
1004
1005         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1006         nont = core_get_max_pstate();
1007         ret = (((value) >> 8) & 0xFF);
1008         if (ret <= nont)
1009                 ret = nont;
1010         return ret;
1011 }
1012
1013 static struct cpu_defaults core_params = {
1014         .pid_policy = {
1015                 .sample_rate_ms = 10,
1016                 .deadband = 0,
1017                 .setpoint = 97,
1018                 .p_gain_pct = 20,
1019                 .d_gain_pct = 0,
1020                 .i_gain_pct = 0,
1021         },
1022         .funcs = {
1023                 .get_max = core_get_max_pstate,
1024                 .get_max_physical = core_get_max_pstate_physical,
1025                 .get_min = core_get_min_pstate,
1026                 .get_turbo = core_get_turbo_pstate,
1027                 .get_scaling = core_get_scaling,
1028                 .get_val = core_get_val,
1029                 .get_target_pstate = get_target_pstate_use_performance,
1030         },
1031 };
1032
1033 static struct cpu_defaults silvermont_params = {
1034         .pid_policy = {
1035                 .sample_rate_ms = 10,
1036                 .deadband = 0,
1037                 .setpoint = 60,
1038                 .p_gain_pct = 14,
1039                 .d_gain_pct = 0,
1040                 .i_gain_pct = 4,
1041         },
1042         .funcs = {
1043                 .get_max = atom_get_max_pstate,
1044                 .get_max_physical = atom_get_max_pstate,
1045                 .get_min = atom_get_min_pstate,
1046                 .get_turbo = atom_get_turbo_pstate,
1047                 .get_val = atom_get_val,
1048                 .get_scaling = silvermont_get_scaling,
1049                 .get_vid = atom_get_vid,
1050                 .get_target_pstate = get_target_pstate_use_cpu_load,
1051         },
1052 };
1053
1054 static struct cpu_defaults airmont_params = {
1055         .pid_policy = {
1056                 .sample_rate_ms = 10,
1057                 .deadband = 0,
1058                 .setpoint = 60,
1059                 .p_gain_pct = 14,
1060                 .d_gain_pct = 0,
1061                 .i_gain_pct = 4,
1062         },
1063         .funcs = {
1064                 .get_max = atom_get_max_pstate,
1065                 .get_max_physical = atom_get_max_pstate,
1066                 .get_min = atom_get_min_pstate,
1067                 .get_turbo = atom_get_turbo_pstate,
1068                 .get_val = atom_get_val,
1069                 .get_scaling = airmont_get_scaling,
1070                 .get_vid = atom_get_vid,
1071                 .get_target_pstate = get_target_pstate_use_cpu_load,
1072         },
1073 };
1074
1075 static struct cpu_defaults knl_params = {
1076         .pid_policy = {
1077                 .sample_rate_ms = 10,
1078                 .deadband = 0,
1079                 .setpoint = 97,
1080                 .p_gain_pct = 20,
1081                 .d_gain_pct = 0,
1082                 .i_gain_pct = 0,
1083         },
1084         .funcs = {
1085                 .get_max = core_get_max_pstate,
1086                 .get_max_physical = core_get_max_pstate_physical,
1087                 .get_min = core_get_min_pstate,
1088                 .get_turbo = knl_get_turbo_pstate,
1089                 .get_scaling = core_get_scaling,
1090                 .get_val = core_get_val,
1091                 .get_target_pstate = get_target_pstate_use_performance,
1092         },
1093 };
1094
1095 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1096 {
1097         int max_perf = cpu->pstate.turbo_pstate;
1098         int max_perf_adj;
1099         int min_perf;
1100
1101         if (limits->no_turbo || limits->turbo_disabled)
1102                 max_perf = cpu->pstate.max_pstate;
1103
1104         /*
1105          * performance can be limited by user through sysfs, by cpufreq
1106          * policy, or by cpu specific default values determined through
1107          * experimentation.
1108          */
1109         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1110         *max = clamp_t(int, max_perf_adj,
1111                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1112
1113         min_perf = fp_toint(max_perf * limits->min_perf);
1114         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1115 }
1116
1117 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1118 {
1119         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1120         cpu->pstate.current_pstate = pstate;
1121 }
1122
1123 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1124 {
1125         int pstate = cpu->pstate.min_pstate;
1126
1127         intel_pstate_record_pstate(cpu, pstate);
1128         /*
1129          * Generally, there is no guarantee that this code will always run on
1130          * the CPU being updated, so force the register update to run on the
1131          * right CPU.
1132          */
1133         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1134                       pstate_funcs.get_val(cpu, pstate));
1135 }
1136
1137 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1138 {
1139         cpu->pstate.min_pstate = pstate_funcs.get_min();
1140         cpu->pstate.max_pstate = pstate_funcs.get_max();
1141         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1142         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1143         cpu->pstate.scaling = pstate_funcs.get_scaling();
1144
1145         if (pstate_funcs.get_vid)
1146                 pstate_funcs.get_vid(cpu);
1147
1148         intel_pstate_set_min_pstate(cpu);
1149 }
1150
1151 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1152 {
1153         struct sample *sample = &cpu->sample;
1154
1155         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1156 }
1157
1158 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1159 {
1160         u64 aperf, mperf;
1161         unsigned long flags;
1162         u64 tsc;
1163
1164         local_irq_save(flags);
1165         rdmsrl(MSR_IA32_APERF, aperf);
1166         rdmsrl(MSR_IA32_MPERF, mperf);
1167         tsc = rdtsc();
1168         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1169                 local_irq_restore(flags);
1170                 return false;
1171         }
1172         local_irq_restore(flags);
1173
1174         cpu->last_sample_time = cpu->sample.time;
1175         cpu->sample.time = time;
1176         cpu->sample.aperf = aperf;
1177         cpu->sample.mperf = mperf;
1178         cpu->sample.tsc =  tsc;
1179         cpu->sample.aperf -= cpu->prev_aperf;
1180         cpu->sample.mperf -= cpu->prev_mperf;
1181         cpu->sample.tsc -= cpu->prev_tsc;
1182
1183         cpu->prev_aperf = aperf;
1184         cpu->prev_mperf = mperf;
1185         cpu->prev_tsc = tsc;
1186         /*
1187          * First time this function is invoked in a given cycle, all of the
1188          * previous sample data fields are equal to zero or stale and they must
1189          * be populated with meaningful numbers for things to work, so assume
1190          * that sample.time will always be reset before setting the utilization
1191          * update hook and make the caller skip the sample then.
1192          */
1193         return !!cpu->last_sample_time;
1194 }
1195
1196 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1197 {
1198         return mul_ext_fp(cpu->sample.core_avg_perf,
1199                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1200 }
1201
1202 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1203 {
1204         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1205                           cpu->sample.core_avg_perf);
1206 }
1207
1208 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1209 {
1210         struct sample *sample = &cpu->sample;
1211         u64 cummulative_iowait, delta_iowait_us;
1212         u64 delta_iowait_mperf;
1213         u64 mperf, now;
1214         int32_t cpu_load;
1215
1216         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1217
1218         /*
1219          * Convert iowait time into number of IO cycles spent at max_freq.
1220          * IO is considered as busy only for the cpu_load algorithm. For
1221          * performance this is not needed since we always try to reach the
1222          * maximum P-State, so we are already boosting the IOs.
1223          */
1224         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1225         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1226                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1227
1228         mperf = cpu->sample.mperf + delta_iowait_mperf;
1229         cpu->prev_cummulative_iowait = cummulative_iowait;
1230
1231         /*
1232          * The load can be estimated as the ratio of the mperf counter
1233          * running at a constant frequency during active periods
1234          * (C0) and the time stamp counter running at the same frequency
1235          * also during C-states.
1236          */
1237         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1238         cpu->sample.busy_scaled = cpu_load;
1239
1240         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1241 }
1242
1243 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1244 {
1245         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1246         u64 duration_ns;
1247
1248         /*
1249          * perf_scaled is the average performance during the last sampling
1250          * period scaled by the ratio of the maximum P-state to the P-state
1251          * requested last time (in percent).  That measures the system's
1252          * response to the previous P-state selection.
1253          */
1254         max_pstate = cpu->pstate.max_pstate_physical;
1255         current_pstate = cpu->pstate.current_pstate;
1256         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1257                                div_fp(100 * max_pstate, current_pstate));
1258
1259         /*
1260          * Since our utilization update callback will not run unless we are
1261          * in C0, check if the actual elapsed time is significantly greater (3x)
1262          * than our sample interval.  If it is, then we were idle for a long
1263          * enough period of time to adjust our performance metric.
1264          */
1265         duration_ns = cpu->sample.time - cpu->last_sample_time;
1266         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1267                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1268                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1269         } else {
1270                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1271                 if (sample_ratio < int_tofp(1))
1272                         perf_scaled = 0;
1273         }
1274
1275         cpu->sample.busy_scaled = perf_scaled;
1276         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1277 }
1278
1279 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1280 {
1281         int max_perf, min_perf;
1282
1283         update_turbo_state();
1284
1285         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1286         pstate = clamp_t(int, pstate, min_perf, max_perf);
1287         if (pstate == cpu->pstate.current_pstate)
1288                 return;
1289
1290         intel_pstate_record_pstate(cpu, pstate);
1291         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1292 }
1293
1294 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1295 {
1296         int from, target_pstate;
1297         struct sample *sample;
1298
1299         from = cpu->pstate.current_pstate;
1300
1301         target_pstate = pstate_funcs.get_target_pstate(cpu);
1302
1303         intel_pstate_update_pstate(cpu, target_pstate);
1304
1305         sample = &cpu->sample;
1306         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1307                 fp_toint(sample->busy_scaled),
1308                 from,
1309                 cpu->pstate.current_pstate,
1310                 sample->mperf,
1311                 sample->aperf,
1312                 sample->tsc,
1313                 get_avg_frequency(cpu));
1314 }
1315
1316 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1317                                      unsigned long util, unsigned long max)
1318 {
1319         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1320         u64 delta_ns = time - cpu->sample.time;
1321
1322         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1323                 bool sample_taken = intel_pstate_sample(cpu, time);
1324
1325                 if (sample_taken) {
1326                         intel_pstate_calc_avg_perf(cpu);
1327                         if (!hwp_active)
1328                                 intel_pstate_adjust_busy_pstate(cpu);
1329                 }
1330         }
1331 }
1332
1333 #define ICPU(model, policy) \
1334         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1335                         (unsigned long)&policy }
1336
1337 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1338         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1339         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1340         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1341         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1342         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1343         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1344         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1345         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1346         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1347         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1348         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1349         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1350         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1351         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1352         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1353         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1354         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1355         {}
1356 };
1357 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1358
1359 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1360         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1361         {}
1362 };
1363
1364 static int intel_pstate_init_cpu(unsigned int cpunum)
1365 {
1366         struct cpudata *cpu;
1367
1368         if (!all_cpu_data[cpunum])
1369                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1370                                                GFP_KERNEL);
1371         if (!all_cpu_data[cpunum])
1372                 return -ENOMEM;
1373
1374         cpu = all_cpu_data[cpunum];
1375
1376         cpu->cpu = cpunum;
1377
1378         if (hwp_active) {
1379                 intel_pstate_hwp_enable(cpu);
1380                 pid_params.sample_rate_ms = 50;
1381                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1382         }
1383
1384         intel_pstate_get_cpu_pstates(cpu);
1385
1386         intel_pstate_busy_pid_reset(cpu);
1387
1388         pr_debug("controlling: cpu %d\n", cpunum);
1389
1390         return 0;
1391 }
1392
1393 static unsigned int intel_pstate_get(unsigned int cpu_num)
1394 {
1395         struct cpudata *cpu = all_cpu_data[cpu_num];
1396
1397         return cpu ? get_avg_frequency(cpu) : 0;
1398 }
1399
1400 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1401 {
1402         struct cpudata *cpu = all_cpu_data[cpu_num];
1403
1404         if (cpu->update_util_set)
1405                 return;
1406
1407         /* Prevent intel_pstate_update_util() from using stale data. */
1408         cpu->sample.time = 0;
1409         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1410                                      intel_pstate_update_util);
1411         cpu->update_util_set = true;
1412 }
1413
1414 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1415 {
1416         struct cpudata *cpu_data = all_cpu_data[cpu];
1417
1418         if (!cpu_data->update_util_set)
1419                 return;
1420
1421         cpufreq_remove_update_util_hook(cpu);
1422         cpu_data->update_util_set = false;
1423         synchronize_sched();
1424 }
1425
1426 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1427 {
1428         limits->no_turbo = 0;
1429         limits->turbo_disabled = 0;
1430         limits->max_perf_pct = 100;
1431         limits->max_perf = int_tofp(1);
1432         limits->min_perf_pct = 100;
1433         limits->min_perf = int_tofp(1);
1434         limits->max_policy_pct = 100;
1435         limits->max_sysfs_pct = 100;
1436         limits->min_policy_pct = 0;
1437         limits->min_sysfs_pct = 0;
1438 }
1439
1440 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1441 {
1442         struct cpudata *cpu;
1443
1444         if (!policy->cpuinfo.max_freq)
1445                 return -ENODEV;
1446
1447         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1448                  policy->cpuinfo.max_freq, policy->max);
1449
1450         cpu = all_cpu_data[0];
1451         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1452             policy->max < policy->cpuinfo.max_freq &&
1453             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1454                 pr_debug("policy->max > max non turbo frequency\n");
1455                 policy->max = policy->cpuinfo.max_freq;
1456         }
1457
1458         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1459                 limits = &performance_limits;
1460                 if (policy->max >= policy->cpuinfo.max_freq) {
1461                         pr_debug("set performance\n");
1462                         intel_pstate_set_performance_limits(limits);
1463                         goto out;
1464                 }
1465         } else {
1466                 pr_debug("set powersave\n");
1467                 limits = &powersave_limits;
1468         }
1469
1470         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1471         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1472         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1473                                               policy->cpuinfo.max_freq);
1474         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1475
1476         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1477         limits->min_perf_pct = max(limits->min_policy_pct,
1478                                    limits->min_sysfs_pct);
1479         limits->min_perf_pct = min(limits->max_policy_pct,
1480                                    limits->min_perf_pct);
1481         limits->max_perf_pct = min(limits->max_policy_pct,
1482                                    limits->max_sysfs_pct);
1483         limits->max_perf_pct = max(limits->min_policy_pct,
1484                                    limits->max_perf_pct);
1485
1486         /* Make sure min_perf_pct <= max_perf_pct */
1487         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1488
1489         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1490         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1491         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1492
1493  out:
1494         intel_pstate_set_update_util_hook(policy->cpu);
1495
1496         intel_pstate_hwp_set_policy(policy);
1497
1498         return 0;
1499 }
1500
1501 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1502 {
1503         cpufreq_verify_within_cpu_limits(policy);
1504
1505         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1506             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1507                 return -EINVAL;
1508
1509         return 0;
1510 }
1511
1512 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1513 {
1514         int cpu_num = policy->cpu;
1515         struct cpudata *cpu = all_cpu_data[cpu_num];
1516
1517         pr_debug("CPU %d exiting\n", cpu_num);
1518
1519         intel_pstate_clear_update_util_hook(cpu_num);
1520
1521         if (hwp_active)
1522                 return;
1523
1524         intel_pstate_set_min_pstate(cpu);
1525 }
1526
1527 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1528 {
1529         struct cpudata *cpu;
1530         int rc;
1531
1532         rc = intel_pstate_init_cpu(policy->cpu);
1533         if (rc)
1534                 return rc;
1535
1536         cpu = all_cpu_data[policy->cpu];
1537
1538         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1539                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1540         else
1541                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1542
1543         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1544         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1545
1546         /* cpuinfo and default policy values */
1547         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1548         update_turbo_state();
1549         policy->cpuinfo.max_freq = limits->turbo_disabled ?
1550                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1551         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1552
1553         intel_pstate_init_acpi_perf_limits(policy);
1554         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1555         cpumask_set_cpu(policy->cpu, policy->cpus);
1556
1557         return 0;
1558 }
1559
1560 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1561 {
1562         intel_pstate_exit_perf_limits(policy);
1563
1564         return 0;
1565 }
1566
1567 static struct cpufreq_driver intel_pstate_driver = {
1568         .flags          = CPUFREQ_CONST_LOOPS,
1569         .verify         = intel_pstate_verify_policy,
1570         .setpolicy      = intel_pstate_set_policy,
1571         .resume         = intel_pstate_hwp_set_policy,
1572         .get            = intel_pstate_get,
1573         .init           = intel_pstate_cpu_init,
1574         .exit           = intel_pstate_cpu_exit,
1575         .stop_cpu       = intel_pstate_stop_cpu,
1576         .name           = "intel_pstate",
1577 };
1578
1579 static int __initdata no_load;
1580 static int __initdata no_hwp;
1581 static int __initdata hwp_only;
1582 static unsigned int force_load;
1583
1584 static int intel_pstate_msrs_not_valid(void)
1585 {
1586         if (!pstate_funcs.get_max() ||
1587             !pstate_funcs.get_min() ||
1588             !pstate_funcs.get_turbo())
1589                 return -ENODEV;
1590
1591         return 0;
1592 }
1593
1594 static void copy_pid_params(struct pstate_adjust_policy *policy)
1595 {
1596         pid_params.sample_rate_ms = policy->sample_rate_ms;
1597         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1598         pid_params.p_gain_pct = policy->p_gain_pct;
1599         pid_params.i_gain_pct = policy->i_gain_pct;
1600         pid_params.d_gain_pct = policy->d_gain_pct;
1601         pid_params.deadband = policy->deadband;
1602         pid_params.setpoint = policy->setpoint;
1603 }
1604
1605 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1606 {
1607         pstate_funcs.get_max   = funcs->get_max;
1608         pstate_funcs.get_max_physical = funcs->get_max_physical;
1609         pstate_funcs.get_min   = funcs->get_min;
1610         pstate_funcs.get_turbo = funcs->get_turbo;
1611         pstate_funcs.get_scaling = funcs->get_scaling;
1612         pstate_funcs.get_val   = funcs->get_val;
1613         pstate_funcs.get_vid   = funcs->get_vid;
1614         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1615
1616 }
1617
1618 #ifdef CONFIG_ACPI
1619
1620 static bool intel_pstate_no_acpi_pss(void)
1621 {
1622         int i;
1623
1624         for_each_possible_cpu(i) {
1625                 acpi_status status;
1626                 union acpi_object *pss;
1627                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1628                 struct acpi_processor *pr = per_cpu(processors, i);
1629
1630                 if (!pr)
1631                         continue;
1632
1633                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1634                 if (ACPI_FAILURE(status))
1635                         continue;
1636
1637                 pss = buffer.pointer;
1638                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1639                         kfree(pss);
1640                         return false;
1641                 }
1642
1643                 kfree(pss);
1644         }
1645
1646         return true;
1647 }
1648
1649 static bool intel_pstate_has_acpi_ppc(void)
1650 {
1651         int i;
1652
1653         for_each_possible_cpu(i) {
1654                 struct acpi_processor *pr = per_cpu(processors, i);
1655
1656                 if (!pr)
1657                         continue;
1658                 if (acpi_has_method(pr->handle, "_PPC"))
1659                         return true;
1660         }
1661         return false;
1662 }
1663
1664 enum {
1665         PSS,
1666         PPC,
1667 };
1668
1669 struct hw_vendor_info {
1670         u16  valid;
1671         char oem_id[ACPI_OEM_ID_SIZE];
1672         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1673         int  oem_pwr_table;
1674 };
1675
1676 /* Hardware vendor-specific info that has its own power management modes */
1677 static struct hw_vendor_info vendor_info[] = {
1678         {1, "HP    ", "ProLiant", PSS},
1679         {1, "ORACLE", "X4-2    ", PPC},
1680         {1, "ORACLE", "X4-2L   ", PPC},
1681         {1, "ORACLE", "X4-2B   ", PPC},
1682         {1, "ORACLE", "X3-2    ", PPC},
1683         {1, "ORACLE", "X3-2L   ", PPC},
1684         {1, "ORACLE", "X3-2B   ", PPC},
1685         {1, "ORACLE", "X4470M2 ", PPC},
1686         {1, "ORACLE", "X4270M3 ", PPC},
1687         {1, "ORACLE", "X4270M2 ", PPC},
1688         {1, "ORACLE", "X4170M2 ", PPC},
1689         {1, "ORACLE", "X4170 M3", PPC},
1690         {1, "ORACLE", "X4275 M3", PPC},
1691         {1, "ORACLE", "X6-2    ", PPC},
1692         {1, "ORACLE", "Sudbury ", PPC},
1693         {0, "", ""},
1694 };
1695
1696 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1697 {
1698         struct acpi_table_header hdr;
1699         struct hw_vendor_info *v_info;
1700         const struct x86_cpu_id *id;
1701         u64 misc_pwr;
1702
1703         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1704         if (id) {
1705                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1706                 if ( misc_pwr & (1 << 8))
1707                         return true;
1708         }
1709
1710         if (acpi_disabled ||
1711             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1712                 return false;
1713
1714         for (v_info = vendor_info; v_info->valid; v_info++) {
1715                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1716                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1717                                                 ACPI_OEM_TABLE_ID_SIZE))
1718                         switch (v_info->oem_pwr_table) {
1719                         case PSS:
1720                                 return intel_pstate_no_acpi_pss();
1721                         case PPC:
1722                                 return intel_pstate_has_acpi_ppc() &&
1723                                         (!force_load);
1724                         }
1725         }
1726
1727         return false;
1728 }
1729 #else /* CONFIG_ACPI not enabled */
1730 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1731 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1732 #endif /* CONFIG_ACPI */
1733
1734 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1735         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1736         {}
1737 };
1738
1739 static int __init intel_pstate_init(void)
1740 {
1741         int cpu, rc = 0;
1742         const struct x86_cpu_id *id;
1743         struct cpu_defaults *cpu_def;
1744
1745         if (no_load)
1746                 return -ENODEV;
1747
1748         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1749                 copy_cpu_funcs(&core_params.funcs);
1750                 hwp_active++;
1751                 goto hwp_cpu_matched;
1752         }
1753
1754         id = x86_match_cpu(intel_pstate_cpu_ids);
1755         if (!id)
1756                 return -ENODEV;
1757
1758         cpu_def = (struct cpu_defaults *)id->driver_data;
1759
1760         copy_pid_params(&cpu_def->pid_policy);
1761         copy_cpu_funcs(&cpu_def->funcs);
1762
1763         if (intel_pstate_msrs_not_valid())
1764                 return -ENODEV;
1765
1766 hwp_cpu_matched:
1767         /*
1768          * The Intel pstate driver will be ignored if the platform
1769          * firmware has its own power management modes.
1770          */
1771         if (intel_pstate_platform_pwr_mgmt_exists())
1772                 return -ENODEV;
1773
1774         pr_info("Intel P-state driver initializing\n");
1775
1776         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1777         if (!all_cpu_data)
1778                 return -ENOMEM;
1779
1780         if (!hwp_active && hwp_only)
1781                 goto out;
1782
1783         rc = cpufreq_register_driver(&intel_pstate_driver);
1784         if (rc)
1785                 goto out;
1786
1787         intel_pstate_debug_expose_params();
1788         intel_pstate_sysfs_expose_params();
1789
1790         if (hwp_active)
1791                 pr_info("HWP enabled\n");
1792
1793         return rc;
1794 out:
1795         get_online_cpus();
1796         for_each_online_cpu(cpu) {
1797                 if (all_cpu_data[cpu]) {
1798                         intel_pstate_clear_update_util_hook(cpu);
1799                         kfree(all_cpu_data[cpu]);
1800                 }
1801         }
1802
1803         put_online_cpus();
1804         vfree(all_cpu_data);
1805         return -ENODEV;
1806 }
1807 device_initcall(intel_pstate_init);
1808
1809 static int __init intel_pstate_setup(char *str)
1810 {
1811         if (!str)
1812                 return -EINVAL;
1813
1814         if (!strcmp(str, "disable"))
1815                 no_load = 1;
1816         if (!strcmp(str, "no_hwp")) {
1817                 pr_info("HWP disabled\n");
1818                 no_hwp = 1;
1819         }
1820         if (!strcmp(str, "force"))
1821                 force_load = 1;
1822         if (!strcmp(str, "hwp_only"))
1823                 hwp_only = 1;
1824
1825 #ifdef CONFIG_ACPI
1826         if (!strcmp(str, "support_acpi_ppc"))
1827                 acpi_ppc = true;
1828 #endif
1829
1830         return 0;
1831 }
1832 early_param("intel_pstate", intel_pstate_setup);
1833
1834 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1835 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1836 MODULE_LICENSE("GPL");