EDAC, i5100: Use to_delayed_work()
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #if IS_ENABLED(CONFIG_ACPI)
38 #include <acpi/processor.h>
39 #endif
40
41 #define BYT_RATIOS              0x66a
42 #define BYT_VIDS                0x66b
43 #define BYT_TURBO_RATIOS        0x66c
44 #define BYT_TURBO_VIDS          0x66d
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 static inline int32_t mul_fp(int32_t x, int32_t y)
51 {
52         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
53 }
54
55 static inline int32_t div_fp(s64 x, s64 y)
56 {
57         return div64_s64((int64_t)x << FRAC_BITS, y);
58 }
59
60 static inline int ceiling_fp(int32_t x)
61 {
62         int mask, ret;
63
64         ret = fp_toint(x);
65         mask = (1 << FRAC_BITS) - 1;
66         if (x & mask)
67                 ret += 1;
68         return ret;
69 }
70
71 struct sample {
72         int32_t core_pct_busy;
73         u64 aperf;
74         u64 mperf;
75         u64 tsc;
76         int freq;
77         ktime_t time;
78 };
79
80 struct pstate_data {
81         int     current_pstate;
82         int     min_pstate;
83         int     max_pstate;
84         int     max_pstate_physical;
85         int     scaling;
86         int     turbo_pstate;
87 };
88
89 struct vid_data {
90         int min;
91         int max;
92         int turbo;
93         int32_t ratio;
94 };
95
96 struct _pid {
97         int setpoint;
98         int32_t integral;
99         int32_t p_gain;
100         int32_t i_gain;
101         int32_t d_gain;
102         int deadband;
103         int32_t last_err;
104 };
105
106 struct cpudata {
107         int cpu;
108
109         struct timer_list timer;
110
111         struct pstate_data pstate;
112         struct vid_data vid;
113         struct _pid pid;
114
115         ktime_t last_sample_time;
116         u64     prev_aperf;
117         u64     prev_mperf;
118         u64     prev_tsc;
119         struct sample sample;
120 #if IS_ENABLED(CONFIG_ACPI)
121         struct acpi_processor_performance acpi_perf_data;
122 #endif
123 };
124
125 static struct cpudata **all_cpu_data;
126 struct pstate_adjust_policy {
127         int sample_rate_ms;
128         int deadband;
129         int setpoint;
130         int p_gain_pct;
131         int d_gain_pct;
132         int i_gain_pct;
133 };
134
135 struct pstate_funcs {
136         int (*get_max)(void);
137         int (*get_max_physical)(void);
138         int (*get_min)(void);
139         int (*get_turbo)(void);
140         int (*get_scaling)(void);
141         void (*set)(struct cpudata*, int pstate);
142         void (*get_vid)(struct cpudata *);
143 };
144
145 struct cpu_defaults {
146         struct pstate_adjust_policy pid_policy;
147         struct pstate_funcs funcs;
148 };
149
150 static struct pstate_adjust_policy pid_params;
151 static struct pstate_funcs pstate_funcs;
152 static int hwp_active;
153 static int no_acpi_perf;
154
155 struct perf_limits {
156         int no_turbo;
157         int turbo_disabled;
158         int max_perf_pct;
159         int min_perf_pct;
160         int32_t max_perf;
161         int32_t min_perf;
162         int max_policy_pct;
163         int max_sysfs_pct;
164         int min_policy_pct;
165         int min_sysfs_pct;
166         int max_perf_ctl;
167         int min_perf_ctl;
168 };
169
170 static struct perf_limits performance_limits = {
171         .no_turbo = 0,
172         .turbo_disabled = 0,
173         .max_perf_pct = 100,
174         .max_perf = int_tofp(1),
175         .min_perf_pct = 100,
176         .min_perf = int_tofp(1),
177         .max_policy_pct = 100,
178         .max_sysfs_pct = 100,
179         .min_policy_pct = 0,
180         .min_sysfs_pct = 0,
181 };
182
183 static struct perf_limits powersave_limits = {
184         .no_turbo = 0,
185         .turbo_disabled = 0,
186         .max_perf_pct = 100,
187         .max_perf = int_tofp(1),
188         .min_perf_pct = 0,
189         .min_perf = 0,
190         .max_policy_pct = 100,
191         .max_sysfs_pct = 100,
192         .min_policy_pct = 0,
193         .min_sysfs_pct = 0,
194         .max_perf_ctl = 0,
195         .min_perf_ctl = 0,
196 };
197
198 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
199 static struct perf_limits *limits = &performance_limits;
200 #else
201 static struct perf_limits *limits = &powersave_limits;
202 #endif
203
204 #if IS_ENABLED(CONFIG_ACPI)
205 /*
206  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
207  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
208  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
209  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
210  * target ratio 0x17. The _PSS control value stores in a format which can be
211  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
212  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
213  * This function converts the _PSS control value to intel pstate driver format
214  * for comparison and assignment.
215  */
216 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
217 {
218         return cpu->acpi_perf_data.states[index].control >> 8;
219 }
220
221 static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
222 {
223         struct cpudata *cpu;
224         int ret;
225         bool turbo_absent = false;
226         int max_pstate_index;
227         int min_pss_ctl, max_pss_ctl, turbo_pss_ctl;
228         int i;
229
230         cpu = all_cpu_data[policy->cpu];
231
232         pr_debug("intel_pstate: default limits 0x%x 0x%x 0x%x\n",
233                  cpu->pstate.min_pstate, cpu->pstate.max_pstate,
234                  cpu->pstate.turbo_pstate);
235
236         if (!cpu->acpi_perf_data.shared_cpu_map &&
237             zalloc_cpumask_var_node(&cpu->acpi_perf_data.shared_cpu_map,
238                                     GFP_KERNEL, cpu_to_node(policy->cpu))) {
239                 return -ENOMEM;
240         }
241
242         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
243                                                   policy->cpu);
244         if (ret)
245                 return ret;
246
247         /*
248          * Check if the control value in _PSS is for PERF_CTL MSR, which should
249          * guarantee that the states returned by it map to the states in our
250          * list directly.
251          */
252         if (cpu->acpi_perf_data.control_register.space_id !=
253                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
254                 return -EIO;
255
256         pr_debug("intel_pstate: CPU%u - ACPI _PSS perf data\n", policy->cpu);
257         for (i = 0; i < cpu->acpi_perf_data.state_count; i++)
258                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
259                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
260                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
261                          (u32) cpu->acpi_perf_data.states[i].power,
262                          (u32) cpu->acpi_perf_data.states[i].control);
263
264         /*
265          * If there is only one entry _PSS, simply ignore _PSS and continue as
266          * usual without taking _PSS into account
267          */
268         if (cpu->acpi_perf_data.state_count < 2)
269                 return 0;
270
271         turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
272         min_pss_ctl = convert_to_native_pstate_format(cpu,
273                                         cpu->acpi_perf_data.state_count - 1);
274         /* Check if there is a turbo freq in _PSS */
275         if (turbo_pss_ctl <= cpu->pstate.max_pstate &&
276             turbo_pss_ctl > cpu->pstate.min_pstate) {
277                 pr_debug("intel_pstate: no turbo range exists in _PSS\n");
278                 limits->no_turbo = limits->turbo_disabled = 1;
279                 cpu->pstate.turbo_pstate = cpu->pstate.max_pstate;
280                 turbo_absent = true;
281         }
282
283         /* Check if the max non turbo p state < Intel P state max */
284         max_pstate_index = turbo_absent ? 0 : 1;
285         max_pss_ctl = convert_to_native_pstate_format(cpu, max_pstate_index);
286         if (max_pss_ctl < cpu->pstate.max_pstate &&
287             max_pss_ctl > cpu->pstate.min_pstate)
288                 cpu->pstate.max_pstate = max_pss_ctl;
289
290         /* check If min perf > Intel P State min */
291         if (min_pss_ctl > cpu->pstate.min_pstate &&
292             min_pss_ctl < cpu->pstate.max_pstate) {
293                 cpu->pstate.min_pstate = min_pss_ctl;
294                 policy->cpuinfo.min_freq = min_pss_ctl * cpu->pstate.scaling;
295         }
296
297         if (turbo_absent)
298                 policy->cpuinfo.max_freq = cpu->pstate.max_pstate *
299                                                 cpu->pstate.scaling;
300         else {
301                 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate *
302                                                 cpu->pstate.scaling;
303                 /*
304                  * The _PSS table doesn't contain whole turbo frequency range.
305                  * This just contains +1 MHZ above the max non turbo frequency,
306                  * with control value corresponding to max turbo ratio. But
307                  * when cpufreq set policy is called, it will call with this
308                  * max frequency, which will cause a reduced performance as
309                  * this driver uses real max turbo frequency as the max
310                  * frequeny. So correct this frequency in _PSS table to
311                  * correct max turbo frequency based on the turbo ratio.
312                  * Also need to convert to MHz as _PSS freq is in MHz.
313                  */
314                 cpu->acpi_perf_data.states[0].core_frequency =
315                                                 turbo_pss_ctl * 100;
316         }
317
318         pr_debug("intel_pstate: Updated limits using _PSS 0x%x 0x%x 0x%x\n",
319                  cpu->pstate.min_pstate, cpu->pstate.max_pstate,
320                  cpu->pstate.turbo_pstate);
321         pr_debug("intel_pstate: policy max_freq=%d Khz min_freq = %d KHz\n",
322                  policy->cpuinfo.max_freq, policy->cpuinfo.min_freq);
323
324         return 0;
325 }
326
327 static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
328 {
329         struct cpudata *cpu;
330
331         if (!no_acpi_perf)
332                 return 0;
333
334         cpu = all_cpu_data[policy->cpu];
335         acpi_processor_unregister_performance(policy->cpu);
336         return 0;
337 }
338
339 #else
340 static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
341 {
342         return 0;
343 }
344
345 static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
346 {
347         return 0;
348 }
349 #endif
350
351 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
352                              int deadband, int integral) {
353         pid->setpoint = setpoint;
354         pid->deadband  = deadband;
355         pid->integral  = int_tofp(integral);
356         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
357 }
358
359 static inline void pid_p_gain_set(struct _pid *pid, int percent)
360 {
361         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
362 }
363
364 static inline void pid_i_gain_set(struct _pid *pid, int percent)
365 {
366         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
367 }
368
369 static inline void pid_d_gain_set(struct _pid *pid, int percent)
370 {
371         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
372 }
373
374 static signed int pid_calc(struct _pid *pid, int32_t busy)
375 {
376         signed int result;
377         int32_t pterm, dterm, fp_error;
378         int32_t integral_limit;
379
380         fp_error = int_tofp(pid->setpoint) - busy;
381
382         if (abs(fp_error) <= int_tofp(pid->deadband))
383                 return 0;
384
385         pterm = mul_fp(pid->p_gain, fp_error);
386
387         pid->integral += fp_error;
388
389         /*
390          * We limit the integral here so that it will never
391          * get higher than 30.  This prevents it from becoming
392          * too large an input over long periods of time and allows
393          * it to get factored out sooner.
394          *
395          * The value of 30 was chosen through experimentation.
396          */
397         integral_limit = int_tofp(30);
398         if (pid->integral > integral_limit)
399                 pid->integral = integral_limit;
400         if (pid->integral < -integral_limit)
401                 pid->integral = -integral_limit;
402
403         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
404         pid->last_err = fp_error;
405
406         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
407         result = result + (1 << (FRAC_BITS-1));
408         return (signed int)fp_toint(result);
409 }
410
411 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
412 {
413         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
414         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
415         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
416
417         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
418 }
419
420 static inline void intel_pstate_reset_all_pid(void)
421 {
422         unsigned int cpu;
423
424         for_each_online_cpu(cpu) {
425                 if (all_cpu_data[cpu])
426                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
427         }
428 }
429
430 static inline void update_turbo_state(void)
431 {
432         u64 misc_en;
433         struct cpudata *cpu;
434
435         cpu = all_cpu_data[0];
436         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
437         limits->turbo_disabled =
438                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
439                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
440 }
441
442 static void intel_pstate_hwp_set(void)
443 {
444         int min, hw_min, max, hw_max, cpu, range, adj_range;
445         u64 value, cap;
446
447         rdmsrl(MSR_HWP_CAPABILITIES, cap);
448         hw_min = HWP_LOWEST_PERF(cap);
449         hw_max = HWP_HIGHEST_PERF(cap);
450         range = hw_max - hw_min;
451
452         get_online_cpus();
453
454         for_each_online_cpu(cpu) {
455                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
456                 adj_range = limits->min_perf_pct * range / 100;
457                 min = hw_min + adj_range;
458                 value &= ~HWP_MIN_PERF(~0L);
459                 value |= HWP_MIN_PERF(min);
460
461                 adj_range = limits->max_perf_pct * range / 100;
462                 max = hw_min + adj_range;
463                 if (limits->no_turbo) {
464                         hw_max = HWP_GUARANTEED_PERF(cap);
465                         if (hw_max < max)
466                                 max = hw_max;
467                 }
468
469                 value &= ~HWP_MAX_PERF(~0L);
470                 value |= HWP_MAX_PERF(max);
471                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
472         }
473
474         put_online_cpus();
475 }
476
477 /************************** debugfs begin ************************/
478 static int pid_param_set(void *data, u64 val)
479 {
480         *(u32 *)data = val;
481         intel_pstate_reset_all_pid();
482         return 0;
483 }
484
485 static int pid_param_get(void *data, u64 *val)
486 {
487         *val = *(u32 *)data;
488         return 0;
489 }
490 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
491
492 struct pid_param {
493         char *name;
494         void *value;
495 };
496
497 static struct pid_param pid_files[] = {
498         {"sample_rate_ms", &pid_params.sample_rate_ms},
499         {"d_gain_pct", &pid_params.d_gain_pct},
500         {"i_gain_pct", &pid_params.i_gain_pct},
501         {"deadband", &pid_params.deadband},
502         {"setpoint", &pid_params.setpoint},
503         {"p_gain_pct", &pid_params.p_gain_pct},
504         {NULL, NULL}
505 };
506
507 static void __init intel_pstate_debug_expose_params(void)
508 {
509         struct dentry *debugfs_parent;
510         int i = 0;
511
512         if (hwp_active)
513                 return;
514         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
515         if (IS_ERR_OR_NULL(debugfs_parent))
516                 return;
517         while (pid_files[i].name) {
518                 debugfs_create_file(pid_files[i].name, 0660,
519                                     debugfs_parent, pid_files[i].value,
520                                     &fops_pid_param);
521                 i++;
522         }
523 }
524
525 /************************** debugfs end ************************/
526
527 /************************** sysfs begin ************************/
528 #define show_one(file_name, object)                                     \
529         static ssize_t show_##file_name                                 \
530         (struct kobject *kobj, struct attribute *attr, char *buf)       \
531         {                                                               \
532                 return sprintf(buf, "%u\n", limits->object);            \
533         }
534
535 static ssize_t show_turbo_pct(struct kobject *kobj,
536                                 struct attribute *attr, char *buf)
537 {
538         struct cpudata *cpu;
539         int total, no_turbo, turbo_pct;
540         uint32_t turbo_fp;
541
542         cpu = all_cpu_data[0];
543
544         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
545         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
546         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
547         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
548         return sprintf(buf, "%u\n", turbo_pct);
549 }
550
551 static ssize_t show_num_pstates(struct kobject *kobj,
552                                 struct attribute *attr, char *buf)
553 {
554         struct cpudata *cpu;
555         int total;
556
557         cpu = all_cpu_data[0];
558         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
559         return sprintf(buf, "%u\n", total);
560 }
561
562 static ssize_t show_no_turbo(struct kobject *kobj,
563                              struct attribute *attr, char *buf)
564 {
565         ssize_t ret;
566
567         update_turbo_state();
568         if (limits->turbo_disabled)
569                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
570         else
571                 ret = sprintf(buf, "%u\n", limits->no_turbo);
572
573         return ret;
574 }
575
576 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
577                               const char *buf, size_t count)
578 {
579         unsigned int input;
580         int ret;
581
582         ret = sscanf(buf, "%u", &input);
583         if (ret != 1)
584                 return -EINVAL;
585
586         update_turbo_state();
587         if (limits->turbo_disabled) {
588                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
589                 return -EPERM;
590         }
591
592         limits->no_turbo = clamp_t(int, input, 0, 1);
593
594         if (hwp_active)
595                 intel_pstate_hwp_set();
596
597         return count;
598 }
599
600 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
601                                   const char *buf, size_t count)
602 {
603         unsigned int input;
604         int ret;
605
606         ret = sscanf(buf, "%u", &input);
607         if (ret != 1)
608                 return -EINVAL;
609
610         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
611         limits->max_perf_pct = min(limits->max_policy_pct,
612                                    limits->max_sysfs_pct);
613         limits->max_perf_pct = max(limits->min_policy_pct,
614                                    limits->max_perf_pct);
615         limits->max_perf_pct = max(limits->min_perf_pct,
616                                    limits->max_perf_pct);
617         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
618                                   int_tofp(100));
619
620         if (hwp_active)
621                 intel_pstate_hwp_set();
622         return count;
623 }
624
625 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
626                                   const char *buf, size_t count)
627 {
628         unsigned int input;
629         int ret;
630
631         ret = sscanf(buf, "%u", &input);
632         if (ret != 1)
633                 return -EINVAL;
634
635         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
636         limits->min_perf_pct = max(limits->min_policy_pct,
637                                    limits->min_sysfs_pct);
638         limits->min_perf_pct = min(limits->max_policy_pct,
639                                    limits->min_perf_pct);
640         limits->min_perf_pct = min(limits->max_perf_pct,
641                                    limits->min_perf_pct);
642         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
643                                   int_tofp(100));
644
645         if (hwp_active)
646                 intel_pstate_hwp_set();
647         return count;
648 }
649
650 show_one(max_perf_pct, max_perf_pct);
651 show_one(min_perf_pct, min_perf_pct);
652
653 define_one_global_rw(no_turbo);
654 define_one_global_rw(max_perf_pct);
655 define_one_global_rw(min_perf_pct);
656 define_one_global_ro(turbo_pct);
657 define_one_global_ro(num_pstates);
658
659 static struct attribute *intel_pstate_attributes[] = {
660         &no_turbo.attr,
661         &max_perf_pct.attr,
662         &min_perf_pct.attr,
663         &turbo_pct.attr,
664         &num_pstates.attr,
665         NULL
666 };
667
668 static struct attribute_group intel_pstate_attr_group = {
669         .attrs = intel_pstate_attributes,
670 };
671
672 static void __init intel_pstate_sysfs_expose_params(void)
673 {
674         struct kobject *intel_pstate_kobject;
675         int rc;
676
677         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
678                                                 &cpu_subsys.dev_root->kobj);
679         BUG_ON(!intel_pstate_kobject);
680         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
681         BUG_ON(rc);
682 }
683 /************************** sysfs end ************************/
684
685 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
686 {
687         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
688 }
689
690 static int byt_get_min_pstate(void)
691 {
692         u64 value;
693
694         rdmsrl(BYT_RATIOS, value);
695         return (value >> 8) & 0x7F;
696 }
697
698 static int byt_get_max_pstate(void)
699 {
700         u64 value;
701
702         rdmsrl(BYT_RATIOS, value);
703         return (value >> 16) & 0x7F;
704 }
705
706 static int byt_get_turbo_pstate(void)
707 {
708         u64 value;
709
710         rdmsrl(BYT_TURBO_RATIOS, value);
711         return value & 0x7F;
712 }
713
714 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
715 {
716         u64 val;
717         int32_t vid_fp;
718         u32 vid;
719
720         val = (u64)pstate << 8;
721         if (limits->no_turbo && !limits->turbo_disabled)
722                 val |= (u64)1 << 32;
723
724         vid_fp = cpudata->vid.min + mul_fp(
725                 int_tofp(pstate - cpudata->pstate.min_pstate),
726                 cpudata->vid.ratio);
727
728         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
729         vid = ceiling_fp(vid_fp);
730
731         if (pstate > cpudata->pstate.max_pstate)
732                 vid = cpudata->vid.turbo;
733
734         val |= vid;
735
736         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
737 }
738
739 #define BYT_BCLK_FREQS 5
740 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
741
742 static int byt_get_scaling(void)
743 {
744         u64 value;
745         int i;
746
747         rdmsrl(MSR_FSB_FREQ, value);
748         i = value & 0x3;
749
750         BUG_ON(i > BYT_BCLK_FREQS);
751
752         return byt_freq_table[i] * 100;
753 }
754
755 static void byt_get_vid(struct cpudata *cpudata)
756 {
757         u64 value;
758
759         rdmsrl(BYT_VIDS, value);
760         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
761         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
762         cpudata->vid.ratio = div_fp(
763                 cpudata->vid.max - cpudata->vid.min,
764                 int_tofp(cpudata->pstate.max_pstate -
765                         cpudata->pstate.min_pstate));
766
767         rdmsrl(BYT_TURBO_VIDS, value);
768         cpudata->vid.turbo = value & 0x7f;
769 }
770
771 static int core_get_min_pstate(void)
772 {
773         u64 value;
774
775         rdmsrl(MSR_PLATFORM_INFO, value);
776         return (value >> 40) & 0xFF;
777 }
778
779 static int core_get_max_pstate_physical(void)
780 {
781         u64 value;
782
783         rdmsrl(MSR_PLATFORM_INFO, value);
784         return (value >> 8) & 0xFF;
785 }
786
787 static int core_get_max_pstate(void)
788 {
789         u64 tar;
790         u64 plat_info;
791         int max_pstate;
792         int err;
793
794         rdmsrl(MSR_PLATFORM_INFO, plat_info);
795         max_pstate = (plat_info >> 8) & 0xFF;
796
797         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
798         if (!err) {
799                 /* Do some sanity checking for safety */
800                 if (plat_info & 0x600000000) {
801                         u64 tdp_ctrl;
802                         u64 tdp_ratio;
803                         int tdp_msr;
804
805                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
806                         if (err)
807                                 goto skip_tar;
808
809                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
810                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
811                         if (err)
812                                 goto skip_tar;
813
814                         if (tdp_ratio - 1 == tar) {
815                                 max_pstate = tar;
816                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
817                         } else {
818                                 goto skip_tar;
819                         }
820                 }
821         }
822
823 skip_tar:
824         return max_pstate;
825 }
826
827 static int core_get_turbo_pstate(void)
828 {
829         u64 value;
830         int nont, ret;
831
832         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
833         nont = core_get_max_pstate();
834         ret = (value) & 255;
835         if (ret <= nont)
836                 ret = nont;
837         return ret;
838 }
839
840 static inline int core_get_scaling(void)
841 {
842         return 100000;
843 }
844
845 static void core_set_pstate(struct cpudata *cpudata, int pstate)
846 {
847         u64 val;
848
849         val = (u64)pstate << 8;
850         if (limits->no_turbo && !limits->turbo_disabled)
851                 val |= (u64)1 << 32;
852
853         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
854 }
855
856 static int knl_get_turbo_pstate(void)
857 {
858         u64 value;
859         int nont, ret;
860
861         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
862         nont = core_get_max_pstate();
863         ret = (((value) >> 8) & 0xFF);
864         if (ret <= nont)
865                 ret = nont;
866         return ret;
867 }
868
869 static struct cpu_defaults core_params = {
870         .pid_policy = {
871                 .sample_rate_ms = 10,
872                 .deadband = 0,
873                 .setpoint = 97,
874                 .p_gain_pct = 20,
875                 .d_gain_pct = 0,
876                 .i_gain_pct = 0,
877         },
878         .funcs = {
879                 .get_max = core_get_max_pstate,
880                 .get_max_physical = core_get_max_pstate_physical,
881                 .get_min = core_get_min_pstate,
882                 .get_turbo = core_get_turbo_pstate,
883                 .get_scaling = core_get_scaling,
884                 .set = core_set_pstate,
885         },
886 };
887
888 static struct cpu_defaults byt_params = {
889         .pid_policy = {
890                 .sample_rate_ms = 10,
891                 .deadband = 0,
892                 .setpoint = 60,
893                 .p_gain_pct = 14,
894                 .d_gain_pct = 0,
895                 .i_gain_pct = 4,
896         },
897         .funcs = {
898                 .get_max = byt_get_max_pstate,
899                 .get_max_physical = byt_get_max_pstate,
900                 .get_min = byt_get_min_pstate,
901                 .get_turbo = byt_get_turbo_pstate,
902                 .set = byt_set_pstate,
903                 .get_scaling = byt_get_scaling,
904                 .get_vid = byt_get_vid,
905         },
906 };
907
908 static struct cpu_defaults knl_params = {
909         .pid_policy = {
910                 .sample_rate_ms = 10,
911                 .deadband = 0,
912                 .setpoint = 97,
913                 .p_gain_pct = 20,
914                 .d_gain_pct = 0,
915                 .i_gain_pct = 0,
916         },
917         .funcs = {
918                 .get_max = core_get_max_pstate,
919                 .get_max_physical = core_get_max_pstate_physical,
920                 .get_min = core_get_min_pstate,
921                 .get_turbo = knl_get_turbo_pstate,
922                 .get_scaling = core_get_scaling,
923                 .set = core_set_pstate,
924         },
925 };
926
927 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
928 {
929         int max_perf = cpu->pstate.turbo_pstate;
930         int max_perf_adj;
931         int min_perf;
932
933         if (limits->no_turbo || limits->turbo_disabled)
934                 max_perf = cpu->pstate.max_pstate;
935
936         /*
937          * performance can be limited by user through sysfs, by cpufreq
938          * policy, or by cpu specific default values determined through
939          * experimentation.
940          */
941         if (limits->max_perf_ctl && limits->max_sysfs_pct >=
942                                                 limits->max_policy_pct) {
943                 *max = limits->max_perf_ctl;
944         } else {
945                 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf),
946                                         limits->max_perf));
947                 *max = clamp_t(int, max_perf_adj, cpu->pstate.min_pstate,
948                                cpu->pstate.turbo_pstate);
949         }
950
951         if (limits->min_perf_ctl) {
952                 *min = limits->min_perf_ctl;
953         } else {
954                 min_perf = fp_toint(mul_fp(int_tofp(max_perf),
955                                     limits->min_perf));
956                 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
957         }
958 }
959
960 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
961 {
962         int max_perf, min_perf;
963
964         if (force) {
965                 update_turbo_state();
966
967                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
968
969                 pstate = clamp_t(int, pstate, min_perf, max_perf);
970
971                 if (pstate == cpu->pstate.current_pstate)
972                         return;
973         }
974         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
975
976         cpu->pstate.current_pstate = pstate;
977
978         pstate_funcs.set(cpu, pstate);
979 }
980
981 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
982 {
983         cpu->pstate.min_pstate = pstate_funcs.get_min();
984         cpu->pstate.max_pstate = pstate_funcs.get_max();
985         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
986         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
987         cpu->pstate.scaling = pstate_funcs.get_scaling();
988
989         if (pstate_funcs.get_vid)
990                 pstate_funcs.get_vid(cpu);
991         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
992 }
993
994 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
995 {
996         struct sample *sample = &cpu->sample;
997         int64_t core_pct;
998
999         core_pct = int_tofp(sample->aperf) * int_tofp(100);
1000         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1001
1002         sample->freq = fp_toint(
1003                 mul_fp(int_tofp(
1004                         cpu->pstate.max_pstate_physical *
1005                         cpu->pstate.scaling / 100),
1006                         core_pct));
1007
1008         sample->core_pct_busy = (int32_t)core_pct;
1009 }
1010
1011 static inline void intel_pstate_sample(struct cpudata *cpu)
1012 {
1013         u64 aperf, mperf;
1014         unsigned long flags;
1015         u64 tsc;
1016
1017         local_irq_save(flags);
1018         rdmsrl(MSR_IA32_APERF, aperf);
1019         rdmsrl(MSR_IA32_MPERF, mperf);
1020         if (cpu->prev_mperf == mperf) {
1021                 local_irq_restore(flags);
1022                 return;
1023         }
1024
1025         tsc = rdtsc();
1026         local_irq_restore(flags);
1027
1028         cpu->last_sample_time = cpu->sample.time;
1029         cpu->sample.time = ktime_get();
1030         cpu->sample.aperf = aperf;
1031         cpu->sample.mperf = mperf;
1032         cpu->sample.tsc =  tsc;
1033         cpu->sample.aperf -= cpu->prev_aperf;
1034         cpu->sample.mperf -= cpu->prev_mperf;
1035         cpu->sample.tsc -= cpu->prev_tsc;
1036
1037         intel_pstate_calc_busy(cpu);
1038
1039         cpu->prev_aperf = aperf;
1040         cpu->prev_mperf = mperf;
1041         cpu->prev_tsc = tsc;
1042 }
1043
1044 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
1045 {
1046         int delay;
1047
1048         delay = msecs_to_jiffies(50);
1049         mod_timer_pinned(&cpu->timer, jiffies + delay);
1050 }
1051
1052 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
1053 {
1054         int delay;
1055
1056         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
1057         mod_timer_pinned(&cpu->timer, jiffies + delay);
1058 }
1059
1060 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
1061 {
1062         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1063         s64 duration_us;
1064         u32 sample_time;
1065
1066         /*
1067          * core_busy is the ratio of actual performance to max
1068          * max_pstate is the max non turbo pstate available
1069          * current_pstate was the pstate that was requested during
1070          *      the last sample period.
1071          *
1072          * We normalize core_busy, which was our actual percent
1073          * performance to what we requested during the last sample
1074          * period. The result will be a percentage of busy at a
1075          * specified pstate.
1076          */
1077         core_busy = cpu->sample.core_pct_busy;
1078         max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1079         current_pstate = int_tofp(cpu->pstate.current_pstate);
1080         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1081
1082         /*
1083          * Since we have a deferred timer, it will not fire unless
1084          * we are in C0.  So, determine if the actual elapsed time
1085          * is significantly greater (3x) than our sample interval.  If it
1086          * is, then we were idle for a long enough period of time
1087          * to adjust our busyness.
1088          */
1089         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1090         duration_us = ktime_us_delta(cpu->sample.time,
1091                                      cpu->last_sample_time);
1092         if (duration_us > sample_time * 3) {
1093                 sample_ratio = div_fp(int_tofp(sample_time),
1094                                       int_tofp(duration_us));
1095                 core_busy = mul_fp(core_busy, sample_ratio);
1096         }
1097
1098         return core_busy;
1099 }
1100
1101 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1102 {
1103         int32_t busy_scaled;
1104         struct _pid *pid;
1105         signed int ctl;
1106         int from;
1107         struct sample *sample;
1108
1109         from = cpu->pstate.current_pstate;
1110
1111         pid = &cpu->pid;
1112         busy_scaled = intel_pstate_get_scaled_busy(cpu);
1113
1114         ctl = pid_calc(pid, busy_scaled);
1115
1116         /* Negative values of ctl increase the pstate and vice versa */
1117         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
1118
1119         sample = &cpu->sample;
1120         trace_pstate_sample(fp_toint(sample->core_pct_busy),
1121                 fp_toint(busy_scaled),
1122                 from,
1123                 cpu->pstate.current_pstate,
1124                 sample->mperf,
1125                 sample->aperf,
1126                 sample->tsc,
1127                 sample->freq);
1128 }
1129
1130 static void intel_hwp_timer_func(unsigned long __data)
1131 {
1132         struct cpudata *cpu = (struct cpudata *) __data;
1133
1134         intel_pstate_sample(cpu);
1135         intel_hwp_set_sample_time(cpu);
1136 }
1137
1138 static void intel_pstate_timer_func(unsigned long __data)
1139 {
1140         struct cpudata *cpu = (struct cpudata *) __data;
1141
1142         intel_pstate_sample(cpu);
1143
1144         intel_pstate_adjust_busy_pstate(cpu);
1145
1146         intel_pstate_set_sample_time(cpu);
1147 }
1148
1149 #define ICPU(model, policy) \
1150         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1151                         (unsigned long)&policy }
1152
1153 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1154         ICPU(0x2a, core_params),
1155         ICPU(0x2d, core_params),
1156         ICPU(0x37, byt_params),
1157         ICPU(0x3a, core_params),
1158         ICPU(0x3c, core_params),
1159         ICPU(0x3d, core_params),
1160         ICPU(0x3e, core_params),
1161         ICPU(0x3f, core_params),
1162         ICPU(0x45, core_params),
1163         ICPU(0x46, core_params),
1164         ICPU(0x47, core_params),
1165         ICPU(0x4c, byt_params),
1166         ICPU(0x4e, core_params),
1167         ICPU(0x4f, core_params),
1168         ICPU(0x5e, core_params),
1169         ICPU(0x56, core_params),
1170         ICPU(0x57, knl_params),
1171         {}
1172 };
1173 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1174
1175 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1176         ICPU(0x56, core_params),
1177         {}
1178 };
1179
1180 static int intel_pstate_init_cpu(unsigned int cpunum)
1181 {
1182         struct cpudata *cpu;
1183
1184         if (!all_cpu_data[cpunum])
1185                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1186                                                GFP_KERNEL);
1187         if (!all_cpu_data[cpunum])
1188                 return -ENOMEM;
1189
1190         cpu = all_cpu_data[cpunum];
1191
1192         cpu->cpu = cpunum;
1193
1194         if (hwp_active)
1195                 intel_pstate_hwp_enable(cpu);
1196
1197         intel_pstate_get_cpu_pstates(cpu);
1198
1199         init_timer_deferrable(&cpu->timer);
1200         cpu->timer.data = (unsigned long)cpu;
1201         cpu->timer.expires = jiffies + HZ/100;
1202
1203         if (!hwp_active)
1204                 cpu->timer.function = intel_pstate_timer_func;
1205         else
1206                 cpu->timer.function = intel_hwp_timer_func;
1207
1208         intel_pstate_busy_pid_reset(cpu);
1209         intel_pstate_sample(cpu);
1210
1211         add_timer_on(&cpu->timer, cpunum);
1212
1213         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1214
1215         return 0;
1216 }
1217
1218 static unsigned int intel_pstate_get(unsigned int cpu_num)
1219 {
1220         struct sample *sample;
1221         struct cpudata *cpu;
1222
1223         cpu = all_cpu_data[cpu_num];
1224         if (!cpu)
1225                 return 0;
1226         sample = &cpu->sample;
1227         return sample->freq;
1228 }
1229
1230 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1231 {
1232 #if IS_ENABLED(CONFIG_ACPI)
1233         struct cpudata *cpu;
1234         int i;
1235 #endif
1236         pr_debug("intel_pstate: %s max %u policy->max %u\n", __func__,
1237                  policy->cpuinfo.max_freq, policy->max);
1238         if (!policy->cpuinfo.max_freq)
1239                 return -ENODEV;
1240
1241         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1242             policy->max >= policy->cpuinfo.max_freq) {
1243                 pr_debug("intel_pstate: set performance\n");
1244                 limits = &performance_limits;
1245                 return 0;
1246         }
1247
1248         pr_debug("intel_pstate: set powersave\n");
1249         limits = &powersave_limits;
1250         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1251         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1252         limits->max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
1253         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1254
1255         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1256         limits->min_perf_pct = max(limits->min_policy_pct,
1257                                    limits->min_sysfs_pct);
1258         limits->min_perf_pct = min(limits->max_policy_pct,
1259                                    limits->min_perf_pct);
1260         limits->max_perf_pct = min(limits->max_policy_pct,
1261                                    limits->max_sysfs_pct);
1262         limits->max_perf_pct = max(limits->min_policy_pct,
1263                                    limits->max_perf_pct);
1264
1265         /* Make sure min_perf_pct <= max_perf_pct */
1266         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1267
1268         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1269                                   int_tofp(100));
1270         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1271                                   int_tofp(100));
1272
1273 #if IS_ENABLED(CONFIG_ACPI)
1274         cpu = all_cpu_data[policy->cpu];
1275         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
1276                 int control;
1277
1278                 control = convert_to_native_pstate_format(cpu, i);
1279                 if (control * cpu->pstate.scaling == policy->max)
1280                         limits->max_perf_ctl = control;
1281                 if (control * cpu->pstate.scaling == policy->min)
1282                         limits->min_perf_ctl = control;
1283         }
1284
1285         pr_debug("intel_pstate: max %u policy_max %u perf_ctl [0x%x-0x%x]\n",
1286                  policy->cpuinfo.max_freq, policy->max, limits->min_perf_ctl,
1287                  limits->max_perf_ctl);
1288 #endif
1289
1290         if (hwp_active)
1291                 intel_pstate_hwp_set();
1292
1293         return 0;
1294 }
1295
1296 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1297 {
1298         cpufreq_verify_within_cpu_limits(policy);
1299
1300         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1301             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1302                 return -EINVAL;
1303
1304         return 0;
1305 }
1306
1307 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1308 {
1309         int cpu_num = policy->cpu;
1310         struct cpudata *cpu = all_cpu_data[cpu_num];
1311
1312         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1313
1314         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1315         if (hwp_active)
1316                 return;
1317
1318         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1319 }
1320
1321 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1322 {
1323         struct cpudata *cpu;
1324         int rc;
1325
1326         rc = intel_pstate_init_cpu(policy->cpu);
1327         if (rc)
1328                 return rc;
1329
1330         cpu = all_cpu_data[policy->cpu];
1331
1332         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1333                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1334         else
1335                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1336
1337         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1338         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1339
1340         /* cpuinfo and default policy values */
1341         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1342         policy->cpuinfo.max_freq =
1343                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1344         if (!no_acpi_perf)
1345                 intel_pstate_init_perf_limits(policy);
1346         /*
1347          * If there is no acpi perf data or error, we ignore and use Intel P
1348          * state calculated limits, So this is not fatal error.
1349          */
1350         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1351         cpumask_set_cpu(policy->cpu, policy->cpus);
1352
1353         return 0;
1354 }
1355
1356 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1357 {
1358         return intel_pstate_exit_perf_limits(policy);
1359 }
1360
1361 static struct cpufreq_driver intel_pstate_driver = {
1362         .flags          = CPUFREQ_CONST_LOOPS,
1363         .verify         = intel_pstate_verify_policy,
1364         .setpolicy      = intel_pstate_set_policy,
1365         .get            = intel_pstate_get,
1366         .init           = intel_pstate_cpu_init,
1367         .exit           = intel_pstate_cpu_exit,
1368         .stop_cpu       = intel_pstate_stop_cpu,
1369         .name           = "intel_pstate",
1370 };
1371
1372 static int __initdata no_load;
1373 static int __initdata no_hwp;
1374 static int __initdata hwp_only;
1375 static unsigned int force_load;
1376
1377 static int intel_pstate_msrs_not_valid(void)
1378 {
1379         if (!pstate_funcs.get_max() ||
1380             !pstate_funcs.get_min() ||
1381             !pstate_funcs.get_turbo())
1382                 return -ENODEV;
1383
1384         return 0;
1385 }
1386
1387 static void copy_pid_params(struct pstate_adjust_policy *policy)
1388 {
1389         pid_params.sample_rate_ms = policy->sample_rate_ms;
1390         pid_params.p_gain_pct = policy->p_gain_pct;
1391         pid_params.i_gain_pct = policy->i_gain_pct;
1392         pid_params.d_gain_pct = policy->d_gain_pct;
1393         pid_params.deadband = policy->deadband;
1394         pid_params.setpoint = policy->setpoint;
1395 }
1396
1397 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1398 {
1399         pstate_funcs.get_max   = funcs->get_max;
1400         pstate_funcs.get_max_physical = funcs->get_max_physical;
1401         pstate_funcs.get_min   = funcs->get_min;
1402         pstate_funcs.get_turbo = funcs->get_turbo;
1403         pstate_funcs.get_scaling = funcs->get_scaling;
1404         pstate_funcs.set       = funcs->set;
1405         pstate_funcs.get_vid   = funcs->get_vid;
1406 }
1407
1408 #if IS_ENABLED(CONFIG_ACPI)
1409
1410 static bool intel_pstate_no_acpi_pss(void)
1411 {
1412         int i;
1413
1414         for_each_possible_cpu(i) {
1415                 acpi_status status;
1416                 union acpi_object *pss;
1417                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1418                 struct acpi_processor *pr = per_cpu(processors, i);
1419
1420                 if (!pr)
1421                         continue;
1422
1423                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1424                 if (ACPI_FAILURE(status))
1425                         continue;
1426
1427                 pss = buffer.pointer;
1428                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1429                         kfree(pss);
1430                         return false;
1431                 }
1432
1433                 kfree(pss);
1434         }
1435
1436         return true;
1437 }
1438
1439 static bool intel_pstate_has_acpi_ppc(void)
1440 {
1441         int i;
1442
1443         for_each_possible_cpu(i) {
1444                 struct acpi_processor *pr = per_cpu(processors, i);
1445
1446                 if (!pr)
1447                         continue;
1448                 if (acpi_has_method(pr->handle, "_PPC"))
1449                         return true;
1450         }
1451         return false;
1452 }
1453
1454 enum {
1455         PSS,
1456         PPC,
1457 };
1458
1459 struct hw_vendor_info {
1460         u16  valid;
1461         char oem_id[ACPI_OEM_ID_SIZE];
1462         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1463         int  oem_pwr_table;
1464 };
1465
1466 /* Hardware vendor-specific info that has its own power management modes */
1467 static struct hw_vendor_info vendor_info[] = {
1468         {1, "HP    ", "ProLiant", PSS},
1469         {1, "ORACLE", "X4-2    ", PPC},
1470         {1, "ORACLE", "X4-2L   ", PPC},
1471         {1, "ORACLE", "X4-2B   ", PPC},
1472         {1, "ORACLE", "X3-2    ", PPC},
1473         {1, "ORACLE", "X3-2L   ", PPC},
1474         {1, "ORACLE", "X3-2B   ", PPC},
1475         {1, "ORACLE", "X4470M2 ", PPC},
1476         {1, "ORACLE", "X4270M3 ", PPC},
1477         {1, "ORACLE", "X4270M2 ", PPC},
1478         {1, "ORACLE", "X4170M2 ", PPC},
1479         {1, "ORACLE", "X4170 M3", PPC},
1480         {1, "ORACLE", "X4275 M3", PPC},
1481         {1, "ORACLE", "X6-2    ", PPC},
1482         {1, "ORACLE", "Sudbury ", PPC},
1483         {0, "", ""},
1484 };
1485
1486 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1487 {
1488         struct acpi_table_header hdr;
1489         struct hw_vendor_info *v_info;
1490         const struct x86_cpu_id *id;
1491         u64 misc_pwr;
1492
1493         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1494         if (id) {
1495                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1496                 if ( misc_pwr & (1 << 8))
1497                         return true;
1498         }
1499
1500         if (acpi_disabled ||
1501             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1502                 return false;
1503
1504         for (v_info = vendor_info; v_info->valid; v_info++) {
1505                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1506                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1507                                                 ACPI_OEM_TABLE_ID_SIZE))
1508                         switch (v_info->oem_pwr_table) {
1509                         case PSS:
1510                                 return intel_pstate_no_acpi_pss();
1511                         case PPC:
1512                                 return intel_pstate_has_acpi_ppc() &&
1513                                         (!force_load);
1514                         }
1515         }
1516
1517         return false;
1518 }
1519 #else /* CONFIG_ACPI not enabled */
1520 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1521 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1522 #endif /* CONFIG_ACPI */
1523
1524 static int __init intel_pstate_init(void)
1525 {
1526         int cpu, rc = 0;
1527         const struct x86_cpu_id *id;
1528         struct cpu_defaults *cpu_def;
1529
1530         if (no_load)
1531                 return -ENODEV;
1532
1533         id = x86_match_cpu(intel_pstate_cpu_ids);
1534         if (!id)
1535                 return -ENODEV;
1536
1537         /*
1538          * The Intel pstate driver will be ignored if the platform
1539          * firmware has its own power management modes.
1540          */
1541         if (intel_pstate_platform_pwr_mgmt_exists())
1542                 return -ENODEV;
1543
1544         cpu_def = (struct cpu_defaults *)id->driver_data;
1545
1546         copy_pid_params(&cpu_def->pid_policy);
1547         copy_cpu_funcs(&cpu_def->funcs);
1548
1549         if (intel_pstate_msrs_not_valid())
1550                 return -ENODEV;
1551
1552         pr_info("Intel P-state driver initializing.\n");
1553
1554         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1555         if (!all_cpu_data)
1556                 return -ENOMEM;
1557
1558         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
1559                 pr_info("intel_pstate: HWP enabled\n");
1560                 hwp_active++;
1561         }
1562
1563         if (!hwp_active && hwp_only)
1564                 goto out;
1565
1566         rc = cpufreq_register_driver(&intel_pstate_driver);
1567         if (rc)
1568                 goto out;
1569
1570         intel_pstate_debug_expose_params();
1571         intel_pstate_sysfs_expose_params();
1572
1573         return rc;
1574 out:
1575         get_online_cpus();
1576         for_each_online_cpu(cpu) {
1577                 if (all_cpu_data[cpu]) {
1578                         del_timer_sync(&all_cpu_data[cpu]->timer);
1579                         kfree(all_cpu_data[cpu]);
1580                 }
1581         }
1582
1583         put_online_cpus();
1584         vfree(all_cpu_data);
1585         return -ENODEV;
1586 }
1587 device_initcall(intel_pstate_init);
1588
1589 static int __init intel_pstate_setup(char *str)
1590 {
1591         if (!str)
1592                 return -EINVAL;
1593
1594         if (!strcmp(str, "disable"))
1595                 no_load = 1;
1596         if (!strcmp(str, "no_hwp")) {
1597                 pr_info("intel_pstate: HWP disabled\n");
1598                 no_hwp = 1;
1599         }
1600         if (!strcmp(str, "force"))
1601                 force_load = 1;
1602         if (!strcmp(str, "hwp_only"))
1603                 hwp_only = 1;
1604         if (!strcmp(str, "no_acpi"))
1605                 no_acpi_perf = 1;
1606
1607         return 0;
1608 }
1609 early_param("intel_pstate", intel_pstate_setup);
1610
1611 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1612 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1613 MODULE_LICENSE("GPL");