ARM: shmobile: r8a7791: Prioritize DT APMU support
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS             0x66a
40 #define ATOM_VIDS               0x66b
41 #define ATOM_TURBO_RATIOS       0x66c
42 #define ATOM_TURBO_VIDS         0x66d
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54
55 static inline int32_t mul_fp(int32_t x, int32_t y)
56 {
57         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58 }
59
60 static inline int32_t div_fp(s64 x, s64 y)
61 {
62         return div64_s64((int64_t)x << FRAC_BITS, y);
63 }
64
65 static inline int ceiling_fp(int32_t x)
66 {
67         int mask, ret;
68
69         ret = fp_toint(x);
70         mask = (1 << FRAC_BITS) - 1;
71         if (x & mask)
72                 ret += 1;
73         return ret;
74 }
75
76 static inline u64 mul_ext_fp(u64 x, u64 y)
77 {
78         return (x * y) >> EXT_FRAC_BITS;
79 }
80
81 static inline u64 div_ext_fp(u64 x, u64 y)
82 {
83         return div64_u64(x << EXT_FRAC_BITS, y);
84 }
85
86 /**
87  * struct sample -      Store performance sample
88  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
89  *                      performance during last sample period
90  * @busy_scaled:        Scaled busy value which is used to calculate next
91  *                      P state. This can be different than core_avg_perf
92  *                      to account for cpu idle period
93  * @aperf:              Difference of actual performance frequency clock count
94  *                      read from APERF MSR between last and current sample
95  * @mperf:              Difference of maximum performance frequency clock count
96  *                      read from MPERF MSR between last and current sample
97  * @tsc:                Difference of time stamp counter between last and
98  *                      current sample
99  * @freq:               Effective frequency calculated from APERF/MPERF
100  * @time:               Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106         int32_t core_avg_perf;
107         int32_t busy_scaled;
108         u64 aperf;
109         u64 mperf;
110         u64 tsc;
111         int freq;
112         u64 time;
113 };
114
115 /**
116  * struct pstate_data - Store P state data
117  * @current_pstate:     Current requested P state
118  * @min_pstate:         Min P state possible for this platform
119  * @max_pstate:         Max P state possible for this platform
120  * @max_pstate_physical:This is physical Max P state for a processor
121  *                      This can be higher than the max_pstate which can
122  *                      be limited by platform thermal design power limits
123  * @scaling:            Scaling factor to  convert frequency to cpufreq
124  *                      frequency units
125  * @turbo_pstate:       Max Turbo P state possible for this platform
126  *
127  * Stores the per cpu model P state limits and current P state.
128  */
129 struct pstate_data {
130         int     current_pstate;
131         int     min_pstate;
132         int     max_pstate;
133         int     max_pstate_physical;
134         int     scaling;
135         int     turbo_pstate;
136 };
137
138 /**
139  * struct vid_data -    Stores voltage information data
140  * @min:                VID data for this platform corresponding to
141  *                      the lowest P state
142  * @max:                VID data corresponding to the highest P State.
143  * @turbo:              VID data for turbo P state
144  * @ratio:              Ratio of (vid max - vid min) /
145  *                      (max P state - Min P State)
146  *
147  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148  * This data is used in Atom platforms, where in addition to target P state,
149  * the voltage data needs to be specified to select next P State.
150  */
151 struct vid_data {
152         int min;
153         int max;
154         int turbo;
155         int32_t ratio;
156 };
157
158 /**
159  * struct _pid -        Stores PID data
160  * @setpoint:           Target set point for busyness or performance
161  * @integral:           Storage for accumulated error values
162  * @p_gain:             PID proportional gain
163  * @i_gain:             PID integral gain
164  * @d_gain:             PID derivative gain
165  * @deadband:           PID deadband
166  * @last_err:           Last error storage for integral part of PID calculation
167  *
168  * Stores PID coefficients and last error for PID controller.
169  */
170 struct _pid {
171         int setpoint;
172         int32_t integral;
173         int32_t p_gain;
174         int32_t i_gain;
175         int32_t d_gain;
176         int deadband;
177         int32_t last_err;
178 };
179
180 /**
181  * struct cpudata -     Per CPU instance data storage
182  * @cpu:                CPU number for this instance data
183  * @update_util:        CPUFreq utility callback information
184  * @update_util_set:    CPUFreq utility callback is set
185  * @pstate:             Stores P state limits for this CPU
186  * @vid:                Stores VID limits for this CPU
187  * @pid:                Stores PID parameters for this CPU
188  * @last_sample_time:   Last Sample time
189  * @prev_aperf:         Last APERF value read from APERF MSR
190  * @prev_mperf:         Last MPERF value read from MPERF MSR
191  * @prev_tsc:           Last timestamp counter (TSC) value
192  * @prev_cummulative_iowait: IO Wait time difference from last and
193  *                      current sample
194  * @sample:             Storage for storing last Sample data
195  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
196  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
197  *
198  * This structure stores per CPU instance data for all CPUs.
199  */
200 struct cpudata {
201         int cpu;
202
203         struct update_util_data update_util;
204         bool   update_util_set;
205
206         struct pstate_data pstate;
207         struct vid_data vid;
208         struct _pid pid;
209
210         u64     last_sample_time;
211         u64     prev_aperf;
212         u64     prev_mperf;
213         u64     prev_tsc;
214         u64     prev_cummulative_iowait;
215         struct sample sample;
216 #ifdef CONFIG_ACPI
217         struct acpi_processor_performance acpi_perf_data;
218         bool valid_pss_table;
219 #endif
220 };
221
222 static struct cpudata **all_cpu_data;
223
224 /**
225  * struct pid_adjust_policy - Stores static PID configuration data
226  * @sample_rate_ms:     PID calculation sample rate in ms
227  * @sample_rate_ns:     Sample rate calculation in ns
228  * @deadband:           PID deadband
229  * @setpoint:           PID Setpoint
230  * @p_gain_pct:         PID proportional gain
231  * @i_gain_pct:         PID integral gain
232  * @d_gain_pct:         PID derivative gain
233  *
234  * Stores per CPU model static PID configuration data.
235  */
236 struct pstate_adjust_policy {
237         int sample_rate_ms;
238         s64 sample_rate_ns;
239         int deadband;
240         int setpoint;
241         int p_gain_pct;
242         int d_gain_pct;
243         int i_gain_pct;
244 };
245
246 /**
247  * struct pstate_funcs - Per CPU model specific callbacks
248  * @get_max:            Callback to get maximum non turbo effective P state
249  * @get_max_physical:   Callback to get maximum non turbo physical P state
250  * @get_min:            Callback to get minimum P state
251  * @get_turbo:          Callback to get turbo P state
252  * @get_scaling:        Callback to get frequency scaling factor
253  * @get_val:            Callback to convert P state to actual MSR write value
254  * @get_vid:            Callback to get VID data for Atom platforms
255  * @get_target_pstate:  Callback to a function to calculate next P state to use
256  *
257  * Core and Atom CPU models have different way to get P State limits. This
258  * structure is used to store those callbacks.
259  */
260 struct pstate_funcs {
261         int (*get_max)(void);
262         int (*get_max_physical)(void);
263         int (*get_min)(void);
264         int (*get_turbo)(void);
265         int (*get_scaling)(void);
266         u64 (*get_val)(struct cpudata*, int pstate);
267         void (*get_vid)(struct cpudata *);
268         int32_t (*get_target_pstate)(struct cpudata *);
269 };
270
271 /**
272  * struct cpu_defaults- Per CPU model default config data
273  * @pid_policy: PID config data
274  * @funcs:              Callback function data
275  */
276 struct cpu_defaults {
277         struct pstate_adjust_policy pid_policy;
278         struct pstate_funcs funcs;
279 };
280
281 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283
284 static struct pstate_adjust_policy pid_params;
285 static struct pstate_funcs pstate_funcs;
286 static int hwp_active;
287
288 #ifdef CONFIG_ACPI
289 static bool acpi_ppc;
290 #endif
291
292 /**
293  * struct perf_limits - Store user and policy limits
294  * @no_turbo:           User requested turbo state from intel_pstate sysfs
295  * @turbo_disabled:     Platform turbo status either from msr
296  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
297  *                      matches the maximum turbo pstate
298  * @max_perf_pct:       Effective maximum performance limit in percentage, this
299  *                      is minimum of either limits enforced by cpufreq policy
300  *                      or limits from user set limits via intel_pstate sysfs
301  * @min_perf_pct:       Effective minimum performance limit in percentage, this
302  *                      is maximum of either limits enforced by cpufreq policy
303  *                      or limits from user set limits via intel_pstate sysfs
304  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
305  *                      This value is used to limit max pstate
306  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
307  *                      This value is used to limit min pstate
308  * @max_policy_pct:     The maximum performance in percentage enforced by
309  *                      cpufreq setpolicy interface
310  * @max_sysfs_pct:      The maximum performance in percentage enforced by
311  *                      intel pstate sysfs interface
312  * @min_policy_pct:     The minimum performance in percentage enforced by
313  *                      cpufreq setpolicy interface
314  * @min_sysfs_pct:      The minimum performance in percentage enforced by
315  *                      intel pstate sysfs interface
316  *
317  * Storage for user and policy defined limits.
318  */
319 struct perf_limits {
320         int no_turbo;
321         int turbo_disabled;
322         int max_perf_pct;
323         int min_perf_pct;
324         int32_t max_perf;
325         int32_t min_perf;
326         int max_policy_pct;
327         int max_sysfs_pct;
328         int min_policy_pct;
329         int min_sysfs_pct;
330 };
331
332 static struct perf_limits performance_limits = {
333         .no_turbo = 0,
334         .turbo_disabled = 0,
335         .max_perf_pct = 100,
336         .max_perf = int_tofp(1),
337         .min_perf_pct = 100,
338         .min_perf = int_tofp(1),
339         .max_policy_pct = 100,
340         .max_sysfs_pct = 100,
341         .min_policy_pct = 0,
342         .min_sysfs_pct = 0,
343 };
344
345 static struct perf_limits powersave_limits = {
346         .no_turbo = 0,
347         .turbo_disabled = 0,
348         .max_perf_pct = 100,
349         .max_perf = int_tofp(1),
350         .min_perf_pct = 0,
351         .min_perf = 0,
352         .max_policy_pct = 100,
353         .max_sysfs_pct = 100,
354         .min_policy_pct = 0,
355         .min_sysfs_pct = 0,
356 };
357
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits *limits = &performance_limits;
360 #else
361 static struct perf_limits *limits = &powersave_limits;
362 #endif
363
364 #ifdef CONFIG_ACPI
365
366 static bool intel_pstate_get_ppc_enable_status(void)
367 {
368         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370                 return true;
371
372         return acpi_ppc;
373 }
374
375 /*
376  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
377  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
378  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
379  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
380  * target ratio 0x17. The _PSS control value stores in a format which can be
381  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
382  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
383  * This function converts the _PSS control value to intel pstate driver format
384  * for comparison and assignment.
385  */
386 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
387 {
388         return cpu->acpi_perf_data.states[index].control >> 8;
389 }
390
391 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
392 {
393         struct cpudata *cpu;
394         int turbo_pss_ctl;
395         int ret;
396         int i;
397
398         if (hwp_active)
399                 return;
400
401         if (!intel_pstate_get_ppc_enable_status())
402                 return;
403
404         cpu = all_cpu_data[policy->cpu];
405
406         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
407                                                   policy->cpu);
408         if (ret)
409                 return;
410
411         /*
412          * Check if the control value in _PSS is for PERF_CTL MSR, which should
413          * guarantee that the states returned by it map to the states in our
414          * list directly.
415          */
416         if (cpu->acpi_perf_data.control_register.space_id !=
417                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
418                 goto err;
419
420         /*
421          * If there is only one entry _PSS, simply ignore _PSS and continue as
422          * usual without taking _PSS into account
423          */
424         if (cpu->acpi_perf_data.state_count < 2)
425                 goto err;
426
427         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
428         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
429                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
430                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
431                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
432                          (u32) cpu->acpi_perf_data.states[i].power,
433                          (u32) cpu->acpi_perf_data.states[i].control);
434         }
435
436         /*
437          * The _PSS table doesn't contain whole turbo frequency range.
438          * This just contains +1 MHZ above the max non turbo frequency,
439          * with control value corresponding to max turbo ratio. But
440          * when cpufreq set policy is called, it will call with this
441          * max frequency, which will cause a reduced performance as
442          * this driver uses real max turbo frequency as the max
443          * frequency. So correct this frequency in _PSS table to
444          * correct max turbo frequency based on the turbo ratio.
445          * Also need to convert to MHz as _PSS freq is in MHz.
446          */
447         turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
448         if (turbo_pss_ctl > cpu->pstate.max_pstate)
449                 cpu->acpi_perf_data.states[0].core_frequency =
450                                         policy->cpuinfo.max_freq / 1000;
451         cpu->valid_pss_table = true;
452         pr_info("_PPC limits will be enforced\n");
453
454         return;
455
456  err:
457         cpu->valid_pss_table = false;
458         acpi_processor_unregister_performance(policy->cpu);
459 }
460
461 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
462 {
463         struct cpudata *cpu;
464
465         cpu = all_cpu_data[policy->cpu];
466         if (!cpu->valid_pss_table)
467                 return;
468
469         acpi_processor_unregister_performance(policy->cpu);
470 }
471
472 #else
473 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
474 {
475 }
476
477 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
478 {
479 }
480 #endif
481
482 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
483                              int deadband, int integral) {
484         pid->setpoint = int_tofp(setpoint);
485         pid->deadband  = int_tofp(deadband);
486         pid->integral  = int_tofp(integral);
487         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
488 }
489
490 static inline void pid_p_gain_set(struct _pid *pid, int percent)
491 {
492         pid->p_gain = div_fp(percent, 100);
493 }
494
495 static inline void pid_i_gain_set(struct _pid *pid, int percent)
496 {
497         pid->i_gain = div_fp(percent, 100);
498 }
499
500 static inline void pid_d_gain_set(struct _pid *pid, int percent)
501 {
502         pid->d_gain = div_fp(percent, 100);
503 }
504
505 static signed int pid_calc(struct _pid *pid, int32_t busy)
506 {
507         signed int result;
508         int32_t pterm, dterm, fp_error;
509         int32_t integral_limit;
510
511         fp_error = pid->setpoint - busy;
512
513         if (abs(fp_error) <= pid->deadband)
514                 return 0;
515
516         pterm = mul_fp(pid->p_gain, fp_error);
517
518         pid->integral += fp_error;
519
520         /*
521          * We limit the integral here so that it will never
522          * get higher than 30.  This prevents it from becoming
523          * too large an input over long periods of time and allows
524          * it to get factored out sooner.
525          *
526          * The value of 30 was chosen through experimentation.
527          */
528         integral_limit = int_tofp(30);
529         if (pid->integral > integral_limit)
530                 pid->integral = integral_limit;
531         if (pid->integral < -integral_limit)
532                 pid->integral = -integral_limit;
533
534         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
535         pid->last_err = fp_error;
536
537         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
538         result = result + (1 << (FRAC_BITS-1));
539         return (signed int)fp_toint(result);
540 }
541
542 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
543 {
544         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
545         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
546         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
547
548         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
549 }
550
551 static inline void intel_pstate_reset_all_pid(void)
552 {
553         unsigned int cpu;
554
555         for_each_online_cpu(cpu) {
556                 if (all_cpu_data[cpu])
557                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
558         }
559 }
560
561 static inline void update_turbo_state(void)
562 {
563         u64 misc_en;
564         struct cpudata *cpu;
565
566         cpu = all_cpu_data[0];
567         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
568         limits->turbo_disabled =
569                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
570                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
571 }
572
573 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
574 {
575         int min, hw_min, max, hw_max, cpu, range, adj_range;
576         u64 value, cap;
577
578         rdmsrl(MSR_HWP_CAPABILITIES, cap);
579         hw_min = HWP_LOWEST_PERF(cap);
580         hw_max = HWP_HIGHEST_PERF(cap);
581         range = hw_max - hw_min;
582
583         for_each_cpu(cpu, cpumask) {
584                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
585                 adj_range = limits->min_perf_pct * range / 100;
586                 min = hw_min + adj_range;
587                 value &= ~HWP_MIN_PERF(~0L);
588                 value |= HWP_MIN_PERF(min);
589
590                 adj_range = limits->max_perf_pct * range / 100;
591                 max = hw_min + adj_range;
592                 if (limits->no_turbo) {
593                         hw_max = HWP_GUARANTEED_PERF(cap);
594                         if (hw_max < max)
595                                 max = hw_max;
596                 }
597
598                 value &= ~HWP_MAX_PERF(~0L);
599                 value |= HWP_MAX_PERF(max);
600                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
601         }
602 }
603
604 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
605 {
606         if (hwp_active)
607                 intel_pstate_hwp_set(policy->cpus);
608
609         return 0;
610 }
611
612 static void intel_pstate_hwp_set_online_cpus(void)
613 {
614         get_online_cpus();
615         intel_pstate_hwp_set(cpu_online_mask);
616         put_online_cpus();
617 }
618
619 /************************** debugfs begin ************************/
620 static int pid_param_set(void *data, u64 val)
621 {
622         *(u32 *)data = val;
623         intel_pstate_reset_all_pid();
624         return 0;
625 }
626
627 static int pid_param_get(void *data, u64 *val)
628 {
629         *val = *(u32 *)data;
630         return 0;
631 }
632 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
633
634 struct pid_param {
635         char *name;
636         void *value;
637 };
638
639 static struct pid_param pid_files[] = {
640         {"sample_rate_ms", &pid_params.sample_rate_ms},
641         {"d_gain_pct", &pid_params.d_gain_pct},
642         {"i_gain_pct", &pid_params.i_gain_pct},
643         {"deadband", &pid_params.deadband},
644         {"setpoint", &pid_params.setpoint},
645         {"p_gain_pct", &pid_params.p_gain_pct},
646         {NULL, NULL}
647 };
648
649 static void __init intel_pstate_debug_expose_params(void)
650 {
651         struct dentry *debugfs_parent;
652         int i = 0;
653
654         if (hwp_active)
655                 return;
656         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
657         if (IS_ERR_OR_NULL(debugfs_parent))
658                 return;
659         while (pid_files[i].name) {
660                 debugfs_create_file(pid_files[i].name, 0660,
661                                     debugfs_parent, pid_files[i].value,
662                                     &fops_pid_param);
663                 i++;
664         }
665 }
666
667 /************************** debugfs end ************************/
668
669 /************************** sysfs begin ************************/
670 #define show_one(file_name, object)                                     \
671         static ssize_t show_##file_name                                 \
672         (struct kobject *kobj, struct attribute *attr, char *buf)       \
673         {                                                               \
674                 return sprintf(buf, "%u\n", limits->object);            \
675         }
676
677 static ssize_t show_turbo_pct(struct kobject *kobj,
678                                 struct attribute *attr, char *buf)
679 {
680         struct cpudata *cpu;
681         int total, no_turbo, turbo_pct;
682         uint32_t turbo_fp;
683
684         cpu = all_cpu_data[0];
685
686         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
687         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
688         turbo_fp = div_fp(no_turbo, total);
689         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
690         return sprintf(buf, "%u\n", turbo_pct);
691 }
692
693 static ssize_t show_num_pstates(struct kobject *kobj,
694                                 struct attribute *attr, char *buf)
695 {
696         struct cpudata *cpu;
697         int total;
698
699         cpu = all_cpu_data[0];
700         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
701         return sprintf(buf, "%u\n", total);
702 }
703
704 static ssize_t show_no_turbo(struct kobject *kobj,
705                              struct attribute *attr, char *buf)
706 {
707         ssize_t ret;
708
709         update_turbo_state();
710         if (limits->turbo_disabled)
711                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
712         else
713                 ret = sprintf(buf, "%u\n", limits->no_turbo);
714
715         return ret;
716 }
717
718 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
719                               const char *buf, size_t count)
720 {
721         unsigned int input;
722         int ret;
723
724         ret = sscanf(buf, "%u", &input);
725         if (ret != 1)
726                 return -EINVAL;
727
728         update_turbo_state();
729         if (limits->turbo_disabled) {
730                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
731                 return -EPERM;
732         }
733
734         limits->no_turbo = clamp_t(int, input, 0, 1);
735
736         if (hwp_active)
737                 intel_pstate_hwp_set_online_cpus();
738
739         return count;
740 }
741
742 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
743                                   const char *buf, size_t count)
744 {
745         unsigned int input;
746         int ret;
747
748         ret = sscanf(buf, "%u", &input);
749         if (ret != 1)
750                 return -EINVAL;
751
752         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
753         limits->max_perf_pct = min(limits->max_policy_pct,
754                                    limits->max_sysfs_pct);
755         limits->max_perf_pct = max(limits->min_policy_pct,
756                                    limits->max_perf_pct);
757         limits->max_perf_pct = max(limits->min_perf_pct,
758                                    limits->max_perf_pct);
759         limits->max_perf = div_fp(limits->max_perf_pct, 100);
760
761         if (hwp_active)
762                 intel_pstate_hwp_set_online_cpus();
763         return count;
764 }
765
766 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
767                                   const char *buf, size_t count)
768 {
769         unsigned int input;
770         int ret;
771
772         ret = sscanf(buf, "%u", &input);
773         if (ret != 1)
774                 return -EINVAL;
775
776         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
777         limits->min_perf_pct = max(limits->min_policy_pct,
778                                    limits->min_sysfs_pct);
779         limits->min_perf_pct = min(limits->max_policy_pct,
780                                    limits->min_perf_pct);
781         limits->min_perf_pct = min(limits->max_perf_pct,
782                                    limits->min_perf_pct);
783         limits->min_perf = div_fp(limits->min_perf_pct, 100);
784
785         if (hwp_active)
786                 intel_pstate_hwp_set_online_cpus();
787         return count;
788 }
789
790 show_one(max_perf_pct, max_perf_pct);
791 show_one(min_perf_pct, min_perf_pct);
792
793 define_one_global_rw(no_turbo);
794 define_one_global_rw(max_perf_pct);
795 define_one_global_rw(min_perf_pct);
796 define_one_global_ro(turbo_pct);
797 define_one_global_ro(num_pstates);
798
799 static struct attribute *intel_pstate_attributes[] = {
800         &no_turbo.attr,
801         &max_perf_pct.attr,
802         &min_perf_pct.attr,
803         &turbo_pct.attr,
804         &num_pstates.attr,
805         NULL
806 };
807
808 static struct attribute_group intel_pstate_attr_group = {
809         .attrs = intel_pstate_attributes,
810 };
811
812 static void __init intel_pstate_sysfs_expose_params(void)
813 {
814         struct kobject *intel_pstate_kobject;
815         int rc;
816
817         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
818                                                 &cpu_subsys.dev_root->kobj);
819         BUG_ON(!intel_pstate_kobject);
820         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
821         BUG_ON(rc);
822 }
823 /************************** sysfs end ************************/
824
825 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
826 {
827         /* First disable HWP notification interrupt as we don't process them */
828         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
829
830         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
831 }
832
833 static int atom_get_min_pstate(void)
834 {
835         u64 value;
836
837         rdmsrl(ATOM_RATIOS, value);
838         return (value >> 8) & 0x7F;
839 }
840
841 static int atom_get_max_pstate(void)
842 {
843         u64 value;
844
845         rdmsrl(ATOM_RATIOS, value);
846         return (value >> 16) & 0x7F;
847 }
848
849 static int atom_get_turbo_pstate(void)
850 {
851         u64 value;
852
853         rdmsrl(ATOM_TURBO_RATIOS, value);
854         return value & 0x7F;
855 }
856
857 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
858 {
859         u64 val;
860         int32_t vid_fp;
861         u32 vid;
862
863         val = (u64)pstate << 8;
864         if (limits->no_turbo && !limits->turbo_disabled)
865                 val |= (u64)1 << 32;
866
867         vid_fp = cpudata->vid.min + mul_fp(
868                 int_tofp(pstate - cpudata->pstate.min_pstate),
869                 cpudata->vid.ratio);
870
871         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
872         vid = ceiling_fp(vid_fp);
873
874         if (pstate > cpudata->pstate.max_pstate)
875                 vid = cpudata->vid.turbo;
876
877         return val | vid;
878 }
879
880 static int silvermont_get_scaling(void)
881 {
882         u64 value;
883         int i;
884         /* Defined in Table 35-6 from SDM (Sept 2015) */
885         static int silvermont_freq_table[] = {
886                 83300, 100000, 133300, 116700, 80000};
887
888         rdmsrl(MSR_FSB_FREQ, value);
889         i = value & 0x7;
890         WARN_ON(i > 4);
891
892         return silvermont_freq_table[i];
893 }
894
895 static int airmont_get_scaling(void)
896 {
897         u64 value;
898         int i;
899         /* Defined in Table 35-10 from SDM (Sept 2015) */
900         static int airmont_freq_table[] = {
901                 83300, 100000, 133300, 116700, 80000,
902                 93300, 90000, 88900, 87500};
903
904         rdmsrl(MSR_FSB_FREQ, value);
905         i = value & 0xF;
906         WARN_ON(i > 8);
907
908         return airmont_freq_table[i];
909 }
910
911 static void atom_get_vid(struct cpudata *cpudata)
912 {
913         u64 value;
914
915         rdmsrl(ATOM_VIDS, value);
916         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
917         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
918         cpudata->vid.ratio = div_fp(
919                 cpudata->vid.max - cpudata->vid.min,
920                 int_tofp(cpudata->pstate.max_pstate -
921                         cpudata->pstate.min_pstate));
922
923         rdmsrl(ATOM_TURBO_VIDS, value);
924         cpudata->vid.turbo = value & 0x7f;
925 }
926
927 static int core_get_min_pstate(void)
928 {
929         u64 value;
930
931         rdmsrl(MSR_PLATFORM_INFO, value);
932         return (value >> 40) & 0xFF;
933 }
934
935 static int core_get_max_pstate_physical(void)
936 {
937         u64 value;
938
939         rdmsrl(MSR_PLATFORM_INFO, value);
940         return (value >> 8) & 0xFF;
941 }
942
943 static int core_get_max_pstate(void)
944 {
945         u64 tar;
946         u64 plat_info;
947         int max_pstate;
948         int err;
949
950         rdmsrl(MSR_PLATFORM_INFO, plat_info);
951         max_pstate = (plat_info >> 8) & 0xFF;
952
953         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
954         if (!err) {
955                 /* Do some sanity checking for safety */
956                 if (plat_info & 0x600000000) {
957                         u64 tdp_ctrl;
958                         u64 tdp_ratio;
959                         int tdp_msr;
960
961                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
962                         if (err)
963                                 goto skip_tar;
964
965                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
966                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
967                         if (err)
968                                 goto skip_tar;
969
970                         /* For level 1 and 2, bits[23:16] contain the ratio */
971                         if (tdp_ctrl)
972                                 tdp_ratio >>= 16;
973
974                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
975                         if (tdp_ratio - 1 == tar) {
976                                 max_pstate = tar;
977                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
978                         } else {
979                                 goto skip_tar;
980                         }
981                 }
982         }
983
984 skip_tar:
985         return max_pstate;
986 }
987
988 static int core_get_turbo_pstate(void)
989 {
990         u64 value;
991         int nont, ret;
992
993         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
994         nont = core_get_max_pstate();
995         ret = (value) & 255;
996         if (ret <= nont)
997                 ret = nont;
998         return ret;
999 }
1000
1001 static inline int core_get_scaling(void)
1002 {
1003         return 100000;
1004 }
1005
1006 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1007 {
1008         u64 val;
1009
1010         val = (u64)pstate << 8;
1011         if (limits->no_turbo && !limits->turbo_disabled)
1012                 val |= (u64)1 << 32;
1013
1014         return val;
1015 }
1016
1017 static int knl_get_turbo_pstate(void)
1018 {
1019         u64 value;
1020         int nont, ret;
1021
1022         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1023         nont = core_get_max_pstate();
1024         ret = (((value) >> 8) & 0xFF);
1025         if (ret <= nont)
1026                 ret = nont;
1027         return ret;
1028 }
1029
1030 static struct cpu_defaults core_params = {
1031         .pid_policy = {
1032                 .sample_rate_ms = 10,
1033                 .deadband = 0,
1034                 .setpoint = 97,
1035                 .p_gain_pct = 20,
1036                 .d_gain_pct = 0,
1037                 .i_gain_pct = 0,
1038         },
1039         .funcs = {
1040                 .get_max = core_get_max_pstate,
1041                 .get_max_physical = core_get_max_pstate_physical,
1042                 .get_min = core_get_min_pstate,
1043                 .get_turbo = core_get_turbo_pstate,
1044                 .get_scaling = core_get_scaling,
1045                 .get_val = core_get_val,
1046                 .get_target_pstate = get_target_pstate_use_performance,
1047         },
1048 };
1049
1050 static struct cpu_defaults silvermont_params = {
1051         .pid_policy = {
1052                 .sample_rate_ms = 10,
1053                 .deadband = 0,
1054                 .setpoint = 60,
1055                 .p_gain_pct = 14,
1056                 .d_gain_pct = 0,
1057                 .i_gain_pct = 4,
1058         },
1059         .funcs = {
1060                 .get_max = atom_get_max_pstate,
1061                 .get_max_physical = atom_get_max_pstate,
1062                 .get_min = atom_get_min_pstate,
1063                 .get_turbo = atom_get_turbo_pstate,
1064                 .get_val = atom_get_val,
1065                 .get_scaling = silvermont_get_scaling,
1066                 .get_vid = atom_get_vid,
1067                 .get_target_pstate = get_target_pstate_use_cpu_load,
1068         },
1069 };
1070
1071 static struct cpu_defaults airmont_params = {
1072         .pid_policy = {
1073                 .sample_rate_ms = 10,
1074                 .deadband = 0,
1075                 .setpoint = 60,
1076                 .p_gain_pct = 14,
1077                 .d_gain_pct = 0,
1078                 .i_gain_pct = 4,
1079         },
1080         .funcs = {
1081                 .get_max = atom_get_max_pstate,
1082                 .get_max_physical = atom_get_max_pstate,
1083                 .get_min = atom_get_min_pstate,
1084                 .get_turbo = atom_get_turbo_pstate,
1085                 .get_val = atom_get_val,
1086                 .get_scaling = airmont_get_scaling,
1087                 .get_vid = atom_get_vid,
1088                 .get_target_pstate = get_target_pstate_use_cpu_load,
1089         },
1090 };
1091
1092 static struct cpu_defaults knl_params = {
1093         .pid_policy = {
1094                 .sample_rate_ms = 10,
1095                 .deadband = 0,
1096                 .setpoint = 97,
1097                 .p_gain_pct = 20,
1098                 .d_gain_pct = 0,
1099                 .i_gain_pct = 0,
1100         },
1101         .funcs = {
1102                 .get_max = core_get_max_pstate,
1103                 .get_max_physical = core_get_max_pstate_physical,
1104                 .get_min = core_get_min_pstate,
1105                 .get_turbo = knl_get_turbo_pstate,
1106                 .get_scaling = core_get_scaling,
1107                 .get_val = core_get_val,
1108                 .get_target_pstate = get_target_pstate_use_performance,
1109         },
1110 };
1111
1112 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1113 {
1114         int max_perf = cpu->pstate.turbo_pstate;
1115         int max_perf_adj;
1116         int min_perf;
1117
1118         if (limits->no_turbo || limits->turbo_disabled)
1119                 max_perf = cpu->pstate.max_pstate;
1120
1121         /*
1122          * performance can be limited by user through sysfs, by cpufreq
1123          * policy, or by cpu specific default values determined through
1124          * experimentation.
1125          */
1126         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1127         *max = clamp_t(int, max_perf_adj,
1128                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1129
1130         min_perf = fp_toint(max_perf * limits->min_perf);
1131         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1132 }
1133
1134 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1135 {
1136         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1137         cpu->pstate.current_pstate = pstate;
1138 }
1139
1140 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1141 {
1142         int pstate = cpu->pstate.min_pstate;
1143
1144         intel_pstate_record_pstate(cpu, pstate);
1145         /*
1146          * Generally, there is no guarantee that this code will always run on
1147          * the CPU being updated, so force the register update to run on the
1148          * right CPU.
1149          */
1150         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1151                       pstate_funcs.get_val(cpu, pstate));
1152 }
1153
1154 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1155 {
1156         cpu->pstate.min_pstate = pstate_funcs.get_min();
1157         cpu->pstate.max_pstate = pstate_funcs.get_max();
1158         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1159         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1160         cpu->pstate.scaling = pstate_funcs.get_scaling();
1161
1162         if (pstate_funcs.get_vid)
1163                 pstate_funcs.get_vid(cpu);
1164
1165         intel_pstate_set_min_pstate(cpu);
1166 }
1167
1168 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1169 {
1170         struct sample *sample = &cpu->sample;
1171
1172         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1173 }
1174
1175 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1176 {
1177         u64 aperf, mperf;
1178         unsigned long flags;
1179         u64 tsc;
1180
1181         local_irq_save(flags);
1182         rdmsrl(MSR_IA32_APERF, aperf);
1183         rdmsrl(MSR_IA32_MPERF, mperf);
1184         tsc = rdtsc();
1185         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1186                 local_irq_restore(flags);
1187                 return false;
1188         }
1189         local_irq_restore(flags);
1190
1191         cpu->last_sample_time = cpu->sample.time;
1192         cpu->sample.time = time;
1193         cpu->sample.aperf = aperf;
1194         cpu->sample.mperf = mperf;
1195         cpu->sample.tsc =  tsc;
1196         cpu->sample.aperf -= cpu->prev_aperf;
1197         cpu->sample.mperf -= cpu->prev_mperf;
1198         cpu->sample.tsc -= cpu->prev_tsc;
1199
1200         cpu->prev_aperf = aperf;
1201         cpu->prev_mperf = mperf;
1202         cpu->prev_tsc = tsc;
1203         /*
1204          * First time this function is invoked in a given cycle, all of the
1205          * previous sample data fields are equal to zero or stale and they must
1206          * be populated with meaningful numbers for things to work, so assume
1207          * that sample.time will always be reset before setting the utilization
1208          * update hook and make the caller skip the sample then.
1209          */
1210         return !!cpu->last_sample_time;
1211 }
1212
1213 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1214 {
1215         return mul_ext_fp(cpu->sample.core_avg_perf,
1216                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1217 }
1218
1219 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1220 {
1221         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1222                           cpu->sample.core_avg_perf);
1223 }
1224
1225 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1226 {
1227         struct sample *sample = &cpu->sample;
1228         u64 cummulative_iowait, delta_iowait_us;
1229         u64 delta_iowait_mperf;
1230         u64 mperf, now;
1231         int32_t cpu_load;
1232
1233         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1234
1235         /*
1236          * Convert iowait time into number of IO cycles spent at max_freq.
1237          * IO is considered as busy only for the cpu_load algorithm. For
1238          * performance this is not needed since we always try to reach the
1239          * maximum P-State, so we are already boosting the IOs.
1240          */
1241         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1242         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1243                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1244
1245         mperf = cpu->sample.mperf + delta_iowait_mperf;
1246         cpu->prev_cummulative_iowait = cummulative_iowait;
1247
1248         /*
1249          * The load can be estimated as the ratio of the mperf counter
1250          * running at a constant frequency during active periods
1251          * (C0) and the time stamp counter running at the same frequency
1252          * also during C-states.
1253          */
1254         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1255         cpu->sample.busy_scaled = cpu_load;
1256
1257         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1258 }
1259
1260 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1261 {
1262         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1263         u64 duration_ns;
1264
1265         /*
1266          * perf_scaled is the average performance during the last sampling
1267          * period scaled by the ratio of the maximum P-state to the P-state
1268          * requested last time (in percent).  That measures the system's
1269          * response to the previous P-state selection.
1270          */
1271         max_pstate = cpu->pstate.max_pstate_physical;
1272         current_pstate = cpu->pstate.current_pstate;
1273         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1274                                div_fp(100 * max_pstate, current_pstate));
1275
1276         /*
1277          * Since our utilization update callback will not run unless we are
1278          * in C0, check if the actual elapsed time is significantly greater (3x)
1279          * than our sample interval.  If it is, then we were idle for a long
1280          * enough period of time to adjust our performance metric.
1281          */
1282         duration_ns = cpu->sample.time - cpu->last_sample_time;
1283         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1284                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1285                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1286         } else {
1287                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1288                 if (sample_ratio < int_tofp(1))
1289                         perf_scaled = 0;
1290         }
1291
1292         cpu->sample.busy_scaled = perf_scaled;
1293         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1294 }
1295
1296 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1297 {
1298         int max_perf, min_perf;
1299
1300         update_turbo_state();
1301
1302         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1303         pstate = clamp_t(int, pstate, min_perf, max_perf);
1304         if (pstate == cpu->pstate.current_pstate)
1305                 return;
1306
1307         intel_pstate_record_pstate(cpu, pstate);
1308         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1309 }
1310
1311 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1312 {
1313         int from, target_pstate;
1314         struct sample *sample;
1315
1316         from = cpu->pstate.current_pstate;
1317
1318         target_pstate = pstate_funcs.get_target_pstate(cpu);
1319
1320         intel_pstate_update_pstate(cpu, target_pstate);
1321
1322         sample = &cpu->sample;
1323         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1324                 fp_toint(sample->busy_scaled),
1325                 from,
1326                 cpu->pstate.current_pstate,
1327                 sample->mperf,
1328                 sample->aperf,
1329                 sample->tsc,
1330                 get_avg_frequency(cpu));
1331 }
1332
1333 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1334                                      unsigned long util, unsigned long max)
1335 {
1336         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1337         u64 delta_ns = time - cpu->sample.time;
1338
1339         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1340                 bool sample_taken = intel_pstate_sample(cpu, time);
1341
1342                 if (sample_taken) {
1343                         intel_pstate_calc_avg_perf(cpu);
1344                         if (!hwp_active)
1345                                 intel_pstate_adjust_busy_pstate(cpu);
1346                 }
1347         }
1348 }
1349
1350 #define ICPU(model, policy) \
1351         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1352                         (unsigned long)&policy }
1353
1354 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1355         ICPU(0x2a, core_params),
1356         ICPU(0x2d, core_params),
1357         ICPU(0x37, silvermont_params),
1358         ICPU(0x3a, core_params),
1359         ICPU(0x3c, core_params),
1360         ICPU(0x3d, core_params),
1361         ICPU(0x3e, core_params),
1362         ICPU(0x3f, core_params),
1363         ICPU(0x45, core_params),
1364         ICPU(0x46, core_params),
1365         ICPU(0x47, core_params),
1366         ICPU(0x4c, airmont_params),
1367         ICPU(0x4e, core_params),
1368         ICPU(0x4f, core_params),
1369         ICPU(0x5e, core_params),
1370         ICPU(0x56, core_params),
1371         ICPU(0x57, knl_params),
1372         {}
1373 };
1374 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1375
1376 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1377         ICPU(0x56, core_params),
1378         {}
1379 };
1380
1381 static int intel_pstate_init_cpu(unsigned int cpunum)
1382 {
1383         struct cpudata *cpu;
1384
1385         if (!all_cpu_data[cpunum])
1386                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1387                                                GFP_KERNEL);
1388         if (!all_cpu_data[cpunum])
1389                 return -ENOMEM;
1390
1391         cpu = all_cpu_data[cpunum];
1392
1393         cpu->cpu = cpunum;
1394
1395         if (hwp_active) {
1396                 intel_pstate_hwp_enable(cpu);
1397                 pid_params.sample_rate_ms = 50;
1398                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1399         }
1400
1401         intel_pstate_get_cpu_pstates(cpu);
1402
1403         intel_pstate_busy_pid_reset(cpu);
1404
1405         pr_debug("controlling: cpu %d\n", cpunum);
1406
1407         return 0;
1408 }
1409
1410 static unsigned int intel_pstate_get(unsigned int cpu_num)
1411 {
1412         struct cpudata *cpu = all_cpu_data[cpu_num];
1413
1414         return cpu ? get_avg_frequency(cpu) : 0;
1415 }
1416
1417 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1418 {
1419         struct cpudata *cpu = all_cpu_data[cpu_num];
1420
1421         /* Prevent intel_pstate_update_util() from using stale data. */
1422         cpu->sample.time = 0;
1423         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1424                                      intel_pstate_update_util);
1425         cpu->update_util_set = true;
1426 }
1427
1428 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1429 {
1430         struct cpudata *cpu_data = all_cpu_data[cpu];
1431
1432         if (!cpu_data->update_util_set)
1433                 return;
1434
1435         cpufreq_remove_update_util_hook(cpu);
1436         cpu_data->update_util_set = false;
1437         synchronize_sched();
1438 }
1439
1440 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1441 {
1442         limits->no_turbo = 0;
1443         limits->turbo_disabled = 0;
1444         limits->max_perf_pct = 100;
1445         limits->max_perf = int_tofp(1);
1446         limits->min_perf_pct = 100;
1447         limits->min_perf = int_tofp(1);
1448         limits->max_policy_pct = 100;
1449         limits->max_sysfs_pct = 100;
1450         limits->min_policy_pct = 0;
1451         limits->min_sysfs_pct = 0;
1452 }
1453
1454 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1455 {
1456         struct cpudata *cpu;
1457
1458         if (!policy->cpuinfo.max_freq)
1459                 return -ENODEV;
1460
1461         intel_pstate_clear_update_util_hook(policy->cpu);
1462
1463         cpu = all_cpu_data[0];
1464         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1465             policy->max < policy->cpuinfo.max_freq &&
1466             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1467                 pr_debug("policy->max > max non turbo frequency\n");
1468                 policy->max = policy->cpuinfo.max_freq;
1469         }
1470
1471         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1472                 limits = &performance_limits;
1473                 if (policy->max >= policy->cpuinfo.max_freq) {
1474                         pr_debug("set performance\n");
1475                         intel_pstate_set_performance_limits(limits);
1476                         goto out;
1477                 }
1478         } else {
1479                 pr_debug("set powersave\n");
1480                 limits = &powersave_limits;
1481         }
1482
1483         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1484         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1485         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1486                                               policy->cpuinfo.max_freq);
1487         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1488
1489         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1490         limits->min_perf_pct = max(limits->min_policy_pct,
1491                                    limits->min_sysfs_pct);
1492         limits->min_perf_pct = min(limits->max_policy_pct,
1493                                    limits->min_perf_pct);
1494         limits->max_perf_pct = min(limits->max_policy_pct,
1495                                    limits->max_sysfs_pct);
1496         limits->max_perf_pct = max(limits->min_policy_pct,
1497                                    limits->max_perf_pct);
1498         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1499
1500         /* Make sure min_perf_pct <= max_perf_pct */
1501         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1502
1503         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1504         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1505
1506  out:
1507         intel_pstate_set_update_util_hook(policy->cpu);
1508
1509         intel_pstate_hwp_set_policy(policy);
1510
1511         return 0;
1512 }
1513
1514 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1515 {
1516         cpufreq_verify_within_cpu_limits(policy);
1517
1518         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1519             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1520                 return -EINVAL;
1521
1522         return 0;
1523 }
1524
1525 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1526 {
1527         int cpu_num = policy->cpu;
1528         struct cpudata *cpu = all_cpu_data[cpu_num];
1529
1530         pr_debug("CPU %d exiting\n", cpu_num);
1531
1532         intel_pstate_clear_update_util_hook(cpu_num);
1533
1534         if (hwp_active)
1535                 return;
1536
1537         intel_pstate_set_min_pstate(cpu);
1538 }
1539
1540 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1541 {
1542         struct cpudata *cpu;
1543         int rc;
1544
1545         rc = intel_pstate_init_cpu(policy->cpu);
1546         if (rc)
1547                 return rc;
1548
1549         cpu = all_cpu_data[policy->cpu];
1550
1551         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1552                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1553         else
1554                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1555
1556         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1557         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1558
1559         /* cpuinfo and default policy values */
1560         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1561         policy->cpuinfo.max_freq =
1562                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1563         intel_pstate_init_acpi_perf_limits(policy);
1564         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1565         cpumask_set_cpu(policy->cpu, policy->cpus);
1566
1567         return 0;
1568 }
1569
1570 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1571 {
1572         intel_pstate_exit_perf_limits(policy);
1573
1574         return 0;
1575 }
1576
1577 static struct cpufreq_driver intel_pstate_driver = {
1578         .flags          = CPUFREQ_CONST_LOOPS,
1579         .verify         = intel_pstate_verify_policy,
1580         .setpolicy      = intel_pstate_set_policy,
1581         .resume         = intel_pstate_hwp_set_policy,
1582         .get            = intel_pstate_get,
1583         .init           = intel_pstate_cpu_init,
1584         .exit           = intel_pstate_cpu_exit,
1585         .stop_cpu       = intel_pstate_stop_cpu,
1586         .name           = "intel_pstate",
1587 };
1588
1589 static int __initdata no_load;
1590 static int __initdata no_hwp;
1591 static int __initdata hwp_only;
1592 static unsigned int force_load;
1593
1594 static int intel_pstate_msrs_not_valid(void)
1595 {
1596         if (!pstate_funcs.get_max() ||
1597             !pstate_funcs.get_min() ||
1598             !pstate_funcs.get_turbo())
1599                 return -ENODEV;
1600
1601         return 0;
1602 }
1603
1604 static void copy_pid_params(struct pstate_adjust_policy *policy)
1605 {
1606         pid_params.sample_rate_ms = policy->sample_rate_ms;
1607         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1608         pid_params.p_gain_pct = policy->p_gain_pct;
1609         pid_params.i_gain_pct = policy->i_gain_pct;
1610         pid_params.d_gain_pct = policy->d_gain_pct;
1611         pid_params.deadband = policy->deadband;
1612         pid_params.setpoint = policy->setpoint;
1613 }
1614
1615 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1616 {
1617         pstate_funcs.get_max   = funcs->get_max;
1618         pstate_funcs.get_max_physical = funcs->get_max_physical;
1619         pstate_funcs.get_min   = funcs->get_min;
1620         pstate_funcs.get_turbo = funcs->get_turbo;
1621         pstate_funcs.get_scaling = funcs->get_scaling;
1622         pstate_funcs.get_val   = funcs->get_val;
1623         pstate_funcs.get_vid   = funcs->get_vid;
1624         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1625
1626 }
1627
1628 #ifdef CONFIG_ACPI
1629
1630 static bool intel_pstate_no_acpi_pss(void)
1631 {
1632         int i;
1633
1634         for_each_possible_cpu(i) {
1635                 acpi_status status;
1636                 union acpi_object *pss;
1637                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1638                 struct acpi_processor *pr = per_cpu(processors, i);
1639
1640                 if (!pr)
1641                         continue;
1642
1643                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1644                 if (ACPI_FAILURE(status))
1645                         continue;
1646
1647                 pss = buffer.pointer;
1648                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1649                         kfree(pss);
1650                         return false;
1651                 }
1652
1653                 kfree(pss);
1654         }
1655
1656         return true;
1657 }
1658
1659 static bool intel_pstate_has_acpi_ppc(void)
1660 {
1661         int i;
1662
1663         for_each_possible_cpu(i) {
1664                 struct acpi_processor *pr = per_cpu(processors, i);
1665
1666                 if (!pr)
1667                         continue;
1668                 if (acpi_has_method(pr->handle, "_PPC"))
1669                         return true;
1670         }
1671         return false;
1672 }
1673
1674 enum {
1675         PSS,
1676         PPC,
1677 };
1678
1679 struct hw_vendor_info {
1680         u16  valid;
1681         char oem_id[ACPI_OEM_ID_SIZE];
1682         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1683         int  oem_pwr_table;
1684 };
1685
1686 /* Hardware vendor-specific info that has its own power management modes */
1687 static struct hw_vendor_info vendor_info[] = {
1688         {1, "HP    ", "ProLiant", PSS},
1689         {1, "ORACLE", "X4-2    ", PPC},
1690         {1, "ORACLE", "X4-2L   ", PPC},
1691         {1, "ORACLE", "X4-2B   ", PPC},
1692         {1, "ORACLE", "X3-2    ", PPC},
1693         {1, "ORACLE", "X3-2L   ", PPC},
1694         {1, "ORACLE", "X3-2B   ", PPC},
1695         {1, "ORACLE", "X4470M2 ", PPC},
1696         {1, "ORACLE", "X4270M3 ", PPC},
1697         {1, "ORACLE", "X4270M2 ", PPC},
1698         {1, "ORACLE", "X4170M2 ", PPC},
1699         {1, "ORACLE", "X4170 M3", PPC},
1700         {1, "ORACLE", "X4275 M3", PPC},
1701         {1, "ORACLE", "X6-2    ", PPC},
1702         {1, "ORACLE", "Sudbury ", PPC},
1703         {0, "", ""},
1704 };
1705
1706 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1707 {
1708         struct acpi_table_header hdr;
1709         struct hw_vendor_info *v_info;
1710         const struct x86_cpu_id *id;
1711         u64 misc_pwr;
1712
1713         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1714         if (id) {
1715                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1716                 if ( misc_pwr & (1 << 8))
1717                         return true;
1718         }
1719
1720         if (acpi_disabled ||
1721             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1722                 return false;
1723
1724         for (v_info = vendor_info; v_info->valid; v_info++) {
1725                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1726                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1727                                                 ACPI_OEM_TABLE_ID_SIZE))
1728                         switch (v_info->oem_pwr_table) {
1729                         case PSS:
1730                                 return intel_pstate_no_acpi_pss();
1731                         case PPC:
1732                                 return intel_pstate_has_acpi_ppc() &&
1733                                         (!force_load);
1734                         }
1735         }
1736
1737         return false;
1738 }
1739 #else /* CONFIG_ACPI not enabled */
1740 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1741 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1742 #endif /* CONFIG_ACPI */
1743
1744 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1745         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1746         {}
1747 };
1748
1749 static int __init intel_pstate_init(void)
1750 {
1751         int cpu, rc = 0;
1752         const struct x86_cpu_id *id;
1753         struct cpu_defaults *cpu_def;
1754
1755         if (no_load)
1756                 return -ENODEV;
1757
1758         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1759                 copy_cpu_funcs(&core_params.funcs);
1760                 hwp_active++;
1761                 goto hwp_cpu_matched;
1762         }
1763
1764         id = x86_match_cpu(intel_pstate_cpu_ids);
1765         if (!id)
1766                 return -ENODEV;
1767
1768         cpu_def = (struct cpu_defaults *)id->driver_data;
1769
1770         copy_pid_params(&cpu_def->pid_policy);
1771         copy_cpu_funcs(&cpu_def->funcs);
1772
1773         if (intel_pstate_msrs_not_valid())
1774                 return -ENODEV;
1775
1776 hwp_cpu_matched:
1777         /*
1778          * The Intel pstate driver will be ignored if the platform
1779          * firmware has its own power management modes.
1780          */
1781         if (intel_pstate_platform_pwr_mgmt_exists())
1782                 return -ENODEV;
1783
1784         pr_info("Intel P-state driver initializing\n");
1785
1786         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1787         if (!all_cpu_data)
1788                 return -ENOMEM;
1789
1790         if (!hwp_active && hwp_only)
1791                 goto out;
1792
1793         rc = cpufreq_register_driver(&intel_pstate_driver);
1794         if (rc)
1795                 goto out;
1796
1797         intel_pstate_debug_expose_params();
1798         intel_pstate_sysfs_expose_params();
1799
1800         if (hwp_active)
1801                 pr_info("HWP enabled\n");
1802
1803         return rc;
1804 out:
1805         get_online_cpus();
1806         for_each_online_cpu(cpu) {
1807                 if (all_cpu_data[cpu]) {
1808                         intel_pstate_clear_update_util_hook(cpu);
1809                         kfree(all_cpu_data[cpu]);
1810                 }
1811         }
1812
1813         put_online_cpus();
1814         vfree(all_cpu_data);
1815         return -ENODEV;
1816 }
1817 device_initcall(intel_pstate_init);
1818
1819 static int __init intel_pstate_setup(char *str)
1820 {
1821         if (!str)
1822                 return -EINVAL;
1823
1824         if (!strcmp(str, "disable"))
1825                 no_load = 1;
1826         if (!strcmp(str, "no_hwp")) {
1827                 pr_info("HWP disabled\n");
1828                 no_hwp = 1;
1829         }
1830         if (!strcmp(str, "force"))
1831                 force_load = 1;
1832         if (!strcmp(str, "hwp_only"))
1833                 hwp_only = 1;
1834
1835 #ifdef CONFIG_ACPI
1836         if (!strcmp(str, "support_acpi_ppc"))
1837                 acpi_ppc = true;
1838 #endif
1839
1840         return 0;
1841 }
1842 early_param("intel_pstate", intel_pstate_setup);
1843
1844 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1845 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1846 MODULE_LICENSE("GPL");