Merge tag 'pm-urgent-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS             0x66a
41 #define ATOM_VIDS               0x66b
42 #define ATOM_TURBO_RATIOS       0x66c
43 #define ATOM_TURBO_VIDS         0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88  * struct sample -      Store performance sample
89  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
90  *                      performance during last sample period
91  * @busy_scaled:        Scaled busy value which is used to calculate next
92  *                      P state. This can be different than core_avg_perf
93  *                      to account for cpu idle period
94  * @aperf:              Difference of actual performance frequency clock count
95  *                      read from APERF MSR between last and current sample
96  * @mperf:              Difference of maximum performance frequency clock count
97  *                      read from MPERF MSR between last and current sample
98  * @tsc:                Difference of time stamp counter between last and
99  *                      current sample
100  * @time:               Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106         int32_t core_avg_perf;
107         int32_t busy_scaled;
108         u64 aperf;
109         u64 mperf;
110         u64 tsc;
111         u64 time;
112 };
113
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:     Current requested P state
117  * @min_pstate:         Min P state possible for this platform
118  * @max_pstate:         Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *                      This can be higher than the max_pstate which can
121  *                      be limited by platform thermal design power limits
122  * @scaling:            Scaling factor to  convert frequency to cpufreq
123  *                      frequency units
124  * @turbo_pstate:       Max Turbo P state possible for this platform
125  *
126  * Stores the per cpu model P state limits and current P state.
127  */
128 struct pstate_data {
129         int     current_pstate;
130         int     min_pstate;
131         int     max_pstate;
132         int     max_pstate_physical;
133         int     scaling;
134         int     turbo_pstate;
135 };
136
137 /**
138  * struct vid_data -    Stores voltage information data
139  * @min:                VID data for this platform corresponding to
140  *                      the lowest P state
141  * @max:                VID data corresponding to the highest P State.
142  * @turbo:              VID data for turbo P state
143  * @ratio:              Ratio of (vid max - vid min) /
144  *                      (max P state - Min P State)
145  *
146  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147  * This data is used in Atom platforms, where in addition to target P state,
148  * the voltage data needs to be specified to select next P State.
149  */
150 struct vid_data {
151         int min;
152         int max;
153         int turbo;
154         int32_t ratio;
155 };
156
157 /**
158  * struct _pid -        Stores PID data
159  * @setpoint:           Target set point for busyness or performance
160  * @integral:           Storage for accumulated error values
161  * @p_gain:             PID proportional gain
162  * @i_gain:             PID integral gain
163  * @d_gain:             PID derivative gain
164  * @deadband:           PID deadband
165  * @last_err:           Last error storage for integral part of PID calculation
166  *
167  * Stores PID coefficients and last error for PID controller.
168  */
169 struct _pid {
170         int setpoint;
171         int32_t integral;
172         int32_t p_gain;
173         int32_t i_gain;
174         int32_t d_gain;
175         int deadband;
176         int32_t last_err;
177 };
178
179 /**
180  * struct cpudata -     Per CPU instance data storage
181  * @cpu:                CPU number for this instance data
182  * @update_util:        CPUFreq utility callback information
183  * @update_util_set:    CPUFreq utility callback is set
184  * @pstate:             Stores P state limits for this CPU
185  * @vid:                Stores VID limits for this CPU
186  * @pid:                Stores PID parameters for this CPU
187  * @last_sample_time:   Last Sample time
188  * @prev_aperf:         Last APERF value read from APERF MSR
189  * @prev_mperf:         Last MPERF value read from MPERF MSR
190  * @prev_tsc:           Last timestamp counter (TSC) value
191  * @prev_cummulative_iowait: IO Wait time difference from last and
192  *                      current sample
193  * @sample:             Storage for storing last Sample data
194  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
195  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
196  *
197  * This structure stores per CPU instance data for all CPUs.
198  */
199 struct cpudata {
200         int cpu;
201
202         struct update_util_data update_util;
203         bool   update_util_set;
204
205         struct pstate_data pstate;
206         struct vid_data vid;
207         struct _pid pid;
208
209         u64     last_sample_time;
210         u64     prev_aperf;
211         u64     prev_mperf;
212         u64     prev_tsc;
213         u64     prev_cummulative_iowait;
214         struct sample sample;
215 #ifdef CONFIG_ACPI
216         struct acpi_processor_performance acpi_perf_data;
217         bool valid_pss_table;
218 #endif
219 };
220
221 static struct cpudata **all_cpu_data;
222
223 /**
224  * struct pid_adjust_policy - Stores static PID configuration data
225  * @sample_rate_ms:     PID calculation sample rate in ms
226  * @sample_rate_ns:     Sample rate calculation in ns
227  * @deadband:           PID deadband
228  * @setpoint:           PID Setpoint
229  * @p_gain_pct:         PID proportional gain
230  * @i_gain_pct:         PID integral gain
231  * @d_gain_pct:         PID derivative gain
232  *
233  * Stores per CPU model static PID configuration data.
234  */
235 struct pstate_adjust_policy {
236         int sample_rate_ms;
237         s64 sample_rate_ns;
238         int deadband;
239         int setpoint;
240         int p_gain_pct;
241         int d_gain_pct;
242         int i_gain_pct;
243 };
244
245 /**
246  * struct pstate_funcs - Per CPU model specific callbacks
247  * @get_max:            Callback to get maximum non turbo effective P state
248  * @get_max_physical:   Callback to get maximum non turbo physical P state
249  * @get_min:            Callback to get minimum P state
250  * @get_turbo:          Callback to get turbo P state
251  * @get_scaling:        Callback to get frequency scaling factor
252  * @get_val:            Callback to convert P state to actual MSR write value
253  * @get_vid:            Callback to get VID data for Atom platforms
254  * @get_target_pstate:  Callback to a function to calculate next P state to use
255  *
256  * Core and Atom CPU models have different way to get P State limits. This
257  * structure is used to store those callbacks.
258  */
259 struct pstate_funcs {
260         int (*get_max)(void);
261         int (*get_max_physical)(void);
262         int (*get_min)(void);
263         int (*get_turbo)(void);
264         int (*get_scaling)(void);
265         u64 (*get_val)(struct cpudata*, int pstate);
266         void (*get_vid)(struct cpudata *);
267         int32_t (*get_target_pstate)(struct cpudata *);
268 };
269
270 /**
271  * struct cpu_defaults- Per CPU model default config data
272  * @pid_policy: PID config data
273  * @funcs:              Callback function data
274  */
275 struct cpu_defaults {
276         struct pstate_adjust_policy pid_policy;
277         struct pstate_funcs funcs;
278 };
279
280 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
281 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
282
283 static struct pstate_adjust_policy pid_params __read_mostly;
284 static struct pstate_funcs pstate_funcs __read_mostly;
285 static int hwp_active __read_mostly;
286
287 #ifdef CONFIG_ACPI
288 static bool acpi_ppc;
289 #endif
290
291 /**
292  * struct perf_limits - Store user and policy limits
293  * @no_turbo:           User requested turbo state from intel_pstate sysfs
294  * @turbo_disabled:     Platform turbo status either from msr
295  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
296  *                      matches the maximum turbo pstate
297  * @max_perf_pct:       Effective maximum performance limit in percentage, this
298  *                      is minimum of either limits enforced by cpufreq policy
299  *                      or limits from user set limits via intel_pstate sysfs
300  * @min_perf_pct:       Effective minimum performance limit in percentage, this
301  *                      is maximum of either limits enforced by cpufreq policy
302  *                      or limits from user set limits via intel_pstate sysfs
303  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
304  *                      This value is used to limit max pstate
305  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
306  *                      This value is used to limit min pstate
307  * @max_policy_pct:     The maximum performance in percentage enforced by
308  *                      cpufreq setpolicy interface
309  * @max_sysfs_pct:      The maximum performance in percentage enforced by
310  *                      intel pstate sysfs interface
311  * @min_policy_pct:     The minimum performance in percentage enforced by
312  *                      cpufreq setpolicy interface
313  * @min_sysfs_pct:      The minimum performance in percentage enforced by
314  *                      intel pstate sysfs interface
315  *
316  * Storage for user and policy defined limits.
317  */
318 struct perf_limits {
319         int no_turbo;
320         int turbo_disabled;
321         int max_perf_pct;
322         int min_perf_pct;
323         int32_t max_perf;
324         int32_t min_perf;
325         int max_policy_pct;
326         int max_sysfs_pct;
327         int min_policy_pct;
328         int min_sysfs_pct;
329 };
330
331 static struct perf_limits performance_limits = {
332         .no_turbo = 0,
333         .turbo_disabled = 0,
334         .max_perf_pct = 100,
335         .max_perf = int_tofp(1),
336         .min_perf_pct = 100,
337         .min_perf = int_tofp(1),
338         .max_policy_pct = 100,
339         .max_sysfs_pct = 100,
340         .min_policy_pct = 0,
341         .min_sysfs_pct = 0,
342 };
343
344 static struct perf_limits powersave_limits = {
345         .no_turbo = 0,
346         .turbo_disabled = 0,
347         .max_perf_pct = 100,
348         .max_perf = int_tofp(1),
349         .min_perf_pct = 0,
350         .min_perf = 0,
351         .max_policy_pct = 100,
352         .max_sysfs_pct = 100,
353         .min_policy_pct = 0,
354         .min_sysfs_pct = 0,
355 };
356
357 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
358 static struct perf_limits *limits = &performance_limits;
359 #else
360 static struct perf_limits *limits = &powersave_limits;
361 #endif
362
363 #ifdef CONFIG_ACPI
364
365 static bool intel_pstate_get_ppc_enable_status(void)
366 {
367         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369                 return true;
370
371         return acpi_ppc;
372 }
373
374 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375 {
376         struct cpudata *cpu;
377         int ret;
378         int i;
379
380         if (hwp_active)
381                 return;
382
383         if (!intel_pstate_get_ppc_enable_status())
384                 return;
385
386         cpu = all_cpu_data[policy->cpu];
387
388         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
389                                                   policy->cpu);
390         if (ret)
391                 return;
392
393         /*
394          * Check if the control value in _PSS is for PERF_CTL MSR, which should
395          * guarantee that the states returned by it map to the states in our
396          * list directly.
397          */
398         if (cpu->acpi_perf_data.control_register.space_id !=
399                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
400                 goto err;
401
402         /*
403          * If there is only one entry _PSS, simply ignore _PSS and continue as
404          * usual without taking _PSS into account
405          */
406         if (cpu->acpi_perf_data.state_count < 2)
407                 goto err;
408
409         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
410         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
411                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
412                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
413                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
414                          (u32) cpu->acpi_perf_data.states[i].power,
415                          (u32) cpu->acpi_perf_data.states[i].control);
416         }
417
418         /*
419          * The _PSS table doesn't contain whole turbo frequency range.
420          * This just contains +1 MHZ above the max non turbo frequency,
421          * with control value corresponding to max turbo ratio. But
422          * when cpufreq set policy is called, it will call with this
423          * max frequency, which will cause a reduced performance as
424          * this driver uses real max turbo frequency as the max
425          * frequency. So correct this frequency in _PSS table to
426          * correct max turbo frequency based on the turbo state.
427          * Also need to convert to MHz as _PSS freq is in MHz.
428          */
429         if (!limits->turbo_disabled)
430                 cpu->acpi_perf_data.states[0].core_frequency =
431                                         policy->cpuinfo.max_freq / 1000;
432         cpu->valid_pss_table = true;
433         pr_debug("_PPC limits will be enforced\n");
434
435         return;
436
437  err:
438         cpu->valid_pss_table = false;
439         acpi_processor_unregister_performance(policy->cpu);
440 }
441
442 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
443 {
444         struct cpudata *cpu;
445
446         cpu = all_cpu_data[policy->cpu];
447         if (!cpu->valid_pss_table)
448                 return;
449
450         acpi_processor_unregister_performance(policy->cpu);
451 }
452
453 #else
454 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455 {
456 }
457
458 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 #endif
462
463 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
464                              int deadband, int integral) {
465         pid->setpoint = int_tofp(setpoint);
466         pid->deadband  = int_tofp(deadband);
467         pid->integral  = int_tofp(integral);
468         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
469 }
470
471 static inline void pid_p_gain_set(struct _pid *pid, int percent)
472 {
473         pid->p_gain = div_fp(percent, 100);
474 }
475
476 static inline void pid_i_gain_set(struct _pid *pid, int percent)
477 {
478         pid->i_gain = div_fp(percent, 100);
479 }
480
481 static inline void pid_d_gain_set(struct _pid *pid, int percent)
482 {
483         pid->d_gain = div_fp(percent, 100);
484 }
485
486 static signed int pid_calc(struct _pid *pid, int32_t busy)
487 {
488         signed int result;
489         int32_t pterm, dterm, fp_error;
490         int32_t integral_limit;
491
492         fp_error = pid->setpoint - busy;
493
494         if (abs(fp_error) <= pid->deadband)
495                 return 0;
496
497         pterm = mul_fp(pid->p_gain, fp_error);
498
499         pid->integral += fp_error;
500
501         /*
502          * We limit the integral here so that it will never
503          * get higher than 30.  This prevents it from becoming
504          * too large an input over long periods of time and allows
505          * it to get factored out sooner.
506          *
507          * The value of 30 was chosen through experimentation.
508          */
509         integral_limit = int_tofp(30);
510         if (pid->integral > integral_limit)
511                 pid->integral = integral_limit;
512         if (pid->integral < -integral_limit)
513                 pid->integral = -integral_limit;
514
515         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
516         pid->last_err = fp_error;
517
518         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
519         result = result + (1 << (FRAC_BITS-1));
520         return (signed int)fp_toint(result);
521 }
522
523 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
524 {
525         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
526         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
527         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
528
529         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
530 }
531
532 static inline void intel_pstate_reset_all_pid(void)
533 {
534         unsigned int cpu;
535
536         for_each_online_cpu(cpu) {
537                 if (all_cpu_data[cpu])
538                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
539         }
540 }
541
542 static inline void update_turbo_state(void)
543 {
544         u64 misc_en;
545         struct cpudata *cpu;
546
547         cpu = all_cpu_data[0];
548         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
549         limits->turbo_disabled =
550                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
551                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
552 }
553
554 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
555 {
556         int min, hw_min, max, hw_max, cpu, range, adj_range;
557         u64 value, cap;
558
559         rdmsrl(MSR_HWP_CAPABILITIES, cap);
560         hw_min = HWP_LOWEST_PERF(cap);
561         hw_max = HWP_HIGHEST_PERF(cap);
562         range = hw_max - hw_min;
563
564         for_each_cpu(cpu, cpumask) {
565                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
566                 adj_range = limits->min_perf_pct * range / 100;
567                 min = hw_min + adj_range;
568                 value &= ~HWP_MIN_PERF(~0L);
569                 value |= HWP_MIN_PERF(min);
570
571                 adj_range = limits->max_perf_pct * range / 100;
572                 max = hw_min + adj_range;
573                 if (limits->no_turbo) {
574                         hw_max = HWP_GUARANTEED_PERF(cap);
575                         if (hw_max < max)
576                                 max = hw_max;
577                 }
578
579                 value &= ~HWP_MAX_PERF(~0L);
580                 value |= HWP_MAX_PERF(max);
581                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
582         }
583 }
584
585 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
586 {
587         if (hwp_active)
588                 intel_pstate_hwp_set(policy->cpus);
589
590         return 0;
591 }
592
593 static void intel_pstate_hwp_set_online_cpus(void)
594 {
595         get_online_cpus();
596         intel_pstate_hwp_set(cpu_online_mask);
597         put_online_cpus();
598 }
599
600 /************************** debugfs begin ************************/
601 static int pid_param_set(void *data, u64 val)
602 {
603         *(u32 *)data = val;
604         intel_pstate_reset_all_pid();
605         return 0;
606 }
607
608 static int pid_param_get(void *data, u64 *val)
609 {
610         *val = *(u32 *)data;
611         return 0;
612 }
613 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
614
615 struct pid_param {
616         char *name;
617         void *value;
618 };
619
620 static struct pid_param pid_files[] = {
621         {"sample_rate_ms", &pid_params.sample_rate_ms},
622         {"d_gain_pct", &pid_params.d_gain_pct},
623         {"i_gain_pct", &pid_params.i_gain_pct},
624         {"deadband", &pid_params.deadband},
625         {"setpoint", &pid_params.setpoint},
626         {"p_gain_pct", &pid_params.p_gain_pct},
627         {NULL, NULL}
628 };
629
630 static void __init intel_pstate_debug_expose_params(void)
631 {
632         struct dentry *debugfs_parent;
633         int i = 0;
634
635         if (hwp_active)
636                 return;
637         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
638         if (IS_ERR_OR_NULL(debugfs_parent))
639                 return;
640         while (pid_files[i].name) {
641                 debugfs_create_file(pid_files[i].name, 0660,
642                                     debugfs_parent, pid_files[i].value,
643                                     &fops_pid_param);
644                 i++;
645         }
646 }
647
648 /************************** debugfs end ************************/
649
650 /************************** sysfs begin ************************/
651 #define show_one(file_name, object)                                     \
652         static ssize_t show_##file_name                                 \
653         (struct kobject *kobj, struct attribute *attr, char *buf)       \
654         {                                                               \
655                 return sprintf(buf, "%u\n", limits->object);            \
656         }
657
658 static ssize_t show_turbo_pct(struct kobject *kobj,
659                                 struct attribute *attr, char *buf)
660 {
661         struct cpudata *cpu;
662         int total, no_turbo, turbo_pct;
663         uint32_t turbo_fp;
664
665         cpu = all_cpu_data[0];
666
667         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
668         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
669         turbo_fp = div_fp(no_turbo, total);
670         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
671         return sprintf(buf, "%u\n", turbo_pct);
672 }
673
674 static ssize_t show_num_pstates(struct kobject *kobj,
675                                 struct attribute *attr, char *buf)
676 {
677         struct cpudata *cpu;
678         int total;
679
680         cpu = all_cpu_data[0];
681         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
682         return sprintf(buf, "%u\n", total);
683 }
684
685 static ssize_t show_no_turbo(struct kobject *kobj,
686                              struct attribute *attr, char *buf)
687 {
688         ssize_t ret;
689
690         update_turbo_state();
691         if (limits->turbo_disabled)
692                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
693         else
694                 ret = sprintf(buf, "%u\n", limits->no_turbo);
695
696         return ret;
697 }
698
699 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
700                               const char *buf, size_t count)
701 {
702         unsigned int input;
703         int ret;
704
705         ret = sscanf(buf, "%u", &input);
706         if (ret != 1)
707                 return -EINVAL;
708
709         update_turbo_state();
710         if (limits->turbo_disabled) {
711                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
712                 return -EPERM;
713         }
714
715         limits->no_turbo = clamp_t(int, input, 0, 1);
716
717         if (hwp_active)
718                 intel_pstate_hwp_set_online_cpus();
719
720         return count;
721 }
722
723 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
724                                   const char *buf, size_t count)
725 {
726         unsigned int input;
727         int ret;
728
729         ret = sscanf(buf, "%u", &input);
730         if (ret != 1)
731                 return -EINVAL;
732
733         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
734         limits->max_perf_pct = min(limits->max_policy_pct,
735                                    limits->max_sysfs_pct);
736         limits->max_perf_pct = max(limits->min_policy_pct,
737                                    limits->max_perf_pct);
738         limits->max_perf_pct = max(limits->min_perf_pct,
739                                    limits->max_perf_pct);
740         limits->max_perf = div_fp(limits->max_perf_pct, 100);
741
742         if (hwp_active)
743                 intel_pstate_hwp_set_online_cpus();
744         return count;
745 }
746
747 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
748                                   const char *buf, size_t count)
749 {
750         unsigned int input;
751         int ret;
752
753         ret = sscanf(buf, "%u", &input);
754         if (ret != 1)
755                 return -EINVAL;
756
757         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
758         limits->min_perf_pct = max(limits->min_policy_pct,
759                                    limits->min_sysfs_pct);
760         limits->min_perf_pct = min(limits->max_policy_pct,
761                                    limits->min_perf_pct);
762         limits->min_perf_pct = min(limits->max_perf_pct,
763                                    limits->min_perf_pct);
764         limits->min_perf = div_fp(limits->min_perf_pct, 100);
765
766         if (hwp_active)
767                 intel_pstate_hwp_set_online_cpus();
768         return count;
769 }
770
771 show_one(max_perf_pct, max_perf_pct);
772 show_one(min_perf_pct, min_perf_pct);
773
774 define_one_global_rw(no_turbo);
775 define_one_global_rw(max_perf_pct);
776 define_one_global_rw(min_perf_pct);
777 define_one_global_ro(turbo_pct);
778 define_one_global_ro(num_pstates);
779
780 static struct attribute *intel_pstate_attributes[] = {
781         &no_turbo.attr,
782         &max_perf_pct.attr,
783         &min_perf_pct.attr,
784         &turbo_pct.attr,
785         &num_pstates.attr,
786         NULL
787 };
788
789 static struct attribute_group intel_pstate_attr_group = {
790         .attrs = intel_pstate_attributes,
791 };
792
793 static void __init intel_pstate_sysfs_expose_params(void)
794 {
795         struct kobject *intel_pstate_kobject;
796         int rc;
797
798         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
799                                                 &cpu_subsys.dev_root->kobj);
800         BUG_ON(!intel_pstate_kobject);
801         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
802         BUG_ON(rc);
803 }
804 /************************** sysfs end ************************/
805
806 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
807 {
808         /* First disable HWP notification interrupt as we don't process them */
809         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
810                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811
812         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
813 }
814
815 static int atom_get_min_pstate(void)
816 {
817         u64 value;
818
819         rdmsrl(ATOM_RATIOS, value);
820         return (value >> 8) & 0x7F;
821 }
822
823 static int atom_get_max_pstate(void)
824 {
825         u64 value;
826
827         rdmsrl(ATOM_RATIOS, value);
828         return (value >> 16) & 0x7F;
829 }
830
831 static int atom_get_turbo_pstate(void)
832 {
833         u64 value;
834
835         rdmsrl(ATOM_TURBO_RATIOS, value);
836         return value & 0x7F;
837 }
838
839 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 {
841         u64 val;
842         int32_t vid_fp;
843         u32 vid;
844
845         val = (u64)pstate << 8;
846         if (limits->no_turbo && !limits->turbo_disabled)
847                 val |= (u64)1 << 32;
848
849         vid_fp = cpudata->vid.min + mul_fp(
850                 int_tofp(pstate - cpudata->pstate.min_pstate),
851                 cpudata->vid.ratio);
852
853         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854         vid = ceiling_fp(vid_fp);
855
856         if (pstate > cpudata->pstate.max_pstate)
857                 vid = cpudata->vid.turbo;
858
859         return val | vid;
860 }
861
862 static int silvermont_get_scaling(void)
863 {
864         u64 value;
865         int i;
866         /* Defined in Table 35-6 from SDM (Sept 2015) */
867         static int silvermont_freq_table[] = {
868                 83300, 100000, 133300, 116700, 80000};
869
870         rdmsrl(MSR_FSB_FREQ, value);
871         i = value & 0x7;
872         WARN_ON(i > 4);
873
874         return silvermont_freq_table[i];
875 }
876
877 static int airmont_get_scaling(void)
878 {
879         u64 value;
880         int i;
881         /* Defined in Table 35-10 from SDM (Sept 2015) */
882         static int airmont_freq_table[] = {
883                 83300, 100000, 133300, 116700, 80000,
884                 93300, 90000, 88900, 87500};
885
886         rdmsrl(MSR_FSB_FREQ, value);
887         i = value & 0xF;
888         WARN_ON(i > 8);
889
890         return airmont_freq_table[i];
891 }
892
893 static void atom_get_vid(struct cpudata *cpudata)
894 {
895         u64 value;
896
897         rdmsrl(ATOM_VIDS, value);
898         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900         cpudata->vid.ratio = div_fp(
901                 cpudata->vid.max - cpudata->vid.min,
902                 int_tofp(cpudata->pstate.max_pstate -
903                         cpudata->pstate.min_pstate));
904
905         rdmsrl(ATOM_TURBO_VIDS, value);
906         cpudata->vid.turbo = value & 0x7f;
907 }
908
909 static int core_get_min_pstate(void)
910 {
911         u64 value;
912
913         rdmsrl(MSR_PLATFORM_INFO, value);
914         return (value >> 40) & 0xFF;
915 }
916
917 static int core_get_max_pstate_physical(void)
918 {
919         u64 value;
920
921         rdmsrl(MSR_PLATFORM_INFO, value);
922         return (value >> 8) & 0xFF;
923 }
924
925 static int core_get_max_pstate(void)
926 {
927         u64 tar;
928         u64 plat_info;
929         int max_pstate;
930         int err;
931
932         rdmsrl(MSR_PLATFORM_INFO, plat_info);
933         max_pstate = (plat_info >> 8) & 0xFF;
934
935         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936         if (!err) {
937                 /* Do some sanity checking for safety */
938                 if (plat_info & 0x600000000) {
939                         u64 tdp_ctrl;
940                         u64 tdp_ratio;
941                         int tdp_msr;
942
943                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944                         if (err)
945                                 goto skip_tar;
946
947                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
948                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949                         if (err)
950                                 goto skip_tar;
951
952                         /* For level 1 and 2, bits[23:16] contain the ratio */
953                         if (tdp_ctrl)
954                                 tdp_ratio >>= 16;
955
956                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957                         if (tdp_ratio - 1 == tar) {
958                                 max_pstate = tar;
959                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
960                         } else {
961                                 goto skip_tar;
962                         }
963                 }
964         }
965
966 skip_tar:
967         return max_pstate;
968 }
969
970 static int core_get_turbo_pstate(void)
971 {
972         u64 value;
973         int nont, ret;
974
975         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
976         nont = core_get_max_pstate();
977         ret = (value) & 255;
978         if (ret <= nont)
979                 ret = nont;
980         return ret;
981 }
982
983 static inline int core_get_scaling(void)
984 {
985         return 100000;
986 }
987
988 static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 {
990         u64 val;
991
992         val = (u64)pstate << 8;
993         if (limits->no_turbo && !limits->turbo_disabled)
994                 val |= (u64)1 << 32;
995
996         return val;
997 }
998
999 static int knl_get_turbo_pstate(void)
1000 {
1001         u64 value;
1002         int nont, ret;
1003
1004         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1005         nont = core_get_max_pstate();
1006         ret = (((value) >> 8) & 0xFF);
1007         if (ret <= nont)
1008                 ret = nont;
1009         return ret;
1010 }
1011
1012 static struct cpu_defaults core_params = {
1013         .pid_policy = {
1014                 .sample_rate_ms = 10,
1015                 .deadband = 0,
1016                 .setpoint = 97,
1017                 .p_gain_pct = 20,
1018                 .d_gain_pct = 0,
1019                 .i_gain_pct = 0,
1020         },
1021         .funcs = {
1022                 .get_max = core_get_max_pstate,
1023                 .get_max_physical = core_get_max_pstate_physical,
1024                 .get_min = core_get_min_pstate,
1025                 .get_turbo = core_get_turbo_pstate,
1026                 .get_scaling = core_get_scaling,
1027                 .get_val = core_get_val,
1028                 .get_target_pstate = get_target_pstate_use_performance,
1029         },
1030 };
1031
1032 static struct cpu_defaults silvermont_params = {
1033         .pid_policy = {
1034                 .sample_rate_ms = 10,
1035                 .deadband = 0,
1036                 .setpoint = 60,
1037                 .p_gain_pct = 14,
1038                 .d_gain_pct = 0,
1039                 .i_gain_pct = 4,
1040         },
1041         .funcs = {
1042                 .get_max = atom_get_max_pstate,
1043                 .get_max_physical = atom_get_max_pstate,
1044                 .get_min = atom_get_min_pstate,
1045                 .get_turbo = atom_get_turbo_pstate,
1046                 .get_val = atom_get_val,
1047                 .get_scaling = silvermont_get_scaling,
1048                 .get_vid = atom_get_vid,
1049                 .get_target_pstate = get_target_pstate_use_cpu_load,
1050         },
1051 };
1052
1053 static struct cpu_defaults airmont_params = {
1054         .pid_policy = {
1055                 .sample_rate_ms = 10,
1056                 .deadband = 0,
1057                 .setpoint = 60,
1058                 .p_gain_pct = 14,
1059                 .d_gain_pct = 0,
1060                 .i_gain_pct = 4,
1061         },
1062         .funcs = {
1063                 .get_max = atom_get_max_pstate,
1064                 .get_max_physical = atom_get_max_pstate,
1065                 .get_min = atom_get_min_pstate,
1066                 .get_turbo = atom_get_turbo_pstate,
1067                 .get_val = atom_get_val,
1068                 .get_scaling = airmont_get_scaling,
1069                 .get_vid = atom_get_vid,
1070                 .get_target_pstate = get_target_pstate_use_cpu_load,
1071         },
1072 };
1073
1074 static struct cpu_defaults knl_params = {
1075         .pid_policy = {
1076                 .sample_rate_ms = 10,
1077                 .deadband = 0,
1078                 .setpoint = 97,
1079                 .p_gain_pct = 20,
1080                 .d_gain_pct = 0,
1081                 .i_gain_pct = 0,
1082         },
1083         .funcs = {
1084                 .get_max = core_get_max_pstate,
1085                 .get_max_physical = core_get_max_pstate_physical,
1086                 .get_min = core_get_min_pstate,
1087                 .get_turbo = knl_get_turbo_pstate,
1088                 .get_scaling = core_get_scaling,
1089                 .get_val = core_get_val,
1090                 .get_target_pstate = get_target_pstate_use_performance,
1091         },
1092 };
1093
1094 static struct cpu_defaults bxt_params = {
1095         .pid_policy = {
1096                 .sample_rate_ms = 10,
1097                 .deadband = 0,
1098                 .setpoint = 60,
1099                 .p_gain_pct = 14,
1100                 .d_gain_pct = 0,
1101                 .i_gain_pct = 4,
1102         },
1103         .funcs = {
1104                 .get_max = core_get_max_pstate,
1105                 .get_max_physical = core_get_max_pstate_physical,
1106                 .get_min = core_get_min_pstate,
1107                 .get_turbo = core_get_turbo_pstate,
1108                 .get_scaling = core_get_scaling,
1109                 .get_val = core_get_val,
1110                 .get_target_pstate = get_target_pstate_use_cpu_load,
1111         },
1112 };
1113
1114 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1115 {
1116         int max_perf = cpu->pstate.turbo_pstate;
1117         int max_perf_adj;
1118         int min_perf;
1119
1120         if (limits->no_turbo || limits->turbo_disabled)
1121                 max_perf = cpu->pstate.max_pstate;
1122
1123         /*
1124          * performance can be limited by user through sysfs, by cpufreq
1125          * policy, or by cpu specific default values determined through
1126          * experimentation.
1127          */
1128         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1129         *max = clamp_t(int, max_perf_adj,
1130                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1131
1132         min_perf = fp_toint(max_perf * limits->min_perf);
1133         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1134 }
1135
1136 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1137 {
1138         int pstate = cpu->pstate.min_pstate;
1139
1140         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1141         cpu->pstate.current_pstate = pstate;
1142         /*
1143          * Generally, there is no guarantee that this code will always run on
1144          * the CPU being updated, so force the register update to run on the
1145          * right CPU.
1146          */
1147         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1148                       pstate_funcs.get_val(cpu, pstate));
1149 }
1150
1151 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1152 {
1153         cpu->pstate.min_pstate = pstate_funcs.get_min();
1154         cpu->pstate.max_pstate = pstate_funcs.get_max();
1155         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1156         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1157         cpu->pstate.scaling = pstate_funcs.get_scaling();
1158
1159         if (pstate_funcs.get_vid)
1160                 pstate_funcs.get_vid(cpu);
1161
1162         intel_pstate_set_min_pstate(cpu);
1163 }
1164
1165 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1166 {
1167         struct sample *sample = &cpu->sample;
1168
1169         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1170 }
1171
1172 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1173 {
1174         u64 aperf, mperf;
1175         unsigned long flags;
1176         u64 tsc;
1177
1178         local_irq_save(flags);
1179         rdmsrl(MSR_IA32_APERF, aperf);
1180         rdmsrl(MSR_IA32_MPERF, mperf);
1181         tsc = rdtsc();
1182         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1183                 local_irq_restore(flags);
1184                 return false;
1185         }
1186         local_irq_restore(flags);
1187
1188         cpu->last_sample_time = cpu->sample.time;
1189         cpu->sample.time = time;
1190         cpu->sample.aperf = aperf;
1191         cpu->sample.mperf = mperf;
1192         cpu->sample.tsc =  tsc;
1193         cpu->sample.aperf -= cpu->prev_aperf;
1194         cpu->sample.mperf -= cpu->prev_mperf;
1195         cpu->sample.tsc -= cpu->prev_tsc;
1196
1197         cpu->prev_aperf = aperf;
1198         cpu->prev_mperf = mperf;
1199         cpu->prev_tsc = tsc;
1200         /*
1201          * First time this function is invoked in a given cycle, all of the
1202          * previous sample data fields are equal to zero or stale and they must
1203          * be populated with meaningful numbers for things to work, so assume
1204          * that sample.time will always be reset before setting the utilization
1205          * update hook and make the caller skip the sample then.
1206          */
1207         return !!cpu->last_sample_time;
1208 }
1209
1210 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1211 {
1212         return mul_ext_fp(cpu->sample.core_avg_perf,
1213                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1214 }
1215
1216 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1217 {
1218         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1219                           cpu->sample.core_avg_perf);
1220 }
1221
1222 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1223 {
1224         struct sample *sample = &cpu->sample;
1225         u64 cummulative_iowait, delta_iowait_us;
1226         u64 delta_iowait_mperf;
1227         u64 mperf, now;
1228         int32_t cpu_load;
1229
1230         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1231
1232         /*
1233          * Convert iowait time into number of IO cycles spent at max_freq.
1234          * IO is considered as busy only for the cpu_load algorithm. For
1235          * performance this is not needed since we always try to reach the
1236          * maximum P-State, so we are already boosting the IOs.
1237          */
1238         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1239         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1240                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1241
1242         mperf = cpu->sample.mperf + delta_iowait_mperf;
1243         cpu->prev_cummulative_iowait = cummulative_iowait;
1244
1245         /*
1246          * The load can be estimated as the ratio of the mperf counter
1247          * running at a constant frequency during active periods
1248          * (C0) and the time stamp counter running at the same frequency
1249          * also during C-states.
1250          */
1251         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1252         cpu->sample.busy_scaled = cpu_load;
1253
1254         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1255 }
1256
1257 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1258 {
1259         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1260         u64 duration_ns;
1261
1262         /*
1263          * perf_scaled is the average performance during the last sampling
1264          * period scaled by the ratio of the maximum P-state to the P-state
1265          * requested last time (in percent).  That measures the system's
1266          * response to the previous P-state selection.
1267          */
1268         max_pstate = cpu->pstate.max_pstate_physical;
1269         current_pstate = cpu->pstate.current_pstate;
1270         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1271                                div_fp(100 * max_pstate, current_pstate));
1272
1273         /*
1274          * Since our utilization update callback will not run unless we are
1275          * in C0, check if the actual elapsed time is significantly greater (3x)
1276          * than our sample interval.  If it is, then we were idle for a long
1277          * enough period of time to adjust our performance metric.
1278          */
1279         duration_ns = cpu->sample.time - cpu->last_sample_time;
1280         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1281                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1282                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1283         } else {
1284                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1285                 if (sample_ratio < int_tofp(1))
1286                         perf_scaled = 0;
1287         }
1288
1289         cpu->sample.busy_scaled = perf_scaled;
1290         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1291 }
1292
1293 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1294 {
1295         int max_perf, min_perf;
1296
1297         update_turbo_state();
1298
1299         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1300         pstate = clamp_t(int, pstate, min_perf, max_perf);
1301         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1302         if (pstate == cpu->pstate.current_pstate)
1303                 return;
1304
1305         cpu->pstate.current_pstate = pstate;
1306         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1307 }
1308
1309 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1310 {
1311         int from, target_pstate;
1312         struct sample *sample;
1313
1314         from = cpu->pstate.current_pstate;
1315
1316         target_pstate = pstate_funcs.get_target_pstate(cpu);
1317
1318         intel_pstate_update_pstate(cpu, target_pstate);
1319
1320         sample = &cpu->sample;
1321         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1322                 fp_toint(sample->busy_scaled),
1323                 from,
1324                 cpu->pstate.current_pstate,
1325                 sample->mperf,
1326                 sample->aperf,
1327                 sample->tsc,
1328                 get_avg_frequency(cpu));
1329 }
1330
1331 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1332                                      unsigned long util, unsigned long max)
1333 {
1334         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1335         u64 delta_ns = time - cpu->sample.time;
1336
1337         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1338                 bool sample_taken = intel_pstate_sample(cpu, time);
1339
1340                 if (sample_taken) {
1341                         intel_pstate_calc_avg_perf(cpu);
1342                         if (!hwp_active)
1343                                 intel_pstate_adjust_busy_pstate(cpu);
1344                 }
1345         }
1346 }
1347
1348 #define ICPU(model, policy) \
1349         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1350                         (unsigned long)&policy }
1351
1352 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1353         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1354         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1355         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1356         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1357         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1358         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1359         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1360         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1361         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1362         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1363         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1364         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1365         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1366         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1367         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1368         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1369         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1370         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1371         {}
1372 };
1373 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1374
1375 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1376         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1377         {}
1378 };
1379
1380 static int intel_pstate_init_cpu(unsigned int cpunum)
1381 {
1382         struct cpudata *cpu;
1383
1384         if (!all_cpu_data[cpunum])
1385                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1386                                                GFP_KERNEL);
1387         if (!all_cpu_data[cpunum])
1388                 return -ENOMEM;
1389
1390         cpu = all_cpu_data[cpunum];
1391
1392         cpu->cpu = cpunum;
1393
1394         if (hwp_active) {
1395                 intel_pstate_hwp_enable(cpu);
1396                 pid_params.sample_rate_ms = 50;
1397                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1398         }
1399
1400         intel_pstate_get_cpu_pstates(cpu);
1401
1402         intel_pstate_busy_pid_reset(cpu);
1403
1404         pr_debug("controlling: cpu %d\n", cpunum);
1405
1406         return 0;
1407 }
1408
1409 static unsigned int intel_pstate_get(unsigned int cpu_num)
1410 {
1411         struct cpudata *cpu = all_cpu_data[cpu_num];
1412
1413         return cpu ? get_avg_frequency(cpu) : 0;
1414 }
1415
1416 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1417 {
1418         struct cpudata *cpu = all_cpu_data[cpu_num];
1419
1420         if (cpu->update_util_set)
1421                 return;
1422
1423         /* Prevent intel_pstate_update_util() from using stale data. */
1424         cpu->sample.time = 0;
1425         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1426                                      intel_pstate_update_util);
1427         cpu->update_util_set = true;
1428 }
1429
1430 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1431 {
1432         struct cpudata *cpu_data = all_cpu_data[cpu];
1433
1434         if (!cpu_data->update_util_set)
1435                 return;
1436
1437         cpufreq_remove_update_util_hook(cpu);
1438         cpu_data->update_util_set = false;
1439         synchronize_sched();
1440 }
1441
1442 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1443 {
1444         limits->no_turbo = 0;
1445         limits->turbo_disabled = 0;
1446         limits->max_perf_pct = 100;
1447         limits->max_perf = int_tofp(1);
1448         limits->min_perf_pct = 100;
1449         limits->min_perf = int_tofp(1);
1450         limits->max_policy_pct = 100;
1451         limits->max_sysfs_pct = 100;
1452         limits->min_policy_pct = 0;
1453         limits->min_sysfs_pct = 0;
1454 }
1455
1456 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1457 {
1458         struct cpudata *cpu;
1459
1460         if (!policy->cpuinfo.max_freq)
1461                 return -ENODEV;
1462
1463         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1464                  policy->cpuinfo.max_freq, policy->max);
1465
1466         cpu = all_cpu_data[0];
1467         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1468             policy->max < policy->cpuinfo.max_freq &&
1469             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1470                 pr_debug("policy->max > max non turbo frequency\n");
1471                 policy->max = policy->cpuinfo.max_freq;
1472         }
1473
1474         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1475                 limits = &performance_limits;
1476                 if (policy->max >= policy->cpuinfo.max_freq) {
1477                         pr_debug("set performance\n");
1478                         intel_pstate_set_performance_limits(limits);
1479                         goto out;
1480                 }
1481         } else {
1482                 pr_debug("set powersave\n");
1483                 limits = &powersave_limits;
1484         }
1485
1486         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1487         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1488         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1489                                               policy->cpuinfo.max_freq);
1490         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1491
1492         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1493         limits->min_perf_pct = max(limits->min_policy_pct,
1494                                    limits->min_sysfs_pct);
1495         limits->min_perf_pct = min(limits->max_policy_pct,
1496                                    limits->min_perf_pct);
1497         limits->max_perf_pct = min(limits->max_policy_pct,
1498                                    limits->max_sysfs_pct);
1499         limits->max_perf_pct = max(limits->min_policy_pct,
1500                                    limits->max_perf_pct);
1501
1502         /* Make sure min_perf_pct <= max_perf_pct */
1503         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1504
1505         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1506         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1507         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1508
1509  out:
1510         intel_pstate_set_update_util_hook(policy->cpu);
1511
1512         intel_pstate_hwp_set_policy(policy);
1513
1514         return 0;
1515 }
1516
1517 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1518 {
1519         cpufreq_verify_within_cpu_limits(policy);
1520
1521         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1522             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1523                 return -EINVAL;
1524
1525         return 0;
1526 }
1527
1528 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1529 {
1530         int cpu_num = policy->cpu;
1531         struct cpudata *cpu = all_cpu_data[cpu_num];
1532
1533         pr_debug("CPU %d exiting\n", cpu_num);
1534
1535         intel_pstate_clear_update_util_hook(cpu_num);
1536
1537         if (hwp_active)
1538                 return;
1539
1540         intel_pstate_set_min_pstate(cpu);
1541 }
1542
1543 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1544 {
1545         struct cpudata *cpu;
1546         int rc;
1547
1548         rc = intel_pstate_init_cpu(policy->cpu);
1549         if (rc)
1550                 return rc;
1551
1552         cpu = all_cpu_data[policy->cpu];
1553
1554         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1555                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1556         else
1557                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1558
1559         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1560         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1561
1562         /* cpuinfo and default policy values */
1563         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1564         update_turbo_state();
1565         policy->cpuinfo.max_freq = limits->turbo_disabled ?
1566                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1567         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1568
1569         intel_pstate_init_acpi_perf_limits(policy);
1570         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1571         cpumask_set_cpu(policy->cpu, policy->cpus);
1572
1573         return 0;
1574 }
1575
1576 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1577 {
1578         intel_pstate_exit_perf_limits(policy);
1579
1580         return 0;
1581 }
1582
1583 static struct cpufreq_driver intel_pstate_driver = {
1584         .flags          = CPUFREQ_CONST_LOOPS,
1585         .verify         = intel_pstate_verify_policy,
1586         .setpolicy      = intel_pstate_set_policy,
1587         .resume         = intel_pstate_hwp_set_policy,
1588         .get            = intel_pstate_get,
1589         .init           = intel_pstate_cpu_init,
1590         .exit           = intel_pstate_cpu_exit,
1591         .stop_cpu       = intel_pstate_stop_cpu,
1592         .name           = "intel_pstate",
1593 };
1594
1595 static int no_load __initdata;
1596 static int no_hwp __initdata;
1597 static int hwp_only __initdata;
1598 static unsigned int force_load __initdata;
1599
1600 static int __init intel_pstate_msrs_not_valid(void)
1601 {
1602         if (!pstate_funcs.get_max() ||
1603             !pstate_funcs.get_min() ||
1604             !pstate_funcs.get_turbo())
1605                 return -ENODEV;
1606
1607         return 0;
1608 }
1609
1610 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1611 {
1612         pid_params.sample_rate_ms = policy->sample_rate_ms;
1613         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1614         pid_params.p_gain_pct = policy->p_gain_pct;
1615         pid_params.i_gain_pct = policy->i_gain_pct;
1616         pid_params.d_gain_pct = policy->d_gain_pct;
1617         pid_params.deadband = policy->deadband;
1618         pid_params.setpoint = policy->setpoint;
1619 }
1620
1621 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1622 {
1623         pstate_funcs.get_max   = funcs->get_max;
1624         pstate_funcs.get_max_physical = funcs->get_max_physical;
1625         pstate_funcs.get_min   = funcs->get_min;
1626         pstate_funcs.get_turbo = funcs->get_turbo;
1627         pstate_funcs.get_scaling = funcs->get_scaling;
1628         pstate_funcs.get_val   = funcs->get_val;
1629         pstate_funcs.get_vid   = funcs->get_vid;
1630         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1631
1632 }
1633
1634 #ifdef CONFIG_ACPI
1635
1636 static bool __init intel_pstate_no_acpi_pss(void)
1637 {
1638         int i;
1639
1640         for_each_possible_cpu(i) {
1641                 acpi_status status;
1642                 union acpi_object *pss;
1643                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1644                 struct acpi_processor *pr = per_cpu(processors, i);
1645
1646                 if (!pr)
1647                         continue;
1648
1649                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1650                 if (ACPI_FAILURE(status))
1651                         continue;
1652
1653                 pss = buffer.pointer;
1654                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1655                         kfree(pss);
1656                         return false;
1657                 }
1658
1659                 kfree(pss);
1660         }
1661
1662         return true;
1663 }
1664
1665 static bool __init intel_pstate_has_acpi_ppc(void)
1666 {
1667         int i;
1668
1669         for_each_possible_cpu(i) {
1670                 struct acpi_processor *pr = per_cpu(processors, i);
1671
1672                 if (!pr)
1673                         continue;
1674                 if (acpi_has_method(pr->handle, "_PPC"))
1675                         return true;
1676         }
1677         return false;
1678 }
1679
1680 enum {
1681         PSS,
1682         PPC,
1683 };
1684
1685 struct hw_vendor_info {
1686         u16  valid;
1687         char oem_id[ACPI_OEM_ID_SIZE];
1688         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1689         int  oem_pwr_table;
1690 };
1691
1692 /* Hardware vendor-specific info that has its own power management modes */
1693 static struct hw_vendor_info vendor_info[] __initdata = {
1694         {1, "HP    ", "ProLiant", PSS},
1695         {1, "ORACLE", "X4-2    ", PPC},
1696         {1, "ORACLE", "X4-2L   ", PPC},
1697         {1, "ORACLE", "X4-2B   ", PPC},
1698         {1, "ORACLE", "X3-2    ", PPC},
1699         {1, "ORACLE", "X3-2L   ", PPC},
1700         {1, "ORACLE", "X3-2B   ", PPC},
1701         {1, "ORACLE", "X4470M2 ", PPC},
1702         {1, "ORACLE", "X4270M3 ", PPC},
1703         {1, "ORACLE", "X4270M2 ", PPC},
1704         {1, "ORACLE", "X4170M2 ", PPC},
1705         {1, "ORACLE", "X4170 M3", PPC},
1706         {1, "ORACLE", "X4275 M3", PPC},
1707         {1, "ORACLE", "X6-2    ", PPC},
1708         {1, "ORACLE", "Sudbury ", PPC},
1709         {0, "", ""},
1710 };
1711
1712 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1713 {
1714         struct acpi_table_header hdr;
1715         struct hw_vendor_info *v_info;
1716         const struct x86_cpu_id *id;
1717         u64 misc_pwr;
1718
1719         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1720         if (id) {
1721                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1722                 if ( misc_pwr & (1 << 8))
1723                         return true;
1724         }
1725
1726         if (acpi_disabled ||
1727             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1728                 return false;
1729
1730         for (v_info = vendor_info; v_info->valid; v_info++) {
1731                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1732                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1733                                                 ACPI_OEM_TABLE_ID_SIZE))
1734                         switch (v_info->oem_pwr_table) {
1735                         case PSS:
1736                                 return intel_pstate_no_acpi_pss();
1737                         case PPC:
1738                                 return intel_pstate_has_acpi_ppc() &&
1739                                         (!force_load);
1740                         }
1741         }
1742
1743         return false;
1744 }
1745 #else /* CONFIG_ACPI not enabled */
1746 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1747 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1748 #endif /* CONFIG_ACPI */
1749
1750 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1751         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1752         {}
1753 };
1754
1755 static int __init intel_pstate_init(void)
1756 {
1757         int cpu, rc = 0;
1758         const struct x86_cpu_id *id;
1759         struct cpu_defaults *cpu_def;
1760
1761         if (no_load)
1762                 return -ENODEV;
1763
1764         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1765                 copy_cpu_funcs(&core_params.funcs);
1766                 hwp_active++;
1767                 goto hwp_cpu_matched;
1768         }
1769
1770         id = x86_match_cpu(intel_pstate_cpu_ids);
1771         if (!id)
1772                 return -ENODEV;
1773
1774         cpu_def = (struct cpu_defaults *)id->driver_data;
1775
1776         copy_pid_params(&cpu_def->pid_policy);
1777         copy_cpu_funcs(&cpu_def->funcs);
1778
1779         if (intel_pstate_msrs_not_valid())
1780                 return -ENODEV;
1781
1782 hwp_cpu_matched:
1783         /*
1784          * The Intel pstate driver will be ignored if the platform
1785          * firmware has its own power management modes.
1786          */
1787         if (intel_pstate_platform_pwr_mgmt_exists())
1788                 return -ENODEV;
1789
1790         pr_info("Intel P-state driver initializing\n");
1791
1792         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1793         if (!all_cpu_data)
1794                 return -ENOMEM;
1795
1796         if (!hwp_active && hwp_only)
1797                 goto out;
1798
1799         rc = cpufreq_register_driver(&intel_pstate_driver);
1800         if (rc)
1801                 goto out;
1802
1803         intel_pstate_debug_expose_params();
1804         intel_pstate_sysfs_expose_params();
1805
1806         if (hwp_active)
1807                 pr_info("HWP enabled\n");
1808
1809         return rc;
1810 out:
1811         get_online_cpus();
1812         for_each_online_cpu(cpu) {
1813                 if (all_cpu_data[cpu]) {
1814                         intel_pstate_clear_update_util_hook(cpu);
1815                         kfree(all_cpu_data[cpu]);
1816                 }
1817         }
1818
1819         put_online_cpus();
1820         vfree(all_cpu_data);
1821         return -ENODEV;
1822 }
1823 device_initcall(intel_pstate_init);
1824
1825 static int __init intel_pstate_setup(char *str)
1826 {
1827         if (!str)
1828                 return -EINVAL;
1829
1830         if (!strcmp(str, "disable"))
1831                 no_load = 1;
1832         if (!strcmp(str, "no_hwp")) {
1833                 pr_info("HWP disabled\n");
1834                 no_hwp = 1;
1835         }
1836         if (!strcmp(str, "force"))
1837                 force_load = 1;
1838         if (!strcmp(str, "hwp_only"))
1839                 hwp_only = 1;
1840
1841 #ifdef CONFIG_ACPI
1842         if (!strcmp(str, "support_acpi_ppc"))
1843                 acpi_ppc = true;
1844 #endif
1845
1846         return 0;
1847 }
1848 early_param("intel_pstate", intel_pstate_setup);
1849
1850 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1851 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1852 MODULE_LICENSE("GPL");