Merge branch 'x86/cpu' into x86/platform, to avoid conflict
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS             0x66a
41 #define ATOM_VIDS               0x66b
42 #define ATOM_TURBO_RATIOS       0x66c
43 #define ATOM_TURBO_VIDS         0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88  * struct sample -      Store performance sample
89  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
90  *                      performance during last sample period
91  * @busy_scaled:        Scaled busy value which is used to calculate next
92  *                      P state. This can be different than core_avg_perf
93  *                      to account for cpu idle period
94  * @aperf:              Difference of actual performance frequency clock count
95  *                      read from APERF MSR between last and current sample
96  * @mperf:              Difference of maximum performance frequency clock count
97  *                      read from MPERF MSR between last and current sample
98  * @tsc:                Difference of time stamp counter between last and
99  *                      current sample
100  * @freq:               Effective frequency calculated from APERF/MPERF
101  * @time:               Current time from scheduler
102  *
103  * This structure is used in the cpudata structure to store performance sample
104  * data for choosing next P State.
105  */
106 struct sample {
107         int32_t core_avg_perf;
108         int32_t busy_scaled;
109         u64 aperf;
110         u64 mperf;
111         u64 tsc;
112         int freq;
113         u64 time;
114 };
115
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:     Current requested P state
119  * @min_pstate:         Min P state possible for this platform
120  * @max_pstate:         Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *                      This can be higher than the max_pstate which can
123  *                      be limited by platform thermal design power limits
124  * @scaling:            Scaling factor to  convert frequency to cpufreq
125  *                      frequency units
126  * @turbo_pstate:       Max Turbo P state possible for this platform
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131         int     current_pstate;
132         int     min_pstate;
133         int     max_pstate;
134         int     max_pstate_physical;
135         int     scaling;
136         int     turbo_pstate;
137 };
138
139 /**
140  * struct vid_data -    Stores voltage information data
141  * @min:                VID data for this platform corresponding to
142  *                      the lowest P state
143  * @max:                VID data corresponding to the highest P State.
144  * @turbo:              VID data for turbo P state
145  * @ratio:              Ratio of (vid max - vid min) /
146  *                      (max P state - Min P State)
147  *
148  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149  * This data is used in Atom platforms, where in addition to target P state,
150  * the voltage data needs to be specified to select next P State.
151  */
152 struct vid_data {
153         int min;
154         int max;
155         int turbo;
156         int32_t ratio;
157 };
158
159 /**
160  * struct _pid -        Stores PID data
161  * @setpoint:           Target set point for busyness or performance
162  * @integral:           Storage for accumulated error values
163  * @p_gain:             PID proportional gain
164  * @i_gain:             PID integral gain
165  * @d_gain:             PID derivative gain
166  * @deadband:           PID deadband
167  * @last_err:           Last error storage for integral part of PID calculation
168  *
169  * Stores PID coefficients and last error for PID controller.
170  */
171 struct _pid {
172         int setpoint;
173         int32_t integral;
174         int32_t p_gain;
175         int32_t i_gain;
176         int32_t d_gain;
177         int deadband;
178         int32_t last_err;
179 };
180
181 /**
182  * struct cpudata -     Per CPU instance data storage
183  * @cpu:                CPU number for this instance data
184  * @update_util:        CPUFreq utility callback information
185  * @update_util_set:    CPUFreq utility callback is set
186  * @pstate:             Stores P state limits for this CPU
187  * @vid:                Stores VID limits for this CPU
188  * @pid:                Stores PID parameters for this CPU
189  * @last_sample_time:   Last Sample time
190  * @prev_aperf:         Last APERF value read from APERF MSR
191  * @prev_mperf:         Last MPERF value read from MPERF MSR
192  * @prev_tsc:           Last timestamp counter (TSC) value
193  * @prev_cummulative_iowait: IO Wait time difference from last and
194  *                      current sample
195  * @sample:             Storage for storing last Sample data
196  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
197  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
198  *
199  * This structure stores per CPU instance data for all CPUs.
200  */
201 struct cpudata {
202         int cpu;
203
204         struct update_util_data update_util;
205         bool   update_util_set;
206
207         struct pstate_data pstate;
208         struct vid_data vid;
209         struct _pid pid;
210
211         u64     last_sample_time;
212         u64     prev_aperf;
213         u64     prev_mperf;
214         u64     prev_tsc;
215         u64     prev_cummulative_iowait;
216         struct sample sample;
217 #ifdef CONFIG_ACPI
218         struct acpi_processor_performance acpi_perf_data;
219         bool valid_pss_table;
220 #endif
221 };
222
223 static struct cpudata **all_cpu_data;
224
225 /**
226  * struct pid_adjust_policy - Stores static PID configuration data
227  * @sample_rate_ms:     PID calculation sample rate in ms
228  * @sample_rate_ns:     Sample rate calculation in ns
229  * @deadband:           PID deadband
230  * @setpoint:           PID Setpoint
231  * @p_gain_pct:         PID proportional gain
232  * @i_gain_pct:         PID integral gain
233  * @d_gain_pct:         PID derivative gain
234  *
235  * Stores per CPU model static PID configuration data.
236  */
237 struct pstate_adjust_policy {
238         int sample_rate_ms;
239         s64 sample_rate_ns;
240         int deadband;
241         int setpoint;
242         int p_gain_pct;
243         int d_gain_pct;
244         int i_gain_pct;
245 };
246
247 /**
248  * struct pstate_funcs - Per CPU model specific callbacks
249  * @get_max:            Callback to get maximum non turbo effective P state
250  * @get_max_physical:   Callback to get maximum non turbo physical P state
251  * @get_min:            Callback to get minimum P state
252  * @get_turbo:          Callback to get turbo P state
253  * @get_scaling:        Callback to get frequency scaling factor
254  * @get_val:            Callback to convert P state to actual MSR write value
255  * @get_vid:            Callback to get VID data for Atom platforms
256  * @get_target_pstate:  Callback to a function to calculate next P state to use
257  *
258  * Core and Atom CPU models have different way to get P State limits. This
259  * structure is used to store those callbacks.
260  */
261 struct pstate_funcs {
262         int (*get_max)(void);
263         int (*get_max_physical)(void);
264         int (*get_min)(void);
265         int (*get_turbo)(void);
266         int (*get_scaling)(void);
267         u64 (*get_val)(struct cpudata*, int pstate);
268         void (*get_vid)(struct cpudata *);
269         int32_t (*get_target_pstate)(struct cpudata *);
270 };
271
272 /**
273  * struct cpu_defaults- Per CPU model default config data
274  * @pid_policy: PID config data
275  * @funcs:              Callback function data
276  */
277 struct cpu_defaults {
278         struct pstate_adjust_policy pid_policy;
279         struct pstate_funcs funcs;
280 };
281
282 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284
285 static struct pstate_adjust_policy pid_params;
286 static struct pstate_funcs pstate_funcs;
287 static int hwp_active;
288
289 #ifdef CONFIG_ACPI
290 static bool acpi_ppc;
291 #endif
292
293 /**
294  * struct perf_limits - Store user and policy limits
295  * @no_turbo:           User requested turbo state from intel_pstate sysfs
296  * @turbo_disabled:     Platform turbo status either from msr
297  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
298  *                      matches the maximum turbo pstate
299  * @max_perf_pct:       Effective maximum performance limit in percentage, this
300  *                      is minimum of either limits enforced by cpufreq policy
301  *                      or limits from user set limits via intel_pstate sysfs
302  * @min_perf_pct:       Effective minimum performance limit in percentage, this
303  *                      is maximum of either limits enforced by cpufreq policy
304  *                      or limits from user set limits via intel_pstate sysfs
305  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
306  *                      This value is used to limit max pstate
307  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
308  *                      This value is used to limit min pstate
309  * @max_policy_pct:     The maximum performance in percentage enforced by
310  *                      cpufreq setpolicy interface
311  * @max_sysfs_pct:      The maximum performance in percentage enforced by
312  *                      intel pstate sysfs interface
313  * @min_policy_pct:     The minimum performance in percentage enforced by
314  *                      cpufreq setpolicy interface
315  * @min_sysfs_pct:      The minimum performance in percentage enforced by
316  *                      intel pstate sysfs interface
317  *
318  * Storage for user and policy defined limits.
319  */
320 struct perf_limits {
321         int no_turbo;
322         int turbo_disabled;
323         int max_perf_pct;
324         int min_perf_pct;
325         int32_t max_perf;
326         int32_t min_perf;
327         int max_policy_pct;
328         int max_sysfs_pct;
329         int min_policy_pct;
330         int min_sysfs_pct;
331 };
332
333 static struct perf_limits performance_limits = {
334         .no_turbo = 0,
335         .turbo_disabled = 0,
336         .max_perf_pct = 100,
337         .max_perf = int_tofp(1),
338         .min_perf_pct = 100,
339         .min_perf = int_tofp(1),
340         .max_policy_pct = 100,
341         .max_sysfs_pct = 100,
342         .min_policy_pct = 0,
343         .min_sysfs_pct = 0,
344 };
345
346 static struct perf_limits powersave_limits = {
347         .no_turbo = 0,
348         .turbo_disabled = 0,
349         .max_perf_pct = 100,
350         .max_perf = int_tofp(1),
351         .min_perf_pct = 0,
352         .min_perf = 0,
353         .max_policy_pct = 100,
354         .max_sysfs_pct = 100,
355         .min_policy_pct = 0,
356         .min_sysfs_pct = 0,
357 };
358
359 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360 static struct perf_limits *limits = &performance_limits;
361 #else
362 static struct perf_limits *limits = &powersave_limits;
363 #endif
364
365 #ifdef CONFIG_ACPI
366
367 static bool intel_pstate_get_ppc_enable_status(void)
368 {
369         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371                 return true;
372
373         return acpi_ppc;
374 }
375
376 /*
377  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
378  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
379  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
380  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
381  * target ratio 0x17. The _PSS control value stores in a format which can be
382  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
383  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
384  * This function converts the _PSS control value to intel pstate driver format
385  * for comparison and assignment.
386  */
387 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
388 {
389         return cpu->acpi_perf_data.states[index].control >> 8;
390 }
391
392 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
393 {
394         struct cpudata *cpu;
395         int turbo_pss_ctl;
396         int ret;
397         int i;
398
399         if (hwp_active)
400                 return;
401
402         if (!intel_pstate_get_ppc_enable_status())
403                 return;
404
405         cpu = all_cpu_data[policy->cpu];
406
407         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
408                                                   policy->cpu);
409         if (ret)
410                 return;
411
412         /*
413          * Check if the control value in _PSS is for PERF_CTL MSR, which should
414          * guarantee that the states returned by it map to the states in our
415          * list directly.
416          */
417         if (cpu->acpi_perf_data.control_register.space_id !=
418                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
419                 goto err;
420
421         /*
422          * If there is only one entry _PSS, simply ignore _PSS and continue as
423          * usual without taking _PSS into account
424          */
425         if (cpu->acpi_perf_data.state_count < 2)
426                 goto err;
427
428         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
429         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
430                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
431                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
432                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
433                          (u32) cpu->acpi_perf_data.states[i].power,
434                          (u32) cpu->acpi_perf_data.states[i].control);
435         }
436
437         /*
438          * The _PSS table doesn't contain whole turbo frequency range.
439          * This just contains +1 MHZ above the max non turbo frequency,
440          * with control value corresponding to max turbo ratio. But
441          * when cpufreq set policy is called, it will call with this
442          * max frequency, which will cause a reduced performance as
443          * this driver uses real max turbo frequency as the max
444          * frequency. So correct this frequency in _PSS table to
445          * correct max turbo frequency based on the turbo ratio.
446          * Also need to convert to MHz as _PSS freq is in MHz.
447          */
448         turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
449         if (turbo_pss_ctl > cpu->pstate.max_pstate)
450                 cpu->acpi_perf_data.states[0].core_frequency =
451                                         policy->cpuinfo.max_freq / 1000;
452         cpu->valid_pss_table = true;
453         pr_debug("_PPC limits will be enforced\n");
454
455         return;
456
457  err:
458         cpu->valid_pss_table = false;
459         acpi_processor_unregister_performance(policy->cpu);
460 }
461
462 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463 {
464         struct cpudata *cpu;
465
466         cpu = all_cpu_data[policy->cpu];
467         if (!cpu->valid_pss_table)
468                 return;
469
470         acpi_processor_unregister_performance(policy->cpu);
471 }
472
473 #else
474 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
475 {
476 }
477
478 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
479 {
480 }
481 #endif
482
483 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
484                              int deadband, int integral) {
485         pid->setpoint = int_tofp(setpoint);
486         pid->deadband  = int_tofp(deadband);
487         pid->integral  = int_tofp(integral);
488         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
489 }
490
491 static inline void pid_p_gain_set(struct _pid *pid, int percent)
492 {
493         pid->p_gain = div_fp(percent, 100);
494 }
495
496 static inline void pid_i_gain_set(struct _pid *pid, int percent)
497 {
498         pid->i_gain = div_fp(percent, 100);
499 }
500
501 static inline void pid_d_gain_set(struct _pid *pid, int percent)
502 {
503         pid->d_gain = div_fp(percent, 100);
504 }
505
506 static signed int pid_calc(struct _pid *pid, int32_t busy)
507 {
508         signed int result;
509         int32_t pterm, dterm, fp_error;
510         int32_t integral_limit;
511
512         fp_error = pid->setpoint - busy;
513
514         if (abs(fp_error) <= pid->deadband)
515                 return 0;
516
517         pterm = mul_fp(pid->p_gain, fp_error);
518
519         pid->integral += fp_error;
520
521         /*
522          * We limit the integral here so that it will never
523          * get higher than 30.  This prevents it from becoming
524          * too large an input over long periods of time and allows
525          * it to get factored out sooner.
526          *
527          * The value of 30 was chosen through experimentation.
528          */
529         integral_limit = int_tofp(30);
530         if (pid->integral > integral_limit)
531                 pid->integral = integral_limit;
532         if (pid->integral < -integral_limit)
533                 pid->integral = -integral_limit;
534
535         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
536         pid->last_err = fp_error;
537
538         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
539         result = result + (1 << (FRAC_BITS-1));
540         return (signed int)fp_toint(result);
541 }
542
543 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
544 {
545         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
546         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
547         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
548
549         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
550 }
551
552 static inline void intel_pstate_reset_all_pid(void)
553 {
554         unsigned int cpu;
555
556         for_each_online_cpu(cpu) {
557                 if (all_cpu_data[cpu])
558                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
559         }
560 }
561
562 static inline void update_turbo_state(void)
563 {
564         u64 misc_en;
565         struct cpudata *cpu;
566
567         cpu = all_cpu_data[0];
568         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
569         limits->turbo_disabled =
570                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
571                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
572 }
573
574 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
575 {
576         int min, hw_min, max, hw_max, cpu, range, adj_range;
577         u64 value, cap;
578
579         rdmsrl(MSR_HWP_CAPABILITIES, cap);
580         hw_min = HWP_LOWEST_PERF(cap);
581         hw_max = HWP_HIGHEST_PERF(cap);
582         range = hw_max - hw_min;
583
584         for_each_cpu(cpu, cpumask) {
585                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
586                 adj_range = limits->min_perf_pct * range / 100;
587                 min = hw_min + adj_range;
588                 value &= ~HWP_MIN_PERF(~0L);
589                 value |= HWP_MIN_PERF(min);
590
591                 adj_range = limits->max_perf_pct * range / 100;
592                 max = hw_min + adj_range;
593                 if (limits->no_turbo) {
594                         hw_max = HWP_GUARANTEED_PERF(cap);
595                         if (hw_max < max)
596                                 max = hw_max;
597                 }
598
599                 value &= ~HWP_MAX_PERF(~0L);
600                 value |= HWP_MAX_PERF(max);
601                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
602         }
603 }
604
605 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
606 {
607         if (hwp_active)
608                 intel_pstate_hwp_set(policy->cpus);
609
610         return 0;
611 }
612
613 static void intel_pstate_hwp_set_online_cpus(void)
614 {
615         get_online_cpus();
616         intel_pstate_hwp_set(cpu_online_mask);
617         put_online_cpus();
618 }
619
620 /************************** debugfs begin ************************/
621 static int pid_param_set(void *data, u64 val)
622 {
623         *(u32 *)data = val;
624         intel_pstate_reset_all_pid();
625         return 0;
626 }
627
628 static int pid_param_get(void *data, u64 *val)
629 {
630         *val = *(u32 *)data;
631         return 0;
632 }
633 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
634
635 struct pid_param {
636         char *name;
637         void *value;
638 };
639
640 static struct pid_param pid_files[] = {
641         {"sample_rate_ms", &pid_params.sample_rate_ms},
642         {"d_gain_pct", &pid_params.d_gain_pct},
643         {"i_gain_pct", &pid_params.i_gain_pct},
644         {"deadband", &pid_params.deadband},
645         {"setpoint", &pid_params.setpoint},
646         {"p_gain_pct", &pid_params.p_gain_pct},
647         {NULL, NULL}
648 };
649
650 static void __init intel_pstate_debug_expose_params(void)
651 {
652         struct dentry *debugfs_parent;
653         int i = 0;
654
655         if (hwp_active)
656                 return;
657         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
658         if (IS_ERR_OR_NULL(debugfs_parent))
659                 return;
660         while (pid_files[i].name) {
661                 debugfs_create_file(pid_files[i].name, 0660,
662                                     debugfs_parent, pid_files[i].value,
663                                     &fops_pid_param);
664                 i++;
665         }
666 }
667
668 /************************** debugfs end ************************/
669
670 /************************** sysfs begin ************************/
671 #define show_one(file_name, object)                                     \
672         static ssize_t show_##file_name                                 \
673         (struct kobject *kobj, struct attribute *attr, char *buf)       \
674         {                                                               \
675                 return sprintf(buf, "%u\n", limits->object);            \
676         }
677
678 static ssize_t show_turbo_pct(struct kobject *kobj,
679                                 struct attribute *attr, char *buf)
680 {
681         struct cpudata *cpu;
682         int total, no_turbo, turbo_pct;
683         uint32_t turbo_fp;
684
685         cpu = all_cpu_data[0];
686
687         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
688         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
689         turbo_fp = div_fp(no_turbo, total);
690         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
691         return sprintf(buf, "%u\n", turbo_pct);
692 }
693
694 static ssize_t show_num_pstates(struct kobject *kobj,
695                                 struct attribute *attr, char *buf)
696 {
697         struct cpudata *cpu;
698         int total;
699
700         cpu = all_cpu_data[0];
701         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
702         return sprintf(buf, "%u\n", total);
703 }
704
705 static ssize_t show_no_turbo(struct kobject *kobj,
706                              struct attribute *attr, char *buf)
707 {
708         ssize_t ret;
709
710         update_turbo_state();
711         if (limits->turbo_disabled)
712                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
713         else
714                 ret = sprintf(buf, "%u\n", limits->no_turbo);
715
716         return ret;
717 }
718
719 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
720                               const char *buf, size_t count)
721 {
722         unsigned int input;
723         int ret;
724
725         ret = sscanf(buf, "%u", &input);
726         if (ret != 1)
727                 return -EINVAL;
728
729         update_turbo_state();
730         if (limits->turbo_disabled) {
731                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
732                 return -EPERM;
733         }
734
735         limits->no_turbo = clamp_t(int, input, 0, 1);
736
737         if (hwp_active)
738                 intel_pstate_hwp_set_online_cpus();
739
740         return count;
741 }
742
743 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
744                                   const char *buf, size_t count)
745 {
746         unsigned int input;
747         int ret;
748
749         ret = sscanf(buf, "%u", &input);
750         if (ret != 1)
751                 return -EINVAL;
752
753         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
754         limits->max_perf_pct = min(limits->max_policy_pct,
755                                    limits->max_sysfs_pct);
756         limits->max_perf_pct = max(limits->min_policy_pct,
757                                    limits->max_perf_pct);
758         limits->max_perf_pct = max(limits->min_perf_pct,
759                                    limits->max_perf_pct);
760         limits->max_perf = div_fp(limits->max_perf_pct, 100);
761
762         if (hwp_active)
763                 intel_pstate_hwp_set_online_cpus();
764         return count;
765 }
766
767 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
768                                   const char *buf, size_t count)
769 {
770         unsigned int input;
771         int ret;
772
773         ret = sscanf(buf, "%u", &input);
774         if (ret != 1)
775                 return -EINVAL;
776
777         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
778         limits->min_perf_pct = max(limits->min_policy_pct,
779                                    limits->min_sysfs_pct);
780         limits->min_perf_pct = min(limits->max_policy_pct,
781                                    limits->min_perf_pct);
782         limits->min_perf_pct = min(limits->max_perf_pct,
783                                    limits->min_perf_pct);
784         limits->min_perf = div_fp(limits->min_perf_pct, 100);
785
786         if (hwp_active)
787                 intel_pstate_hwp_set_online_cpus();
788         return count;
789 }
790
791 show_one(max_perf_pct, max_perf_pct);
792 show_one(min_perf_pct, min_perf_pct);
793
794 define_one_global_rw(no_turbo);
795 define_one_global_rw(max_perf_pct);
796 define_one_global_rw(min_perf_pct);
797 define_one_global_ro(turbo_pct);
798 define_one_global_ro(num_pstates);
799
800 static struct attribute *intel_pstate_attributes[] = {
801         &no_turbo.attr,
802         &max_perf_pct.attr,
803         &min_perf_pct.attr,
804         &turbo_pct.attr,
805         &num_pstates.attr,
806         NULL
807 };
808
809 static struct attribute_group intel_pstate_attr_group = {
810         .attrs = intel_pstate_attributes,
811 };
812
813 static void __init intel_pstate_sysfs_expose_params(void)
814 {
815         struct kobject *intel_pstate_kobject;
816         int rc;
817
818         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
819                                                 &cpu_subsys.dev_root->kobj);
820         BUG_ON(!intel_pstate_kobject);
821         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
822         BUG_ON(rc);
823 }
824 /************************** sysfs end ************************/
825
826 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
827 {
828         /* First disable HWP notification interrupt as we don't process them */
829         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
830
831         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
832 }
833
834 static int atom_get_min_pstate(void)
835 {
836         u64 value;
837
838         rdmsrl(ATOM_RATIOS, value);
839         return (value >> 8) & 0x7F;
840 }
841
842 static int atom_get_max_pstate(void)
843 {
844         u64 value;
845
846         rdmsrl(ATOM_RATIOS, value);
847         return (value >> 16) & 0x7F;
848 }
849
850 static int atom_get_turbo_pstate(void)
851 {
852         u64 value;
853
854         rdmsrl(ATOM_TURBO_RATIOS, value);
855         return value & 0x7F;
856 }
857
858 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
859 {
860         u64 val;
861         int32_t vid_fp;
862         u32 vid;
863
864         val = (u64)pstate << 8;
865         if (limits->no_turbo && !limits->turbo_disabled)
866                 val |= (u64)1 << 32;
867
868         vid_fp = cpudata->vid.min + mul_fp(
869                 int_tofp(pstate - cpudata->pstate.min_pstate),
870                 cpudata->vid.ratio);
871
872         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
873         vid = ceiling_fp(vid_fp);
874
875         if (pstate > cpudata->pstate.max_pstate)
876                 vid = cpudata->vid.turbo;
877
878         return val | vid;
879 }
880
881 static int silvermont_get_scaling(void)
882 {
883         u64 value;
884         int i;
885         /* Defined in Table 35-6 from SDM (Sept 2015) */
886         static int silvermont_freq_table[] = {
887                 83300, 100000, 133300, 116700, 80000};
888
889         rdmsrl(MSR_FSB_FREQ, value);
890         i = value & 0x7;
891         WARN_ON(i > 4);
892
893         return silvermont_freq_table[i];
894 }
895
896 static int airmont_get_scaling(void)
897 {
898         u64 value;
899         int i;
900         /* Defined in Table 35-10 from SDM (Sept 2015) */
901         static int airmont_freq_table[] = {
902                 83300, 100000, 133300, 116700, 80000,
903                 93300, 90000, 88900, 87500};
904
905         rdmsrl(MSR_FSB_FREQ, value);
906         i = value & 0xF;
907         WARN_ON(i > 8);
908
909         return airmont_freq_table[i];
910 }
911
912 static void atom_get_vid(struct cpudata *cpudata)
913 {
914         u64 value;
915
916         rdmsrl(ATOM_VIDS, value);
917         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
918         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
919         cpudata->vid.ratio = div_fp(
920                 cpudata->vid.max - cpudata->vid.min,
921                 int_tofp(cpudata->pstate.max_pstate -
922                         cpudata->pstate.min_pstate));
923
924         rdmsrl(ATOM_TURBO_VIDS, value);
925         cpudata->vid.turbo = value & 0x7f;
926 }
927
928 static int core_get_min_pstate(void)
929 {
930         u64 value;
931
932         rdmsrl(MSR_PLATFORM_INFO, value);
933         return (value >> 40) & 0xFF;
934 }
935
936 static int core_get_max_pstate_physical(void)
937 {
938         u64 value;
939
940         rdmsrl(MSR_PLATFORM_INFO, value);
941         return (value >> 8) & 0xFF;
942 }
943
944 static int core_get_max_pstate(void)
945 {
946         u64 tar;
947         u64 plat_info;
948         int max_pstate;
949         int err;
950
951         rdmsrl(MSR_PLATFORM_INFO, plat_info);
952         max_pstate = (plat_info >> 8) & 0xFF;
953
954         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
955         if (!err) {
956                 /* Do some sanity checking for safety */
957                 if (plat_info & 0x600000000) {
958                         u64 tdp_ctrl;
959                         u64 tdp_ratio;
960                         int tdp_msr;
961
962                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
963                         if (err)
964                                 goto skip_tar;
965
966                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
967                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
968                         if (err)
969                                 goto skip_tar;
970
971                         /* For level 1 and 2, bits[23:16] contain the ratio */
972                         if (tdp_ctrl)
973                                 tdp_ratio >>= 16;
974
975                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
976                         if (tdp_ratio - 1 == tar) {
977                                 max_pstate = tar;
978                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
979                         } else {
980                                 goto skip_tar;
981                         }
982                 }
983         }
984
985 skip_tar:
986         return max_pstate;
987 }
988
989 static int core_get_turbo_pstate(void)
990 {
991         u64 value;
992         int nont, ret;
993
994         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
995         nont = core_get_max_pstate();
996         ret = (value) & 255;
997         if (ret <= nont)
998                 ret = nont;
999         return ret;
1000 }
1001
1002 static inline int core_get_scaling(void)
1003 {
1004         return 100000;
1005 }
1006
1007 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1008 {
1009         u64 val;
1010
1011         val = (u64)pstate << 8;
1012         if (limits->no_turbo && !limits->turbo_disabled)
1013                 val |= (u64)1 << 32;
1014
1015         return val;
1016 }
1017
1018 static int knl_get_turbo_pstate(void)
1019 {
1020         u64 value;
1021         int nont, ret;
1022
1023         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1024         nont = core_get_max_pstate();
1025         ret = (((value) >> 8) & 0xFF);
1026         if (ret <= nont)
1027                 ret = nont;
1028         return ret;
1029 }
1030
1031 static struct cpu_defaults core_params = {
1032         .pid_policy = {
1033                 .sample_rate_ms = 10,
1034                 .deadband = 0,
1035                 .setpoint = 97,
1036                 .p_gain_pct = 20,
1037                 .d_gain_pct = 0,
1038                 .i_gain_pct = 0,
1039         },
1040         .funcs = {
1041                 .get_max = core_get_max_pstate,
1042                 .get_max_physical = core_get_max_pstate_physical,
1043                 .get_min = core_get_min_pstate,
1044                 .get_turbo = core_get_turbo_pstate,
1045                 .get_scaling = core_get_scaling,
1046                 .get_val = core_get_val,
1047                 .get_target_pstate = get_target_pstate_use_performance,
1048         },
1049 };
1050
1051 static struct cpu_defaults silvermont_params = {
1052         .pid_policy = {
1053                 .sample_rate_ms = 10,
1054                 .deadband = 0,
1055                 .setpoint = 60,
1056                 .p_gain_pct = 14,
1057                 .d_gain_pct = 0,
1058                 .i_gain_pct = 4,
1059         },
1060         .funcs = {
1061                 .get_max = atom_get_max_pstate,
1062                 .get_max_physical = atom_get_max_pstate,
1063                 .get_min = atom_get_min_pstate,
1064                 .get_turbo = atom_get_turbo_pstate,
1065                 .get_val = atom_get_val,
1066                 .get_scaling = silvermont_get_scaling,
1067                 .get_vid = atom_get_vid,
1068                 .get_target_pstate = get_target_pstate_use_cpu_load,
1069         },
1070 };
1071
1072 static struct cpu_defaults airmont_params = {
1073         .pid_policy = {
1074                 .sample_rate_ms = 10,
1075                 .deadband = 0,
1076                 .setpoint = 60,
1077                 .p_gain_pct = 14,
1078                 .d_gain_pct = 0,
1079                 .i_gain_pct = 4,
1080         },
1081         .funcs = {
1082                 .get_max = atom_get_max_pstate,
1083                 .get_max_physical = atom_get_max_pstate,
1084                 .get_min = atom_get_min_pstate,
1085                 .get_turbo = atom_get_turbo_pstate,
1086                 .get_val = atom_get_val,
1087                 .get_scaling = airmont_get_scaling,
1088                 .get_vid = atom_get_vid,
1089                 .get_target_pstate = get_target_pstate_use_cpu_load,
1090         },
1091 };
1092
1093 static struct cpu_defaults knl_params = {
1094         .pid_policy = {
1095                 .sample_rate_ms = 10,
1096                 .deadband = 0,
1097                 .setpoint = 97,
1098                 .p_gain_pct = 20,
1099                 .d_gain_pct = 0,
1100                 .i_gain_pct = 0,
1101         },
1102         .funcs = {
1103                 .get_max = core_get_max_pstate,
1104                 .get_max_physical = core_get_max_pstate_physical,
1105                 .get_min = core_get_min_pstate,
1106                 .get_turbo = knl_get_turbo_pstate,
1107                 .get_scaling = core_get_scaling,
1108                 .get_val = core_get_val,
1109                 .get_target_pstate = get_target_pstate_use_performance,
1110         },
1111 };
1112
1113 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1114 {
1115         int max_perf = cpu->pstate.turbo_pstate;
1116         int max_perf_adj;
1117         int min_perf;
1118
1119         if (limits->no_turbo || limits->turbo_disabled)
1120                 max_perf = cpu->pstate.max_pstate;
1121
1122         /*
1123          * performance can be limited by user through sysfs, by cpufreq
1124          * policy, or by cpu specific default values determined through
1125          * experimentation.
1126          */
1127         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1128         *max = clamp_t(int, max_perf_adj,
1129                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1130
1131         min_perf = fp_toint(max_perf * limits->min_perf);
1132         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1133 }
1134
1135 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1136 {
1137         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1138         cpu->pstate.current_pstate = pstate;
1139 }
1140
1141 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1142 {
1143         int pstate = cpu->pstate.min_pstate;
1144
1145         intel_pstate_record_pstate(cpu, pstate);
1146         /*
1147          * Generally, there is no guarantee that this code will always run on
1148          * the CPU being updated, so force the register update to run on the
1149          * right CPU.
1150          */
1151         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1152                       pstate_funcs.get_val(cpu, pstate));
1153 }
1154
1155 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1156 {
1157         cpu->pstate.min_pstate = pstate_funcs.get_min();
1158         cpu->pstate.max_pstate = pstate_funcs.get_max();
1159         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1160         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1161         cpu->pstate.scaling = pstate_funcs.get_scaling();
1162
1163         if (pstate_funcs.get_vid)
1164                 pstate_funcs.get_vid(cpu);
1165
1166         intel_pstate_set_min_pstate(cpu);
1167 }
1168
1169 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1170 {
1171         struct sample *sample = &cpu->sample;
1172
1173         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1174 }
1175
1176 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1177 {
1178         u64 aperf, mperf;
1179         unsigned long flags;
1180         u64 tsc;
1181
1182         local_irq_save(flags);
1183         rdmsrl(MSR_IA32_APERF, aperf);
1184         rdmsrl(MSR_IA32_MPERF, mperf);
1185         tsc = rdtsc();
1186         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1187                 local_irq_restore(flags);
1188                 return false;
1189         }
1190         local_irq_restore(flags);
1191
1192         cpu->last_sample_time = cpu->sample.time;
1193         cpu->sample.time = time;
1194         cpu->sample.aperf = aperf;
1195         cpu->sample.mperf = mperf;
1196         cpu->sample.tsc =  tsc;
1197         cpu->sample.aperf -= cpu->prev_aperf;
1198         cpu->sample.mperf -= cpu->prev_mperf;
1199         cpu->sample.tsc -= cpu->prev_tsc;
1200
1201         cpu->prev_aperf = aperf;
1202         cpu->prev_mperf = mperf;
1203         cpu->prev_tsc = tsc;
1204         /*
1205          * First time this function is invoked in a given cycle, all of the
1206          * previous sample data fields are equal to zero or stale and they must
1207          * be populated with meaningful numbers for things to work, so assume
1208          * that sample.time will always be reset before setting the utilization
1209          * update hook and make the caller skip the sample then.
1210          */
1211         return !!cpu->last_sample_time;
1212 }
1213
1214 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1215 {
1216         return mul_ext_fp(cpu->sample.core_avg_perf,
1217                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1218 }
1219
1220 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1221 {
1222         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1223                           cpu->sample.core_avg_perf);
1224 }
1225
1226 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1227 {
1228         struct sample *sample = &cpu->sample;
1229         u64 cummulative_iowait, delta_iowait_us;
1230         u64 delta_iowait_mperf;
1231         u64 mperf, now;
1232         int32_t cpu_load;
1233
1234         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1235
1236         /*
1237          * Convert iowait time into number of IO cycles spent at max_freq.
1238          * IO is considered as busy only for the cpu_load algorithm. For
1239          * performance this is not needed since we always try to reach the
1240          * maximum P-State, so we are already boosting the IOs.
1241          */
1242         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1243         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1244                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1245
1246         mperf = cpu->sample.mperf + delta_iowait_mperf;
1247         cpu->prev_cummulative_iowait = cummulative_iowait;
1248
1249         /*
1250          * The load can be estimated as the ratio of the mperf counter
1251          * running at a constant frequency during active periods
1252          * (C0) and the time stamp counter running at the same frequency
1253          * also during C-states.
1254          */
1255         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1256         cpu->sample.busy_scaled = cpu_load;
1257
1258         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1259 }
1260
1261 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1262 {
1263         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1264         u64 duration_ns;
1265
1266         /*
1267          * perf_scaled is the average performance during the last sampling
1268          * period scaled by the ratio of the maximum P-state to the P-state
1269          * requested last time (in percent).  That measures the system's
1270          * response to the previous P-state selection.
1271          */
1272         max_pstate = cpu->pstate.max_pstate_physical;
1273         current_pstate = cpu->pstate.current_pstate;
1274         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1275                                div_fp(100 * max_pstate, current_pstate));
1276
1277         /*
1278          * Since our utilization update callback will not run unless we are
1279          * in C0, check if the actual elapsed time is significantly greater (3x)
1280          * than our sample interval.  If it is, then we were idle for a long
1281          * enough period of time to adjust our performance metric.
1282          */
1283         duration_ns = cpu->sample.time - cpu->last_sample_time;
1284         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1285                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1286                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1287         } else {
1288                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1289                 if (sample_ratio < int_tofp(1))
1290                         perf_scaled = 0;
1291         }
1292
1293         cpu->sample.busy_scaled = perf_scaled;
1294         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1295 }
1296
1297 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1298 {
1299         int max_perf, min_perf;
1300
1301         update_turbo_state();
1302
1303         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1304         pstate = clamp_t(int, pstate, min_perf, max_perf);
1305         if (pstate == cpu->pstate.current_pstate)
1306                 return;
1307
1308         intel_pstate_record_pstate(cpu, pstate);
1309         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1310 }
1311
1312 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1313 {
1314         int from, target_pstate;
1315         struct sample *sample;
1316
1317         from = cpu->pstate.current_pstate;
1318
1319         target_pstate = pstate_funcs.get_target_pstate(cpu);
1320
1321         intel_pstate_update_pstate(cpu, target_pstate);
1322
1323         sample = &cpu->sample;
1324         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1325                 fp_toint(sample->busy_scaled),
1326                 from,
1327                 cpu->pstate.current_pstate,
1328                 sample->mperf,
1329                 sample->aperf,
1330                 sample->tsc,
1331                 get_avg_frequency(cpu));
1332 }
1333
1334 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1335                                      unsigned long util, unsigned long max)
1336 {
1337         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1338         u64 delta_ns = time - cpu->sample.time;
1339
1340         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1341                 bool sample_taken = intel_pstate_sample(cpu, time);
1342
1343                 if (sample_taken) {
1344                         intel_pstate_calc_avg_perf(cpu);
1345                         if (!hwp_active)
1346                                 intel_pstate_adjust_busy_pstate(cpu);
1347                 }
1348         }
1349 }
1350
1351 #define ICPU(model, policy) \
1352         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1353                         (unsigned long)&policy }
1354
1355 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1356         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1357         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1358         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1359         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1360         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1361         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1362         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1363         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1364         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1365         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1366         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1367         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1368         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1369         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1370         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1371         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1372         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1373         {}
1374 };
1375 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1376
1377 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1378         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1379         {}
1380 };
1381
1382 static int intel_pstate_init_cpu(unsigned int cpunum)
1383 {
1384         struct cpudata *cpu;
1385
1386         if (!all_cpu_data[cpunum])
1387                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1388                                                GFP_KERNEL);
1389         if (!all_cpu_data[cpunum])
1390                 return -ENOMEM;
1391
1392         cpu = all_cpu_data[cpunum];
1393
1394         cpu->cpu = cpunum;
1395
1396         if (hwp_active) {
1397                 intel_pstate_hwp_enable(cpu);
1398                 pid_params.sample_rate_ms = 50;
1399                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1400         }
1401
1402         intel_pstate_get_cpu_pstates(cpu);
1403
1404         intel_pstate_busy_pid_reset(cpu);
1405
1406         pr_debug("controlling: cpu %d\n", cpunum);
1407
1408         return 0;
1409 }
1410
1411 static unsigned int intel_pstate_get(unsigned int cpu_num)
1412 {
1413         struct cpudata *cpu = all_cpu_data[cpu_num];
1414
1415         return cpu ? get_avg_frequency(cpu) : 0;
1416 }
1417
1418 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1419 {
1420         struct cpudata *cpu = all_cpu_data[cpu_num];
1421
1422         /* Prevent intel_pstate_update_util() from using stale data. */
1423         cpu->sample.time = 0;
1424         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1425                                      intel_pstate_update_util);
1426         cpu->update_util_set = true;
1427 }
1428
1429 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1430 {
1431         struct cpudata *cpu_data = all_cpu_data[cpu];
1432
1433         if (!cpu_data->update_util_set)
1434                 return;
1435
1436         cpufreq_remove_update_util_hook(cpu);
1437         cpu_data->update_util_set = false;
1438         synchronize_sched();
1439 }
1440
1441 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1442 {
1443         limits->no_turbo = 0;
1444         limits->turbo_disabled = 0;
1445         limits->max_perf_pct = 100;
1446         limits->max_perf = int_tofp(1);
1447         limits->min_perf_pct = 100;
1448         limits->min_perf = int_tofp(1);
1449         limits->max_policy_pct = 100;
1450         limits->max_sysfs_pct = 100;
1451         limits->min_policy_pct = 0;
1452         limits->min_sysfs_pct = 0;
1453 }
1454
1455 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1456 {
1457         struct cpudata *cpu;
1458
1459         if (!policy->cpuinfo.max_freq)
1460                 return -ENODEV;
1461
1462         intel_pstate_clear_update_util_hook(policy->cpu);
1463
1464         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1465                  policy->cpuinfo.max_freq, policy->max);
1466
1467         cpu = all_cpu_data[0];
1468         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1469             policy->max < policy->cpuinfo.max_freq &&
1470             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1471                 pr_debug("policy->max > max non turbo frequency\n");
1472                 policy->max = policy->cpuinfo.max_freq;
1473         }
1474
1475         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1476                 limits = &performance_limits;
1477                 if (policy->max >= policy->cpuinfo.max_freq) {
1478                         pr_debug("set performance\n");
1479                         intel_pstate_set_performance_limits(limits);
1480                         goto out;
1481                 }
1482         } else {
1483                 pr_debug("set powersave\n");
1484                 limits = &powersave_limits;
1485         }
1486
1487         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1488         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1489         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1490                                               policy->cpuinfo.max_freq);
1491         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1492
1493         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1494         limits->min_perf_pct = max(limits->min_policy_pct,
1495                                    limits->min_sysfs_pct);
1496         limits->min_perf_pct = min(limits->max_policy_pct,
1497                                    limits->min_perf_pct);
1498         limits->max_perf_pct = min(limits->max_policy_pct,
1499                                    limits->max_sysfs_pct);
1500         limits->max_perf_pct = max(limits->min_policy_pct,
1501                                    limits->max_perf_pct);
1502
1503         /* Make sure min_perf_pct <= max_perf_pct */
1504         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1505
1506         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1507         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1508         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1509
1510  out:
1511         intel_pstate_set_update_util_hook(policy->cpu);
1512
1513         intel_pstate_hwp_set_policy(policy);
1514
1515         return 0;
1516 }
1517
1518 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1519 {
1520         cpufreq_verify_within_cpu_limits(policy);
1521
1522         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1523             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1524                 return -EINVAL;
1525
1526         return 0;
1527 }
1528
1529 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1530 {
1531         int cpu_num = policy->cpu;
1532         struct cpudata *cpu = all_cpu_data[cpu_num];
1533
1534         pr_debug("CPU %d exiting\n", cpu_num);
1535
1536         intel_pstate_clear_update_util_hook(cpu_num);
1537
1538         if (hwp_active)
1539                 return;
1540
1541         intel_pstate_set_min_pstate(cpu);
1542 }
1543
1544 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1545 {
1546         struct cpudata *cpu;
1547         int rc;
1548
1549         rc = intel_pstate_init_cpu(policy->cpu);
1550         if (rc)
1551                 return rc;
1552
1553         cpu = all_cpu_data[policy->cpu];
1554
1555         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1556                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1557         else
1558                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1559
1560         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1561         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1562
1563         /* cpuinfo and default policy values */
1564         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1565         update_turbo_state();
1566         policy->cpuinfo.max_freq = limits->turbo_disabled ?
1567                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1568         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1569
1570         intel_pstate_init_acpi_perf_limits(policy);
1571         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1572         cpumask_set_cpu(policy->cpu, policy->cpus);
1573
1574         return 0;
1575 }
1576
1577 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1578 {
1579         intel_pstate_exit_perf_limits(policy);
1580
1581         return 0;
1582 }
1583
1584 static struct cpufreq_driver intel_pstate_driver = {
1585         .flags          = CPUFREQ_CONST_LOOPS,
1586         .verify         = intel_pstate_verify_policy,
1587         .setpolicy      = intel_pstate_set_policy,
1588         .resume         = intel_pstate_hwp_set_policy,
1589         .get            = intel_pstate_get,
1590         .init           = intel_pstate_cpu_init,
1591         .exit           = intel_pstate_cpu_exit,
1592         .stop_cpu       = intel_pstate_stop_cpu,
1593         .name           = "intel_pstate",
1594 };
1595
1596 static int __initdata no_load;
1597 static int __initdata no_hwp;
1598 static int __initdata hwp_only;
1599 static unsigned int force_load;
1600
1601 static int intel_pstate_msrs_not_valid(void)
1602 {
1603         if (!pstate_funcs.get_max() ||
1604             !pstate_funcs.get_min() ||
1605             !pstate_funcs.get_turbo())
1606                 return -ENODEV;
1607
1608         return 0;
1609 }
1610
1611 static void copy_pid_params(struct pstate_adjust_policy *policy)
1612 {
1613         pid_params.sample_rate_ms = policy->sample_rate_ms;
1614         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1615         pid_params.p_gain_pct = policy->p_gain_pct;
1616         pid_params.i_gain_pct = policy->i_gain_pct;
1617         pid_params.d_gain_pct = policy->d_gain_pct;
1618         pid_params.deadband = policy->deadband;
1619         pid_params.setpoint = policy->setpoint;
1620 }
1621
1622 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1623 {
1624         pstate_funcs.get_max   = funcs->get_max;
1625         pstate_funcs.get_max_physical = funcs->get_max_physical;
1626         pstate_funcs.get_min   = funcs->get_min;
1627         pstate_funcs.get_turbo = funcs->get_turbo;
1628         pstate_funcs.get_scaling = funcs->get_scaling;
1629         pstate_funcs.get_val   = funcs->get_val;
1630         pstate_funcs.get_vid   = funcs->get_vid;
1631         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1632
1633 }
1634
1635 #ifdef CONFIG_ACPI
1636
1637 static bool intel_pstate_no_acpi_pss(void)
1638 {
1639         int i;
1640
1641         for_each_possible_cpu(i) {
1642                 acpi_status status;
1643                 union acpi_object *pss;
1644                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1645                 struct acpi_processor *pr = per_cpu(processors, i);
1646
1647                 if (!pr)
1648                         continue;
1649
1650                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1651                 if (ACPI_FAILURE(status))
1652                         continue;
1653
1654                 pss = buffer.pointer;
1655                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1656                         kfree(pss);
1657                         return false;
1658                 }
1659
1660                 kfree(pss);
1661         }
1662
1663         return true;
1664 }
1665
1666 static bool intel_pstate_has_acpi_ppc(void)
1667 {
1668         int i;
1669
1670         for_each_possible_cpu(i) {
1671                 struct acpi_processor *pr = per_cpu(processors, i);
1672
1673                 if (!pr)
1674                         continue;
1675                 if (acpi_has_method(pr->handle, "_PPC"))
1676                         return true;
1677         }
1678         return false;
1679 }
1680
1681 enum {
1682         PSS,
1683         PPC,
1684 };
1685
1686 struct hw_vendor_info {
1687         u16  valid;
1688         char oem_id[ACPI_OEM_ID_SIZE];
1689         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1690         int  oem_pwr_table;
1691 };
1692
1693 /* Hardware vendor-specific info that has its own power management modes */
1694 static struct hw_vendor_info vendor_info[] = {
1695         {1, "HP    ", "ProLiant", PSS},
1696         {1, "ORACLE", "X4-2    ", PPC},
1697         {1, "ORACLE", "X4-2L   ", PPC},
1698         {1, "ORACLE", "X4-2B   ", PPC},
1699         {1, "ORACLE", "X3-2    ", PPC},
1700         {1, "ORACLE", "X3-2L   ", PPC},
1701         {1, "ORACLE", "X3-2B   ", PPC},
1702         {1, "ORACLE", "X4470M2 ", PPC},
1703         {1, "ORACLE", "X4270M3 ", PPC},
1704         {1, "ORACLE", "X4270M2 ", PPC},
1705         {1, "ORACLE", "X4170M2 ", PPC},
1706         {1, "ORACLE", "X4170 M3", PPC},
1707         {1, "ORACLE", "X4275 M3", PPC},
1708         {1, "ORACLE", "X6-2    ", PPC},
1709         {1, "ORACLE", "Sudbury ", PPC},
1710         {0, "", ""},
1711 };
1712
1713 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1714 {
1715         struct acpi_table_header hdr;
1716         struct hw_vendor_info *v_info;
1717         const struct x86_cpu_id *id;
1718         u64 misc_pwr;
1719
1720         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1721         if (id) {
1722                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1723                 if ( misc_pwr & (1 << 8))
1724                         return true;
1725         }
1726
1727         if (acpi_disabled ||
1728             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1729                 return false;
1730
1731         for (v_info = vendor_info; v_info->valid; v_info++) {
1732                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1733                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1734                                                 ACPI_OEM_TABLE_ID_SIZE))
1735                         switch (v_info->oem_pwr_table) {
1736                         case PSS:
1737                                 return intel_pstate_no_acpi_pss();
1738                         case PPC:
1739                                 return intel_pstate_has_acpi_ppc() &&
1740                                         (!force_load);
1741                         }
1742         }
1743
1744         return false;
1745 }
1746 #else /* CONFIG_ACPI not enabled */
1747 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1748 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1749 #endif /* CONFIG_ACPI */
1750
1751 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1752         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1753         {}
1754 };
1755
1756 static int __init intel_pstate_init(void)
1757 {
1758         int cpu, rc = 0;
1759         const struct x86_cpu_id *id;
1760         struct cpu_defaults *cpu_def;
1761
1762         if (no_load)
1763                 return -ENODEV;
1764
1765         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1766                 copy_cpu_funcs(&core_params.funcs);
1767                 hwp_active++;
1768                 goto hwp_cpu_matched;
1769         }
1770
1771         id = x86_match_cpu(intel_pstate_cpu_ids);
1772         if (!id)
1773                 return -ENODEV;
1774
1775         cpu_def = (struct cpu_defaults *)id->driver_data;
1776
1777         copy_pid_params(&cpu_def->pid_policy);
1778         copy_cpu_funcs(&cpu_def->funcs);
1779
1780         if (intel_pstate_msrs_not_valid())
1781                 return -ENODEV;
1782
1783 hwp_cpu_matched:
1784         /*
1785          * The Intel pstate driver will be ignored if the platform
1786          * firmware has its own power management modes.
1787          */
1788         if (intel_pstate_platform_pwr_mgmt_exists())
1789                 return -ENODEV;
1790
1791         pr_info("Intel P-state driver initializing\n");
1792
1793         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1794         if (!all_cpu_data)
1795                 return -ENOMEM;
1796
1797         if (!hwp_active && hwp_only)
1798                 goto out;
1799
1800         rc = cpufreq_register_driver(&intel_pstate_driver);
1801         if (rc)
1802                 goto out;
1803
1804         intel_pstate_debug_expose_params();
1805         intel_pstate_sysfs_expose_params();
1806
1807         if (hwp_active)
1808                 pr_info("HWP enabled\n");
1809
1810         return rc;
1811 out:
1812         get_online_cpus();
1813         for_each_online_cpu(cpu) {
1814                 if (all_cpu_data[cpu]) {
1815                         intel_pstate_clear_update_util_hook(cpu);
1816                         kfree(all_cpu_data[cpu]);
1817                 }
1818         }
1819
1820         put_online_cpus();
1821         vfree(all_cpu_data);
1822         return -ENODEV;
1823 }
1824 device_initcall(intel_pstate_init);
1825
1826 static int __init intel_pstate_setup(char *str)
1827 {
1828         if (!str)
1829                 return -EINVAL;
1830
1831         if (!strcmp(str, "disable"))
1832                 no_load = 1;
1833         if (!strcmp(str, "no_hwp")) {
1834                 pr_info("HWP disabled\n");
1835                 no_hwp = 1;
1836         }
1837         if (!strcmp(str, "force"))
1838                 force_load = 1;
1839         if (!strcmp(str, "hwp_only"))
1840                 hwp_only = 1;
1841
1842 #ifdef CONFIG_ACPI
1843         if (!strcmp(str, "support_acpi_ppc"))
1844                 acpi_ppc = true;
1845 #endif
1846
1847         return 0;
1848 }
1849 early_param("intel_pstate", intel_pstate_setup);
1850
1851 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1852 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1853 MODULE_LICENSE("GPL");