intel_pstate: expose turbo range to sysfs
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS              0x66a
36 #define BYT_VIDS                0x66b
37 #define BYT_TURBO_RATIOS        0x66c
38 #define BYT_TURBO_VIDS          0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52         return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57         int mask, ret;
58
59         ret = fp_toint(x);
60         mask = (1 << FRAC_BITS) - 1;
61         if (x & mask)
62                 ret += 1;
63         return ret;
64 }
65
66 struct sample {
67         int32_t core_pct_busy;
68         u64 aperf;
69         u64 mperf;
70         int freq;
71         ktime_t time;
72 };
73
74 struct pstate_data {
75         int     current_pstate;
76         int     min_pstate;
77         int     max_pstate;
78         int     scaling;
79         int     turbo_pstate;
80 };
81
82 struct vid_data {
83         int min;
84         int max;
85         int turbo;
86         int32_t ratio;
87 };
88
89 struct _pid {
90         int setpoint;
91         int32_t integral;
92         int32_t p_gain;
93         int32_t i_gain;
94         int32_t d_gain;
95         int deadband;
96         int32_t last_err;
97 };
98
99 struct cpudata {
100         int cpu;
101
102         struct timer_list timer;
103
104         struct pstate_data pstate;
105         struct vid_data vid;
106         struct _pid pid;
107
108         ktime_t last_sample_time;
109         u64     prev_aperf;
110         u64     prev_mperf;
111         struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116         int sample_rate_ms;
117         int deadband;
118         int setpoint;
119         int p_gain_pct;
120         int d_gain_pct;
121         int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125         int (*get_max)(void);
126         int (*get_min)(void);
127         int (*get_turbo)(void);
128         int (*get_scaling)(void);
129         void (*set)(struct cpudata*, int pstate);
130         void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134         struct pstate_adjust_policy pid_policy;
135         struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143         int no_turbo;
144         int turbo_disabled;
145         int max_perf_pct;
146         int min_perf_pct;
147         int32_t max_perf;
148         int32_t min_perf;
149         int max_policy_pct;
150         int max_sysfs_pct;
151 };
152
153 static struct perf_limits limits = {
154         .no_turbo = 0,
155         .turbo_disabled = 0,
156         .max_perf_pct = 100,
157         .max_perf = int_tofp(1),
158         .min_perf_pct = 0,
159         .min_perf = 0,
160         .max_policy_pct = 100,
161         .max_sysfs_pct = 100,
162 };
163
164 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
165                              int deadband, int integral) {
166         pid->setpoint = setpoint;
167         pid->deadband  = deadband;
168         pid->integral  = int_tofp(integral);
169         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
170 }
171
172 static inline void pid_p_gain_set(struct _pid *pid, int percent)
173 {
174         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static inline void pid_i_gain_set(struct _pid *pid, int percent)
178 {
179         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
182 static inline void pid_d_gain_set(struct _pid *pid, int percent)
183 {
184         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
187 static signed int pid_calc(struct _pid *pid, int32_t busy)
188 {
189         signed int result;
190         int32_t pterm, dterm, fp_error;
191         int32_t integral_limit;
192
193         fp_error = int_tofp(pid->setpoint) - busy;
194
195         if (abs(fp_error) <= int_tofp(pid->deadband))
196                 return 0;
197
198         pterm = mul_fp(pid->p_gain, fp_error);
199
200         pid->integral += fp_error;
201
202         /*
203          * We limit the integral here so that it will never
204          * get higher than 30.  This prevents it from becoming
205          * too large an input over long periods of time and allows
206          * it to get factored out sooner.
207          *
208          * The value of 30 was chosen through experimentation.
209          */
210         integral_limit = int_tofp(30);
211         if (pid->integral > integral_limit)
212                 pid->integral = integral_limit;
213         if (pid->integral < -integral_limit)
214                 pid->integral = -integral_limit;
215
216         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
217         pid->last_err = fp_error;
218
219         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
220         result = result + (1 << (FRAC_BITS-1));
221         return (signed int)fp_toint(result);
222 }
223
224 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
225 {
226         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
227         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
228         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
229
230         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
231 }
232
233 static inline void intel_pstate_reset_all_pid(void)
234 {
235         unsigned int cpu;
236
237         for_each_online_cpu(cpu) {
238                 if (all_cpu_data[cpu])
239                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
240         }
241 }
242
243 static inline void update_turbo_state(void)
244 {
245         u64 misc_en;
246         struct cpudata *cpu;
247
248         cpu = all_cpu_data[0];
249         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
250         limits.turbo_disabled =
251                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
252                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
253 }
254
255 #define PCT_TO_HWP(x) (x * 255 / 100)
256 static void intel_pstate_hwp_set(void)
257 {
258         int min, max, cpu;
259         u64 value, freq;
260
261         get_online_cpus();
262
263         for_each_online_cpu(cpu) {
264                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
265                 min = PCT_TO_HWP(limits.min_perf_pct);
266                 value &= ~HWP_MIN_PERF(~0L);
267                 value |= HWP_MIN_PERF(min);
268
269                 max = PCT_TO_HWP(limits.max_perf_pct);
270                 if (limits.no_turbo) {
271                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
272                         max = HWP_GUARANTEED_PERF(freq);
273                 }
274
275                 value &= ~HWP_MAX_PERF(~0L);
276                 value |= HWP_MAX_PERF(max);
277                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
278         }
279
280         put_online_cpus();
281 }
282
283 /************************** debugfs begin ************************/
284 static int pid_param_set(void *data, u64 val)
285 {
286         *(u32 *)data = val;
287         intel_pstate_reset_all_pid();
288         return 0;
289 }
290
291 static int pid_param_get(void *data, u64 *val)
292 {
293         *val = *(u32 *)data;
294         return 0;
295 }
296 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
297
298 struct pid_param {
299         char *name;
300         void *value;
301 };
302
303 static struct pid_param pid_files[] = {
304         {"sample_rate_ms", &pid_params.sample_rate_ms},
305         {"d_gain_pct", &pid_params.d_gain_pct},
306         {"i_gain_pct", &pid_params.i_gain_pct},
307         {"deadband", &pid_params.deadband},
308         {"setpoint", &pid_params.setpoint},
309         {"p_gain_pct", &pid_params.p_gain_pct},
310         {NULL, NULL}
311 };
312
313 static void __init intel_pstate_debug_expose_params(void)
314 {
315         struct dentry *debugfs_parent;
316         int i = 0;
317
318         if (hwp_active)
319                 return;
320         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
321         if (IS_ERR_OR_NULL(debugfs_parent))
322                 return;
323         while (pid_files[i].name) {
324                 debugfs_create_file(pid_files[i].name, 0660,
325                                     debugfs_parent, pid_files[i].value,
326                                     &fops_pid_param);
327                 i++;
328         }
329 }
330
331 /************************** debugfs end ************************/
332
333 /************************** sysfs begin ************************/
334 #define show_one(file_name, object)                                     \
335         static ssize_t show_##file_name                                 \
336         (struct kobject *kobj, struct attribute *attr, char *buf)       \
337         {                                                               \
338                 return sprintf(buf, "%u\n", limits.object);             \
339         }
340
341 static ssize_t show_turbo_pct(struct kobject *kobj,
342                                 struct attribute *attr, char *buf)
343 {
344         struct cpudata *cpu;
345         int total, no_turbo, turbo_pct;
346         uint32_t turbo_fp;
347
348         cpu = all_cpu_data[0];
349
350         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
351         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
352         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
353         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
354         return sprintf(buf, "%u\n", turbo_pct);
355 }
356
357 static ssize_t show_no_turbo(struct kobject *kobj,
358                              struct attribute *attr, char *buf)
359 {
360         ssize_t ret;
361
362         update_turbo_state();
363         if (limits.turbo_disabled)
364                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
365         else
366                 ret = sprintf(buf, "%u\n", limits.no_turbo);
367
368         return ret;
369 }
370
371 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
372                               const char *buf, size_t count)
373 {
374         unsigned int input;
375         int ret;
376
377         ret = sscanf(buf, "%u", &input);
378         if (ret != 1)
379                 return -EINVAL;
380
381         update_turbo_state();
382         if (limits.turbo_disabled) {
383                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
384                 return -EPERM;
385         }
386
387         limits.no_turbo = clamp_t(int, input, 0, 1);
388
389         if (hwp_active)
390                 intel_pstate_hwp_set();
391
392         return count;
393 }
394
395 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
396                                   const char *buf, size_t count)
397 {
398         unsigned int input;
399         int ret;
400
401         ret = sscanf(buf, "%u", &input);
402         if (ret != 1)
403                 return -EINVAL;
404
405         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
406         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
407         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
408
409         if (hwp_active)
410                 intel_pstate_hwp_set();
411         return count;
412 }
413
414 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
415                                   const char *buf, size_t count)
416 {
417         unsigned int input;
418         int ret;
419
420         ret = sscanf(buf, "%u", &input);
421         if (ret != 1)
422                 return -EINVAL;
423         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
424         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
425
426         if (hwp_active)
427                 intel_pstate_hwp_set();
428         return count;
429 }
430
431 show_one(max_perf_pct, max_perf_pct);
432 show_one(min_perf_pct, min_perf_pct);
433
434 define_one_global_rw(no_turbo);
435 define_one_global_rw(max_perf_pct);
436 define_one_global_rw(min_perf_pct);
437 define_one_global_ro(turbo_pct);
438
439 static struct attribute *intel_pstate_attributes[] = {
440         &no_turbo.attr,
441         &max_perf_pct.attr,
442         &min_perf_pct.attr,
443         &turbo_pct.attr,
444         NULL
445 };
446
447 static struct attribute_group intel_pstate_attr_group = {
448         .attrs = intel_pstate_attributes,
449 };
450
451 static void __init intel_pstate_sysfs_expose_params(void)
452 {
453         struct kobject *intel_pstate_kobject;
454         int rc;
455
456         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
457                                                 &cpu_subsys.dev_root->kobj);
458         BUG_ON(!intel_pstate_kobject);
459         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
460         BUG_ON(rc);
461 }
462 /************************** sysfs end ************************/
463
464 static void intel_pstate_hwp_enable(void)
465 {
466         hwp_active++;
467         pr_info("intel_pstate HWP enabled\n");
468
469         wrmsrl( MSR_PM_ENABLE, 0x1);
470 }
471
472 static int byt_get_min_pstate(void)
473 {
474         u64 value;
475
476         rdmsrl(BYT_RATIOS, value);
477         return (value >> 8) & 0x7F;
478 }
479
480 static int byt_get_max_pstate(void)
481 {
482         u64 value;
483
484         rdmsrl(BYT_RATIOS, value);
485         return (value >> 16) & 0x7F;
486 }
487
488 static int byt_get_turbo_pstate(void)
489 {
490         u64 value;
491
492         rdmsrl(BYT_TURBO_RATIOS, value);
493         return value & 0x7F;
494 }
495
496 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
497 {
498         u64 val;
499         int32_t vid_fp;
500         u32 vid;
501
502         val = pstate << 8;
503         if (limits.no_turbo && !limits.turbo_disabled)
504                 val |= (u64)1 << 32;
505
506         vid_fp = cpudata->vid.min + mul_fp(
507                 int_tofp(pstate - cpudata->pstate.min_pstate),
508                 cpudata->vid.ratio);
509
510         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
511         vid = ceiling_fp(vid_fp);
512
513         if (pstate > cpudata->pstate.max_pstate)
514                 vid = cpudata->vid.turbo;
515
516         val |= vid;
517
518         wrmsrl(MSR_IA32_PERF_CTL, val);
519 }
520
521 #define BYT_BCLK_FREQS 5
522 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
523
524 static int byt_get_scaling(void)
525 {
526         u64 value;
527         int i;
528
529         rdmsrl(MSR_FSB_FREQ, value);
530         i = value & 0x3;
531
532         BUG_ON(i > BYT_BCLK_FREQS);
533
534         return byt_freq_table[i] * 100;
535 }
536
537 static void byt_get_vid(struct cpudata *cpudata)
538 {
539         u64 value;
540
541         rdmsrl(BYT_VIDS, value);
542         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
543         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
544         cpudata->vid.ratio = div_fp(
545                 cpudata->vid.max - cpudata->vid.min,
546                 int_tofp(cpudata->pstate.max_pstate -
547                         cpudata->pstate.min_pstate));
548
549         rdmsrl(BYT_TURBO_VIDS, value);
550         cpudata->vid.turbo = value & 0x7f;
551 }
552
553 static int core_get_min_pstate(void)
554 {
555         u64 value;
556
557         rdmsrl(MSR_PLATFORM_INFO, value);
558         return (value >> 40) & 0xFF;
559 }
560
561 static int core_get_max_pstate(void)
562 {
563         u64 value;
564
565         rdmsrl(MSR_PLATFORM_INFO, value);
566         return (value >> 8) & 0xFF;
567 }
568
569 static int core_get_turbo_pstate(void)
570 {
571         u64 value;
572         int nont, ret;
573
574         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
575         nont = core_get_max_pstate();
576         ret = (value) & 255;
577         if (ret <= nont)
578                 ret = nont;
579         return ret;
580 }
581
582 static inline int core_get_scaling(void)
583 {
584         return 100000;
585 }
586
587 static void core_set_pstate(struct cpudata *cpudata, int pstate)
588 {
589         u64 val;
590
591         val = pstate << 8;
592         if (limits.no_turbo && !limits.turbo_disabled)
593                 val |= (u64)1 << 32;
594
595         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
596 }
597
598 static struct cpu_defaults core_params = {
599         .pid_policy = {
600                 .sample_rate_ms = 10,
601                 .deadband = 0,
602                 .setpoint = 97,
603                 .p_gain_pct = 20,
604                 .d_gain_pct = 0,
605                 .i_gain_pct = 0,
606         },
607         .funcs = {
608                 .get_max = core_get_max_pstate,
609                 .get_min = core_get_min_pstate,
610                 .get_turbo = core_get_turbo_pstate,
611                 .get_scaling = core_get_scaling,
612                 .set = core_set_pstate,
613         },
614 };
615
616 static struct cpu_defaults byt_params = {
617         .pid_policy = {
618                 .sample_rate_ms = 10,
619                 .deadband = 0,
620                 .setpoint = 97,
621                 .p_gain_pct = 14,
622                 .d_gain_pct = 0,
623                 .i_gain_pct = 4,
624         },
625         .funcs = {
626                 .get_max = byt_get_max_pstate,
627                 .get_min = byt_get_min_pstate,
628                 .get_turbo = byt_get_turbo_pstate,
629                 .set = byt_set_pstate,
630                 .get_scaling = byt_get_scaling,
631                 .get_vid = byt_get_vid,
632         },
633 };
634
635 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
636 {
637         int max_perf = cpu->pstate.turbo_pstate;
638         int max_perf_adj;
639         int min_perf;
640
641         if (limits.no_turbo || limits.turbo_disabled)
642                 max_perf = cpu->pstate.max_pstate;
643
644         /*
645          * performance can be limited by user through sysfs, by cpufreq
646          * policy, or by cpu specific default values determined through
647          * experimentation.
648          */
649         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
650         *max = clamp_t(int, max_perf_adj,
651                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
652
653         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
654         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
655 }
656
657 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
658 {
659         int max_perf, min_perf;
660
661         update_turbo_state();
662
663         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
664
665         pstate = clamp_t(int, pstate, min_perf, max_perf);
666
667         if (pstate == cpu->pstate.current_pstate)
668                 return;
669
670         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
671
672         cpu->pstate.current_pstate = pstate;
673
674         pstate_funcs.set(cpu, pstate);
675 }
676
677 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
678 {
679         cpu->pstate.min_pstate = pstate_funcs.get_min();
680         cpu->pstate.max_pstate = pstate_funcs.get_max();
681         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
682         cpu->pstate.scaling = pstate_funcs.get_scaling();
683
684         if (pstate_funcs.get_vid)
685                 pstate_funcs.get_vid(cpu);
686         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
687 }
688
689 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
690 {
691         struct sample *sample = &cpu->sample;
692         int64_t core_pct;
693
694         core_pct = int_tofp(sample->aperf) * int_tofp(100);
695         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
696
697         sample->freq = fp_toint(
698                 mul_fp(int_tofp(
699                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
700                         core_pct));
701
702         sample->core_pct_busy = (int32_t)core_pct;
703 }
704
705 static inline void intel_pstate_sample(struct cpudata *cpu)
706 {
707         u64 aperf, mperf;
708         unsigned long flags;
709
710         local_irq_save(flags);
711         rdmsrl(MSR_IA32_APERF, aperf);
712         rdmsrl(MSR_IA32_MPERF, mperf);
713         local_irq_restore(flags);
714
715         cpu->last_sample_time = cpu->sample.time;
716         cpu->sample.time = ktime_get();
717         cpu->sample.aperf = aperf;
718         cpu->sample.mperf = mperf;
719         cpu->sample.aperf -= cpu->prev_aperf;
720         cpu->sample.mperf -= cpu->prev_mperf;
721
722         intel_pstate_calc_busy(cpu);
723
724         cpu->prev_aperf = aperf;
725         cpu->prev_mperf = mperf;
726 }
727
728 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
729 {
730         int delay;
731
732         delay = msecs_to_jiffies(50);
733         mod_timer_pinned(&cpu->timer, jiffies + delay);
734 }
735
736 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
737 {
738         int delay;
739
740         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
741         mod_timer_pinned(&cpu->timer, jiffies + delay);
742 }
743
744 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
745 {
746         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
747         u32 duration_us;
748         u32 sample_time;
749
750         /*
751          * core_busy is the ratio of actual performance to max
752          * max_pstate is the max non turbo pstate available
753          * current_pstate was the pstate that was requested during
754          *      the last sample period.
755          *
756          * We normalize core_busy, which was our actual percent
757          * performance to what we requested during the last sample
758          * period. The result will be a percentage of busy at a
759          * specified pstate.
760          */
761         core_busy = cpu->sample.core_pct_busy;
762         max_pstate = int_tofp(cpu->pstate.max_pstate);
763         current_pstate = int_tofp(cpu->pstate.current_pstate);
764         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
765
766         /*
767          * Since we have a deferred timer, it will not fire unless
768          * we are in C0.  So, determine if the actual elapsed time
769          * is significantly greater (3x) than our sample interval.  If it
770          * is, then we were idle for a long enough period of time
771          * to adjust our busyness.
772          */
773         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
774         duration_us = (u32) ktime_us_delta(cpu->sample.time,
775                                            cpu->last_sample_time);
776         if (duration_us > sample_time * 3) {
777                 sample_ratio = div_fp(int_tofp(sample_time),
778                                       int_tofp(duration_us));
779                 core_busy = mul_fp(core_busy, sample_ratio);
780         }
781
782         return core_busy;
783 }
784
785 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
786 {
787         int32_t busy_scaled;
788         struct _pid *pid;
789         signed int ctl;
790
791         pid = &cpu->pid;
792         busy_scaled = intel_pstate_get_scaled_busy(cpu);
793
794         ctl = pid_calc(pid, busy_scaled);
795
796         /* Negative values of ctl increase the pstate and vice versa */
797         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
798 }
799
800 static void intel_hwp_timer_func(unsigned long __data)
801 {
802         struct cpudata *cpu = (struct cpudata *) __data;
803
804         intel_pstate_sample(cpu);
805         intel_hwp_set_sample_time(cpu);
806 }
807
808 static void intel_pstate_timer_func(unsigned long __data)
809 {
810         struct cpudata *cpu = (struct cpudata *) __data;
811         struct sample *sample;
812
813         intel_pstate_sample(cpu);
814
815         sample = &cpu->sample;
816
817         intel_pstate_adjust_busy_pstate(cpu);
818
819         trace_pstate_sample(fp_toint(sample->core_pct_busy),
820                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
821                         cpu->pstate.current_pstate,
822                         sample->mperf,
823                         sample->aperf,
824                         sample->freq);
825
826         intel_pstate_set_sample_time(cpu);
827 }
828
829 #define ICPU(model, policy) \
830         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
831                         (unsigned long)&policy }
832
833 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
834         ICPU(0x2a, core_params),
835         ICPU(0x2d, core_params),
836         ICPU(0x37, byt_params),
837         ICPU(0x3a, core_params),
838         ICPU(0x3c, core_params),
839         ICPU(0x3d, core_params),
840         ICPU(0x3e, core_params),
841         ICPU(0x3f, core_params),
842         ICPU(0x45, core_params),
843         ICPU(0x46, core_params),
844         ICPU(0x47, core_params),
845         ICPU(0x4c, byt_params),
846         ICPU(0x4e, core_params),
847         ICPU(0x4f, core_params),
848         ICPU(0x56, core_params),
849         {}
850 };
851 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
852
853 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
854         ICPU(0x56, core_params),
855         {}
856 };
857
858 static int intel_pstate_init_cpu(unsigned int cpunum)
859 {
860         struct cpudata *cpu;
861
862         if (!all_cpu_data[cpunum])
863                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
864                                                GFP_KERNEL);
865         if (!all_cpu_data[cpunum])
866                 return -ENOMEM;
867
868         cpu = all_cpu_data[cpunum];
869
870         cpu->cpu = cpunum;
871         intel_pstate_get_cpu_pstates(cpu);
872
873         init_timer_deferrable(&cpu->timer);
874         cpu->timer.data = (unsigned long)cpu;
875         cpu->timer.expires = jiffies + HZ/100;
876
877         if (!hwp_active)
878                 cpu->timer.function = intel_pstate_timer_func;
879         else
880                 cpu->timer.function = intel_hwp_timer_func;
881
882         intel_pstate_busy_pid_reset(cpu);
883         intel_pstate_sample(cpu);
884
885         add_timer_on(&cpu->timer, cpunum);
886
887         pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
888
889         return 0;
890 }
891
892 static unsigned int intel_pstate_get(unsigned int cpu_num)
893 {
894         struct sample *sample;
895         struct cpudata *cpu;
896
897         cpu = all_cpu_data[cpu_num];
898         if (!cpu)
899                 return 0;
900         sample = &cpu->sample;
901         return sample->freq;
902 }
903
904 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
905 {
906         if (!policy->cpuinfo.max_freq)
907                 return -ENODEV;
908
909         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
910                 limits.min_perf_pct = 100;
911                 limits.min_perf = int_tofp(1);
912                 limits.max_policy_pct = 100;
913                 limits.max_perf_pct = 100;
914                 limits.max_perf = int_tofp(1);
915                 limits.no_turbo = 0;
916                 return 0;
917         }
918
919         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
920         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
921         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
922
923         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
924         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
925         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
926         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
927
928         if (hwp_active)
929                 intel_pstate_hwp_set();
930
931         return 0;
932 }
933
934 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
935 {
936         cpufreq_verify_within_cpu_limits(policy);
937
938         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
939             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
940                 return -EINVAL;
941
942         return 0;
943 }
944
945 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
946 {
947         int cpu_num = policy->cpu;
948         struct cpudata *cpu = all_cpu_data[cpu_num];
949
950         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
951
952         del_timer_sync(&all_cpu_data[cpu_num]->timer);
953         if (hwp_active)
954                 return;
955
956         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
957 }
958
959 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
960 {
961         struct cpudata *cpu;
962         int rc;
963
964         rc = intel_pstate_init_cpu(policy->cpu);
965         if (rc)
966                 return rc;
967
968         cpu = all_cpu_data[policy->cpu];
969
970         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
971                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
972         else
973                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
974
975         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
976         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
977
978         /* cpuinfo and default policy values */
979         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
980         policy->cpuinfo.max_freq =
981                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
982         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
983         cpumask_set_cpu(policy->cpu, policy->cpus);
984
985         return 0;
986 }
987
988 static struct cpufreq_driver intel_pstate_driver = {
989         .flags          = CPUFREQ_CONST_LOOPS,
990         .verify         = intel_pstate_verify_policy,
991         .setpolicy      = intel_pstate_set_policy,
992         .get            = intel_pstate_get,
993         .init           = intel_pstate_cpu_init,
994         .stop_cpu       = intel_pstate_stop_cpu,
995         .name           = "intel_pstate",
996 };
997
998 static int __initdata no_load;
999 static int __initdata no_hwp;
1000 static unsigned int force_load;
1001
1002 static int intel_pstate_msrs_not_valid(void)
1003 {
1004         /* Check that all the msr's we are using are valid. */
1005         u64 aperf, mperf, tmp;
1006
1007         rdmsrl(MSR_IA32_APERF, aperf);
1008         rdmsrl(MSR_IA32_MPERF, mperf);
1009
1010         if (!pstate_funcs.get_max() ||
1011             !pstate_funcs.get_min() ||
1012             !pstate_funcs.get_turbo())
1013                 return -ENODEV;
1014
1015         rdmsrl(MSR_IA32_APERF, tmp);
1016         if (!(tmp - aperf))
1017                 return -ENODEV;
1018
1019         rdmsrl(MSR_IA32_MPERF, tmp);
1020         if (!(tmp - mperf))
1021                 return -ENODEV;
1022
1023         return 0;
1024 }
1025
1026 static void copy_pid_params(struct pstate_adjust_policy *policy)
1027 {
1028         pid_params.sample_rate_ms = policy->sample_rate_ms;
1029         pid_params.p_gain_pct = policy->p_gain_pct;
1030         pid_params.i_gain_pct = policy->i_gain_pct;
1031         pid_params.d_gain_pct = policy->d_gain_pct;
1032         pid_params.deadband = policy->deadband;
1033         pid_params.setpoint = policy->setpoint;
1034 }
1035
1036 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1037 {
1038         pstate_funcs.get_max   = funcs->get_max;
1039         pstate_funcs.get_min   = funcs->get_min;
1040         pstate_funcs.get_turbo = funcs->get_turbo;
1041         pstate_funcs.get_scaling = funcs->get_scaling;
1042         pstate_funcs.set       = funcs->set;
1043         pstate_funcs.get_vid   = funcs->get_vid;
1044 }
1045
1046 #if IS_ENABLED(CONFIG_ACPI)
1047 #include <acpi/processor.h>
1048
1049 static bool intel_pstate_no_acpi_pss(void)
1050 {
1051         int i;
1052
1053         for_each_possible_cpu(i) {
1054                 acpi_status status;
1055                 union acpi_object *pss;
1056                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1057                 struct acpi_processor *pr = per_cpu(processors, i);
1058
1059                 if (!pr)
1060                         continue;
1061
1062                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1063                 if (ACPI_FAILURE(status))
1064                         continue;
1065
1066                 pss = buffer.pointer;
1067                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1068                         kfree(pss);
1069                         return false;
1070                 }
1071
1072                 kfree(pss);
1073         }
1074
1075         return true;
1076 }
1077
1078 static bool intel_pstate_has_acpi_ppc(void)
1079 {
1080         int i;
1081
1082         for_each_possible_cpu(i) {
1083                 struct acpi_processor *pr = per_cpu(processors, i);
1084
1085                 if (!pr)
1086                         continue;
1087                 if (acpi_has_method(pr->handle, "_PPC"))
1088                         return true;
1089         }
1090         return false;
1091 }
1092
1093 enum {
1094         PSS,
1095         PPC,
1096 };
1097
1098 struct hw_vendor_info {
1099         u16  valid;
1100         char oem_id[ACPI_OEM_ID_SIZE];
1101         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1102         int  oem_pwr_table;
1103 };
1104
1105 /* Hardware vendor-specific info that has its own power management modes */
1106 static struct hw_vendor_info vendor_info[] = {
1107         {1, "HP    ", "ProLiant", PSS},
1108         {1, "ORACLE", "X4-2    ", PPC},
1109         {1, "ORACLE", "X4-2L   ", PPC},
1110         {1, "ORACLE", "X4-2B   ", PPC},
1111         {1, "ORACLE", "X3-2    ", PPC},
1112         {1, "ORACLE", "X3-2L   ", PPC},
1113         {1, "ORACLE", "X3-2B   ", PPC},
1114         {1, "ORACLE", "X4470M2 ", PPC},
1115         {1, "ORACLE", "X4270M3 ", PPC},
1116         {1, "ORACLE", "X4270M2 ", PPC},
1117         {1, "ORACLE", "X4170M2 ", PPC},
1118         {0, "", ""},
1119 };
1120
1121 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1122 {
1123         struct acpi_table_header hdr;
1124         struct hw_vendor_info *v_info;
1125         const struct x86_cpu_id *id;
1126         u64 misc_pwr;
1127
1128         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1129         if (id) {
1130                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1131                 if ( misc_pwr & (1 << 8))
1132                         return true;
1133         }
1134
1135         if (acpi_disabled ||
1136             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1137                 return false;
1138
1139         for (v_info = vendor_info; v_info->valid; v_info++) {
1140                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1141                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1142                                                 ACPI_OEM_TABLE_ID_SIZE))
1143                         switch (v_info->oem_pwr_table) {
1144                         case PSS:
1145                                 return intel_pstate_no_acpi_pss();
1146                         case PPC:
1147                                 return intel_pstate_has_acpi_ppc() &&
1148                                         (!force_load);
1149                         }
1150         }
1151
1152         return false;
1153 }
1154 #else /* CONFIG_ACPI not enabled */
1155 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1156 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1157 #endif /* CONFIG_ACPI */
1158
1159 static int __init intel_pstate_init(void)
1160 {
1161         int cpu, rc = 0;
1162         const struct x86_cpu_id *id;
1163         struct cpu_defaults *cpu_info;
1164         struct cpuinfo_x86 *c = &boot_cpu_data;
1165
1166         if (no_load)
1167                 return -ENODEV;
1168
1169         id = x86_match_cpu(intel_pstate_cpu_ids);
1170         if (!id)
1171                 return -ENODEV;
1172
1173         /*
1174          * The Intel pstate driver will be ignored if the platform
1175          * firmware has its own power management modes.
1176          */
1177         if (intel_pstate_platform_pwr_mgmt_exists())
1178                 return -ENODEV;
1179
1180         cpu_info = (struct cpu_defaults *)id->driver_data;
1181
1182         copy_pid_params(&cpu_info->pid_policy);
1183         copy_cpu_funcs(&cpu_info->funcs);
1184
1185         if (intel_pstate_msrs_not_valid())
1186                 return -ENODEV;
1187
1188         pr_info("Intel P-state driver initializing.\n");
1189
1190         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1191         if (!all_cpu_data)
1192                 return -ENOMEM;
1193
1194         if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1195                 intel_pstate_hwp_enable();
1196
1197         rc = cpufreq_register_driver(&intel_pstate_driver);
1198         if (rc)
1199                 goto out;
1200
1201         intel_pstate_debug_expose_params();
1202         intel_pstate_sysfs_expose_params();
1203
1204         return rc;
1205 out:
1206         get_online_cpus();
1207         for_each_online_cpu(cpu) {
1208                 if (all_cpu_data[cpu]) {
1209                         del_timer_sync(&all_cpu_data[cpu]->timer);
1210                         kfree(all_cpu_data[cpu]);
1211                 }
1212         }
1213
1214         put_online_cpus();
1215         vfree(all_cpu_data);
1216         return -ENODEV;
1217 }
1218 device_initcall(intel_pstate_init);
1219
1220 static int __init intel_pstate_setup(char *str)
1221 {
1222         if (!str)
1223                 return -EINVAL;
1224
1225         if (!strcmp(str, "disable"))
1226                 no_load = 1;
1227         if (!strcmp(str, "no_hwp"))
1228                 no_hwp = 1;
1229         if (!strcmp(str, "force"))
1230                 force_load = 1;
1231         return 0;
1232 }
1233 early_param("intel_pstate", intel_pstate_setup);
1234
1235 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1236 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1237 MODULE_LICENSE("GPL");