Merge back earlier cpufreq material for v4.8.
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define ATOM_RATIOS             0x66a
41 #define ATOM_VIDS               0x66b
42 #define ATOM_TURBO_RATIOS       0x66c
43 #define ATOM_TURBO_VIDS         0x66d
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 /**
88  * struct sample -      Store performance sample
89  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
90  *                      performance during last sample period
91  * @busy_scaled:        Scaled busy value which is used to calculate next
92  *                      P state. This can be different than core_avg_perf
93  *                      to account for cpu idle period
94  * @aperf:              Difference of actual performance frequency clock count
95  *                      read from APERF MSR between last and current sample
96  * @mperf:              Difference of maximum performance frequency clock count
97  *                      read from MPERF MSR between last and current sample
98  * @tsc:                Difference of time stamp counter between last and
99  *                      current sample
100  * @freq:               Effective frequency calculated from APERF/MPERF
101  * @time:               Current time from scheduler
102  *
103  * This structure is used in the cpudata structure to store performance sample
104  * data for choosing next P State.
105  */
106 struct sample {
107         int32_t core_avg_perf;
108         int32_t busy_scaled;
109         u64 aperf;
110         u64 mperf;
111         u64 tsc;
112         int freq;
113         u64 time;
114 };
115
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:     Current requested P state
119  * @min_pstate:         Min P state possible for this platform
120  * @max_pstate:         Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *                      This can be higher than the max_pstate which can
123  *                      be limited by platform thermal design power limits
124  * @scaling:            Scaling factor to  convert frequency to cpufreq
125  *                      frequency units
126  * @turbo_pstate:       Max Turbo P state possible for this platform
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131         int     current_pstate;
132         int     min_pstate;
133         int     max_pstate;
134         int     max_pstate_physical;
135         int     scaling;
136         int     turbo_pstate;
137 };
138
139 /**
140  * struct vid_data -    Stores voltage information data
141  * @min:                VID data for this platform corresponding to
142  *                      the lowest P state
143  * @max:                VID data corresponding to the highest P State.
144  * @turbo:              VID data for turbo P state
145  * @ratio:              Ratio of (vid max - vid min) /
146  *                      (max P state - Min P State)
147  *
148  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149  * This data is used in Atom platforms, where in addition to target P state,
150  * the voltage data needs to be specified to select next P State.
151  */
152 struct vid_data {
153         int min;
154         int max;
155         int turbo;
156         int32_t ratio;
157 };
158
159 /**
160  * struct _pid -        Stores PID data
161  * @setpoint:           Target set point for busyness or performance
162  * @integral:           Storage for accumulated error values
163  * @p_gain:             PID proportional gain
164  * @i_gain:             PID integral gain
165  * @d_gain:             PID derivative gain
166  * @deadband:           PID deadband
167  * @last_err:           Last error storage for integral part of PID calculation
168  *
169  * Stores PID coefficients and last error for PID controller.
170  */
171 struct _pid {
172         int setpoint;
173         int32_t integral;
174         int32_t p_gain;
175         int32_t i_gain;
176         int32_t d_gain;
177         int deadband;
178         int32_t last_err;
179 };
180
181 /**
182  * struct cpudata -     Per CPU instance data storage
183  * @cpu:                CPU number for this instance data
184  * @update_util:        CPUFreq utility callback information
185  * @update_util_set:    CPUFreq utility callback is set
186  * @pstate:             Stores P state limits for this CPU
187  * @vid:                Stores VID limits for this CPU
188  * @pid:                Stores PID parameters for this CPU
189  * @last_sample_time:   Last Sample time
190  * @prev_aperf:         Last APERF value read from APERF MSR
191  * @prev_mperf:         Last MPERF value read from MPERF MSR
192  * @prev_tsc:           Last timestamp counter (TSC) value
193  * @prev_cummulative_iowait: IO Wait time difference from last and
194  *                      current sample
195  * @sample:             Storage for storing last Sample data
196  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
197  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
198  *
199  * This structure stores per CPU instance data for all CPUs.
200  */
201 struct cpudata {
202         int cpu;
203
204         struct update_util_data update_util;
205         bool   update_util_set;
206
207         struct pstate_data pstate;
208         struct vid_data vid;
209         struct _pid pid;
210
211         u64     last_sample_time;
212         u64     prev_aperf;
213         u64     prev_mperf;
214         u64     prev_tsc;
215         u64     prev_cummulative_iowait;
216         struct sample sample;
217 #ifdef CONFIG_ACPI
218         struct acpi_processor_performance acpi_perf_data;
219         bool valid_pss_table;
220 #endif
221 };
222
223 static struct cpudata **all_cpu_data;
224
225 /**
226  * struct pid_adjust_policy - Stores static PID configuration data
227  * @sample_rate_ms:     PID calculation sample rate in ms
228  * @sample_rate_ns:     Sample rate calculation in ns
229  * @deadband:           PID deadband
230  * @setpoint:           PID Setpoint
231  * @p_gain_pct:         PID proportional gain
232  * @i_gain_pct:         PID integral gain
233  * @d_gain_pct:         PID derivative gain
234  *
235  * Stores per CPU model static PID configuration data.
236  */
237 struct pstate_adjust_policy {
238         int sample_rate_ms;
239         s64 sample_rate_ns;
240         int deadband;
241         int setpoint;
242         int p_gain_pct;
243         int d_gain_pct;
244         int i_gain_pct;
245 };
246
247 /**
248  * struct pstate_funcs - Per CPU model specific callbacks
249  * @get_max:            Callback to get maximum non turbo effective P state
250  * @get_max_physical:   Callback to get maximum non turbo physical P state
251  * @get_min:            Callback to get minimum P state
252  * @get_turbo:          Callback to get turbo P state
253  * @get_scaling:        Callback to get frequency scaling factor
254  * @get_val:            Callback to convert P state to actual MSR write value
255  * @get_vid:            Callback to get VID data for Atom platforms
256  * @get_target_pstate:  Callback to a function to calculate next P state to use
257  *
258  * Core and Atom CPU models have different way to get P State limits. This
259  * structure is used to store those callbacks.
260  */
261 struct pstate_funcs {
262         int (*get_max)(void);
263         int (*get_max_physical)(void);
264         int (*get_min)(void);
265         int (*get_turbo)(void);
266         int (*get_scaling)(void);
267         u64 (*get_val)(struct cpudata*, int pstate);
268         void (*get_vid)(struct cpudata *);
269         int32_t (*get_target_pstate)(struct cpudata *);
270 };
271
272 /**
273  * struct cpu_defaults- Per CPU model default config data
274  * @pid_policy: PID config data
275  * @funcs:              Callback function data
276  */
277 struct cpu_defaults {
278         struct pstate_adjust_policy pid_policy;
279         struct pstate_funcs funcs;
280 };
281
282 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284
285 static struct pstate_adjust_policy pid_params __read_mostly;
286 static struct pstate_funcs pstate_funcs __read_mostly;
287 static int hwp_active __read_mostly;
288
289 #ifdef CONFIG_ACPI
290 static bool acpi_ppc;
291 #endif
292
293 /**
294  * struct perf_limits - Store user and policy limits
295  * @no_turbo:           User requested turbo state from intel_pstate sysfs
296  * @turbo_disabled:     Platform turbo status either from msr
297  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
298  *                      matches the maximum turbo pstate
299  * @max_perf_pct:       Effective maximum performance limit in percentage, this
300  *                      is minimum of either limits enforced by cpufreq policy
301  *                      or limits from user set limits via intel_pstate sysfs
302  * @min_perf_pct:       Effective minimum performance limit in percentage, this
303  *                      is maximum of either limits enforced by cpufreq policy
304  *                      or limits from user set limits via intel_pstate sysfs
305  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
306  *                      This value is used to limit max pstate
307  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
308  *                      This value is used to limit min pstate
309  * @max_policy_pct:     The maximum performance in percentage enforced by
310  *                      cpufreq setpolicy interface
311  * @max_sysfs_pct:      The maximum performance in percentage enforced by
312  *                      intel pstate sysfs interface
313  * @min_policy_pct:     The minimum performance in percentage enforced by
314  *                      cpufreq setpolicy interface
315  * @min_sysfs_pct:      The minimum performance in percentage enforced by
316  *                      intel pstate sysfs interface
317  *
318  * Storage for user and policy defined limits.
319  */
320 struct perf_limits {
321         int no_turbo;
322         int turbo_disabled;
323         int max_perf_pct;
324         int min_perf_pct;
325         int32_t max_perf;
326         int32_t min_perf;
327         int max_policy_pct;
328         int max_sysfs_pct;
329         int min_policy_pct;
330         int min_sysfs_pct;
331 };
332
333 static struct perf_limits performance_limits = {
334         .no_turbo = 0,
335         .turbo_disabled = 0,
336         .max_perf_pct = 100,
337         .max_perf = int_tofp(1),
338         .min_perf_pct = 100,
339         .min_perf = int_tofp(1),
340         .max_policy_pct = 100,
341         .max_sysfs_pct = 100,
342         .min_policy_pct = 0,
343         .min_sysfs_pct = 0,
344 };
345
346 static struct perf_limits powersave_limits = {
347         .no_turbo = 0,
348         .turbo_disabled = 0,
349         .max_perf_pct = 100,
350         .max_perf = int_tofp(1),
351         .min_perf_pct = 0,
352         .min_perf = 0,
353         .max_policy_pct = 100,
354         .max_sysfs_pct = 100,
355         .min_policy_pct = 0,
356         .min_sysfs_pct = 0,
357 };
358
359 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360 static struct perf_limits *limits = &performance_limits;
361 #else
362 static struct perf_limits *limits = &powersave_limits;
363 #endif
364
365 #ifdef CONFIG_ACPI
366
367 static bool intel_pstate_get_ppc_enable_status(void)
368 {
369         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371                 return true;
372
373         return acpi_ppc;
374 }
375
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378         struct cpudata *cpu;
379         int ret;
380         int i;
381
382         if (hwp_active)
383                 return;
384
385         if (!intel_pstate_get_ppc_enable_status())
386                 return;
387
388         cpu = all_cpu_data[policy->cpu];
389
390         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391                                                   policy->cpu);
392         if (ret)
393                 return;
394
395         /*
396          * Check if the control value in _PSS is for PERF_CTL MSR, which should
397          * guarantee that the states returned by it map to the states in our
398          * list directly.
399          */
400         if (cpu->acpi_perf_data.control_register.space_id !=
401                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
402                 goto err;
403
404         /*
405          * If there is only one entry _PSS, simply ignore _PSS and continue as
406          * usual without taking _PSS into account
407          */
408         if (cpu->acpi_perf_data.state_count < 2)
409                 goto err;
410
411         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
414                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
416                          (u32) cpu->acpi_perf_data.states[i].power,
417                          (u32) cpu->acpi_perf_data.states[i].control);
418         }
419
420         /*
421          * The _PSS table doesn't contain whole turbo frequency range.
422          * This just contains +1 MHZ above the max non turbo frequency,
423          * with control value corresponding to max turbo ratio. But
424          * when cpufreq set policy is called, it will call with this
425          * max frequency, which will cause a reduced performance as
426          * this driver uses real max turbo frequency as the max
427          * frequency. So correct this frequency in _PSS table to
428          * correct max turbo frequency based on the turbo state.
429          * Also need to convert to MHz as _PSS freq is in MHz.
430          */
431         if (!limits->turbo_disabled)
432                 cpu->acpi_perf_data.states[0].core_frequency =
433                                         policy->cpuinfo.max_freq / 1000;
434         cpu->valid_pss_table = true;
435         pr_debug("_PPC limits will be enforced\n");
436
437         return;
438
439  err:
440         cpu->valid_pss_table = false;
441         acpi_processor_unregister_performance(policy->cpu);
442 }
443
444 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
445 {
446         struct cpudata *cpu;
447
448         cpu = all_cpu_data[policy->cpu];
449         if (!cpu->valid_pss_table)
450                 return;
451
452         acpi_processor_unregister_performance(policy->cpu);
453 }
454
455 #else
456 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
457 {
458 }
459
460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
461 {
462 }
463 #endif
464
465 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
466                              int deadband, int integral) {
467         pid->setpoint = int_tofp(setpoint);
468         pid->deadband  = int_tofp(deadband);
469         pid->integral  = int_tofp(integral);
470         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
471 }
472
473 static inline void pid_p_gain_set(struct _pid *pid, int percent)
474 {
475         pid->p_gain = div_fp(percent, 100);
476 }
477
478 static inline void pid_i_gain_set(struct _pid *pid, int percent)
479 {
480         pid->i_gain = div_fp(percent, 100);
481 }
482
483 static inline void pid_d_gain_set(struct _pid *pid, int percent)
484 {
485         pid->d_gain = div_fp(percent, 100);
486 }
487
488 static signed int pid_calc(struct _pid *pid, int32_t busy)
489 {
490         signed int result;
491         int32_t pterm, dterm, fp_error;
492         int32_t integral_limit;
493
494         fp_error = pid->setpoint - busy;
495
496         if (abs(fp_error) <= pid->deadband)
497                 return 0;
498
499         pterm = mul_fp(pid->p_gain, fp_error);
500
501         pid->integral += fp_error;
502
503         /*
504          * We limit the integral here so that it will never
505          * get higher than 30.  This prevents it from becoming
506          * too large an input over long periods of time and allows
507          * it to get factored out sooner.
508          *
509          * The value of 30 was chosen through experimentation.
510          */
511         integral_limit = int_tofp(30);
512         if (pid->integral > integral_limit)
513                 pid->integral = integral_limit;
514         if (pid->integral < -integral_limit)
515                 pid->integral = -integral_limit;
516
517         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
518         pid->last_err = fp_error;
519
520         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
521         result = result + (1 << (FRAC_BITS-1));
522         return (signed int)fp_toint(result);
523 }
524
525 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
526 {
527         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
528         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
529         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
530
531         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
532 }
533
534 static inline void intel_pstate_reset_all_pid(void)
535 {
536         unsigned int cpu;
537
538         for_each_online_cpu(cpu) {
539                 if (all_cpu_data[cpu])
540                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
541         }
542 }
543
544 static inline void update_turbo_state(void)
545 {
546         u64 misc_en;
547         struct cpudata *cpu;
548
549         cpu = all_cpu_data[0];
550         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
551         limits->turbo_disabled =
552                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
553                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
554 }
555
556 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
557 {
558         int min, hw_min, max, hw_max, cpu, range, adj_range;
559         u64 value, cap;
560
561         rdmsrl(MSR_HWP_CAPABILITIES, cap);
562         hw_min = HWP_LOWEST_PERF(cap);
563         hw_max = HWP_HIGHEST_PERF(cap);
564         range = hw_max - hw_min;
565
566         for_each_cpu(cpu, cpumask) {
567                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
568                 adj_range = limits->min_perf_pct * range / 100;
569                 min = hw_min + adj_range;
570                 value &= ~HWP_MIN_PERF(~0L);
571                 value |= HWP_MIN_PERF(min);
572
573                 adj_range = limits->max_perf_pct * range / 100;
574                 max = hw_min + adj_range;
575                 if (limits->no_turbo) {
576                         hw_max = HWP_GUARANTEED_PERF(cap);
577                         if (hw_max < max)
578                                 max = hw_max;
579                 }
580
581                 value &= ~HWP_MAX_PERF(~0L);
582                 value |= HWP_MAX_PERF(max);
583                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
584         }
585 }
586
587 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
588 {
589         if (hwp_active)
590                 intel_pstate_hwp_set(policy->cpus);
591
592         return 0;
593 }
594
595 static void intel_pstate_hwp_set_online_cpus(void)
596 {
597         get_online_cpus();
598         intel_pstate_hwp_set(cpu_online_mask);
599         put_online_cpus();
600 }
601
602 /************************** debugfs begin ************************/
603 static int pid_param_set(void *data, u64 val)
604 {
605         *(u32 *)data = val;
606         intel_pstate_reset_all_pid();
607         return 0;
608 }
609
610 static int pid_param_get(void *data, u64 *val)
611 {
612         *val = *(u32 *)data;
613         return 0;
614 }
615 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
616
617 struct pid_param {
618         char *name;
619         void *value;
620 };
621
622 static struct pid_param pid_files[] = {
623         {"sample_rate_ms", &pid_params.sample_rate_ms},
624         {"d_gain_pct", &pid_params.d_gain_pct},
625         {"i_gain_pct", &pid_params.i_gain_pct},
626         {"deadband", &pid_params.deadband},
627         {"setpoint", &pid_params.setpoint},
628         {"p_gain_pct", &pid_params.p_gain_pct},
629         {NULL, NULL}
630 };
631
632 static void __init intel_pstate_debug_expose_params(void)
633 {
634         struct dentry *debugfs_parent;
635         int i = 0;
636
637         if (hwp_active)
638                 return;
639         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
640         if (IS_ERR_OR_NULL(debugfs_parent))
641                 return;
642         while (pid_files[i].name) {
643                 debugfs_create_file(pid_files[i].name, 0660,
644                                     debugfs_parent, pid_files[i].value,
645                                     &fops_pid_param);
646                 i++;
647         }
648 }
649
650 /************************** debugfs end ************************/
651
652 /************************** sysfs begin ************************/
653 #define show_one(file_name, object)                                     \
654         static ssize_t show_##file_name                                 \
655         (struct kobject *kobj, struct attribute *attr, char *buf)       \
656         {                                                               \
657                 return sprintf(buf, "%u\n", limits->object);            \
658         }
659
660 static ssize_t show_turbo_pct(struct kobject *kobj,
661                                 struct attribute *attr, char *buf)
662 {
663         struct cpudata *cpu;
664         int total, no_turbo, turbo_pct;
665         uint32_t turbo_fp;
666
667         cpu = all_cpu_data[0];
668
669         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
670         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
671         turbo_fp = div_fp(no_turbo, total);
672         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
673         return sprintf(buf, "%u\n", turbo_pct);
674 }
675
676 static ssize_t show_num_pstates(struct kobject *kobj,
677                                 struct attribute *attr, char *buf)
678 {
679         struct cpudata *cpu;
680         int total;
681
682         cpu = all_cpu_data[0];
683         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
684         return sprintf(buf, "%u\n", total);
685 }
686
687 static ssize_t show_no_turbo(struct kobject *kobj,
688                              struct attribute *attr, char *buf)
689 {
690         ssize_t ret;
691
692         update_turbo_state();
693         if (limits->turbo_disabled)
694                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
695         else
696                 ret = sprintf(buf, "%u\n", limits->no_turbo);
697
698         return ret;
699 }
700
701 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
702                               const char *buf, size_t count)
703 {
704         unsigned int input;
705         int ret;
706
707         ret = sscanf(buf, "%u", &input);
708         if (ret != 1)
709                 return -EINVAL;
710
711         update_turbo_state();
712         if (limits->turbo_disabled) {
713                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
714                 return -EPERM;
715         }
716
717         limits->no_turbo = clamp_t(int, input, 0, 1);
718
719         if (hwp_active)
720                 intel_pstate_hwp_set_online_cpus();
721
722         return count;
723 }
724
725 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
726                                   const char *buf, size_t count)
727 {
728         unsigned int input;
729         int ret;
730
731         ret = sscanf(buf, "%u", &input);
732         if (ret != 1)
733                 return -EINVAL;
734
735         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
736         limits->max_perf_pct = min(limits->max_policy_pct,
737                                    limits->max_sysfs_pct);
738         limits->max_perf_pct = max(limits->min_policy_pct,
739                                    limits->max_perf_pct);
740         limits->max_perf_pct = max(limits->min_perf_pct,
741                                    limits->max_perf_pct);
742         limits->max_perf = div_fp(limits->max_perf_pct, 100);
743
744         if (hwp_active)
745                 intel_pstate_hwp_set_online_cpus();
746         return count;
747 }
748
749 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
750                                   const char *buf, size_t count)
751 {
752         unsigned int input;
753         int ret;
754
755         ret = sscanf(buf, "%u", &input);
756         if (ret != 1)
757                 return -EINVAL;
758
759         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
760         limits->min_perf_pct = max(limits->min_policy_pct,
761                                    limits->min_sysfs_pct);
762         limits->min_perf_pct = min(limits->max_policy_pct,
763                                    limits->min_perf_pct);
764         limits->min_perf_pct = min(limits->max_perf_pct,
765                                    limits->min_perf_pct);
766         limits->min_perf = div_fp(limits->min_perf_pct, 100);
767
768         if (hwp_active)
769                 intel_pstate_hwp_set_online_cpus();
770         return count;
771 }
772
773 show_one(max_perf_pct, max_perf_pct);
774 show_one(min_perf_pct, min_perf_pct);
775
776 define_one_global_rw(no_turbo);
777 define_one_global_rw(max_perf_pct);
778 define_one_global_rw(min_perf_pct);
779 define_one_global_ro(turbo_pct);
780 define_one_global_ro(num_pstates);
781
782 static struct attribute *intel_pstate_attributes[] = {
783         &no_turbo.attr,
784         &max_perf_pct.attr,
785         &min_perf_pct.attr,
786         &turbo_pct.attr,
787         &num_pstates.attr,
788         NULL
789 };
790
791 static struct attribute_group intel_pstate_attr_group = {
792         .attrs = intel_pstate_attributes,
793 };
794
795 static void __init intel_pstate_sysfs_expose_params(void)
796 {
797         struct kobject *intel_pstate_kobject;
798         int rc;
799
800         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
801                                                 &cpu_subsys.dev_root->kobj);
802         BUG_ON(!intel_pstate_kobject);
803         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
804         BUG_ON(rc);
805 }
806 /************************** sysfs end ************************/
807
808 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
809 {
810         /* First disable HWP notification interrupt as we don't process them */
811         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
812
813         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
814 }
815
816 static int atom_get_min_pstate(void)
817 {
818         u64 value;
819
820         rdmsrl(ATOM_RATIOS, value);
821         return (value >> 8) & 0x7F;
822 }
823
824 static int atom_get_max_pstate(void)
825 {
826         u64 value;
827
828         rdmsrl(ATOM_RATIOS, value);
829         return (value >> 16) & 0x7F;
830 }
831
832 static int atom_get_turbo_pstate(void)
833 {
834         u64 value;
835
836         rdmsrl(ATOM_TURBO_RATIOS, value);
837         return value & 0x7F;
838 }
839
840 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
841 {
842         u64 val;
843         int32_t vid_fp;
844         u32 vid;
845
846         val = (u64)pstate << 8;
847         if (limits->no_turbo && !limits->turbo_disabled)
848                 val |= (u64)1 << 32;
849
850         vid_fp = cpudata->vid.min + mul_fp(
851                 int_tofp(pstate - cpudata->pstate.min_pstate),
852                 cpudata->vid.ratio);
853
854         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
855         vid = ceiling_fp(vid_fp);
856
857         if (pstate > cpudata->pstate.max_pstate)
858                 vid = cpudata->vid.turbo;
859
860         return val | vid;
861 }
862
863 static int silvermont_get_scaling(void)
864 {
865         u64 value;
866         int i;
867         /* Defined in Table 35-6 from SDM (Sept 2015) */
868         static int silvermont_freq_table[] = {
869                 83300, 100000, 133300, 116700, 80000};
870
871         rdmsrl(MSR_FSB_FREQ, value);
872         i = value & 0x7;
873         WARN_ON(i > 4);
874
875         return silvermont_freq_table[i];
876 }
877
878 static int airmont_get_scaling(void)
879 {
880         u64 value;
881         int i;
882         /* Defined in Table 35-10 from SDM (Sept 2015) */
883         static int airmont_freq_table[] = {
884                 83300, 100000, 133300, 116700, 80000,
885                 93300, 90000, 88900, 87500};
886
887         rdmsrl(MSR_FSB_FREQ, value);
888         i = value & 0xF;
889         WARN_ON(i > 8);
890
891         return airmont_freq_table[i];
892 }
893
894 static void atom_get_vid(struct cpudata *cpudata)
895 {
896         u64 value;
897
898         rdmsrl(ATOM_VIDS, value);
899         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
900         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
901         cpudata->vid.ratio = div_fp(
902                 cpudata->vid.max - cpudata->vid.min,
903                 int_tofp(cpudata->pstate.max_pstate -
904                         cpudata->pstate.min_pstate));
905
906         rdmsrl(ATOM_TURBO_VIDS, value);
907         cpudata->vid.turbo = value & 0x7f;
908 }
909
910 static int core_get_min_pstate(void)
911 {
912         u64 value;
913
914         rdmsrl(MSR_PLATFORM_INFO, value);
915         return (value >> 40) & 0xFF;
916 }
917
918 static int core_get_max_pstate_physical(void)
919 {
920         u64 value;
921
922         rdmsrl(MSR_PLATFORM_INFO, value);
923         return (value >> 8) & 0xFF;
924 }
925
926 static int core_get_max_pstate(void)
927 {
928         u64 tar;
929         u64 plat_info;
930         int max_pstate;
931         int err;
932
933         rdmsrl(MSR_PLATFORM_INFO, plat_info);
934         max_pstate = (plat_info >> 8) & 0xFF;
935
936         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
937         if (!err) {
938                 /* Do some sanity checking for safety */
939                 if (plat_info & 0x600000000) {
940                         u64 tdp_ctrl;
941                         u64 tdp_ratio;
942                         int tdp_msr;
943
944                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
945                         if (err)
946                                 goto skip_tar;
947
948                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
949                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
950                         if (err)
951                                 goto skip_tar;
952
953                         /* For level 1 and 2, bits[23:16] contain the ratio */
954                         if (tdp_ctrl)
955                                 tdp_ratio >>= 16;
956
957                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
958                         if (tdp_ratio - 1 == tar) {
959                                 max_pstate = tar;
960                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
961                         } else {
962                                 goto skip_tar;
963                         }
964                 }
965         }
966
967 skip_tar:
968         return max_pstate;
969 }
970
971 static int core_get_turbo_pstate(void)
972 {
973         u64 value;
974         int nont, ret;
975
976         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
977         nont = core_get_max_pstate();
978         ret = (value) & 255;
979         if (ret <= nont)
980                 ret = nont;
981         return ret;
982 }
983
984 static inline int core_get_scaling(void)
985 {
986         return 100000;
987 }
988
989 static u64 core_get_val(struct cpudata *cpudata, int pstate)
990 {
991         u64 val;
992
993         val = (u64)pstate << 8;
994         if (limits->no_turbo && !limits->turbo_disabled)
995                 val |= (u64)1 << 32;
996
997         return val;
998 }
999
1000 static int knl_get_turbo_pstate(void)
1001 {
1002         u64 value;
1003         int nont, ret;
1004
1005         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1006         nont = core_get_max_pstate();
1007         ret = (((value) >> 8) & 0xFF);
1008         if (ret <= nont)
1009                 ret = nont;
1010         return ret;
1011 }
1012
1013 static struct cpu_defaults core_params = {
1014         .pid_policy = {
1015                 .sample_rate_ms = 10,
1016                 .deadband = 0,
1017                 .setpoint = 97,
1018                 .p_gain_pct = 20,
1019                 .d_gain_pct = 0,
1020                 .i_gain_pct = 0,
1021         },
1022         .funcs = {
1023                 .get_max = core_get_max_pstate,
1024                 .get_max_physical = core_get_max_pstate_physical,
1025                 .get_min = core_get_min_pstate,
1026                 .get_turbo = core_get_turbo_pstate,
1027                 .get_scaling = core_get_scaling,
1028                 .get_val = core_get_val,
1029                 .get_target_pstate = get_target_pstate_use_performance,
1030         },
1031 };
1032
1033 static struct cpu_defaults silvermont_params = {
1034         .pid_policy = {
1035                 .sample_rate_ms = 10,
1036                 .deadband = 0,
1037                 .setpoint = 60,
1038                 .p_gain_pct = 14,
1039                 .d_gain_pct = 0,
1040                 .i_gain_pct = 4,
1041         },
1042         .funcs = {
1043                 .get_max = atom_get_max_pstate,
1044                 .get_max_physical = atom_get_max_pstate,
1045                 .get_min = atom_get_min_pstate,
1046                 .get_turbo = atom_get_turbo_pstate,
1047                 .get_val = atom_get_val,
1048                 .get_scaling = silvermont_get_scaling,
1049                 .get_vid = atom_get_vid,
1050                 .get_target_pstate = get_target_pstate_use_cpu_load,
1051         },
1052 };
1053
1054 static struct cpu_defaults airmont_params = {
1055         .pid_policy = {
1056                 .sample_rate_ms = 10,
1057                 .deadband = 0,
1058                 .setpoint = 60,
1059                 .p_gain_pct = 14,
1060                 .d_gain_pct = 0,
1061                 .i_gain_pct = 4,
1062         },
1063         .funcs = {
1064                 .get_max = atom_get_max_pstate,
1065                 .get_max_physical = atom_get_max_pstate,
1066                 .get_min = atom_get_min_pstate,
1067                 .get_turbo = atom_get_turbo_pstate,
1068                 .get_val = atom_get_val,
1069                 .get_scaling = airmont_get_scaling,
1070                 .get_vid = atom_get_vid,
1071                 .get_target_pstate = get_target_pstate_use_cpu_load,
1072         },
1073 };
1074
1075 static struct cpu_defaults knl_params = {
1076         .pid_policy = {
1077                 .sample_rate_ms = 10,
1078                 .deadband = 0,
1079                 .setpoint = 97,
1080                 .p_gain_pct = 20,
1081                 .d_gain_pct = 0,
1082                 .i_gain_pct = 0,
1083         },
1084         .funcs = {
1085                 .get_max = core_get_max_pstate,
1086                 .get_max_physical = core_get_max_pstate_physical,
1087                 .get_min = core_get_min_pstate,
1088                 .get_turbo = knl_get_turbo_pstate,
1089                 .get_scaling = core_get_scaling,
1090                 .get_val = core_get_val,
1091                 .get_target_pstate = get_target_pstate_use_performance,
1092         },
1093 };
1094
1095 static struct cpu_defaults bxt_params = {
1096         .pid_policy = {
1097                 .sample_rate_ms = 10,
1098                 .deadband = 0,
1099                 .setpoint = 60,
1100                 .p_gain_pct = 14,
1101                 .d_gain_pct = 0,
1102                 .i_gain_pct = 4,
1103         },
1104         .funcs = {
1105                 .get_max = core_get_max_pstate,
1106                 .get_max_physical = core_get_max_pstate_physical,
1107                 .get_min = core_get_min_pstate,
1108                 .get_turbo = core_get_turbo_pstate,
1109                 .get_scaling = core_get_scaling,
1110                 .get_val = core_get_val,
1111                 .get_target_pstate = get_target_pstate_use_cpu_load,
1112         },
1113 };
1114
1115 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1116 {
1117         int max_perf = cpu->pstate.turbo_pstate;
1118         int max_perf_adj;
1119         int min_perf;
1120
1121         if (limits->no_turbo || limits->turbo_disabled)
1122                 max_perf = cpu->pstate.max_pstate;
1123
1124         /*
1125          * performance can be limited by user through sysfs, by cpufreq
1126          * policy, or by cpu specific default values determined through
1127          * experimentation.
1128          */
1129         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1130         *max = clamp_t(int, max_perf_adj,
1131                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1132
1133         min_perf = fp_toint(max_perf * limits->min_perf);
1134         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1135 }
1136
1137 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1138 {
1139         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1140         cpu->pstate.current_pstate = pstate;
1141 }
1142
1143 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1144 {
1145         int pstate = cpu->pstate.min_pstate;
1146
1147         intel_pstate_record_pstate(cpu, pstate);
1148         /*
1149          * Generally, there is no guarantee that this code will always run on
1150          * the CPU being updated, so force the register update to run on the
1151          * right CPU.
1152          */
1153         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1154                       pstate_funcs.get_val(cpu, pstate));
1155 }
1156
1157 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1158 {
1159         cpu->pstate.min_pstate = pstate_funcs.get_min();
1160         cpu->pstate.max_pstate = pstate_funcs.get_max();
1161         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1162         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1163         cpu->pstate.scaling = pstate_funcs.get_scaling();
1164
1165         if (pstate_funcs.get_vid)
1166                 pstate_funcs.get_vid(cpu);
1167
1168         intel_pstate_set_min_pstate(cpu);
1169 }
1170
1171 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1172 {
1173         struct sample *sample = &cpu->sample;
1174
1175         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1176 }
1177
1178 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1179 {
1180         u64 aperf, mperf;
1181         unsigned long flags;
1182         u64 tsc;
1183
1184         local_irq_save(flags);
1185         rdmsrl(MSR_IA32_APERF, aperf);
1186         rdmsrl(MSR_IA32_MPERF, mperf);
1187         tsc = rdtsc();
1188         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1189                 local_irq_restore(flags);
1190                 return false;
1191         }
1192         local_irq_restore(flags);
1193
1194         cpu->last_sample_time = cpu->sample.time;
1195         cpu->sample.time = time;
1196         cpu->sample.aperf = aperf;
1197         cpu->sample.mperf = mperf;
1198         cpu->sample.tsc =  tsc;
1199         cpu->sample.aperf -= cpu->prev_aperf;
1200         cpu->sample.mperf -= cpu->prev_mperf;
1201         cpu->sample.tsc -= cpu->prev_tsc;
1202
1203         cpu->prev_aperf = aperf;
1204         cpu->prev_mperf = mperf;
1205         cpu->prev_tsc = tsc;
1206         /*
1207          * First time this function is invoked in a given cycle, all of the
1208          * previous sample data fields are equal to zero or stale and they must
1209          * be populated with meaningful numbers for things to work, so assume
1210          * that sample.time will always be reset before setting the utilization
1211          * update hook and make the caller skip the sample then.
1212          */
1213         return !!cpu->last_sample_time;
1214 }
1215
1216 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1217 {
1218         return mul_ext_fp(cpu->sample.core_avg_perf,
1219                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1220 }
1221
1222 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1223 {
1224         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1225                           cpu->sample.core_avg_perf);
1226 }
1227
1228 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1229 {
1230         struct sample *sample = &cpu->sample;
1231         u64 cummulative_iowait, delta_iowait_us;
1232         u64 delta_iowait_mperf;
1233         u64 mperf, now;
1234         int32_t cpu_load;
1235
1236         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1237
1238         /*
1239          * Convert iowait time into number of IO cycles spent at max_freq.
1240          * IO is considered as busy only for the cpu_load algorithm. For
1241          * performance this is not needed since we always try to reach the
1242          * maximum P-State, so we are already boosting the IOs.
1243          */
1244         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1245         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1246                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1247
1248         mperf = cpu->sample.mperf + delta_iowait_mperf;
1249         cpu->prev_cummulative_iowait = cummulative_iowait;
1250
1251         /*
1252          * The load can be estimated as the ratio of the mperf counter
1253          * running at a constant frequency during active periods
1254          * (C0) and the time stamp counter running at the same frequency
1255          * also during C-states.
1256          */
1257         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1258         cpu->sample.busy_scaled = cpu_load;
1259
1260         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1261 }
1262
1263 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1264 {
1265         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1266         u64 duration_ns;
1267
1268         /*
1269          * perf_scaled is the average performance during the last sampling
1270          * period scaled by the ratio of the maximum P-state to the P-state
1271          * requested last time (in percent).  That measures the system's
1272          * response to the previous P-state selection.
1273          */
1274         max_pstate = cpu->pstate.max_pstate_physical;
1275         current_pstate = cpu->pstate.current_pstate;
1276         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1277                                div_fp(100 * max_pstate, current_pstate));
1278
1279         /*
1280          * Since our utilization update callback will not run unless we are
1281          * in C0, check if the actual elapsed time is significantly greater (3x)
1282          * than our sample interval.  If it is, then we were idle for a long
1283          * enough period of time to adjust our performance metric.
1284          */
1285         duration_ns = cpu->sample.time - cpu->last_sample_time;
1286         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1287                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1288                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1289         } else {
1290                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1291                 if (sample_ratio < int_tofp(1))
1292                         perf_scaled = 0;
1293         }
1294
1295         cpu->sample.busy_scaled = perf_scaled;
1296         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1297 }
1298
1299 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1300 {
1301         int max_perf, min_perf;
1302
1303         update_turbo_state();
1304
1305         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1306         pstate = clamp_t(int, pstate, min_perf, max_perf);
1307         if (pstate == cpu->pstate.current_pstate)
1308                 return;
1309
1310         intel_pstate_record_pstate(cpu, pstate);
1311         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1312 }
1313
1314 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1315 {
1316         int from, target_pstate;
1317         struct sample *sample;
1318
1319         from = cpu->pstate.current_pstate;
1320
1321         target_pstate = pstate_funcs.get_target_pstate(cpu);
1322
1323         intel_pstate_update_pstate(cpu, target_pstate);
1324
1325         sample = &cpu->sample;
1326         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1327                 fp_toint(sample->busy_scaled),
1328                 from,
1329                 cpu->pstate.current_pstate,
1330                 sample->mperf,
1331                 sample->aperf,
1332                 sample->tsc,
1333                 get_avg_frequency(cpu));
1334 }
1335
1336 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1337                                      unsigned long util, unsigned long max)
1338 {
1339         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1340         u64 delta_ns = time - cpu->sample.time;
1341
1342         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1343                 bool sample_taken = intel_pstate_sample(cpu, time);
1344
1345                 if (sample_taken) {
1346                         intel_pstate_calc_avg_perf(cpu);
1347                         if (!hwp_active)
1348                                 intel_pstate_adjust_busy_pstate(cpu);
1349                 }
1350         }
1351 }
1352
1353 #define ICPU(model, policy) \
1354         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1355                         (unsigned long)&policy }
1356
1357 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1358         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1359         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1360         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1361         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1362         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1363         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1364         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1365         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1366         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1367         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1368         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1369         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1370         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1371         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1372         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1373         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1374         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1375         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1376         {}
1377 };
1378 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1379
1380 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1381         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1382         {}
1383 };
1384
1385 static int intel_pstate_init_cpu(unsigned int cpunum)
1386 {
1387         struct cpudata *cpu;
1388
1389         if (!all_cpu_data[cpunum])
1390                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1391                                                GFP_KERNEL);
1392         if (!all_cpu_data[cpunum])
1393                 return -ENOMEM;
1394
1395         cpu = all_cpu_data[cpunum];
1396
1397         cpu->cpu = cpunum;
1398
1399         if (hwp_active) {
1400                 intel_pstate_hwp_enable(cpu);
1401                 pid_params.sample_rate_ms = 50;
1402                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1403         }
1404
1405         intel_pstate_get_cpu_pstates(cpu);
1406
1407         intel_pstate_busy_pid_reset(cpu);
1408
1409         pr_debug("controlling: cpu %d\n", cpunum);
1410
1411         return 0;
1412 }
1413
1414 static unsigned int intel_pstate_get(unsigned int cpu_num)
1415 {
1416         struct cpudata *cpu = all_cpu_data[cpu_num];
1417
1418         return cpu ? get_avg_frequency(cpu) : 0;
1419 }
1420
1421 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1422 {
1423         struct cpudata *cpu = all_cpu_data[cpu_num];
1424
1425         if (cpu->update_util_set)
1426                 return;
1427
1428         /* Prevent intel_pstate_update_util() from using stale data. */
1429         cpu->sample.time = 0;
1430         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1431                                      intel_pstate_update_util);
1432         cpu->update_util_set = true;
1433 }
1434
1435 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1436 {
1437         struct cpudata *cpu_data = all_cpu_data[cpu];
1438
1439         if (!cpu_data->update_util_set)
1440                 return;
1441
1442         cpufreq_remove_update_util_hook(cpu);
1443         cpu_data->update_util_set = false;
1444         synchronize_sched();
1445 }
1446
1447 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1448 {
1449         limits->no_turbo = 0;
1450         limits->turbo_disabled = 0;
1451         limits->max_perf_pct = 100;
1452         limits->max_perf = int_tofp(1);
1453         limits->min_perf_pct = 100;
1454         limits->min_perf = int_tofp(1);
1455         limits->max_policy_pct = 100;
1456         limits->max_sysfs_pct = 100;
1457         limits->min_policy_pct = 0;
1458         limits->min_sysfs_pct = 0;
1459 }
1460
1461 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1462 {
1463         struct cpudata *cpu;
1464
1465         if (!policy->cpuinfo.max_freq)
1466                 return -ENODEV;
1467
1468         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1469                  policy->cpuinfo.max_freq, policy->max);
1470
1471         cpu = all_cpu_data[0];
1472         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1473             policy->max < policy->cpuinfo.max_freq &&
1474             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1475                 pr_debug("policy->max > max non turbo frequency\n");
1476                 policy->max = policy->cpuinfo.max_freq;
1477         }
1478
1479         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1480                 limits = &performance_limits;
1481                 if (policy->max >= policy->cpuinfo.max_freq) {
1482                         pr_debug("set performance\n");
1483                         intel_pstate_set_performance_limits(limits);
1484                         goto out;
1485                 }
1486         } else {
1487                 pr_debug("set powersave\n");
1488                 limits = &powersave_limits;
1489         }
1490
1491         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1492         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1493         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1494                                               policy->cpuinfo.max_freq);
1495         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1496
1497         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1498         limits->min_perf_pct = max(limits->min_policy_pct,
1499                                    limits->min_sysfs_pct);
1500         limits->min_perf_pct = min(limits->max_policy_pct,
1501                                    limits->min_perf_pct);
1502         limits->max_perf_pct = min(limits->max_policy_pct,
1503                                    limits->max_sysfs_pct);
1504         limits->max_perf_pct = max(limits->min_policy_pct,
1505                                    limits->max_perf_pct);
1506
1507         /* Make sure min_perf_pct <= max_perf_pct */
1508         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1509
1510         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1511         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1512         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1513
1514  out:
1515         intel_pstate_set_update_util_hook(policy->cpu);
1516
1517         intel_pstate_hwp_set_policy(policy);
1518
1519         return 0;
1520 }
1521
1522 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1523 {
1524         cpufreq_verify_within_cpu_limits(policy);
1525
1526         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1527             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1528                 return -EINVAL;
1529
1530         return 0;
1531 }
1532
1533 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1534 {
1535         int cpu_num = policy->cpu;
1536         struct cpudata *cpu = all_cpu_data[cpu_num];
1537
1538         pr_debug("CPU %d exiting\n", cpu_num);
1539
1540         intel_pstate_clear_update_util_hook(cpu_num);
1541
1542         if (hwp_active)
1543                 return;
1544
1545         intel_pstate_set_min_pstate(cpu);
1546 }
1547
1548 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1549 {
1550         struct cpudata *cpu;
1551         int rc;
1552
1553         rc = intel_pstate_init_cpu(policy->cpu);
1554         if (rc)
1555                 return rc;
1556
1557         cpu = all_cpu_data[policy->cpu];
1558
1559         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1560                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1561         else
1562                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1563
1564         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1565         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1566
1567         /* cpuinfo and default policy values */
1568         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1569         update_turbo_state();
1570         policy->cpuinfo.max_freq = limits->turbo_disabled ?
1571                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1572         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1573
1574         intel_pstate_init_acpi_perf_limits(policy);
1575         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1576         cpumask_set_cpu(policy->cpu, policy->cpus);
1577
1578         return 0;
1579 }
1580
1581 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1582 {
1583         intel_pstate_exit_perf_limits(policy);
1584
1585         return 0;
1586 }
1587
1588 static struct cpufreq_driver intel_pstate_driver = {
1589         .flags          = CPUFREQ_CONST_LOOPS,
1590         .verify         = intel_pstate_verify_policy,
1591         .setpolicy      = intel_pstate_set_policy,
1592         .resume         = intel_pstate_hwp_set_policy,
1593         .get            = intel_pstate_get,
1594         .init           = intel_pstate_cpu_init,
1595         .exit           = intel_pstate_cpu_exit,
1596         .stop_cpu       = intel_pstate_stop_cpu,
1597         .name           = "intel_pstate",
1598 };
1599
1600 static int no_load __initdata;
1601 static int no_hwp __initdata;
1602 static int hwp_only __initdata;
1603 static unsigned int force_load __initdata;
1604
1605 static int __init intel_pstate_msrs_not_valid(void)
1606 {
1607         if (!pstate_funcs.get_max() ||
1608             !pstate_funcs.get_min() ||
1609             !pstate_funcs.get_turbo())
1610                 return -ENODEV;
1611
1612         return 0;
1613 }
1614
1615 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1616 {
1617         pid_params.sample_rate_ms = policy->sample_rate_ms;
1618         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1619         pid_params.p_gain_pct = policy->p_gain_pct;
1620         pid_params.i_gain_pct = policy->i_gain_pct;
1621         pid_params.d_gain_pct = policy->d_gain_pct;
1622         pid_params.deadband = policy->deadband;
1623         pid_params.setpoint = policy->setpoint;
1624 }
1625
1626 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1627 {
1628         pstate_funcs.get_max   = funcs->get_max;
1629         pstate_funcs.get_max_physical = funcs->get_max_physical;
1630         pstate_funcs.get_min   = funcs->get_min;
1631         pstate_funcs.get_turbo = funcs->get_turbo;
1632         pstate_funcs.get_scaling = funcs->get_scaling;
1633         pstate_funcs.get_val   = funcs->get_val;
1634         pstate_funcs.get_vid   = funcs->get_vid;
1635         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1636
1637 }
1638
1639 #ifdef CONFIG_ACPI
1640
1641 static bool __init intel_pstate_no_acpi_pss(void)
1642 {
1643         int i;
1644
1645         for_each_possible_cpu(i) {
1646                 acpi_status status;
1647                 union acpi_object *pss;
1648                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1649                 struct acpi_processor *pr = per_cpu(processors, i);
1650
1651                 if (!pr)
1652                         continue;
1653
1654                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1655                 if (ACPI_FAILURE(status))
1656                         continue;
1657
1658                 pss = buffer.pointer;
1659                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1660                         kfree(pss);
1661                         return false;
1662                 }
1663
1664                 kfree(pss);
1665         }
1666
1667         return true;
1668 }
1669
1670 static bool __init intel_pstate_has_acpi_ppc(void)
1671 {
1672         int i;
1673
1674         for_each_possible_cpu(i) {
1675                 struct acpi_processor *pr = per_cpu(processors, i);
1676
1677                 if (!pr)
1678                         continue;
1679                 if (acpi_has_method(pr->handle, "_PPC"))
1680                         return true;
1681         }
1682         return false;
1683 }
1684
1685 enum {
1686         PSS,
1687         PPC,
1688 };
1689
1690 struct hw_vendor_info {
1691         u16  valid;
1692         char oem_id[ACPI_OEM_ID_SIZE];
1693         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1694         int  oem_pwr_table;
1695 };
1696
1697 /* Hardware vendor-specific info that has its own power management modes */
1698 static struct hw_vendor_info vendor_info[] __initdata = {
1699         {1, "HP    ", "ProLiant", PSS},
1700         {1, "ORACLE", "X4-2    ", PPC},
1701         {1, "ORACLE", "X4-2L   ", PPC},
1702         {1, "ORACLE", "X4-2B   ", PPC},
1703         {1, "ORACLE", "X3-2    ", PPC},
1704         {1, "ORACLE", "X3-2L   ", PPC},
1705         {1, "ORACLE", "X3-2B   ", PPC},
1706         {1, "ORACLE", "X4470M2 ", PPC},
1707         {1, "ORACLE", "X4270M3 ", PPC},
1708         {1, "ORACLE", "X4270M2 ", PPC},
1709         {1, "ORACLE", "X4170M2 ", PPC},
1710         {1, "ORACLE", "X4170 M3", PPC},
1711         {1, "ORACLE", "X4275 M3", PPC},
1712         {1, "ORACLE", "X6-2    ", PPC},
1713         {1, "ORACLE", "Sudbury ", PPC},
1714         {0, "", ""},
1715 };
1716
1717 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1718 {
1719         struct acpi_table_header hdr;
1720         struct hw_vendor_info *v_info;
1721         const struct x86_cpu_id *id;
1722         u64 misc_pwr;
1723
1724         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1725         if (id) {
1726                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1727                 if ( misc_pwr & (1 << 8))
1728                         return true;
1729         }
1730
1731         if (acpi_disabled ||
1732             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1733                 return false;
1734
1735         for (v_info = vendor_info; v_info->valid; v_info++) {
1736                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1737                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1738                                                 ACPI_OEM_TABLE_ID_SIZE))
1739                         switch (v_info->oem_pwr_table) {
1740                         case PSS:
1741                                 return intel_pstate_no_acpi_pss();
1742                         case PPC:
1743                                 return intel_pstate_has_acpi_ppc() &&
1744                                         (!force_load);
1745                         }
1746         }
1747
1748         return false;
1749 }
1750 #else /* CONFIG_ACPI not enabled */
1751 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1752 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1753 #endif /* CONFIG_ACPI */
1754
1755 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1756         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1757         {}
1758 };
1759
1760 static int __init intel_pstate_init(void)
1761 {
1762         int cpu, rc = 0;
1763         const struct x86_cpu_id *id;
1764         struct cpu_defaults *cpu_def;
1765
1766         if (no_load)
1767                 return -ENODEV;
1768
1769         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1770                 copy_cpu_funcs(&core_params.funcs);
1771                 hwp_active++;
1772                 goto hwp_cpu_matched;
1773         }
1774
1775         id = x86_match_cpu(intel_pstate_cpu_ids);
1776         if (!id)
1777                 return -ENODEV;
1778
1779         cpu_def = (struct cpu_defaults *)id->driver_data;
1780
1781         copy_pid_params(&cpu_def->pid_policy);
1782         copy_cpu_funcs(&cpu_def->funcs);
1783
1784         if (intel_pstate_msrs_not_valid())
1785                 return -ENODEV;
1786
1787 hwp_cpu_matched:
1788         /*
1789          * The Intel pstate driver will be ignored if the platform
1790          * firmware has its own power management modes.
1791          */
1792         if (intel_pstate_platform_pwr_mgmt_exists())
1793                 return -ENODEV;
1794
1795         pr_info("Intel P-state driver initializing\n");
1796
1797         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1798         if (!all_cpu_data)
1799                 return -ENOMEM;
1800
1801         if (!hwp_active && hwp_only)
1802                 goto out;
1803
1804         rc = cpufreq_register_driver(&intel_pstate_driver);
1805         if (rc)
1806                 goto out;
1807
1808         intel_pstate_debug_expose_params();
1809         intel_pstate_sysfs_expose_params();
1810
1811         if (hwp_active)
1812                 pr_info("HWP enabled\n");
1813
1814         return rc;
1815 out:
1816         get_online_cpus();
1817         for_each_online_cpu(cpu) {
1818                 if (all_cpu_data[cpu]) {
1819                         intel_pstate_clear_update_util_hook(cpu);
1820                         kfree(all_cpu_data[cpu]);
1821                 }
1822         }
1823
1824         put_online_cpus();
1825         vfree(all_cpu_data);
1826         return -ENODEV;
1827 }
1828 device_initcall(intel_pstate_init);
1829
1830 static int __init intel_pstate_setup(char *str)
1831 {
1832         if (!str)
1833                 return -EINVAL;
1834
1835         if (!strcmp(str, "disable"))
1836                 no_load = 1;
1837         if (!strcmp(str, "no_hwp")) {
1838                 pr_info("HWP disabled\n");
1839                 no_hwp = 1;
1840         }
1841         if (!strcmp(str, "force"))
1842                 force_load = 1;
1843         if (!strcmp(str, "hwp_only"))
1844                 hwp_only = 1;
1845
1846 #ifdef CONFIG_ACPI
1847         if (!strcmp(str, "support_acpi_ppc"))
1848                 acpi_ppc = true;
1849 #endif
1850
1851         return 0;
1852 }
1853 early_param("intel_pstate", intel_pstate_setup);
1854
1855 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1856 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1857 MODULE_LICENSE("GPL");