PM-wakeup: Delete unnecessary checks before three function calls
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS             0x66a
40 #define ATOM_VIDS               0x66b
41 #define ATOM_TURBO_RATIOS       0x66c
42 #define ATOM_TURBO_VIDS         0x66d
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54
55 static inline int32_t mul_fp(int32_t x, int32_t y)
56 {
57         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58 }
59
60 static inline int32_t div_fp(s64 x, s64 y)
61 {
62         return div64_s64((int64_t)x << FRAC_BITS, y);
63 }
64
65 static inline int ceiling_fp(int32_t x)
66 {
67         int mask, ret;
68
69         ret = fp_toint(x);
70         mask = (1 << FRAC_BITS) - 1;
71         if (x & mask)
72                 ret += 1;
73         return ret;
74 }
75
76 static inline u64 mul_ext_fp(u64 x, u64 y)
77 {
78         return (x * y) >> EXT_FRAC_BITS;
79 }
80
81 static inline u64 div_ext_fp(u64 x, u64 y)
82 {
83         return div64_u64(x << EXT_FRAC_BITS, y);
84 }
85
86 /**
87  * struct sample -      Store performance sample
88  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
89  *                      performance during last sample period
90  * @busy_scaled:        Scaled busy value which is used to calculate next
91  *                      P state. This can be different than core_avg_perf
92  *                      to account for cpu idle period
93  * @aperf:              Difference of actual performance frequency clock count
94  *                      read from APERF MSR between last and current sample
95  * @mperf:              Difference of maximum performance frequency clock count
96  *                      read from MPERF MSR between last and current sample
97  * @tsc:                Difference of time stamp counter between last and
98  *                      current sample
99  * @freq:               Effective frequency calculated from APERF/MPERF
100  * @time:               Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106         int32_t core_avg_perf;
107         int32_t busy_scaled;
108         u64 aperf;
109         u64 mperf;
110         u64 tsc;
111         int freq;
112         u64 time;
113 };
114
115 /**
116  * struct pstate_data - Store P state data
117  * @current_pstate:     Current requested P state
118  * @min_pstate:         Min P state possible for this platform
119  * @max_pstate:         Max P state possible for this platform
120  * @max_pstate_physical:This is physical Max P state for a processor
121  *                      This can be higher than the max_pstate which can
122  *                      be limited by platform thermal design power limits
123  * @scaling:            Scaling factor to  convert frequency to cpufreq
124  *                      frequency units
125  * @turbo_pstate:       Max Turbo P state possible for this platform
126  *
127  * Stores the per cpu model P state limits and current P state.
128  */
129 struct pstate_data {
130         int     current_pstate;
131         int     min_pstate;
132         int     max_pstate;
133         int     max_pstate_physical;
134         int     scaling;
135         int     turbo_pstate;
136 };
137
138 /**
139  * struct vid_data -    Stores voltage information data
140  * @min:                VID data for this platform corresponding to
141  *                      the lowest P state
142  * @max:                VID data corresponding to the highest P State.
143  * @turbo:              VID data for turbo P state
144  * @ratio:              Ratio of (vid max - vid min) /
145  *                      (max P state - Min P State)
146  *
147  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148  * This data is used in Atom platforms, where in addition to target P state,
149  * the voltage data needs to be specified to select next P State.
150  */
151 struct vid_data {
152         int min;
153         int max;
154         int turbo;
155         int32_t ratio;
156 };
157
158 /**
159  * struct _pid -        Stores PID data
160  * @setpoint:           Target set point for busyness or performance
161  * @integral:           Storage for accumulated error values
162  * @p_gain:             PID proportional gain
163  * @i_gain:             PID integral gain
164  * @d_gain:             PID derivative gain
165  * @deadband:           PID deadband
166  * @last_err:           Last error storage for integral part of PID calculation
167  *
168  * Stores PID coefficients and last error for PID controller.
169  */
170 struct _pid {
171         int setpoint;
172         int32_t integral;
173         int32_t p_gain;
174         int32_t i_gain;
175         int32_t d_gain;
176         int deadband;
177         int32_t last_err;
178 };
179
180 /**
181  * struct cpudata -     Per CPU instance data storage
182  * @cpu:                CPU number for this instance data
183  * @update_util:        CPUFreq utility callback information
184  * @update_util_set:    CPUFreq utility callback is set
185  * @pstate:             Stores P state limits for this CPU
186  * @vid:                Stores VID limits for this CPU
187  * @pid:                Stores PID parameters for this CPU
188  * @last_sample_time:   Last Sample time
189  * @prev_aperf:         Last APERF value read from APERF MSR
190  * @prev_mperf:         Last MPERF value read from MPERF MSR
191  * @prev_tsc:           Last timestamp counter (TSC) value
192  * @prev_cummulative_iowait: IO Wait time difference from last and
193  *                      current sample
194  * @sample:             Storage for storing last Sample data
195  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
196  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
197  *
198  * This structure stores per CPU instance data for all CPUs.
199  */
200 struct cpudata {
201         int cpu;
202
203         struct update_util_data update_util;
204         bool   update_util_set;
205
206         struct pstate_data pstate;
207         struct vid_data vid;
208         struct _pid pid;
209
210         u64     last_sample_time;
211         u64     prev_aperf;
212         u64     prev_mperf;
213         u64     prev_tsc;
214         u64     prev_cummulative_iowait;
215         struct sample sample;
216 #ifdef CONFIG_ACPI
217         struct acpi_processor_performance acpi_perf_data;
218         bool valid_pss_table;
219 #endif
220 };
221
222 static struct cpudata **all_cpu_data;
223
224 /**
225  * struct pid_adjust_policy - Stores static PID configuration data
226  * @sample_rate_ms:     PID calculation sample rate in ms
227  * @sample_rate_ns:     Sample rate calculation in ns
228  * @deadband:           PID deadband
229  * @setpoint:           PID Setpoint
230  * @p_gain_pct:         PID proportional gain
231  * @i_gain_pct:         PID integral gain
232  * @d_gain_pct:         PID derivative gain
233  *
234  * Stores per CPU model static PID configuration data.
235  */
236 struct pstate_adjust_policy {
237         int sample_rate_ms;
238         s64 sample_rate_ns;
239         int deadband;
240         int setpoint;
241         int p_gain_pct;
242         int d_gain_pct;
243         int i_gain_pct;
244 };
245
246 /**
247  * struct pstate_funcs - Per CPU model specific callbacks
248  * @get_max:            Callback to get maximum non turbo effective P state
249  * @get_max_physical:   Callback to get maximum non turbo physical P state
250  * @get_min:            Callback to get minimum P state
251  * @get_turbo:          Callback to get turbo P state
252  * @get_scaling:        Callback to get frequency scaling factor
253  * @get_val:            Callback to convert P state to actual MSR write value
254  * @get_vid:            Callback to get VID data for Atom platforms
255  * @get_target_pstate:  Callback to a function to calculate next P state to use
256  *
257  * Core and Atom CPU models have different way to get P State limits. This
258  * structure is used to store those callbacks.
259  */
260 struct pstate_funcs {
261         int (*get_max)(void);
262         int (*get_max_physical)(void);
263         int (*get_min)(void);
264         int (*get_turbo)(void);
265         int (*get_scaling)(void);
266         u64 (*get_val)(struct cpudata*, int pstate);
267         void (*get_vid)(struct cpudata *);
268         int32_t (*get_target_pstate)(struct cpudata *);
269 };
270
271 /**
272  * struct cpu_defaults- Per CPU model default config data
273  * @pid_policy: PID config data
274  * @funcs:              Callback function data
275  */
276 struct cpu_defaults {
277         struct pstate_adjust_policy pid_policy;
278         struct pstate_funcs funcs;
279 };
280
281 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283
284 static struct pstate_adjust_policy pid_params;
285 static struct pstate_funcs pstate_funcs;
286 static int hwp_active;
287
288 #ifdef CONFIG_ACPI
289 static bool acpi_ppc;
290 #endif
291
292 /**
293  * struct perf_limits - Store user and policy limits
294  * @no_turbo:           User requested turbo state from intel_pstate sysfs
295  * @turbo_disabled:     Platform turbo status either from msr
296  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
297  *                      matches the maximum turbo pstate
298  * @max_perf_pct:       Effective maximum performance limit in percentage, this
299  *                      is minimum of either limits enforced by cpufreq policy
300  *                      or limits from user set limits via intel_pstate sysfs
301  * @min_perf_pct:       Effective minimum performance limit in percentage, this
302  *                      is maximum of either limits enforced by cpufreq policy
303  *                      or limits from user set limits via intel_pstate sysfs
304  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
305  *                      This value is used to limit max pstate
306  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
307  *                      This value is used to limit min pstate
308  * @max_policy_pct:     The maximum performance in percentage enforced by
309  *                      cpufreq setpolicy interface
310  * @max_sysfs_pct:      The maximum performance in percentage enforced by
311  *                      intel pstate sysfs interface
312  * @min_policy_pct:     The minimum performance in percentage enforced by
313  *                      cpufreq setpolicy interface
314  * @min_sysfs_pct:      The minimum performance in percentage enforced by
315  *                      intel pstate sysfs interface
316  *
317  * Storage for user and policy defined limits.
318  */
319 struct perf_limits {
320         int no_turbo;
321         int turbo_disabled;
322         int max_perf_pct;
323         int min_perf_pct;
324         int32_t max_perf;
325         int32_t min_perf;
326         int max_policy_pct;
327         int max_sysfs_pct;
328         int min_policy_pct;
329         int min_sysfs_pct;
330 };
331
332 static struct perf_limits performance_limits = {
333         .no_turbo = 0,
334         .turbo_disabled = 0,
335         .max_perf_pct = 100,
336         .max_perf = int_tofp(1),
337         .min_perf_pct = 100,
338         .min_perf = int_tofp(1),
339         .max_policy_pct = 100,
340         .max_sysfs_pct = 100,
341         .min_policy_pct = 0,
342         .min_sysfs_pct = 0,
343 };
344
345 static struct perf_limits powersave_limits = {
346         .no_turbo = 0,
347         .turbo_disabled = 0,
348         .max_perf_pct = 100,
349         .max_perf = int_tofp(1),
350         .min_perf_pct = 0,
351         .min_perf = 0,
352         .max_policy_pct = 100,
353         .max_sysfs_pct = 100,
354         .min_policy_pct = 0,
355         .min_sysfs_pct = 0,
356 };
357
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits *limits = &performance_limits;
360 #else
361 static struct perf_limits *limits = &powersave_limits;
362 #endif
363
364 #ifdef CONFIG_ACPI
365
366 static bool intel_pstate_get_ppc_enable_status(void)
367 {
368         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370                 return true;
371
372         return acpi_ppc;
373 }
374
375 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
376 {
377         struct cpudata *cpu;
378         int ret;
379         int i;
380
381         if (hwp_active)
382                 return;
383
384         if (!intel_pstate_get_ppc_enable_status())
385                 return;
386
387         cpu = all_cpu_data[policy->cpu];
388
389         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
390                                                   policy->cpu);
391         if (ret)
392                 return;
393
394         /*
395          * Check if the control value in _PSS is for PERF_CTL MSR, which should
396          * guarantee that the states returned by it map to the states in our
397          * list directly.
398          */
399         if (cpu->acpi_perf_data.control_register.space_id !=
400                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
401                 goto err;
402
403         /*
404          * If there is only one entry _PSS, simply ignore _PSS and continue as
405          * usual without taking _PSS into account
406          */
407         if (cpu->acpi_perf_data.state_count < 2)
408                 goto err;
409
410         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
411         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
412                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
413                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
414                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
415                          (u32) cpu->acpi_perf_data.states[i].power,
416                          (u32) cpu->acpi_perf_data.states[i].control);
417         }
418
419         /*
420          * The _PSS table doesn't contain whole turbo frequency range.
421          * This just contains +1 MHZ above the max non turbo frequency,
422          * with control value corresponding to max turbo ratio. But
423          * when cpufreq set policy is called, it will call with this
424          * max frequency, which will cause a reduced performance as
425          * this driver uses real max turbo frequency as the max
426          * frequency. So correct this frequency in _PSS table to
427          * correct max turbo frequency based on the turbo state.
428          * Also need to convert to MHz as _PSS freq is in MHz.
429          */
430         if (!limits->turbo_disabled)
431                 cpu->acpi_perf_data.states[0].core_frequency =
432                                         policy->cpuinfo.max_freq / 1000;
433         cpu->valid_pss_table = true;
434         pr_debug("_PPC limits will be enforced\n");
435
436         return;
437
438  err:
439         cpu->valid_pss_table = false;
440         acpi_processor_unregister_performance(policy->cpu);
441 }
442
443 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
444 {
445         struct cpudata *cpu;
446
447         cpu = all_cpu_data[policy->cpu];
448         if (!cpu->valid_pss_table)
449                 return;
450
451         acpi_processor_unregister_performance(policy->cpu);
452 }
453
454 #else
455 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
456 {
457 }
458
459 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
460 {
461 }
462 #endif
463
464 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
465                              int deadband, int integral) {
466         pid->setpoint = int_tofp(setpoint);
467         pid->deadband  = int_tofp(deadband);
468         pid->integral  = int_tofp(integral);
469         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
470 }
471
472 static inline void pid_p_gain_set(struct _pid *pid, int percent)
473 {
474         pid->p_gain = div_fp(percent, 100);
475 }
476
477 static inline void pid_i_gain_set(struct _pid *pid, int percent)
478 {
479         pid->i_gain = div_fp(percent, 100);
480 }
481
482 static inline void pid_d_gain_set(struct _pid *pid, int percent)
483 {
484         pid->d_gain = div_fp(percent, 100);
485 }
486
487 static signed int pid_calc(struct _pid *pid, int32_t busy)
488 {
489         signed int result;
490         int32_t pterm, dterm, fp_error;
491         int32_t integral_limit;
492
493         fp_error = pid->setpoint - busy;
494
495         if (abs(fp_error) <= pid->deadband)
496                 return 0;
497
498         pterm = mul_fp(pid->p_gain, fp_error);
499
500         pid->integral += fp_error;
501
502         /*
503          * We limit the integral here so that it will never
504          * get higher than 30.  This prevents it from becoming
505          * too large an input over long periods of time and allows
506          * it to get factored out sooner.
507          *
508          * The value of 30 was chosen through experimentation.
509          */
510         integral_limit = int_tofp(30);
511         if (pid->integral > integral_limit)
512                 pid->integral = integral_limit;
513         if (pid->integral < -integral_limit)
514                 pid->integral = -integral_limit;
515
516         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
517         pid->last_err = fp_error;
518
519         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
520         result = result + (1 << (FRAC_BITS-1));
521         return (signed int)fp_toint(result);
522 }
523
524 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
525 {
526         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
527         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
528         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
529
530         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
531 }
532
533 static inline void intel_pstate_reset_all_pid(void)
534 {
535         unsigned int cpu;
536
537         for_each_online_cpu(cpu) {
538                 if (all_cpu_data[cpu])
539                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
540         }
541 }
542
543 static inline void update_turbo_state(void)
544 {
545         u64 misc_en;
546         struct cpudata *cpu;
547
548         cpu = all_cpu_data[0];
549         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
550         limits->turbo_disabled =
551                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
552                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
553 }
554
555 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
556 {
557         int min, hw_min, max, hw_max, cpu, range, adj_range;
558         u64 value, cap;
559
560         rdmsrl(MSR_HWP_CAPABILITIES, cap);
561         hw_min = HWP_LOWEST_PERF(cap);
562         hw_max = HWP_HIGHEST_PERF(cap);
563         range = hw_max - hw_min;
564
565         for_each_cpu(cpu, cpumask) {
566                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
567                 adj_range = limits->min_perf_pct * range / 100;
568                 min = hw_min + adj_range;
569                 value &= ~HWP_MIN_PERF(~0L);
570                 value |= HWP_MIN_PERF(min);
571
572                 adj_range = limits->max_perf_pct * range / 100;
573                 max = hw_min + adj_range;
574                 if (limits->no_turbo) {
575                         hw_max = HWP_GUARANTEED_PERF(cap);
576                         if (hw_max < max)
577                                 max = hw_max;
578                 }
579
580                 value &= ~HWP_MAX_PERF(~0L);
581                 value |= HWP_MAX_PERF(max);
582                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
583         }
584 }
585
586 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
587 {
588         if (hwp_active)
589                 intel_pstate_hwp_set(policy->cpus);
590
591         return 0;
592 }
593
594 static void intel_pstate_hwp_set_online_cpus(void)
595 {
596         get_online_cpus();
597         intel_pstate_hwp_set(cpu_online_mask);
598         put_online_cpus();
599 }
600
601 /************************** debugfs begin ************************/
602 static int pid_param_set(void *data, u64 val)
603 {
604         *(u32 *)data = val;
605         intel_pstate_reset_all_pid();
606         return 0;
607 }
608
609 static int pid_param_get(void *data, u64 *val)
610 {
611         *val = *(u32 *)data;
612         return 0;
613 }
614 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
615
616 struct pid_param {
617         char *name;
618         void *value;
619 };
620
621 static struct pid_param pid_files[] = {
622         {"sample_rate_ms", &pid_params.sample_rate_ms},
623         {"d_gain_pct", &pid_params.d_gain_pct},
624         {"i_gain_pct", &pid_params.i_gain_pct},
625         {"deadband", &pid_params.deadband},
626         {"setpoint", &pid_params.setpoint},
627         {"p_gain_pct", &pid_params.p_gain_pct},
628         {NULL, NULL}
629 };
630
631 static void __init intel_pstate_debug_expose_params(void)
632 {
633         struct dentry *debugfs_parent;
634         int i = 0;
635
636         if (hwp_active)
637                 return;
638         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
639         if (IS_ERR_OR_NULL(debugfs_parent))
640                 return;
641         while (pid_files[i].name) {
642                 debugfs_create_file(pid_files[i].name, 0660,
643                                     debugfs_parent, pid_files[i].value,
644                                     &fops_pid_param);
645                 i++;
646         }
647 }
648
649 /************************** debugfs end ************************/
650
651 /************************** sysfs begin ************************/
652 #define show_one(file_name, object)                                     \
653         static ssize_t show_##file_name                                 \
654         (struct kobject *kobj, struct attribute *attr, char *buf)       \
655         {                                                               \
656                 return sprintf(buf, "%u\n", limits->object);            \
657         }
658
659 static ssize_t show_turbo_pct(struct kobject *kobj,
660                                 struct attribute *attr, char *buf)
661 {
662         struct cpudata *cpu;
663         int total, no_turbo, turbo_pct;
664         uint32_t turbo_fp;
665
666         cpu = all_cpu_data[0];
667
668         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
669         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
670         turbo_fp = div_fp(no_turbo, total);
671         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
672         return sprintf(buf, "%u\n", turbo_pct);
673 }
674
675 static ssize_t show_num_pstates(struct kobject *kobj,
676                                 struct attribute *attr, char *buf)
677 {
678         struct cpudata *cpu;
679         int total;
680
681         cpu = all_cpu_data[0];
682         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
683         return sprintf(buf, "%u\n", total);
684 }
685
686 static ssize_t show_no_turbo(struct kobject *kobj,
687                              struct attribute *attr, char *buf)
688 {
689         ssize_t ret;
690
691         update_turbo_state();
692         if (limits->turbo_disabled)
693                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
694         else
695                 ret = sprintf(buf, "%u\n", limits->no_turbo);
696
697         return ret;
698 }
699
700 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
701                               const char *buf, size_t count)
702 {
703         unsigned int input;
704         int ret;
705
706         ret = sscanf(buf, "%u", &input);
707         if (ret != 1)
708                 return -EINVAL;
709
710         update_turbo_state();
711         if (limits->turbo_disabled) {
712                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
713                 return -EPERM;
714         }
715
716         limits->no_turbo = clamp_t(int, input, 0, 1);
717
718         if (hwp_active)
719                 intel_pstate_hwp_set_online_cpus();
720
721         return count;
722 }
723
724 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
725                                   const char *buf, size_t count)
726 {
727         unsigned int input;
728         int ret;
729
730         ret = sscanf(buf, "%u", &input);
731         if (ret != 1)
732                 return -EINVAL;
733
734         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
735         limits->max_perf_pct = min(limits->max_policy_pct,
736                                    limits->max_sysfs_pct);
737         limits->max_perf_pct = max(limits->min_policy_pct,
738                                    limits->max_perf_pct);
739         limits->max_perf_pct = max(limits->min_perf_pct,
740                                    limits->max_perf_pct);
741         limits->max_perf = div_fp(limits->max_perf_pct, 100);
742
743         if (hwp_active)
744                 intel_pstate_hwp_set_online_cpus();
745         return count;
746 }
747
748 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
749                                   const char *buf, size_t count)
750 {
751         unsigned int input;
752         int ret;
753
754         ret = sscanf(buf, "%u", &input);
755         if (ret != 1)
756                 return -EINVAL;
757
758         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
759         limits->min_perf_pct = max(limits->min_policy_pct,
760                                    limits->min_sysfs_pct);
761         limits->min_perf_pct = min(limits->max_policy_pct,
762                                    limits->min_perf_pct);
763         limits->min_perf_pct = min(limits->max_perf_pct,
764                                    limits->min_perf_pct);
765         limits->min_perf = div_fp(limits->min_perf_pct, 100);
766
767         if (hwp_active)
768                 intel_pstate_hwp_set_online_cpus();
769         return count;
770 }
771
772 show_one(max_perf_pct, max_perf_pct);
773 show_one(min_perf_pct, min_perf_pct);
774
775 define_one_global_rw(no_turbo);
776 define_one_global_rw(max_perf_pct);
777 define_one_global_rw(min_perf_pct);
778 define_one_global_ro(turbo_pct);
779 define_one_global_ro(num_pstates);
780
781 static struct attribute *intel_pstate_attributes[] = {
782         &no_turbo.attr,
783         &max_perf_pct.attr,
784         &min_perf_pct.attr,
785         &turbo_pct.attr,
786         &num_pstates.attr,
787         NULL
788 };
789
790 static struct attribute_group intel_pstate_attr_group = {
791         .attrs = intel_pstate_attributes,
792 };
793
794 static void __init intel_pstate_sysfs_expose_params(void)
795 {
796         struct kobject *intel_pstate_kobject;
797         int rc;
798
799         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
800                                                 &cpu_subsys.dev_root->kobj);
801         BUG_ON(!intel_pstate_kobject);
802         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
803         BUG_ON(rc);
804 }
805 /************************** sysfs end ************************/
806
807 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
808 {
809         /* First disable HWP notification interrupt as we don't process them */
810         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811
812         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
813 }
814
815 static int atom_get_min_pstate(void)
816 {
817         u64 value;
818
819         rdmsrl(ATOM_RATIOS, value);
820         return (value >> 8) & 0x7F;
821 }
822
823 static int atom_get_max_pstate(void)
824 {
825         u64 value;
826
827         rdmsrl(ATOM_RATIOS, value);
828         return (value >> 16) & 0x7F;
829 }
830
831 static int atom_get_turbo_pstate(void)
832 {
833         u64 value;
834
835         rdmsrl(ATOM_TURBO_RATIOS, value);
836         return value & 0x7F;
837 }
838
839 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 {
841         u64 val;
842         int32_t vid_fp;
843         u32 vid;
844
845         val = (u64)pstate << 8;
846         if (limits->no_turbo && !limits->turbo_disabled)
847                 val |= (u64)1 << 32;
848
849         vid_fp = cpudata->vid.min + mul_fp(
850                 int_tofp(pstate - cpudata->pstate.min_pstate),
851                 cpudata->vid.ratio);
852
853         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854         vid = ceiling_fp(vid_fp);
855
856         if (pstate > cpudata->pstate.max_pstate)
857                 vid = cpudata->vid.turbo;
858
859         return val | vid;
860 }
861
862 static int silvermont_get_scaling(void)
863 {
864         u64 value;
865         int i;
866         /* Defined in Table 35-6 from SDM (Sept 2015) */
867         static int silvermont_freq_table[] = {
868                 83300, 100000, 133300, 116700, 80000};
869
870         rdmsrl(MSR_FSB_FREQ, value);
871         i = value & 0x7;
872         WARN_ON(i > 4);
873
874         return silvermont_freq_table[i];
875 }
876
877 static int airmont_get_scaling(void)
878 {
879         u64 value;
880         int i;
881         /* Defined in Table 35-10 from SDM (Sept 2015) */
882         static int airmont_freq_table[] = {
883                 83300, 100000, 133300, 116700, 80000,
884                 93300, 90000, 88900, 87500};
885
886         rdmsrl(MSR_FSB_FREQ, value);
887         i = value & 0xF;
888         WARN_ON(i > 8);
889
890         return airmont_freq_table[i];
891 }
892
893 static void atom_get_vid(struct cpudata *cpudata)
894 {
895         u64 value;
896
897         rdmsrl(ATOM_VIDS, value);
898         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
899         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900         cpudata->vid.ratio = div_fp(
901                 cpudata->vid.max - cpudata->vid.min,
902                 int_tofp(cpudata->pstate.max_pstate -
903                         cpudata->pstate.min_pstate));
904
905         rdmsrl(ATOM_TURBO_VIDS, value);
906         cpudata->vid.turbo = value & 0x7f;
907 }
908
909 static int core_get_min_pstate(void)
910 {
911         u64 value;
912
913         rdmsrl(MSR_PLATFORM_INFO, value);
914         return (value >> 40) & 0xFF;
915 }
916
917 static int core_get_max_pstate_physical(void)
918 {
919         u64 value;
920
921         rdmsrl(MSR_PLATFORM_INFO, value);
922         return (value >> 8) & 0xFF;
923 }
924
925 static int core_get_max_pstate(void)
926 {
927         u64 tar;
928         u64 plat_info;
929         int max_pstate;
930         int err;
931
932         rdmsrl(MSR_PLATFORM_INFO, plat_info);
933         max_pstate = (plat_info >> 8) & 0xFF;
934
935         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
936         if (!err) {
937                 /* Do some sanity checking for safety */
938                 if (plat_info & 0x600000000) {
939                         u64 tdp_ctrl;
940                         u64 tdp_ratio;
941                         int tdp_msr;
942
943                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
944                         if (err)
945                                 goto skip_tar;
946
947                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
948                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
949                         if (err)
950                                 goto skip_tar;
951
952                         /* For level 1 and 2, bits[23:16] contain the ratio */
953                         if (tdp_ctrl)
954                                 tdp_ratio >>= 16;
955
956                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957                         if (tdp_ratio - 1 == tar) {
958                                 max_pstate = tar;
959                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
960                         } else {
961                                 goto skip_tar;
962                         }
963                 }
964         }
965
966 skip_tar:
967         return max_pstate;
968 }
969
970 static int core_get_turbo_pstate(void)
971 {
972         u64 value;
973         int nont, ret;
974
975         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
976         nont = core_get_max_pstate();
977         ret = (value) & 255;
978         if (ret <= nont)
979                 ret = nont;
980         return ret;
981 }
982
983 static inline int core_get_scaling(void)
984 {
985         return 100000;
986 }
987
988 static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 {
990         u64 val;
991
992         val = (u64)pstate << 8;
993         if (limits->no_turbo && !limits->turbo_disabled)
994                 val |= (u64)1 << 32;
995
996         return val;
997 }
998
999 static int knl_get_turbo_pstate(void)
1000 {
1001         u64 value;
1002         int nont, ret;
1003
1004         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1005         nont = core_get_max_pstate();
1006         ret = (((value) >> 8) & 0xFF);
1007         if (ret <= nont)
1008                 ret = nont;
1009         return ret;
1010 }
1011
1012 static struct cpu_defaults core_params = {
1013         .pid_policy = {
1014                 .sample_rate_ms = 10,
1015                 .deadband = 0,
1016                 .setpoint = 97,
1017                 .p_gain_pct = 20,
1018                 .d_gain_pct = 0,
1019                 .i_gain_pct = 0,
1020         },
1021         .funcs = {
1022                 .get_max = core_get_max_pstate,
1023                 .get_max_physical = core_get_max_pstate_physical,
1024                 .get_min = core_get_min_pstate,
1025                 .get_turbo = core_get_turbo_pstate,
1026                 .get_scaling = core_get_scaling,
1027                 .get_val = core_get_val,
1028                 .get_target_pstate = get_target_pstate_use_performance,
1029         },
1030 };
1031
1032 static struct cpu_defaults silvermont_params = {
1033         .pid_policy = {
1034                 .sample_rate_ms = 10,
1035                 .deadband = 0,
1036                 .setpoint = 60,
1037                 .p_gain_pct = 14,
1038                 .d_gain_pct = 0,
1039                 .i_gain_pct = 4,
1040         },
1041         .funcs = {
1042                 .get_max = atom_get_max_pstate,
1043                 .get_max_physical = atom_get_max_pstate,
1044                 .get_min = atom_get_min_pstate,
1045                 .get_turbo = atom_get_turbo_pstate,
1046                 .get_val = atom_get_val,
1047                 .get_scaling = silvermont_get_scaling,
1048                 .get_vid = atom_get_vid,
1049                 .get_target_pstate = get_target_pstate_use_cpu_load,
1050         },
1051 };
1052
1053 static struct cpu_defaults airmont_params = {
1054         .pid_policy = {
1055                 .sample_rate_ms = 10,
1056                 .deadband = 0,
1057                 .setpoint = 60,
1058                 .p_gain_pct = 14,
1059                 .d_gain_pct = 0,
1060                 .i_gain_pct = 4,
1061         },
1062         .funcs = {
1063                 .get_max = atom_get_max_pstate,
1064                 .get_max_physical = atom_get_max_pstate,
1065                 .get_min = atom_get_min_pstate,
1066                 .get_turbo = atom_get_turbo_pstate,
1067                 .get_val = atom_get_val,
1068                 .get_scaling = airmont_get_scaling,
1069                 .get_vid = atom_get_vid,
1070                 .get_target_pstate = get_target_pstate_use_cpu_load,
1071         },
1072 };
1073
1074 static struct cpu_defaults knl_params = {
1075         .pid_policy = {
1076                 .sample_rate_ms = 10,
1077                 .deadband = 0,
1078                 .setpoint = 97,
1079                 .p_gain_pct = 20,
1080                 .d_gain_pct = 0,
1081                 .i_gain_pct = 0,
1082         },
1083         .funcs = {
1084                 .get_max = core_get_max_pstate,
1085                 .get_max_physical = core_get_max_pstate_physical,
1086                 .get_min = core_get_min_pstate,
1087                 .get_turbo = knl_get_turbo_pstate,
1088                 .get_scaling = core_get_scaling,
1089                 .get_val = core_get_val,
1090                 .get_target_pstate = get_target_pstate_use_performance,
1091         },
1092 };
1093
1094 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1095 {
1096         int max_perf = cpu->pstate.turbo_pstate;
1097         int max_perf_adj;
1098         int min_perf;
1099
1100         if (limits->no_turbo || limits->turbo_disabled)
1101                 max_perf = cpu->pstate.max_pstate;
1102
1103         /*
1104          * performance can be limited by user through sysfs, by cpufreq
1105          * policy, or by cpu specific default values determined through
1106          * experimentation.
1107          */
1108         max_perf_adj = fp_toint(max_perf * limits->max_perf);
1109         *max = clamp_t(int, max_perf_adj,
1110                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1111
1112         min_perf = fp_toint(max_perf * limits->min_perf);
1113         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1114 }
1115
1116 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1117 {
1118         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1119         cpu->pstate.current_pstate = pstate;
1120 }
1121
1122 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1123 {
1124         int pstate = cpu->pstate.min_pstate;
1125
1126         intel_pstate_record_pstate(cpu, pstate);
1127         /*
1128          * Generally, there is no guarantee that this code will always run on
1129          * the CPU being updated, so force the register update to run on the
1130          * right CPU.
1131          */
1132         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1133                       pstate_funcs.get_val(cpu, pstate));
1134 }
1135
1136 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1137 {
1138         cpu->pstate.min_pstate = pstate_funcs.get_min();
1139         cpu->pstate.max_pstate = pstate_funcs.get_max();
1140         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1141         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1142         cpu->pstate.scaling = pstate_funcs.get_scaling();
1143
1144         if (pstate_funcs.get_vid)
1145                 pstate_funcs.get_vid(cpu);
1146
1147         intel_pstate_set_min_pstate(cpu);
1148 }
1149
1150 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1151 {
1152         struct sample *sample = &cpu->sample;
1153
1154         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1155 }
1156
1157 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1158 {
1159         u64 aperf, mperf;
1160         unsigned long flags;
1161         u64 tsc;
1162
1163         local_irq_save(flags);
1164         rdmsrl(MSR_IA32_APERF, aperf);
1165         rdmsrl(MSR_IA32_MPERF, mperf);
1166         tsc = rdtsc();
1167         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1168                 local_irq_restore(flags);
1169                 return false;
1170         }
1171         local_irq_restore(flags);
1172
1173         cpu->last_sample_time = cpu->sample.time;
1174         cpu->sample.time = time;
1175         cpu->sample.aperf = aperf;
1176         cpu->sample.mperf = mperf;
1177         cpu->sample.tsc =  tsc;
1178         cpu->sample.aperf -= cpu->prev_aperf;
1179         cpu->sample.mperf -= cpu->prev_mperf;
1180         cpu->sample.tsc -= cpu->prev_tsc;
1181
1182         cpu->prev_aperf = aperf;
1183         cpu->prev_mperf = mperf;
1184         cpu->prev_tsc = tsc;
1185         /*
1186          * First time this function is invoked in a given cycle, all of the
1187          * previous sample data fields are equal to zero or stale and they must
1188          * be populated with meaningful numbers for things to work, so assume
1189          * that sample.time will always be reset before setting the utilization
1190          * update hook and make the caller skip the sample then.
1191          */
1192         return !!cpu->last_sample_time;
1193 }
1194
1195 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1196 {
1197         return mul_ext_fp(cpu->sample.core_avg_perf,
1198                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1199 }
1200
1201 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1202 {
1203         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1204                           cpu->sample.core_avg_perf);
1205 }
1206
1207 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1208 {
1209         struct sample *sample = &cpu->sample;
1210         u64 cummulative_iowait, delta_iowait_us;
1211         u64 delta_iowait_mperf;
1212         u64 mperf, now;
1213         int32_t cpu_load;
1214
1215         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1216
1217         /*
1218          * Convert iowait time into number of IO cycles spent at max_freq.
1219          * IO is considered as busy only for the cpu_load algorithm. For
1220          * performance this is not needed since we always try to reach the
1221          * maximum P-State, so we are already boosting the IOs.
1222          */
1223         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1224         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1225                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1226
1227         mperf = cpu->sample.mperf + delta_iowait_mperf;
1228         cpu->prev_cummulative_iowait = cummulative_iowait;
1229
1230         /*
1231          * The load can be estimated as the ratio of the mperf counter
1232          * running at a constant frequency during active periods
1233          * (C0) and the time stamp counter running at the same frequency
1234          * also during C-states.
1235          */
1236         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1237         cpu->sample.busy_scaled = cpu_load;
1238
1239         return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1240 }
1241
1242 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1243 {
1244         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1245         u64 duration_ns;
1246
1247         /*
1248          * perf_scaled is the average performance during the last sampling
1249          * period scaled by the ratio of the maximum P-state to the P-state
1250          * requested last time (in percent).  That measures the system's
1251          * response to the previous P-state selection.
1252          */
1253         max_pstate = cpu->pstate.max_pstate_physical;
1254         current_pstate = cpu->pstate.current_pstate;
1255         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1256                                div_fp(100 * max_pstate, current_pstate));
1257
1258         /*
1259          * Since our utilization update callback will not run unless we are
1260          * in C0, check if the actual elapsed time is significantly greater (3x)
1261          * than our sample interval.  If it is, then we were idle for a long
1262          * enough period of time to adjust our performance metric.
1263          */
1264         duration_ns = cpu->sample.time - cpu->last_sample_time;
1265         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1266                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1267                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1268         } else {
1269                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1270                 if (sample_ratio < int_tofp(1))
1271                         perf_scaled = 0;
1272         }
1273
1274         cpu->sample.busy_scaled = perf_scaled;
1275         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1276 }
1277
1278 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1279 {
1280         int max_perf, min_perf;
1281
1282         update_turbo_state();
1283
1284         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1285         pstate = clamp_t(int, pstate, min_perf, max_perf);
1286         if (pstate == cpu->pstate.current_pstate)
1287                 return;
1288
1289         intel_pstate_record_pstate(cpu, pstate);
1290         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1291 }
1292
1293 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1294 {
1295         int from, target_pstate;
1296         struct sample *sample;
1297
1298         from = cpu->pstate.current_pstate;
1299
1300         target_pstate = pstate_funcs.get_target_pstate(cpu);
1301
1302         intel_pstate_update_pstate(cpu, target_pstate);
1303
1304         sample = &cpu->sample;
1305         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1306                 fp_toint(sample->busy_scaled),
1307                 from,
1308                 cpu->pstate.current_pstate,
1309                 sample->mperf,
1310                 sample->aperf,
1311                 sample->tsc,
1312                 get_avg_frequency(cpu));
1313 }
1314
1315 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1316                                      unsigned long util, unsigned long max)
1317 {
1318         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1319         u64 delta_ns = time - cpu->sample.time;
1320
1321         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1322                 bool sample_taken = intel_pstate_sample(cpu, time);
1323
1324                 if (sample_taken) {
1325                         intel_pstate_calc_avg_perf(cpu);
1326                         if (!hwp_active)
1327                                 intel_pstate_adjust_busy_pstate(cpu);
1328                 }
1329         }
1330 }
1331
1332 #define ICPU(model, policy) \
1333         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1334                         (unsigned long)&policy }
1335
1336 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1337         ICPU(0x2a, core_params),
1338         ICPU(0x2d, core_params),
1339         ICPU(0x37, silvermont_params),
1340         ICPU(0x3a, core_params),
1341         ICPU(0x3c, core_params),
1342         ICPU(0x3d, core_params),
1343         ICPU(0x3e, core_params),
1344         ICPU(0x3f, core_params),
1345         ICPU(0x45, core_params),
1346         ICPU(0x46, core_params),
1347         ICPU(0x47, core_params),
1348         ICPU(0x4c, airmont_params),
1349         ICPU(0x4e, core_params),
1350         ICPU(0x4f, core_params),
1351         ICPU(0x5e, core_params),
1352         ICPU(0x56, core_params),
1353         ICPU(0x57, knl_params),
1354         {}
1355 };
1356 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1357
1358 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1359         ICPU(0x56, core_params),
1360         {}
1361 };
1362
1363 static int intel_pstate_init_cpu(unsigned int cpunum)
1364 {
1365         struct cpudata *cpu;
1366
1367         if (!all_cpu_data[cpunum])
1368                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1369                                                GFP_KERNEL);
1370         if (!all_cpu_data[cpunum])
1371                 return -ENOMEM;
1372
1373         cpu = all_cpu_data[cpunum];
1374
1375         cpu->cpu = cpunum;
1376
1377         if (hwp_active) {
1378                 intel_pstate_hwp_enable(cpu);
1379                 pid_params.sample_rate_ms = 50;
1380                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1381         }
1382
1383         intel_pstate_get_cpu_pstates(cpu);
1384
1385         intel_pstate_busy_pid_reset(cpu);
1386
1387         pr_debug("controlling: cpu %d\n", cpunum);
1388
1389         return 0;
1390 }
1391
1392 static unsigned int intel_pstate_get(unsigned int cpu_num)
1393 {
1394         struct cpudata *cpu = all_cpu_data[cpu_num];
1395
1396         return cpu ? get_avg_frequency(cpu) : 0;
1397 }
1398
1399 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1400 {
1401         struct cpudata *cpu = all_cpu_data[cpu_num];
1402
1403         /* Prevent intel_pstate_update_util() from using stale data. */
1404         cpu->sample.time = 0;
1405         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1406                                      intel_pstate_update_util);
1407         cpu->update_util_set = true;
1408 }
1409
1410 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1411 {
1412         struct cpudata *cpu_data = all_cpu_data[cpu];
1413
1414         if (!cpu_data->update_util_set)
1415                 return;
1416
1417         cpufreq_remove_update_util_hook(cpu);
1418         cpu_data->update_util_set = false;
1419         synchronize_sched();
1420 }
1421
1422 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1423 {
1424         limits->no_turbo = 0;
1425         limits->turbo_disabled = 0;
1426         limits->max_perf_pct = 100;
1427         limits->max_perf = int_tofp(1);
1428         limits->min_perf_pct = 100;
1429         limits->min_perf = int_tofp(1);
1430         limits->max_policy_pct = 100;
1431         limits->max_sysfs_pct = 100;
1432         limits->min_policy_pct = 0;
1433         limits->min_sysfs_pct = 0;
1434 }
1435
1436 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1437 {
1438         struct cpudata *cpu;
1439
1440         if (!policy->cpuinfo.max_freq)
1441                 return -ENODEV;
1442
1443         intel_pstate_clear_update_util_hook(policy->cpu);
1444
1445         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1446                  policy->cpuinfo.max_freq, policy->max);
1447
1448         cpu = all_cpu_data[0];
1449         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1450             policy->max < policy->cpuinfo.max_freq &&
1451             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1452                 pr_debug("policy->max > max non turbo frequency\n");
1453                 policy->max = policy->cpuinfo.max_freq;
1454         }
1455
1456         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1457                 limits = &performance_limits;
1458                 if (policy->max >= policy->cpuinfo.max_freq) {
1459                         pr_debug("set performance\n");
1460                         intel_pstate_set_performance_limits(limits);
1461                         goto out;
1462                 }
1463         } else {
1464                 pr_debug("set powersave\n");
1465                 limits = &powersave_limits;
1466         }
1467
1468         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1469         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1470         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1471                                               policy->cpuinfo.max_freq);
1472         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1473
1474         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1475         limits->min_perf_pct = max(limits->min_policy_pct,
1476                                    limits->min_sysfs_pct);
1477         limits->min_perf_pct = min(limits->max_policy_pct,
1478                                    limits->min_perf_pct);
1479         limits->max_perf_pct = min(limits->max_policy_pct,
1480                                    limits->max_sysfs_pct);
1481         limits->max_perf_pct = max(limits->min_policy_pct,
1482                                    limits->max_perf_pct);
1483
1484         /* Make sure min_perf_pct <= max_perf_pct */
1485         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1486
1487         limits->min_perf = div_fp(limits->min_perf_pct, 100);
1488         limits->max_perf = div_fp(limits->max_perf_pct, 100);
1489         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1490
1491  out:
1492         intel_pstate_set_update_util_hook(policy->cpu);
1493
1494         intel_pstate_hwp_set_policy(policy);
1495
1496         return 0;
1497 }
1498
1499 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1500 {
1501         cpufreq_verify_within_cpu_limits(policy);
1502
1503         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1504             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1505                 return -EINVAL;
1506
1507         return 0;
1508 }
1509
1510 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1511 {
1512         int cpu_num = policy->cpu;
1513         struct cpudata *cpu = all_cpu_data[cpu_num];
1514
1515         pr_debug("CPU %d exiting\n", cpu_num);
1516
1517         intel_pstate_clear_update_util_hook(cpu_num);
1518
1519         if (hwp_active)
1520                 return;
1521
1522         intel_pstate_set_min_pstate(cpu);
1523 }
1524
1525 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1526 {
1527         struct cpudata *cpu;
1528         int rc;
1529
1530         rc = intel_pstate_init_cpu(policy->cpu);
1531         if (rc)
1532                 return rc;
1533
1534         cpu = all_cpu_data[policy->cpu];
1535
1536         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1537                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1538         else
1539                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1540
1541         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1542         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1543
1544         /* cpuinfo and default policy values */
1545         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1546         update_turbo_state();
1547         policy->cpuinfo.max_freq = limits->turbo_disabled ?
1548                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1549         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1550
1551         intel_pstate_init_acpi_perf_limits(policy);
1552         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1553         cpumask_set_cpu(policy->cpu, policy->cpus);
1554
1555         return 0;
1556 }
1557
1558 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1559 {
1560         intel_pstate_exit_perf_limits(policy);
1561
1562         return 0;
1563 }
1564
1565 static struct cpufreq_driver intel_pstate_driver = {
1566         .flags          = CPUFREQ_CONST_LOOPS,
1567         .verify         = intel_pstate_verify_policy,
1568         .setpolicy      = intel_pstate_set_policy,
1569         .resume         = intel_pstate_hwp_set_policy,
1570         .get            = intel_pstate_get,
1571         .init           = intel_pstate_cpu_init,
1572         .exit           = intel_pstate_cpu_exit,
1573         .stop_cpu       = intel_pstate_stop_cpu,
1574         .name           = "intel_pstate",
1575 };
1576
1577 static int __initdata no_load;
1578 static int __initdata no_hwp;
1579 static int __initdata hwp_only;
1580 static unsigned int force_load;
1581
1582 static int intel_pstate_msrs_not_valid(void)
1583 {
1584         if (!pstate_funcs.get_max() ||
1585             !pstate_funcs.get_min() ||
1586             !pstate_funcs.get_turbo())
1587                 return -ENODEV;
1588
1589         return 0;
1590 }
1591
1592 static void copy_pid_params(struct pstate_adjust_policy *policy)
1593 {
1594         pid_params.sample_rate_ms = policy->sample_rate_ms;
1595         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1596         pid_params.p_gain_pct = policy->p_gain_pct;
1597         pid_params.i_gain_pct = policy->i_gain_pct;
1598         pid_params.d_gain_pct = policy->d_gain_pct;
1599         pid_params.deadband = policy->deadband;
1600         pid_params.setpoint = policy->setpoint;
1601 }
1602
1603 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1604 {
1605         pstate_funcs.get_max   = funcs->get_max;
1606         pstate_funcs.get_max_physical = funcs->get_max_physical;
1607         pstate_funcs.get_min   = funcs->get_min;
1608         pstate_funcs.get_turbo = funcs->get_turbo;
1609         pstate_funcs.get_scaling = funcs->get_scaling;
1610         pstate_funcs.get_val   = funcs->get_val;
1611         pstate_funcs.get_vid   = funcs->get_vid;
1612         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1613
1614 }
1615
1616 #ifdef CONFIG_ACPI
1617
1618 static bool intel_pstate_no_acpi_pss(void)
1619 {
1620         int i;
1621
1622         for_each_possible_cpu(i) {
1623                 acpi_status status;
1624                 union acpi_object *pss;
1625                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1626                 struct acpi_processor *pr = per_cpu(processors, i);
1627
1628                 if (!pr)
1629                         continue;
1630
1631                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1632                 if (ACPI_FAILURE(status))
1633                         continue;
1634
1635                 pss = buffer.pointer;
1636                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1637                         kfree(pss);
1638                         return false;
1639                 }
1640
1641                 kfree(pss);
1642         }
1643
1644         return true;
1645 }
1646
1647 static bool intel_pstate_has_acpi_ppc(void)
1648 {
1649         int i;
1650
1651         for_each_possible_cpu(i) {
1652                 struct acpi_processor *pr = per_cpu(processors, i);
1653
1654                 if (!pr)
1655                         continue;
1656                 if (acpi_has_method(pr->handle, "_PPC"))
1657                         return true;
1658         }
1659         return false;
1660 }
1661
1662 enum {
1663         PSS,
1664         PPC,
1665 };
1666
1667 struct hw_vendor_info {
1668         u16  valid;
1669         char oem_id[ACPI_OEM_ID_SIZE];
1670         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1671         int  oem_pwr_table;
1672 };
1673
1674 /* Hardware vendor-specific info that has its own power management modes */
1675 static struct hw_vendor_info vendor_info[] = {
1676         {1, "HP    ", "ProLiant", PSS},
1677         {1, "ORACLE", "X4-2    ", PPC},
1678         {1, "ORACLE", "X4-2L   ", PPC},
1679         {1, "ORACLE", "X4-2B   ", PPC},
1680         {1, "ORACLE", "X3-2    ", PPC},
1681         {1, "ORACLE", "X3-2L   ", PPC},
1682         {1, "ORACLE", "X3-2B   ", PPC},
1683         {1, "ORACLE", "X4470M2 ", PPC},
1684         {1, "ORACLE", "X4270M3 ", PPC},
1685         {1, "ORACLE", "X4270M2 ", PPC},
1686         {1, "ORACLE", "X4170M2 ", PPC},
1687         {1, "ORACLE", "X4170 M3", PPC},
1688         {1, "ORACLE", "X4275 M3", PPC},
1689         {1, "ORACLE", "X6-2    ", PPC},
1690         {1, "ORACLE", "Sudbury ", PPC},
1691         {0, "", ""},
1692 };
1693
1694 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1695 {
1696         struct acpi_table_header hdr;
1697         struct hw_vendor_info *v_info;
1698         const struct x86_cpu_id *id;
1699         u64 misc_pwr;
1700
1701         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1702         if (id) {
1703                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1704                 if ( misc_pwr & (1 << 8))
1705                         return true;
1706         }
1707
1708         if (acpi_disabled ||
1709             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1710                 return false;
1711
1712         for (v_info = vendor_info; v_info->valid; v_info++) {
1713                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1714                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1715                                                 ACPI_OEM_TABLE_ID_SIZE))
1716                         switch (v_info->oem_pwr_table) {
1717                         case PSS:
1718                                 return intel_pstate_no_acpi_pss();
1719                         case PPC:
1720                                 return intel_pstate_has_acpi_ppc() &&
1721                                         (!force_load);
1722                         }
1723         }
1724
1725         return false;
1726 }
1727 #else /* CONFIG_ACPI not enabled */
1728 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1729 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1730 #endif /* CONFIG_ACPI */
1731
1732 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1733         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1734         {}
1735 };
1736
1737 static int __init intel_pstate_init(void)
1738 {
1739         int cpu, rc = 0;
1740         const struct x86_cpu_id *id;
1741         struct cpu_defaults *cpu_def;
1742
1743         if (no_load)
1744                 return -ENODEV;
1745
1746         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1747                 copy_cpu_funcs(&core_params.funcs);
1748                 hwp_active++;
1749                 goto hwp_cpu_matched;
1750         }
1751
1752         id = x86_match_cpu(intel_pstate_cpu_ids);
1753         if (!id)
1754                 return -ENODEV;
1755
1756         cpu_def = (struct cpu_defaults *)id->driver_data;
1757
1758         copy_pid_params(&cpu_def->pid_policy);
1759         copy_cpu_funcs(&cpu_def->funcs);
1760
1761         if (intel_pstate_msrs_not_valid())
1762                 return -ENODEV;
1763
1764 hwp_cpu_matched:
1765         /*
1766          * The Intel pstate driver will be ignored if the platform
1767          * firmware has its own power management modes.
1768          */
1769         if (intel_pstate_platform_pwr_mgmt_exists())
1770                 return -ENODEV;
1771
1772         pr_info("Intel P-state driver initializing\n");
1773
1774         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1775         if (!all_cpu_data)
1776                 return -ENOMEM;
1777
1778         if (!hwp_active && hwp_only)
1779                 goto out;
1780
1781         rc = cpufreq_register_driver(&intel_pstate_driver);
1782         if (rc)
1783                 goto out;
1784
1785         intel_pstate_debug_expose_params();
1786         intel_pstate_sysfs_expose_params();
1787
1788         if (hwp_active)
1789                 pr_info("HWP enabled\n");
1790
1791         return rc;
1792 out:
1793         get_online_cpus();
1794         for_each_online_cpu(cpu) {
1795                 if (all_cpu_data[cpu]) {
1796                         intel_pstate_clear_update_util_hook(cpu);
1797                         kfree(all_cpu_data[cpu]);
1798                 }
1799         }
1800
1801         put_online_cpus();
1802         vfree(all_cpu_data);
1803         return -ENODEV;
1804 }
1805 device_initcall(intel_pstate_init);
1806
1807 static int __init intel_pstate_setup(char *str)
1808 {
1809         if (!str)
1810                 return -EINVAL;
1811
1812         if (!strcmp(str, "disable"))
1813                 no_load = 1;
1814         if (!strcmp(str, "no_hwp")) {
1815                 pr_info("HWP disabled\n");
1816                 no_hwp = 1;
1817         }
1818         if (!strcmp(str, "force"))
1819                 force_load = 1;
1820         if (!strcmp(str, "hwp_only"))
1821                 hwp_only = 1;
1822
1823 #ifdef CONFIG_ACPI
1824         if (!strcmp(str, "support_acpi_ppc"))
1825                 acpi_ppc = true;
1826 #endif
1827
1828         return 0;
1829 }
1830 early_param("intel_pstate", intel_pstate_setup);
1831
1832 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1833 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1834 MODULE_LICENSE("GPL");