Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40 #define BYT_TURBO_VIDS          0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54         return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59         int mask, ret;
60
61         ret = fp_toint(x);
62         mask = (1 << FRAC_BITS) - 1;
63         if (x & mask)
64                 ret += 1;
65         return ret;
66 }
67
68 struct sample {
69         int32_t core_pct_busy;
70         u64 aperf;
71         u64 mperf;
72         u64 tsc;
73         int freq;
74         ktime_t time;
75 };
76
77 struct pstate_data {
78         int     current_pstate;
79         int     min_pstate;
80         int     max_pstate;
81         int     scaling;
82         int     turbo_pstate;
83 };
84
85 struct vid_data {
86         int min;
87         int max;
88         int turbo;
89         int32_t ratio;
90 };
91
92 struct _pid {
93         int setpoint;
94         int32_t integral;
95         int32_t p_gain;
96         int32_t i_gain;
97         int32_t d_gain;
98         int deadband;
99         int32_t last_err;
100 };
101
102 struct cpudata {
103         int cpu;
104
105         struct timer_list timer;
106
107         struct pstate_data pstate;
108         struct vid_data vid;
109         struct _pid pid;
110
111         ktime_t last_sample_time;
112         u64     prev_aperf;
113         u64     prev_mperf;
114         u64     prev_tsc;
115         struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120         int sample_rate_ms;
121         int deadband;
122         int setpoint;
123         int p_gain_pct;
124         int d_gain_pct;
125         int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129         int (*get_max)(void);
130         int (*get_min)(void);
131         int (*get_turbo)(void);
132         int (*get_scaling)(void);
133         void (*set)(struct cpudata*, int pstate);
134         void (*get_vid)(struct cpudata *);
135 };
136
137 struct cpu_defaults {
138         struct pstate_adjust_policy pid_policy;
139         struct pstate_funcs funcs;
140 };
141
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145
146 struct perf_limits {
147         int no_turbo;
148         int turbo_disabled;
149         int max_perf_pct;
150         int min_perf_pct;
151         int32_t max_perf;
152         int32_t min_perf;
153         int max_policy_pct;
154         int max_sysfs_pct;
155         int min_policy_pct;
156         int min_sysfs_pct;
157 };
158
159 static struct perf_limits limits = {
160         .no_turbo = 0,
161         .turbo_disabled = 0,
162         .max_perf_pct = 100,
163         .max_perf = int_tofp(1),
164         .min_perf_pct = 0,
165         .min_perf = 0,
166         .max_policy_pct = 100,
167         .max_sysfs_pct = 100,
168         .min_policy_pct = 0,
169         .min_sysfs_pct = 0,
170 };
171
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173                              int deadband, int integral) {
174         pid->setpoint = setpoint;
175         pid->deadband  = deadband;
176         pid->integral  = int_tofp(integral);
177         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197         signed int result;
198         int32_t pterm, dterm, fp_error;
199         int32_t integral_limit;
200
201         fp_error = int_tofp(pid->setpoint) - busy;
202
203         if (abs(fp_error) <= int_tofp(pid->deadband))
204                 return 0;
205
206         pterm = mul_fp(pid->p_gain, fp_error);
207
208         pid->integral += fp_error;
209
210         /*
211          * We limit the integral here so that it will never
212          * get higher than 30.  This prevents it from becoming
213          * too large an input over long periods of time and allows
214          * it to get factored out sooner.
215          *
216          * The value of 30 was chosen through experimentation.
217          */
218         integral_limit = int_tofp(30);
219         if (pid->integral > integral_limit)
220                 pid->integral = integral_limit;
221         if (pid->integral < -integral_limit)
222                 pid->integral = -integral_limit;
223
224         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225         pid->last_err = fp_error;
226
227         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228         result = result + (1 << (FRAC_BITS-1));
229         return (signed int)fp_toint(result);
230 }
231
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243         unsigned int cpu;
244
245         for_each_online_cpu(cpu) {
246                 if (all_cpu_data[cpu])
247                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248         }
249 }
250
251 static inline void update_turbo_state(void)
252 {
253         u64 misc_en;
254         struct cpudata *cpu;
255
256         cpu = all_cpu_data[0];
257         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258         limits.turbo_disabled =
259                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266         int min, max, cpu;
267         u64 value, freq;
268
269         get_online_cpus();
270
271         for_each_online_cpu(cpu) {
272                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273                 min = PCT_TO_HWP(limits.min_perf_pct);
274                 value &= ~HWP_MIN_PERF(~0L);
275                 value |= HWP_MIN_PERF(min);
276
277                 max = PCT_TO_HWP(limits.max_perf_pct);
278                 if (limits.no_turbo) {
279                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
280                         max = HWP_GUARANTEED_PERF(freq);
281                 }
282
283                 value &= ~HWP_MAX_PERF(~0L);
284                 value |= HWP_MAX_PERF(max);
285                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286         }
287
288         put_online_cpus();
289 }
290
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294         *(u32 *)data = val;
295         intel_pstate_reset_all_pid();
296         return 0;
297 }
298
299 static int pid_param_get(void *data, u64 *val)
300 {
301         *val = *(u32 *)data;
302         return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305
306 struct pid_param {
307         char *name;
308         void *value;
309 };
310
311 static struct pid_param pid_files[] = {
312         {"sample_rate_ms", &pid_params.sample_rate_ms},
313         {"d_gain_pct", &pid_params.d_gain_pct},
314         {"i_gain_pct", &pid_params.i_gain_pct},
315         {"deadband", &pid_params.deadband},
316         {"setpoint", &pid_params.setpoint},
317         {"p_gain_pct", &pid_params.p_gain_pct},
318         {NULL, NULL}
319 };
320
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323         struct dentry *debugfs_parent;
324         int i = 0;
325
326         if (hwp_active)
327                 return;
328         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329         if (IS_ERR_OR_NULL(debugfs_parent))
330                 return;
331         while (pid_files[i].name) {
332                 debugfs_create_file(pid_files[i].name, 0660,
333                                     debugfs_parent, pid_files[i].value,
334                                     &fops_pid_param);
335                 i++;
336         }
337 }
338
339 /************************** debugfs end ************************/
340
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object)                                     \
343         static ssize_t show_##file_name                                 \
344         (struct kobject *kobj, struct attribute *attr, char *buf)       \
345         {                                                               \
346                 return sprintf(buf, "%u\n", limits.object);             \
347         }
348
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350                                 struct attribute *attr, char *buf)
351 {
352         struct cpudata *cpu;
353         int total, no_turbo, turbo_pct;
354         uint32_t turbo_fp;
355
356         cpu = all_cpu_data[0];
357
358         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362         return sprintf(buf, "%u\n", turbo_pct);
363 }
364
365 static ssize_t show_num_pstates(struct kobject *kobj,
366                                 struct attribute *attr, char *buf)
367 {
368         struct cpudata *cpu;
369         int total;
370
371         cpu = all_cpu_data[0];
372         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373         return sprintf(buf, "%u\n", total);
374 }
375
376 static ssize_t show_no_turbo(struct kobject *kobj,
377                              struct attribute *attr, char *buf)
378 {
379         ssize_t ret;
380
381         update_turbo_state();
382         if (limits.turbo_disabled)
383                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384         else
385                 ret = sprintf(buf, "%u\n", limits.no_turbo);
386
387         return ret;
388 }
389
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391                               const char *buf, size_t count)
392 {
393         unsigned int input;
394         int ret;
395
396         ret = sscanf(buf, "%u", &input);
397         if (ret != 1)
398                 return -EINVAL;
399
400         update_turbo_state();
401         if (limits.turbo_disabled) {
402                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403                 return -EPERM;
404         }
405
406         limits.no_turbo = clamp_t(int, input, 0, 1);
407
408         if (hwp_active)
409                 intel_pstate_hwp_set();
410
411         return count;
412 }
413
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415                                   const char *buf, size_t count)
416 {
417         unsigned int input;
418         int ret;
419
420         ret = sscanf(buf, "%u", &input);
421         if (ret != 1)
422                 return -EINVAL;
423
424         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
427
428         if (hwp_active)
429                 intel_pstate_hwp_set();
430         return count;
431 }
432
433 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
434                                   const char *buf, size_t count)
435 {
436         unsigned int input;
437         int ret;
438
439         ret = sscanf(buf, "%u", &input);
440         if (ret != 1)
441                 return -EINVAL;
442
443         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
444         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
445         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
446
447         if (hwp_active)
448                 intel_pstate_hwp_set();
449         return count;
450 }
451
452 show_one(max_perf_pct, max_perf_pct);
453 show_one(min_perf_pct, min_perf_pct);
454
455 define_one_global_rw(no_turbo);
456 define_one_global_rw(max_perf_pct);
457 define_one_global_rw(min_perf_pct);
458 define_one_global_ro(turbo_pct);
459 define_one_global_ro(num_pstates);
460
461 static struct attribute *intel_pstate_attributes[] = {
462         &no_turbo.attr,
463         &max_perf_pct.attr,
464         &min_perf_pct.attr,
465         &turbo_pct.attr,
466         &num_pstates.attr,
467         NULL
468 };
469
470 static struct attribute_group intel_pstate_attr_group = {
471         .attrs = intel_pstate_attributes,
472 };
473
474 static void __init intel_pstate_sysfs_expose_params(void)
475 {
476         struct kobject *intel_pstate_kobject;
477         int rc;
478
479         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
480                                                 &cpu_subsys.dev_root->kobj);
481         BUG_ON(!intel_pstate_kobject);
482         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
483         BUG_ON(rc);
484 }
485 /************************** sysfs end ************************/
486
487 static void intel_pstate_hwp_enable(void)
488 {
489         hwp_active++;
490         pr_info("intel_pstate: HWP enabled\n");
491
492         wrmsrl( MSR_PM_ENABLE, 0x1);
493 }
494
495 static int byt_get_min_pstate(void)
496 {
497         u64 value;
498
499         rdmsrl(BYT_RATIOS, value);
500         return (value >> 8) & 0x7F;
501 }
502
503 static int byt_get_max_pstate(void)
504 {
505         u64 value;
506
507         rdmsrl(BYT_RATIOS, value);
508         return (value >> 16) & 0x7F;
509 }
510
511 static int byt_get_turbo_pstate(void)
512 {
513         u64 value;
514
515         rdmsrl(BYT_TURBO_RATIOS, value);
516         return value & 0x7F;
517 }
518
519 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
520 {
521         u64 val;
522         int32_t vid_fp;
523         u32 vid;
524
525         val = pstate << 8;
526         if (limits.no_turbo && !limits.turbo_disabled)
527                 val |= (u64)1 << 32;
528
529         vid_fp = cpudata->vid.min + mul_fp(
530                 int_tofp(pstate - cpudata->pstate.min_pstate),
531                 cpudata->vid.ratio);
532
533         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
534         vid = ceiling_fp(vid_fp);
535
536         if (pstate > cpudata->pstate.max_pstate)
537                 vid = cpudata->vid.turbo;
538
539         val |= vid;
540
541         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
542 }
543
544 #define BYT_BCLK_FREQS 5
545 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
546
547 static int byt_get_scaling(void)
548 {
549         u64 value;
550         int i;
551
552         rdmsrl(MSR_FSB_FREQ, value);
553         i = value & 0x3;
554
555         BUG_ON(i > BYT_BCLK_FREQS);
556
557         return byt_freq_table[i] * 100;
558 }
559
560 static void byt_get_vid(struct cpudata *cpudata)
561 {
562         u64 value;
563
564         rdmsrl(BYT_VIDS, value);
565         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
566         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
567         cpudata->vid.ratio = div_fp(
568                 cpudata->vid.max - cpudata->vid.min,
569                 int_tofp(cpudata->pstate.max_pstate -
570                         cpudata->pstate.min_pstate));
571
572         rdmsrl(BYT_TURBO_VIDS, value);
573         cpudata->vid.turbo = value & 0x7f;
574 }
575
576 static int core_get_min_pstate(void)
577 {
578         u64 value;
579
580         rdmsrl(MSR_PLATFORM_INFO, value);
581         return (value >> 40) & 0xFF;
582 }
583
584 static int core_get_max_pstate(void)
585 {
586         u64 value;
587
588         rdmsrl(MSR_PLATFORM_INFO, value);
589         return (value >> 8) & 0xFF;
590 }
591
592 static int core_get_turbo_pstate(void)
593 {
594         u64 value;
595         int nont, ret;
596
597         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
598         nont = core_get_max_pstate();
599         ret = (value) & 255;
600         if (ret <= nont)
601                 ret = nont;
602         return ret;
603 }
604
605 static inline int core_get_scaling(void)
606 {
607         return 100000;
608 }
609
610 static void core_set_pstate(struct cpudata *cpudata, int pstate)
611 {
612         u64 val;
613
614         val = pstate << 8;
615         if (limits.no_turbo && !limits.turbo_disabled)
616                 val |= (u64)1 << 32;
617
618         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
619 }
620
621 static int knl_get_turbo_pstate(void)
622 {
623         u64 value;
624         int nont, ret;
625
626         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
627         nont = core_get_max_pstate();
628         ret = (((value) >> 8) & 0xFF);
629         if (ret <= nont)
630                 ret = nont;
631         return ret;
632 }
633
634 static struct cpu_defaults core_params = {
635         .pid_policy = {
636                 .sample_rate_ms = 10,
637                 .deadband = 0,
638                 .setpoint = 97,
639                 .p_gain_pct = 20,
640                 .d_gain_pct = 0,
641                 .i_gain_pct = 0,
642         },
643         .funcs = {
644                 .get_max = core_get_max_pstate,
645                 .get_min = core_get_min_pstate,
646                 .get_turbo = core_get_turbo_pstate,
647                 .get_scaling = core_get_scaling,
648                 .set = core_set_pstate,
649         },
650 };
651
652 static struct cpu_defaults byt_params = {
653         .pid_policy = {
654                 .sample_rate_ms = 10,
655                 .deadband = 0,
656                 .setpoint = 60,
657                 .p_gain_pct = 14,
658                 .d_gain_pct = 0,
659                 .i_gain_pct = 4,
660         },
661         .funcs = {
662                 .get_max = byt_get_max_pstate,
663                 .get_min = byt_get_min_pstate,
664                 .get_turbo = byt_get_turbo_pstate,
665                 .set = byt_set_pstate,
666                 .get_scaling = byt_get_scaling,
667                 .get_vid = byt_get_vid,
668         },
669 };
670
671 static struct cpu_defaults knl_params = {
672         .pid_policy = {
673                 .sample_rate_ms = 10,
674                 .deadband = 0,
675                 .setpoint = 97,
676                 .p_gain_pct = 20,
677                 .d_gain_pct = 0,
678                 .i_gain_pct = 0,
679         },
680         .funcs = {
681                 .get_max = core_get_max_pstate,
682                 .get_min = core_get_min_pstate,
683                 .get_turbo = knl_get_turbo_pstate,
684                 .get_scaling = core_get_scaling,
685                 .set = core_set_pstate,
686         },
687 };
688
689 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
690 {
691         int max_perf = cpu->pstate.turbo_pstate;
692         int max_perf_adj;
693         int min_perf;
694
695         if (limits.no_turbo || limits.turbo_disabled)
696                 max_perf = cpu->pstate.max_pstate;
697
698         /*
699          * performance can be limited by user through sysfs, by cpufreq
700          * policy, or by cpu specific default values determined through
701          * experimentation.
702          */
703         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
704         *max = clamp_t(int, max_perf_adj,
705                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
706
707         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
708         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
709 }
710
711 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
712 {
713         int max_perf, min_perf;
714
715         if (force) {
716                 update_turbo_state();
717
718                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
719
720                 pstate = clamp_t(int, pstate, min_perf, max_perf);
721
722                 if (pstate == cpu->pstate.current_pstate)
723                         return;
724         }
725         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
726
727         cpu->pstate.current_pstate = pstate;
728
729         pstate_funcs.set(cpu, pstate);
730 }
731
732 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
733 {
734         cpu->pstate.min_pstate = pstate_funcs.get_min();
735         cpu->pstate.max_pstate = pstate_funcs.get_max();
736         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
737         cpu->pstate.scaling = pstate_funcs.get_scaling();
738
739         if (pstate_funcs.get_vid)
740                 pstate_funcs.get_vid(cpu);
741         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
742 }
743
744 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
745 {
746         struct sample *sample = &cpu->sample;
747         int64_t core_pct;
748
749         core_pct = int_tofp(sample->aperf) * int_tofp(100);
750         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
751
752         sample->freq = fp_toint(
753                 mul_fp(int_tofp(
754                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
755                         core_pct));
756
757         sample->core_pct_busy = (int32_t)core_pct;
758 }
759
760 static inline void intel_pstate_sample(struct cpudata *cpu)
761 {
762         u64 aperf, mperf;
763         unsigned long flags;
764         u64 tsc;
765
766         local_irq_save(flags);
767         rdmsrl(MSR_IA32_APERF, aperf);
768         rdmsrl(MSR_IA32_MPERF, mperf);
769         tsc = rdtsc();
770         local_irq_restore(flags);
771
772         cpu->last_sample_time = cpu->sample.time;
773         cpu->sample.time = ktime_get();
774         cpu->sample.aperf = aperf;
775         cpu->sample.mperf = mperf;
776         cpu->sample.tsc =  tsc;
777         cpu->sample.aperf -= cpu->prev_aperf;
778         cpu->sample.mperf -= cpu->prev_mperf;
779         cpu->sample.tsc -= cpu->prev_tsc;
780
781         intel_pstate_calc_busy(cpu);
782
783         cpu->prev_aperf = aperf;
784         cpu->prev_mperf = mperf;
785         cpu->prev_tsc = tsc;
786 }
787
788 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
789 {
790         int delay;
791
792         delay = msecs_to_jiffies(50);
793         mod_timer_pinned(&cpu->timer, jiffies + delay);
794 }
795
796 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
797 {
798         int delay;
799
800         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
801         mod_timer_pinned(&cpu->timer, jiffies + delay);
802 }
803
804 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
805 {
806         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
807         s64 duration_us;
808         u32 sample_time;
809
810         /*
811          * core_busy is the ratio of actual performance to max
812          * max_pstate is the max non turbo pstate available
813          * current_pstate was the pstate that was requested during
814          *      the last sample period.
815          *
816          * We normalize core_busy, which was our actual percent
817          * performance to what we requested during the last sample
818          * period. The result will be a percentage of busy at a
819          * specified pstate.
820          */
821         core_busy = cpu->sample.core_pct_busy;
822         max_pstate = int_tofp(cpu->pstate.max_pstate);
823         current_pstate = int_tofp(cpu->pstate.current_pstate);
824         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
825
826         /*
827          * Since we have a deferred timer, it will not fire unless
828          * we are in C0.  So, determine if the actual elapsed time
829          * is significantly greater (3x) than our sample interval.  If it
830          * is, then we were idle for a long enough period of time
831          * to adjust our busyness.
832          */
833         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
834         duration_us = ktime_us_delta(cpu->sample.time,
835                                      cpu->last_sample_time);
836         if (duration_us > sample_time * 3) {
837                 sample_ratio = div_fp(int_tofp(sample_time),
838                                       int_tofp(duration_us));
839                 core_busy = mul_fp(core_busy, sample_ratio);
840         }
841
842         return core_busy;
843 }
844
845 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
846 {
847         int32_t busy_scaled;
848         struct _pid *pid;
849         signed int ctl;
850         int from;
851         struct sample *sample;
852
853         from = cpu->pstate.current_pstate;
854
855         pid = &cpu->pid;
856         busy_scaled = intel_pstate_get_scaled_busy(cpu);
857
858         ctl = pid_calc(pid, busy_scaled);
859
860         /* Negative values of ctl increase the pstate and vice versa */
861         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
862
863         sample = &cpu->sample;
864         trace_pstate_sample(fp_toint(sample->core_pct_busy),
865                 fp_toint(busy_scaled),
866                 from,
867                 cpu->pstate.current_pstate,
868                 sample->mperf,
869                 sample->aperf,
870                 sample->tsc,
871                 sample->freq);
872 }
873
874 static void intel_hwp_timer_func(unsigned long __data)
875 {
876         struct cpudata *cpu = (struct cpudata *) __data;
877
878         intel_pstate_sample(cpu);
879         intel_hwp_set_sample_time(cpu);
880 }
881
882 static void intel_pstate_timer_func(unsigned long __data)
883 {
884         struct cpudata *cpu = (struct cpudata *) __data;
885
886         intel_pstate_sample(cpu);
887
888         intel_pstate_adjust_busy_pstate(cpu);
889
890         intel_pstate_set_sample_time(cpu);
891 }
892
893 #define ICPU(model, policy) \
894         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
895                         (unsigned long)&policy }
896
897 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
898         ICPU(0x2a, core_params),
899         ICPU(0x2d, core_params),
900         ICPU(0x37, byt_params),
901         ICPU(0x3a, core_params),
902         ICPU(0x3c, core_params),
903         ICPU(0x3d, core_params),
904         ICPU(0x3e, core_params),
905         ICPU(0x3f, core_params),
906         ICPU(0x45, core_params),
907         ICPU(0x46, core_params),
908         ICPU(0x47, core_params),
909         ICPU(0x4c, byt_params),
910         ICPU(0x4e, core_params),
911         ICPU(0x4f, core_params),
912         ICPU(0x56, core_params),
913         ICPU(0x57, knl_params),
914         {}
915 };
916 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
917
918 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
919         ICPU(0x56, core_params),
920         {}
921 };
922
923 static int intel_pstate_init_cpu(unsigned int cpunum)
924 {
925         struct cpudata *cpu;
926
927         if (!all_cpu_data[cpunum])
928                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
929                                                GFP_KERNEL);
930         if (!all_cpu_data[cpunum])
931                 return -ENOMEM;
932
933         cpu = all_cpu_data[cpunum];
934
935         cpu->cpu = cpunum;
936         intel_pstate_get_cpu_pstates(cpu);
937
938         init_timer_deferrable(&cpu->timer);
939         cpu->timer.data = (unsigned long)cpu;
940         cpu->timer.expires = jiffies + HZ/100;
941
942         if (!hwp_active)
943                 cpu->timer.function = intel_pstate_timer_func;
944         else
945                 cpu->timer.function = intel_hwp_timer_func;
946
947         intel_pstate_busy_pid_reset(cpu);
948         intel_pstate_sample(cpu);
949
950         add_timer_on(&cpu->timer, cpunum);
951
952         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
953
954         return 0;
955 }
956
957 static unsigned int intel_pstate_get(unsigned int cpu_num)
958 {
959         struct sample *sample;
960         struct cpudata *cpu;
961
962         cpu = all_cpu_data[cpu_num];
963         if (!cpu)
964                 return 0;
965         sample = &cpu->sample;
966         return sample->freq;
967 }
968
969 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
970 {
971         if (!policy->cpuinfo.max_freq)
972                 return -ENODEV;
973
974         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
975             policy->max >= policy->cpuinfo.max_freq) {
976                 limits.min_policy_pct = 100;
977                 limits.min_perf_pct = 100;
978                 limits.min_perf = int_tofp(1);
979                 limits.max_policy_pct = 100;
980                 limits.max_perf_pct = 100;
981                 limits.max_perf = int_tofp(1);
982                 limits.no_turbo = 0;
983                 return 0;
984         }
985
986         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
987         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
988         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
989         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
990
991         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
992         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
993         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
994         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
995
996         if (hwp_active)
997                 intel_pstate_hwp_set();
998
999         return 0;
1000 }
1001
1002 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1003 {
1004         cpufreq_verify_within_cpu_limits(policy);
1005
1006         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1007             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1008                 return -EINVAL;
1009
1010         return 0;
1011 }
1012
1013 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1014 {
1015         int cpu_num = policy->cpu;
1016         struct cpudata *cpu = all_cpu_data[cpu_num];
1017
1018         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1019
1020         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1021         if (hwp_active)
1022                 return;
1023
1024         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1025 }
1026
1027 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1028 {
1029         struct cpudata *cpu;
1030         int rc;
1031
1032         rc = intel_pstate_init_cpu(policy->cpu);
1033         if (rc)
1034                 return rc;
1035
1036         cpu = all_cpu_data[policy->cpu];
1037
1038         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1039                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1040         else
1041                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1042
1043         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1044         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1045
1046         /* cpuinfo and default policy values */
1047         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1048         policy->cpuinfo.max_freq =
1049                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1050         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1051         cpumask_set_cpu(policy->cpu, policy->cpus);
1052
1053         return 0;
1054 }
1055
1056 static struct cpufreq_driver intel_pstate_driver = {
1057         .flags          = CPUFREQ_CONST_LOOPS,
1058         .verify         = intel_pstate_verify_policy,
1059         .setpolicy      = intel_pstate_set_policy,
1060         .get            = intel_pstate_get,
1061         .init           = intel_pstate_cpu_init,
1062         .stop_cpu       = intel_pstate_stop_cpu,
1063         .name           = "intel_pstate",
1064 };
1065
1066 static int __initdata no_load;
1067 static int __initdata no_hwp;
1068 static int __initdata hwp_only;
1069 static unsigned int force_load;
1070
1071 static int intel_pstate_msrs_not_valid(void)
1072 {
1073         if (!pstate_funcs.get_max() ||
1074             !pstate_funcs.get_min() ||
1075             !pstate_funcs.get_turbo())
1076                 return -ENODEV;
1077
1078         return 0;
1079 }
1080
1081 static void copy_pid_params(struct pstate_adjust_policy *policy)
1082 {
1083         pid_params.sample_rate_ms = policy->sample_rate_ms;
1084         pid_params.p_gain_pct = policy->p_gain_pct;
1085         pid_params.i_gain_pct = policy->i_gain_pct;
1086         pid_params.d_gain_pct = policy->d_gain_pct;
1087         pid_params.deadband = policy->deadband;
1088         pid_params.setpoint = policy->setpoint;
1089 }
1090
1091 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1092 {
1093         pstate_funcs.get_max   = funcs->get_max;
1094         pstate_funcs.get_min   = funcs->get_min;
1095         pstate_funcs.get_turbo = funcs->get_turbo;
1096         pstate_funcs.get_scaling = funcs->get_scaling;
1097         pstate_funcs.set       = funcs->set;
1098         pstate_funcs.get_vid   = funcs->get_vid;
1099 }
1100
1101 #if IS_ENABLED(CONFIG_ACPI)
1102 #include <acpi/processor.h>
1103
1104 static bool intel_pstate_no_acpi_pss(void)
1105 {
1106         int i;
1107
1108         for_each_possible_cpu(i) {
1109                 acpi_status status;
1110                 union acpi_object *pss;
1111                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1112                 struct acpi_processor *pr = per_cpu(processors, i);
1113
1114                 if (!pr)
1115                         continue;
1116
1117                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1118                 if (ACPI_FAILURE(status))
1119                         continue;
1120
1121                 pss = buffer.pointer;
1122                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1123                         kfree(pss);
1124                         return false;
1125                 }
1126
1127                 kfree(pss);
1128         }
1129
1130         return true;
1131 }
1132
1133 static bool intel_pstate_has_acpi_ppc(void)
1134 {
1135         int i;
1136
1137         for_each_possible_cpu(i) {
1138                 struct acpi_processor *pr = per_cpu(processors, i);
1139
1140                 if (!pr)
1141                         continue;
1142                 if (acpi_has_method(pr->handle, "_PPC"))
1143                         return true;
1144         }
1145         return false;
1146 }
1147
1148 enum {
1149         PSS,
1150         PPC,
1151 };
1152
1153 struct hw_vendor_info {
1154         u16  valid;
1155         char oem_id[ACPI_OEM_ID_SIZE];
1156         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1157         int  oem_pwr_table;
1158 };
1159
1160 /* Hardware vendor-specific info that has its own power management modes */
1161 static struct hw_vendor_info vendor_info[] = {
1162         {1, "HP    ", "ProLiant", PSS},
1163         {1, "ORACLE", "X4-2    ", PPC},
1164         {1, "ORACLE", "X4-2L   ", PPC},
1165         {1, "ORACLE", "X4-2B   ", PPC},
1166         {1, "ORACLE", "X3-2    ", PPC},
1167         {1, "ORACLE", "X3-2L   ", PPC},
1168         {1, "ORACLE", "X3-2B   ", PPC},
1169         {1, "ORACLE", "X4470M2 ", PPC},
1170         {1, "ORACLE", "X4270M3 ", PPC},
1171         {1, "ORACLE", "X4270M2 ", PPC},
1172         {1, "ORACLE", "X4170M2 ", PPC},
1173         {0, "", ""},
1174 };
1175
1176 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1177 {
1178         struct acpi_table_header hdr;
1179         struct hw_vendor_info *v_info;
1180         const struct x86_cpu_id *id;
1181         u64 misc_pwr;
1182
1183         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1184         if (id) {
1185                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1186                 if ( misc_pwr & (1 << 8))
1187                         return true;
1188         }
1189
1190         if (acpi_disabled ||
1191             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1192                 return false;
1193
1194         for (v_info = vendor_info; v_info->valid; v_info++) {
1195                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1196                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1197                                                 ACPI_OEM_TABLE_ID_SIZE))
1198                         switch (v_info->oem_pwr_table) {
1199                         case PSS:
1200                                 return intel_pstate_no_acpi_pss();
1201                         case PPC:
1202                                 return intel_pstate_has_acpi_ppc() &&
1203                                         (!force_load);
1204                         }
1205         }
1206
1207         return false;
1208 }
1209 #else /* CONFIG_ACPI not enabled */
1210 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1211 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1212 #endif /* CONFIG_ACPI */
1213
1214 static int __init intel_pstate_init(void)
1215 {
1216         int cpu, rc = 0;
1217         const struct x86_cpu_id *id;
1218         struct cpu_defaults *cpu_def;
1219
1220         if (no_load)
1221                 return -ENODEV;
1222
1223         id = x86_match_cpu(intel_pstate_cpu_ids);
1224         if (!id)
1225                 return -ENODEV;
1226
1227         /*
1228          * The Intel pstate driver will be ignored if the platform
1229          * firmware has its own power management modes.
1230          */
1231         if (intel_pstate_platform_pwr_mgmt_exists())
1232                 return -ENODEV;
1233
1234         cpu_def = (struct cpu_defaults *)id->driver_data;
1235
1236         copy_pid_params(&cpu_def->pid_policy);
1237         copy_cpu_funcs(&cpu_def->funcs);
1238
1239         if (intel_pstate_msrs_not_valid())
1240                 return -ENODEV;
1241
1242         pr_info("Intel P-state driver initializing.\n");
1243
1244         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1245         if (!all_cpu_data)
1246                 return -ENOMEM;
1247
1248         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1249                 intel_pstate_hwp_enable();
1250
1251         if (!hwp_active && hwp_only)
1252                 goto out;
1253
1254         rc = cpufreq_register_driver(&intel_pstate_driver);
1255         if (rc)
1256                 goto out;
1257
1258         intel_pstate_debug_expose_params();
1259         intel_pstate_sysfs_expose_params();
1260
1261         return rc;
1262 out:
1263         get_online_cpus();
1264         for_each_online_cpu(cpu) {
1265                 if (all_cpu_data[cpu]) {
1266                         del_timer_sync(&all_cpu_data[cpu]->timer);
1267                         kfree(all_cpu_data[cpu]);
1268                 }
1269         }
1270
1271         put_online_cpus();
1272         vfree(all_cpu_data);
1273         return -ENODEV;
1274 }
1275 device_initcall(intel_pstate_init);
1276
1277 static int __init intel_pstate_setup(char *str)
1278 {
1279         if (!str)
1280                 return -EINVAL;
1281
1282         if (!strcmp(str, "disable"))
1283                 no_load = 1;
1284         if (!strcmp(str, "no_hwp"))
1285                 no_hwp = 1;
1286         if (!strcmp(str, "force"))
1287                 force_load = 1;
1288         if (!strcmp(str, "hwp_only"))
1289                 hwp_only = 1;
1290         return 0;
1291 }
1292 early_param("intel_pstate", intel_pstate_setup);
1293
1294 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1295 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1296 MODULE_LICENSE("GPL");