regmap: irq: add devm apis for regmap_{add,del}_irq_chip
[cascardo/linux.git] / drivers / crypto / atmel-aes.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43
44 #define ATMEL_AES_PRIORITY      300
45
46 #define ATMEL_AES_BUFFER_ORDER  2
47 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE         1
50 #define CFB16_BLOCK_SIZE        2
51 #define CFB32_BLOCK_SIZE        4
52 #define CFB64_BLOCK_SIZE        8
53
54 #define SIZE_IN_WORDS(x)        ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
71
72 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
73                                  AES_FLAGS_ENCRYPT |            \
74                                  AES_FLAGS_GTAGEN)
75
76 #define AES_FLAGS_INIT          BIT(2)
77 #define AES_FLAGS_BUSY          BIT(3)
78 #define AES_FLAGS_DUMP_REG      BIT(4)
79
80 #define AES_FLAGS_PERSISTENT    (AES_FLAGS_INIT | AES_FLAGS_BUSY)
81
82 #define ATMEL_AES_QUEUE_LENGTH  50
83
84 #define ATMEL_AES_DMA_THRESHOLD         256
85
86
87 struct atmel_aes_caps {
88         bool                    has_dualbuff;
89         bool                    has_cfb64;
90         bool                    has_ctr32;
91         bool                    has_gcm;
92         u32                     max_burst_size;
93 };
94
95 struct atmel_aes_dev;
96
97
98 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
99
100
101 struct atmel_aes_base_ctx {
102         struct atmel_aes_dev    *dd;
103         atmel_aes_fn_t          start;
104         int                     keylen;
105         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
106         u16                     block_size;
107 };
108
109 struct atmel_aes_ctx {
110         struct atmel_aes_base_ctx       base;
111 };
112
113 struct atmel_aes_ctr_ctx {
114         struct atmel_aes_base_ctx       base;
115
116         u32                     iv[AES_BLOCK_SIZE / sizeof(u32)];
117         size_t                  offset;
118         struct scatterlist      src[2];
119         struct scatterlist      dst[2];
120 };
121
122 struct atmel_aes_gcm_ctx {
123         struct atmel_aes_base_ctx       base;
124
125         struct scatterlist      src[2];
126         struct scatterlist      dst[2];
127
128         u32                     j0[AES_BLOCK_SIZE / sizeof(u32)];
129         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
130         u32                     ghash[AES_BLOCK_SIZE / sizeof(u32)];
131         size_t                  textlen;
132
133         const u32               *ghash_in;
134         u32                     *ghash_out;
135         atmel_aes_fn_t          ghash_resume;
136 };
137
138 struct atmel_aes_reqctx {
139         unsigned long           mode;
140 };
141
142 struct atmel_aes_dma {
143         struct dma_chan         *chan;
144         struct scatterlist      *sg;
145         int                     nents;
146         unsigned int            remainder;
147         unsigned int            sg_len;
148 };
149
150 struct atmel_aes_dev {
151         struct list_head        list;
152         unsigned long           phys_base;
153         void __iomem            *io_base;
154
155         struct crypto_async_request     *areq;
156         struct atmel_aes_base_ctx       *ctx;
157
158         bool                    is_async;
159         atmel_aes_fn_t          resume;
160         atmel_aes_fn_t          cpu_transfer_complete;
161
162         struct device           *dev;
163         struct clk              *iclk;
164         int                     irq;
165
166         unsigned long           flags;
167
168         spinlock_t              lock;
169         struct crypto_queue     queue;
170
171         struct tasklet_struct   done_task;
172         struct tasklet_struct   queue_task;
173
174         size_t                  total;
175         size_t                  datalen;
176         u32                     *data;
177
178         struct atmel_aes_dma    src;
179         struct atmel_aes_dma    dst;
180
181         size_t                  buflen;
182         void                    *buf;
183         struct scatterlist      aligned_sg;
184         struct scatterlist      *real_dst;
185
186         struct atmel_aes_caps   caps;
187
188         u32                     hw_version;
189 };
190
191 struct atmel_aes_drv {
192         struct list_head        dev_list;
193         spinlock_t              lock;
194 };
195
196 static struct atmel_aes_drv atmel_aes = {
197         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
198         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
199 };
200
201 #ifdef VERBOSE_DEBUG
202 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
203 {
204         switch (offset) {
205         case AES_CR:
206                 return "CR";
207
208         case AES_MR:
209                 return "MR";
210
211         case AES_ISR:
212                 return "ISR";
213
214         case AES_IMR:
215                 return "IMR";
216
217         case AES_IER:
218                 return "IER";
219
220         case AES_IDR:
221                 return "IDR";
222
223         case AES_KEYWR(0):
224         case AES_KEYWR(1):
225         case AES_KEYWR(2):
226         case AES_KEYWR(3):
227         case AES_KEYWR(4):
228         case AES_KEYWR(5):
229         case AES_KEYWR(6):
230         case AES_KEYWR(7):
231                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
232                 break;
233
234         case AES_IDATAR(0):
235         case AES_IDATAR(1):
236         case AES_IDATAR(2):
237         case AES_IDATAR(3):
238                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
239                 break;
240
241         case AES_ODATAR(0):
242         case AES_ODATAR(1):
243         case AES_ODATAR(2):
244         case AES_ODATAR(3):
245                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
246                 break;
247
248         case AES_IVR(0):
249         case AES_IVR(1):
250         case AES_IVR(2):
251         case AES_IVR(3):
252                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
253                 break;
254
255         case AES_AADLENR:
256                 return "AADLENR";
257
258         case AES_CLENR:
259                 return "CLENR";
260
261         case AES_GHASHR(0):
262         case AES_GHASHR(1):
263         case AES_GHASHR(2):
264         case AES_GHASHR(3):
265                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
266                 break;
267
268         case AES_TAGR(0):
269         case AES_TAGR(1):
270         case AES_TAGR(2):
271         case AES_TAGR(3):
272                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
273                 break;
274
275         case AES_CTRR:
276                 return "CTRR";
277
278         case AES_GCMHR(0):
279         case AES_GCMHR(1):
280         case AES_GCMHR(2):
281         case AES_GCMHR(3):
282                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
283                 break;
284
285         default:
286                 snprintf(tmp, sz, "0x%02x", offset);
287                 break;
288         }
289
290         return tmp;
291 }
292 #endif /* VERBOSE_DEBUG */
293
294 /* Shared functions */
295
296 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
297 {
298         u32 value = readl_relaxed(dd->io_base + offset);
299
300 #ifdef VERBOSE_DEBUG
301         if (dd->flags & AES_FLAGS_DUMP_REG) {
302                 char tmp[16];
303
304                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
305                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
306         }
307 #endif /* VERBOSE_DEBUG */
308
309         return value;
310 }
311
312 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
313                                         u32 offset, u32 value)
314 {
315 #ifdef VERBOSE_DEBUG
316         if (dd->flags & AES_FLAGS_DUMP_REG) {
317                 char tmp[16];
318
319                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
320                          atmel_aes_reg_name(offset, tmp));
321         }
322 #endif /* VERBOSE_DEBUG */
323
324         writel_relaxed(value, dd->io_base + offset);
325 }
326
327 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
328                                         u32 *value, int count)
329 {
330         for (; count--; value++, offset += 4)
331                 *value = atmel_aes_read(dd, offset);
332 }
333
334 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
335                               const u32 *value, int count)
336 {
337         for (; count--; value++, offset += 4)
338                 atmel_aes_write(dd, offset, *value);
339 }
340
341 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
342                                         u32 *value)
343 {
344         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
345 }
346
347 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
348                                          const u32 *value)
349 {
350         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
351 }
352
353 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
354                                                 atmel_aes_fn_t resume)
355 {
356         u32 isr = atmel_aes_read(dd, AES_ISR);
357
358         if (unlikely(isr & AES_INT_DATARDY))
359                 return resume(dd);
360
361         dd->resume = resume;
362         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
363         return -EINPROGRESS;
364 }
365
366 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
367 {
368         len &= block_size - 1;
369         return len ? block_size - len : 0;
370 }
371
372 static inline struct aead_request *
373 aead_request_cast(struct crypto_async_request *req)
374 {
375         return container_of(req, struct aead_request, base);
376 }
377
378 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
379 {
380         struct atmel_aes_dev *aes_dd = NULL;
381         struct atmel_aes_dev *tmp;
382
383         spin_lock_bh(&atmel_aes.lock);
384         if (!ctx->dd) {
385                 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
386                         aes_dd = tmp;
387                         break;
388                 }
389                 ctx->dd = aes_dd;
390         } else {
391                 aes_dd = ctx->dd;
392         }
393
394         spin_unlock_bh(&atmel_aes.lock);
395
396         return aes_dd;
397 }
398
399 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
400 {
401         int err;
402
403         err = clk_prepare_enable(dd->iclk);
404         if (err)
405                 return err;
406
407         if (!(dd->flags & AES_FLAGS_INIT)) {
408                 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
409                 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
410                 dd->flags |= AES_FLAGS_INIT;
411         }
412
413         return 0;
414 }
415
416 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
417 {
418         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
419 }
420
421 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
422 {
423         int err;
424
425         err = atmel_aes_hw_init(dd);
426         if (err)
427                 return err;
428
429         dd->hw_version = atmel_aes_get_version(dd);
430
431         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
432
433         clk_disable_unprepare(dd->iclk);
434         return 0;
435 }
436
437 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
438                                       const struct atmel_aes_reqctx *rctx)
439 {
440         /* Clear all but persistent flags and set request flags. */
441         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
442 }
443
444 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
445 {
446         return (dd->flags & AES_FLAGS_ENCRYPT);
447 }
448
449 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
450 {
451         clk_disable_unprepare(dd->iclk);
452         dd->flags &= ~AES_FLAGS_BUSY;
453
454         if (dd->is_async)
455                 dd->areq->complete(dd->areq, err);
456
457         tasklet_schedule(&dd->queue_task);
458
459         return err;
460 }
461
462 static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
463                                  const u32 *iv)
464 {
465         u32 valmr = 0;
466
467         /* MR register must be set before IV registers */
468         if (dd->ctx->keylen == AES_KEYSIZE_128)
469                 valmr |= AES_MR_KEYSIZE_128;
470         else if (dd->ctx->keylen == AES_KEYSIZE_192)
471                 valmr |= AES_MR_KEYSIZE_192;
472         else
473                 valmr |= AES_MR_KEYSIZE_256;
474
475         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
476
477         if (use_dma) {
478                 valmr |= AES_MR_SMOD_IDATAR0;
479                 if (dd->caps.has_dualbuff)
480                         valmr |= AES_MR_DUALBUFF;
481         } else {
482                 valmr |= AES_MR_SMOD_AUTO;
483         }
484
485         atmel_aes_write(dd, AES_MR, valmr);
486
487         atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
488                           SIZE_IN_WORDS(dd->ctx->keylen));
489
490         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
491                 atmel_aes_write_block(dd, AES_IVR(0), iv);
492 }
493
494
495 /* CPU transfer */
496
497 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
498 {
499         int err = 0;
500         u32 isr;
501
502         for (;;) {
503                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
504                 dd->data += 4;
505                 dd->datalen -= AES_BLOCK_SIZE;
506
507                 if (dd->datalen < AES_BLOCK_SIZE)
508                         break;
509
510                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
511
512                 isr = atmel_aes_read(dd, AES_ISR);
513                 if (!(isr & AES_INT_DATARDY)) {
514                         dd->resume = atmel_aes_cpu_transfer;
515                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
516                         return -EINPROGRESS;
517                 }
518         }
519
520         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
521                                  dd->buf, dd->total))
522                 err = -EINVAL;
523
524         if (err)
525                 return atmel_aes_complete(dd, err);
526
527         return dd->cpu_transfer_complete(dd);
528 }
529
530 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
531                                struct scatterlist *src,
532                                struct scatterlist *dst,
533                                size_t len,
534                                atmel_aes_fn_t resume)
535 {
536         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
537
538         if (unlikely(len == 0))
539                 return -EINVAL;
540
541         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
542
543         dd->total = len;
544         dd->real_dst = dst;
545         dd->cpu_transfer_complete = resume;
546         dd->datalen = len + padlen;
547         dd->data = (u32 *)dd->buf;
548         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
549         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
550 }
551
552
553 /* DMA transfer */
554
555 static void atmel_aes_dma_callback(void *data);
556
557 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
558                                     struct scatterlist *sg,
559                                     size_t len,
560                                     struct atmel_aes_dma *dma)
561 {
562         int nents;
563
564         if (!IS_ALIGNED(len, dd->ctx->block_size))
565                 return false;
566
567         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
568                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
569                         return false;
570
571                 if (len <= sg->length) {
572                         if (!IS_ALIGNED(len, dd->ctx->block_size))
573                                 return false;
574
575                         dma->nents = nents+1;
576                         dma->remainder = sg->length - len;
577                         sg->length = len;
578                         return true;
579                 }
580
581                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
582                         return false;
583
584                 len -= sg->length;
585         }
586
587         return false;
588 }
589
590 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
591 {
592         struct scatterlist *sg = dma->sg;
593         int nents = dma->nents;
594
595         if (!dma->remainder)
596                 return;
597
598         while (--nents > 0 && sg)
599                 sg = sg_next(sg);
600
601         if (!sg)
602                 return;
603
604         sg->length += dma->remainder;
605 }
606
607 static int atmel_aes_map(struct atmel_aes_dev *dd,
608                          struct scatterlist *src,
609                          struct scatterlist *dst,
610                          size_t len)
611 {
612         bool src_aligned, dst_aligned;
613         size_t padlen;
614
615         dd->total = len;
616         dd->src.sg = src;
617         dd->dst.sg = dst;
618         dd->real_dst = dst;
619
620         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
621         if (src == dst)
622                 dst_aligned = src_aligned;
623         else
624                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
625         if (!src_aligned || !dst_aligned) {
626                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
627
628                 if (dd->buflen < len + padlen)
629                         return -ENOMEM;
630
631                 if (!src_aligned) {
632                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
633                         dd->src.sg = &dd->aligned_sg;
634                         dd->src.nents = 1;
635                         dd->src.remainder = 0;
636                 }
637
638                 if (!dst_aligned) {
639                         dd->dst.sg = &dd->aligned_sg;
640                         dd->dst.nents = 1;
641                         dd->dst.remainder = 0;
642                 }
643
644                 sg_init_table(&dd->aligned_sg, 1);
645                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
646         }
647
648         if (dd->src.sg == dd->dst.sg) {
649                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
650                                             DMA_BIDIRECTIONAL);
651                 dd->dst.sg_len = dd->src.sg_len;
652                 if (!dd->src.sg_len)
653                         return -EFAULT;
654         } else {
655                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
656                                             DMA_TO_DEVICE);
657                 if (!dd->src.sg_len)
658                         return -EFAULT;
659
660                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
661                                             DMA_FROM_DEVICE);
662                 if (!dd->dst.sg_len) {
663                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
664                                      DMA_TO_DEVICE);
665                         return -EFAULT;
666                 }
667         }
668
669         return 0;
670 }
671
672 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
673 {
674         if (dd->src.sg == dd->dst.sg) {
675                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
676                              DMA_BIDIRECTIONAL);
677
678                 if (dd->src.sg != &dd->aligned_sg)
679                         atmel_aes_restore_sg(&dd->src);
680         } else {
681                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
682                              DMA_FROM_DEVICE);
683
684                 if (dd->dst.sg != &dd->aligned_sg)
685                         atmel_aes_restore_sg(&dd->dst);
686
687                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
688                              DMA_TO_DEVICE);
689
690                 if (dd->src.sg != &dd->aligned_sg)
691                         atmel_aes_restore_sg(&dd->src);
692         }
693
694         if (dd->dst.sg == &dd->aligned_sg)
695                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
696                                     dd->buf, dd->total);
697 }
698
699 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
700                                         enum dma_slave_buswidth addr_width,
701                                         enum dma_transfer_direction dir,
702                                         u32 maxburst)
703 {
704         struct dma_async_tx_descriptor *desc;
705         struct dma_slave_config config;
706         dma_async_tx_callback callback;
707         struct atmel_aes_dma *dma;
708         int err;
709
710         memset(&config, 0, sizeof(config));
711         config.direction = dir;
712         config.src_addr_width = addr_width;
713         config.dst_addr_width = addr_width;
714         config.src_maxburst = maxburst;
715         config.dst_maxburst = maxburst;
716
717         switch (dir) {
718         case DMA_MEM_TO_DEV:
719                 dma = &dd->src;
720                 callback = NULL;
721                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
722                 break;
723
724         case DMA_DEV_TO_MEM:
725                 dma = &dd->dst;
726                 callback = atmel_aes_dma_callback;
727                 config.src_addr = dd->phys_base + AES_ODATAR(0);
728                 break;
729
730         default:
731                 return -EINVAL;
732         }
733
734         err = dmaengine_slave_config(dma->chan, &config);
735         if (err)
736                 return err;
737
738         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
739                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
740         if (!desc)
741                 return -ENOMEM;
742
743         desc->callback = callback;
744         desc->callback_param = dd;
745         dmaengine_submit(desc);
746         dma_async_issue_pending(dma->chan);
747
748         return 0;
749 }
750
751 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
752                                         enum dma_transfer_direction dir)
753 {
754         struct atmel_aes_dma *dma;
755
756         switch (dir) {
757         case DMA_MEM_TO_DEV:
758                 dma = &dd->src;
759                 break;
760
761         case DMA_DEV_TO_MEM:
762                 dma = &dd->dst;
763                 break;
764
765         default:
766                 return;
767         }
768
769         dmaengine_terminate_all(dma->chan);
770 }
771
772 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
773                                struct scatterlist *src,
774                                struct scatterlist *dst,
775                                size_t len,
776                                atmel_aes_fn_t resume)
777 {
778         enum dma_slave_buswidth addr_width;
779         u32 maxburst;
780         int err;
781
782         switch (dd->ctx->block_size) {
783         case CFB8_BLOCK_SIZE:
784                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
785                 maxburst = 1;
786                 break;
787
788         case CFB16_BLOCK_SIZE:
789                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
790                 maxburst = 1;
791                 break;
792
793         case CFB32_BLOCK_SIZE:
794         case CFB64_BLOCK_SIZE:
795                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
796                 maxburst = 1;
797                 break;
798
799         case AES_BLOCK_SIZE:
800                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
801                 maxburst = dd->caps.max_burst_size;
802                 break;
803
804         default:
805                 err = -EINVAL;
806                 goto exit;
807         }
808
809         err = atmel_aes_map(dd, src, dst, len);
810         if (err)
811                 goto exit;
812
813         dd->resume = resume;
814
815         /* Set output DMA transfer first */
816         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
817                                            maxburst);
818         if (err)
819                 goto unmap;
820
821         /* Then set input DMA transfer */
822         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
823                                            maxburst);
824         if (err)
825                 goto output_transfer_stop;
826
827         return -EINPROGRESS;
828
829 output_transfer_stop:
830         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
831 unmap:
832         atmel_aes_unmap(dd);
833 exit:
834         return atmel_aes_complete(dd, err);
835 }
836
837 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
838 {
839         atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
840         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
841         atmel_aes_unmap(dd);
842 }
843
844 static void atmel_aes_dma_callback(void *data)
845 {
846         struct atmel_aes_dev *dd = data;
847
848         atmel_aes_dma_stop(dd);
849         dd->is_async = true;
850         (void)dd->resume(dd);
851 }
852
853 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
854                                   struct crypto_async_request *new_areq)
855 {
856         struct crypto_async_request *areq, *backlog;
857         struct atmel_aes_base_ctx *ctx;
858         unsigned long flags;
859         int err, ret = 0;
860
861         spin_lock_irqsave(&dd->lock, flags);
862         if (new_areq)
863                 ret = crypto_enqueue_request(&dd->queue, new_areq);
864         if (dd->flags & AES_FLAGS_BUSY) {
865                 spin_unlock_irqrestore(&dd->lock, flags);
866                 return ret;
867         }
868         backlog = crypto_get_backlog(&dd->queue);
869         areq = crypto_dequeue_request(&dd->queue);
870         if (areq)
871                 dd->flags |= AES_FLAGS_BUSY;
872         spin_unlock_irqrestore(&dd->lock, flags);
873
874         if (!areq)
875                 return ret;
876
877         if (backlog)
878                 backlog->complete(backlog, -EINPROGRESS);
879
880         ctx = crypto_tfm_ctx(areq->tfm);
881
882         dd->areq = areq;
883         dd->ctx = ctx;
884         dd->is_async = (areq != new_areq);
885
886         err = ctx->start(dd);
887         return (dd->is_async) ? ret : err;
888 }
889
890
891 /* AES async block ciphers */
892
893 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
894 {
895         return atmel_aes_complete(dd, 0);
896 }
897
898 static int atmel_aes_start(struct atmel_aes_dev *dd)
899 {
900         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
901         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
902         bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
903                         dd->ctx->block_size != AES_BLOCK_SIZE);
904         int err;
905
906         atmel_aes_set_mode(dd, rctx);
907
908         err = atmel_aes_hw_init(dd);
909         if (err)
910                 return atmel_aes_complete(dd, err);
911
912         atmel_aes_write_ctrl(dd, use_dma, req->info);
913         if (use_dma)
914                 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
915                                            atmel_aes_transfer_complete);
916
917         return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
918                                    atmel_aes_transfer_complete);
919 }
920
921 static inline struct atmel_aes_ctr_ctx *
922 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
923 {
924         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
925 }
926
927 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
928 {
929         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
930         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
931         struct scatterlist *src, *dst;
932         u32 ctr, blocks;
933         size_t datalen;
934         bool use_dma, fragmented = false;
935
936         /* Check for transfer completion. */
937         ctx->offset += dd->total;
938         if (ctx->offset >= req->nbytes)
939                 return atmel_aes_transfer_complete(dd);
940
941         /* Compute data length. */
942         datalen = req->nbytes - ctx->offset;
943         blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
944         ctr = be32_to_cpu(ctx->iv[3]);
945         if (dd->caps.has_ctr32) {
946                 /* Check 32bit counter overflow. */
947                 u32 start = ctr;
948                 u32 end = start + blocks - 1;
949
950                 if (end < start) {
951                         ctr |= 0xffffffff;
952                         datalen = AES_BLOCK_SIZE * -start;
953                         fragmented = true;
954                 }
955         } else {
956                 /* Check 16bit counter overflow. */
957                 u16 start = ctr & 0xffff;
958                 u16 end = start + (u16)blocks - 1;
959
960                 if (blocks >> 16 || end < start) {
961                         ctr |= 0xffff;
962                         datalen = AES_BLOCK_SIZE * (0x10000-start);
963                         fragmented = true;
964                 }
965         }
966         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
967
968         /* Jump to offset. */
969         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
970         dst = ((req->src == req->dst) ? src :
971                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
972
973         /* Configure hardware. */
974         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
975         if (unlikely(fragmented)) {
976                 /*
977                  * Increment the counter manually to cope with the hardware
978                  * counter overflow.
979                  */
980                 ctx->iv[3] = cpu_to_be32(ctr);
981                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
982         }
983
984         if (use_dma)
985                 return atmel_aes_dma_start(dd, src, dst, datalen,
986                                            atmel_aes_ctr_transfer);
987
988         return atmel_aes_cpu_start(dd, src, dst, datalen,
989                                    atmel_aes_ctr_transfer);
990 }
991
992 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
993 {
994         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
995         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
996         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
997         int err;
998
999         atmel_aes_set_mode(dd, rctx);
1000
1001         err = atmel_aes_hw_init(dd);
1002         if (err)
1003                 return atmel_aes_complete(dd, err);
1004
1005         memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1006         ctx->offset = 0;
1007         dd->total = 0;
1008         return atmel_aes_ctr_transfer(dd);
1009 }
1010
1011 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1012 {
1013         struct atmel_aes_base_ctx *ctx;
1014         struct atmel_aes_reqctx *rctx;
1015         struct atmel_aes_dev *dd;
1016
1017         ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1018         switch (mode & AES_FLAGS_OPMODE_MASK) {
1019         case AES_FLAGS_CFB8:
1020                 ctx->block_size = CFB8_BLOCK_SIZE;
1021                 break;
1022
1023         case AES_FLAGS_CFB16:
1024                 ctx->block_size = CFB16_BLOCK_SIZE;
1025                 break;
1026
1027         case AES_FLAGS_CFB32:
1028                 ctx->block_size = CFB32_BLOCK_SIZE;
1029                 break;
1030
1031         case AES_FLAGS_CFB64:
1032                 ctx->block_size = CFB64_BLOCK_SIZE;
1033                 break;
1034
1035         default:
1036                 ctx->block_size = AES_BLOCK_SIZE;
1037                 break;
1038         }
1039
1040         dd = atmel_aes_find_dev(ctx);
1041         if (!dd)
1042                 return -ENODEV;
1043
1044         rctx = ablkcipher_request_ctx(req);
1045         rctx->mode = mode;
1046
1047         return atmel_aes_handle_queue(dd, &req->base);
1048 }
1049
1050 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1051                            unsigned int keylen)
1052 {
1053         struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1054
1055         if (keylen != AES_KEYSIZE_128 &&
1056             keylen != AES_KEYSIZE_192 &&
1057             keylen != AES_KEYSIZE_256) {
1058                 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1059                 return -EINVAL;
1060         }
1061
1062         memcpy(ctx->key, key, keylen);
1063         ctx->keylen = keylen;
1064
1065         return 0;
1066 }
1067
1068 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1069 {
1070         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1071 }
1072
1073 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1074 {
1075         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1076 }
1077
1078 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1079 {
1080         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1081 }
1082
1083 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1084 {
1085         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1086 }
1087
1088 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1089 {
1090         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1091 }
1092
1093 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1094 {
1095         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1096 }
1097
1098 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1099 {
1100         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1101 }
1102
1103 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1104 {
1105         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1106 }
1107
1108 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1109 {
1110         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1111 }
1112
1113 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1114 {
1115         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1116 }
1117
1118 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1119 {
1120         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1121 }
1122
1123 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1124 {
1125         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1126 }
1127
1128 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1129 {
1130         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1131 }
1132
1133 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1134 {
1135         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1136 }
1137
1138 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1139 {
1140         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1141 }
1142
1143 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1144 {
1145         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1146 }
1147
1148 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1149 {
1150         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1151 }
1152
1153 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1154 {
1155         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1156 }
1157
1158 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1159 {
1160         struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1161
1162         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1163         ctx->base.start = atmel_aes_start;
1164
1165         return 0;
1166 }
1167
1168 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1169 {
1170         struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1171
1172         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1173         ctx->base.start = atmel_aes_ctr_start;
1174
1175         return 0;
1176 }
1177
1178 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1179 {
1180 }
1181
1182 static struct crypto_alg aes_algs[] = {
1183 {
1184         .cra_name               = "ecb(aes)",
1185         .cra_driver_name        = "atmel-ecb-aes",
1186         .cra_priority           = ATMEL_AES_PRIORITY,
1187         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1188         .cra_blocksize          = AES_BLOCK_SIZE,
1189         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1190         .cra_alignmask          = 0xf,
1191         .cra_type               = &crypto_ablkcipher_type,
1192         .cra_module             = THIS_MODULE,
1193         .cra_init               = atmel_aes_cra_init,
1194         .cra_exit               = atmel_aes_cra_exit,
1195         .cra_u.ablkcipher = {
1196                 .min_keysize    = AES_MIN_KEY_SIZE,
1197                 .max_keysize    = AES_MAX_KEY_SIZE,
1198                 .setkey         = atmel_aes_setkey,
1199                 .encrypt        = atmel_aes_ecb_encrypt,
1200                 .decrypt        = atmel_aes_ecb_decrypt,
1201         }
1202 },
1203 {
1204         .cra_name               = "cbc(aes)",
1205         .cra_driver_name        = "atmel-cbc-aes",
1206         .cra_priority           = ATMEL_AES_PRIORITY,
1207         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1208         .cra_blocksize          = AES_BLOCK_SIZE,
1209         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1210         .cra_alignmask          = 0xf,
1211         .cra_type               = &crypto_ablkcipher_type,
1212         .cra_module             = THIS_MODULE,
1213         .cra_init               = atmel_aes_cra_init,
1214         .cra_exit               = atmel_aes_cra_exit,
1215         .cra_u.ablkcipher = {
1216                 .min_keysize    = AES_MIN_KEY_SIZE,
1217                 .max_keysize    = AES_MAX_KEY_SIZE,
1218                 .ivsize         = AES_BLOCK_SIZE,
1219                 .setkey         = atmel_aes_setkey,
1220                 .encrypt        = atmel_aes_cbc_encrypt,
1221                 .decrypt        = atmel_aes_cbc_decrypt,
1222         }
1223 },
1224 {
1225         .cra_name               = "ofb(aes)",
1226         .cra_driver_name        = "atmel-ofb-aes",
1227         .cra_priority           = ATMEL_AES_PRIORITY,
1228         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1229         .cra_blocksize          = AES_BLOCK_SIZE,
1230         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1231         .cra_alignmask          = 0xf,
1232         .cra_type               = &crypto_ablkcipher_type,
1233         .cra_module             = THIS_MODULE,
1234         .cra_init               = atmel_aes_cra_init,
1235         .cra_exit               = atmel_aes_cra_exit,
1236         .cra_u.ablkcipher = {
1237                 .min_keysize    = AES_MIN_KEY_SIZE,
1238                 .max_keysize    = AES_MAX_KEY_SIZE,
1239                 .ivsize         = AES_BLOCK_SIZE,
1240                 .setkey         = atmel_aes_setkey,
1241                 .encrypt        = atmel_aes_ofb_encrypt,
1242                 .decrypt        = atmel_aes_ofb_decrypt,
1243         }
1244 },
1245 {
1246         .cra_name               = "cfb(aes)",
1247         .cra_driver_name        = "atmel-cfb-aes",
1248         .cra_priority           = ATMEL_AES_PRIORITY,
1249         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1250         .cra_blocksize          = AES_BLOCK_SIZE,
1251         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1252         .cra_alignmask          = 0xf,
1253         .cra_type               = &crypto_ablkcipher_type,
1254         .cra_module             = THIS_MODULE,
1255         .cra_init               = atmel_aes_cra_init,
1256         .cra_exit               = atmel_aes_cra_exit,
1257         .cra_u.ablkcipher = {
1258                 .min_keysize    = AES_MIN_KEY_SIZE,
1259                 .max_keysize    = AES_MAX_KEY_SIZE,
1260                 .ivsize         = AES_BLOCK_SIZE,
1261                 .setkey         = atmel_aes_setkey,
1262                 .encrypt        = atmel_aes_cfb_encrypt,
1263                 .decrypt        = atmel_aes_cfb_decrypt,
1264         }
1265 },
1266 {
1267         .cra_name               = "cfb32(aes)",
1268         .cra_driver_name        = "atmel-cfb32-aes",
1269         .cra_priority           = ATMEL_AES_PRIORITY,
1270         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271         .cra_blocksize          = CFB32_BLOCK_SIZE,
1272         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1273         .cra_alignmask          = 0x3,
1274         .cra_type               = &crypto_ablkcipher_type,
1275         .cra_module             = THIS_MODULE,
1276         .cra_init               = atmel_aes_cra_init,
1277         .cra_exit               = atmel_aes_cra_exit,
1278         .cra_u.ablkcipher = {
1279                 .min_keysize    = AES_MIN_KEY_SIZE,
1280                 .max_keysize    = AES_MAX_KEY_SIZE,
1281                 .ivsize         = AES_BLOCK_SIZE,
1282                 .setkey         = atmel_aes_setkey,
1283                 .encrypt        = atmel_aes_cfb32_encrypt,
1284                 .decrypt        = atmel_aes_cfb32_decrypt,
1285         }
1286 },
1287 {
1288         .cra_name               = "cfb16(aes)",
1289         .cra_driver_name        = "atmel-cfb16-aes",
1290         .cra_priority           = ATMEL_AES_PRIORITY,
1291         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1292         .cra_blocksize          = CFB16_BLOCK_SIZE,
1293         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1294         .cra_alignmask          = 0x1,
1295         .cra_type               = &crypto_ablkcipher_type,
1296         .cra_module             = THIS_MODULE,
1297         .cra_init               = atmel_aes_cra_init,
1298         .cra_exit               = atmel_aes_cra_exit,
1299         .cra_u.ablkcipher = {
1300                 .min_keysize    = AES_MIN_KEY_SIZE,
1301                 .max_keysize    = AES_MAX_KEY_SIZE,
1302                 .ivsize         = AES_BLOCK_SIZE,
1303                 .setkey         = atmel_aes_setkey,
1304                 .encrypt        = atmel_aes_cfb16_encrypt,
1305                 .decrypt        = atmel_aes_cfb16_decrypt,
1306         }
1307 },
1308 {
1309         .cra_name               = "cfb8(aes)",
1310         .cra_driver_name        = "atmel-cfb8-aes",
1311         .cra_priority           = ATMEL_AES_PRIORITY,
1312         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1313         .cra_blocksize          = CFB8_BLOCK_SIZE,
1314         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1315         .cra_alignmask          = 0x0,
1316         .cra_type               = &crypto_ablkcipher_type,
1317         .cra_module             = THIS_MODULE,
1318         .cra_init               = atmel_aes_cra_init,
1319         .cra_exit               = atmel_aes_cra_exit,
1320         .cra_u.ablkcipher = {
1321                 .min_keysize    = AES_MIN_KEY_SIZE,
1322                 .max_keysize    = AES_MAX_KEY_SIZE,
1323                 .ivsize         = AES_BLOCK_SIZE,
1324                 .setkey         = atmel_aes_setkey,
1325                 .encrypt        = atmel_aes_cfb8_encrypt,
1326                 .decrypt        = atmel_aes_cfb8_decrypt,
1327         }
1328 },
1329 {
1330         .cra_name               = "ctr(aes)",
1331         .cra_driver_name        = "atmel-ctr-aes",
1332         .cra_priority           = ATMEL_AES_PRIORITY,
1333         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1334         .cra_blocksize          = 1,
1335         .cra_ctxsize            = sizeof(struct atmel_aes_ctr_ctx),
1336         .cra_alignmask          = 0xf,
1337         .cra_type               = &crypto_ablkcipher_type,
1338         .cra_module             = THIS_MODULE,
1339         .cra_init               = atmel_aes_ctr_cra_init,
1340         .cra_exit               = atmel_aes_cra_exit,
1341         .cra_u.ablkcipher = {
1342                 .min_keysize    = AES_MIN_KEY_SIZE,
1343                 .max_keysize    = AES_MAX_KEY_SIZE,
1344                 .ivsize         = AES_BLOCK_SIZE,
1345                 .setkey         = atmel_aes_setkey,
1346                 .encrypt        = atmel_aes_ctr_encrypt,
1347                 .decrypt        = atmel_aes_ctr_decrypt,
1348         }
1349 },
1350 };
1351
1352 static struct crypto_alg aes_cfb64_alg = {
1353         .cra_name               = "cfb64(aes)",
1354         .cra_driver_name        = "atmel-cfb64-aes",
1355         .cra_priority           = ATMEL_AES_PRIORITY,
1356         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1357         .cra_blocksize          = CFB64_BLOCK_SIZE,
1358         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1359         .cra_alignmask          = 0x7,
1360         .cra_type               = &crypto_ablkcipher_type,
1361         .cra_module             = THIS_MODULE,
1362         .cra_init               = atmel_aes_cra_init,
1363         .cra_exit               = atmel_aes_cra_exit,
1364         .cra_u.ablkcipher = {
1365                 .min_keysize    = AES_MIN_KEY_SIZE,
1366                 .max_keysize    = AES_MAX_KEY_SIZE,
1367                 .ivsize         = AES_BLOCK_SIZE,
1368                 .setkey         = atmel_aes_setkey,
1369                 .encrypt        = atmel_aes_cfb64_encrypt,
1370                 .decrypt        = atmel_aes_cfb64_decrypt,
1371         }
1372 };
1373
1374
1375 /* gcm aead functions */
1376
1377 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1378                                const u32 *data, size_t datalen,
1379                                const u32 *ghash_in, u32 *ghash_out,
1380                                atmel_aes_fn_t resume);
1381 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1382 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1383
1384 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1385 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1386 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1387 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1388 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1389 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1390 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1391
1392 static inline struct atmel_aes_gcm_ctx *
1393 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1394 {
1395         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1396 }
1397
1398 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1399                                const u32 *data, size_t datalen,
1400                                const u32 *ghash_in, u32 *ghash_out,
1401                                atmel_aes_fn_t resume)
1402 {
1403         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1404
1405         dd->data = (u32 *)data;
1406         dd->datalen = datalen;
1407         ctx->ghash_in = ghash_in;
1408         ctx->ghash_out = ghash_out;
1409         ctx->ghash_resume = resume;
1410
1411         atmel_aes_write_ctrl(dd, false, NULL);
1412         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1413 }
1414
1415 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1416 {
1417         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1418
1419         /* Set the data length. */
1420         atmel_aes_write(dd, AES_AADLENR, dd->total);
1421         atmel_aes_write(dd, AES_CLENR, 0);
1422
1423         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1424         if (ctx->ghash_in)
1425                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1426
1427         return atmel_aes_gcm_ghash_finalize(dd);
1428 }
1429
1430 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1431 {
1432         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1433         u32 isr;
1434
1435         /* Write data into the Input Data Registers. */
1436         while (dd->datalen > 0) {
1437                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1438                 dd->data += 4;
1439                 dd->datalen -= AES_BLOCK_SIZE;
1440
1441                 isr = atmel_aes_read(dd, AES_ISR);
1442                 if (!(isr & AES_INT_DATARDY)) {
1443                         dd->resume = atmel_aes_gcm_ghash_finalize;
1444                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1445                         return -EINPROGRESS;
1446                 }
1447         }
1448
1449         /* Read the computed hash from GHASHRx. */
1450         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1451
1452         return ctx->ghash_resume(dd);
1453 }
1454
1455
1456 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1457 {
1458         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1459         struct aead_request *req = aead_request_cast(dd->areq);
1460         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1461         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1462         size_t ivsize = crypto_aead_ivsize(tfm);
1463         size_t datalen, padlen;
1464         const void *iv = req->iv;
1465         u8 *data = dd->buf;
1466         int err;
1467
1468         atmel_aes_set_mode(dd, rctx);
1469
1470         err = atmel_aes_hw_init(dd);
1471         if (err)
1472                 return atmel_aes_complete(dd, err);
1473
1474         if (likely(ivsize == 12)) {
1475                 memcpy(ctx->j0, iv, ivsize);
1476                 ctx->j0[3] = cpu_to_be32(1);
1477                 return atmel_aes_gcm_process(dd);
1478         }
1479
1480         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1481         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1482         if (datalen > dd->buflen)
1483                 return atmel_aes_complete(dd, -EINVAL);
1484
1485         memcpy(data, iv, ivsize);
1486         memset(data + ivsize, 0, padlen + sizeof(u64));
1487         ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1488
1489         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1490                                    NULL, ctx->j0, atmel_aes_gcm_process);
1491 }
1492
1493 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1494 {
1495         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1496         struct aead_request *req = aead_request_cast(dd->areq);
1497         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1498         bool enc = atmel_aes_is_encrypt(dd);
1499         u32 authsize;
1500
1501         /* Compute text length. */
1502         authsize = crypto_aead_authsize(tfm);
1503         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1504
1505         /*
1506          * According to tcrypt test suite, the GCM Automatic Tag Generation
1507          * fails when both the message and its associated data are empty.
1508          */
1509         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1510                 dd->flags |= AES_FLAGS_GTAGEN;
1511
1512         atmel_aes_write_ctrl(dd, false, NULL);
1513         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1514 }
1515
1516 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1517 {
1518         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1519         struct aead_request *req = aead_request_cast(dd->areq);
1520         u32 j0_lsw, *j0 = ctx->j0;
1521         size_t padlen;
1522
1523         /* Write incr32(J0) into IV. */
1524         j0_lsw = j0[3];
1525         j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1526         atmel_aes_write_block(dd, AES_IVR(0), j0);
1527         j0[3] = j0_lsw;
1528
1529         /* Set aad and text lengths. */
1530         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1531         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1532
1533         /* Check whether AAD are present. */
1534         if (unlikely(req->assoclen == 0)) {
1535                 dd->datalen = 0;
1536                 return atmel_aes_gcm_data(dd);
1537         }
1538
1539         /* Copy assoc data and add padding. */
1540         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1541         if (unlikely(req->assoclen + padlen > dd->buflen))
1542                 return atmel_aes_complete(dd, -EINVAL);
1543         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1544
1545         /* Write assoc data into the Input Data register. */
1546         dd->data = (u32 *)dd->buf;
1547         dd->datalen = req->assoclen + padlen;
1548         return atmel_aes_gcm_data(dd);
1549 }
1550
1551 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1552 {
1553         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1554         struct aead_request *req = aead_request_cast(dd->areq);
1555         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1556         struct scatterlist *src, *dst;
1557         u32 isr, mr;
1558
1559         /* Write AAD first. */
1560         while (dd->datalen > 0) {
1561                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1562                 dd->data += 4;
1563                 dd->datalen -= AES_BLOCK_SIZE;
1564
1565                 isr = atmel_aes_read(dd, AES_ISR);
1566                 if (!(isr & AES_INT_DATARDY)) {
1567                         dd->resume = atmel_aes_gcm_data;
1568                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1569                         return -EINPROGRESS;
1570                 }
1571         }
1572
1573         /* GMAC only. */
1574         if (unlikely(ctx->textlen == 0))
1575                 return atmel_aes_gcm_tag_init(dd);
1576
1577         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1578         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1579         dst = ((req->src == req->dst) ? src :
1580                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1581
1582         if (use_dma) {
1583                 /* Update the Mode Register for DMA transfers. */
1584                 mr = atmel_aes_read(dd, AES_MR);
1585                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1586                 mr |= AES_MR_SMOD_IDATAR0;
1587                 if (dd->caps.has_dualbuff)
1588                         mr |= AES_MR_DUALBUFF;
1589                 atmel_aes_write(dd, AES_MR, mr);
1590
1591                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1592                                            atmel_aes_gcm_tag_init);
1593         }
1594
1595         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1596                                    atmel_aes_gcm_tag_init);
1597 }
1598
1599 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1600 {
1601         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1602         struct aead_request *req = aead_request_cast(dd->areq);
1603         u64 *data = dd->buf;
1604
1605         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1606                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1607                         dd->resume = atmel_aes_gcm_tag_init;
1608                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1609                         return -EINPROGRESS;
1610                 }
1611
1612                 return atmel_aes_gcm_finalize(dd);
1613         }
1614
1615         /* Read the GCM Intermediate Hash Word Registers. */
1616         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1617
1618         data[0] = cpu_to_be64(req->assoclen * 8);
1619         data[1] = cpu_to_be64(ctx->textlen * 8);
1620
1621         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1622                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1623 }
1624
1625 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1626 {
1627         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628         unsigned long flags;
1629
1630         /*
1631          * Change mode to CTR to complete the tag generation.
1632          * Use J0 as Initialization Vector.
1633          */
1634         flags = dd->flags;
1635         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1636         dd->flags |= AES_FLAGS_CTR;
1637         atmel_aes_write_ctrl(dd, false, ctx->j0);
1638         dd->flags = flags;
1639
1640         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1641         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1642 }
1643
1644 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1645 {
1646         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1647         struct aead_request *req = aead_request_cast(dd->areq);
1648         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1649         bool enc = atmel_aes_is_encrypt(dd);
1650         u32 offset, authsize, itag[4], *otag = ctx->tag;
1651         int err;
1652
1653         /* Read the computed tag. */
1654         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1655                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1656         else
1657                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1658
1659         offset = req->assoclen + ctx->textlen;
1660         authsize = crypto_aead_authsize(tfm);
1661         if (enc) {
1662                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1663                 err = 0;
1664         } else {
1665                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1666                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1667         }
1668
1669         return atmel_aes_complete(dd, err);
1670 }
1671
1672 static int atmel_aes_gcm_crypt(struct aead_request *req,
1673                                unsigned long mode)
1674 {
1675         struct atmel_aes_base_ctx *ctx;
1676         struct atmel_aes_reqctx *rctx;
1677         struct atmel_aes_dev *dd;
1678
1679         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1680         ctx->block_size = AES_BLOCK_SIZE;
1681
1682         dd = atmel_aes_find_dev(ctx);
1683         if (!dd)
1684                 return -ENODEV;
1685
1686         rctx = aead_request_ctx(req);
1687         rctx->mode = AES_FLAGS_GCM | mode;
1688
1689         return atmel_aes_handle_queue(dd, &req->base);
1690 }
1691
1692 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1693                                 unsigned int keylen)
1694 {
1695         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1696
1697         if (keylen != AES_KEYSIZE_256 &&
1698             keylen != AES_KEYSIZE_192 &&
1699             keylen != AES_KEYSIZE_128) {
1700                 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1701                 return -EINVAL;
1702         }
1703
1704         memcpy(ctx->key, key, keylen);
1705         ctx->keylen = keylen;
1706
1707         return 0;
1708 }
1709
1710 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1711                                      unsigned int authsize)
1712 {
1713         /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1714         switch (authsize) {
1715         case 4:
1716         case 8:
1717         case 12:
1718         case 13:
1719         case 14:
1720         case 15:
1721         case 16:
1722                 break;
1723         default:
1724                 return -EINVAL;
1725         }
1726
1727         return 0;
1728 }
1729
1730 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1731 {
1732         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1733 }
1734
1735 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1736 {
1737         return atmel_aes_gcm_crypt(req, 0);
1738 }
1739
1740 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1741 {
1742         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1743
1744         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1745         ctx->base.start = atmel_aes_gcm_start;
1746
1747         return 0;
1748 }
1749
1750 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1751 {
1752
1753 }
1754
1755 static struct aead_alg aes_gcm_alg = {
1756         .setkey         = atmel_aes_gcm_setkey,
1757         .setauthsize    = atmel_aes_gcm_setauthsize,
1758         .encrypt        = atmel_aes_gcm_encrypt,
1759         .decrypt        = atmel_aes_gcm_decrypt,
1760         .init           = atmel_aes_gcm_init,
1761         .exit           = atmel_aes_gcm_exit,
1762         .ivsize         = 12,
1763         .maxauthsize    = AES_BLOCK_SIZE,
1764
1765         .base = {
1766                 .cra_name               = "gcm(aes)",
1767                 .cra_driver_name        = "atmel-gcm-aes",
1768                 .cra_priority           = ATMEL_AES_PRIORITY,
1769                 .cra_flags              = CRYPTO_ALG_ASYNC,
1770                 .cra_blocksize          = 1,
1771                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1772                 .cra_alignmask          = 0xf,
1773                 .cra_module             = THIS_MODULE,
1774         },
1775 };
1776
1777
1778 /* Probe functions */
1779
1780 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1781 {
1782         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1783         dd->buflen = ATMEL_AES_BUFFER_SIZE;
1784         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1785
1786         if (!dd->buf) {
1787                 dev_err(dd->dev, "unable to alloc pages.\n");
1788                 return -ENOMEM;
1789         }
1790
1791         return 0;
1792 }
1793
1794 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1795 {
1796         free_page((unsigned long)dd->buf);
1797 }
1798
1799 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1800 {
1801         struct at_dma_slave     *sl = slave;
1802
1803         if (sl && sl->dma_dev == chan->device->dev) {
1804                 chan->private = sl;
1805                 return true;
1806         } else {
1807                 return false;
1808         }
1809 }
1810
1811 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1812                               struct crypto_platform_data *pdata)
1813 {
1814         struct at_dma_slave *slave;
1815         int err = -ENOMEM;
1816         dma_cap_mask_t mask;
1817
1818         dma_cap_zero(mask);
1819         dma_cap_set(DMA_SLAVE, mask);
1820
1821         /* Try to grab 2 DMA channels */
1822         slave = &pdata->dma_slave->rxdata;
1823         dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1824                                                         slave, dd->dev, "tx");
1825         if (!dd->src.chan)
1826                 goto err_dma_in;
1827
1828         slave = &pdata->dma_slave->txdata;
1829         dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1830                                                         slave, dd->dev, "rx");
1831         if (!dd->dst.chan)
1832                 goto err_dma_out;
1833
1834         return 0;
1835
1836 err_dma_out:
1837         dma_release_channel(dd->src.chan);
1838 err_dma_in:
1839         dev_warn(dd->dev, "no DMA channel available\n");
1840         return err;
1841 }
1842
1843 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1844 {
1845         dma_release_channel(dd->dst.chan);
1846         dma_release_channel(dd->src.chan);
1847 }
1848
1849 static void atmel_aes_queue_task(unsigned long data)
1850 {
1851         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1852
1853         atmel_aes_handle_queue(dd, NULL);
1854 }
1855
1856 static void atmel_aes_done_task(unsigned long data)
1857 {
1858         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1859
1860         dd->is_async = true;
1861         (void)dd->resume(dd);
1862 }
1863
1864 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
1865 {
1866         struct atmel_aes_dev *aes_dd = dev_id;
1867         u32 reg;
1868
1869         reg = atmel_aes_read(aes_dd, AES_ISR);
1870         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
1871                 atmel_aes_write(aes_dd, AES_IDR, reg);
1872                 if (AES_FLAGS_BUSY & aes_dd->flags)
1873                         tasklet_schedule(&aes_dd->done_task);
1874                 else
1875                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
1876                 return IRQ_HANDLED;
1877         }
1878
1879         return IRQ_NONE;
1880 }
1881
1882 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
1883 {
1884         int i;
1885
1886         if (dd->caps.has_gcm)
1887                 crypto_unregister_aead(&aes_gcm_alg);
1888
1889         if (dd->caps.has_cfb64)
1890                 crypto_unregister_alg(&aes_cfb64_alg);
1891
1892         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1893                 crypto_unregister_alg(&aes_algs[i]);
1894 }
1895
1896 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
1897 {
1898         int err, i, j;
1899
1900         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1901                 err = crypto_register_alg(&aes_algs[i]);
1902                 if (err)
1903                         goto err_aes_algs;
1904         }
1905
1906         if (dd->caps.has_cfb64) {
1907                 err = crypto_register_alg(&aes_cfb64_alg);
1908                 if (err)
1909                         goto err_aes_cfb64_alg;
1910         }
1911
1912         if (dd->caps.has_gcm) {
1913                 err = crypto_register_aead(&aes_gcm_alg);
1914                 if (err)
1915                         goto err_aes_gcm_alg;
1916         }
1917
1918         return 0;
1919
1920 err_aes_gcm_alg:
1921         crypto_unregister_alg(&aes_cfb64_alg);
1922 err_aes_cfb64_alg:
1923         i = ARRAY_SIZE(aes_algs);
1924 err_aes_algs:
1925         for (j = 0; j < i; j++)
1926                 crypto_unregister_alg(&aes_algs[j]);
1927
1928         return err;
1929 }
1930
1931 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
1932 {
1933         dd->caps.has_dualbuff = 0;
1934         dd->caps.has_cfb64 = 0;
1935         dd->caps.has_ctr32 = 0;
1936         dd->caps.has_gcm = 0;
1937         dd->caps.max_burst_size = 1;
1938
1939         /* keep only major version number */
1940         switch (dd->hw_version & 0xff0) {
1941         case 0x500:
1942                 dd->caps.has_dualbuff = 1;
1943                 dd->caps.has_cfb64 = 1;
1944                 dd->caps.has_ctr32 = 1;
1945                 dd->caps.has_gcm = 1;
1946                 dd->caps.max_burst_size = 4;
1947                 break;
1948         case 0x200:
1949                 dd->caps.has_dualbuff = 1;
1950                 dd->caps.has_cfb64 = 1;
1951                 dd->caps.has_ctr32 = 1;
1952                 dd->caps.has_gcm = 1;
1953                 dd->caps.max_burst_size = 4;
1954                 break;
1955         case 0x130:
1956                 dd->caps.has_dualbuff = 1;
1957                 dd->caps.has_cfb64 = 1;
1958                 dd->caps.max_burst_size = 4;
1959                 break;
1960         case 0x120:
1961                 break;
1962         default:
1963                 dev_warn(dd->dev,
1964                                 "Unmanaged aes version, set minimum capabilities\n");
1965                 break;
1966         }
1967 }
1968
1969 #if defined(CONFIG_OF)
1970 static const struct of_device_id atmel_aes_dt_ids[] = {
1971         { .compatible = "atmel,at91sam9g46-aes" },
1972         { /* sentinel */ }
1973 };
1974 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
1975
1976 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1977 {
1978         struct device_node *np = pdev->dev.of_node;
1979         struct crypto_platform_data *pdata;
1980
1981         if (!np) {
1982                 dev_err(&pdev->dev, "device node not found\n");
1983                 return ERR_PTR(-EINVAL);
1984         }
1985
1986         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1987         if (!pdata) {
1988                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1989                 return ERR_PTR(-ENOMEM);
1990         }
1991
1992         pdata->dma_slave = devm_kzalloc(&pdev->dev,
1993                                         sizeof(*(pdata->dma_slave)),
1994                                         GFP_KERNEL);
1995         if (!pdata->dma_slave) {
1996                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1997                 devm_kfree(&pdev->dev, pdata);
1998                 return ERR_PTR(-ENOMEM);
1999         }
2000
2001         return pdata;
2002 }
2003 #else
2004 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2005 {
2006         return ERR_PTR(-EINVAL);
2007 }
2008 #endif
2009
2010 static int atmel_aes_probe(struct platform_device *pdev)
2011 {
2012         struct atmel_aes_dev *aes_dd;
2013         struct crypto_platform_data *pdata;
2014         struct device *dev = &pdev->dev;
2015         struct resource *aes_res;
2016         int err;
2017
2018         pdata = pdev->dev.platform_data;
2019         if (!pdata) {
2020                 pdata = atmel_aes_of_init(pdev);
2021                 if (IS_ERR(pdata)) {
2022                         err = PTR_ERR(pdata);
2023                         goto aes_dd_err;
2024                 }
2025         }
2026
2027         if (!pdata->dma_slave) {
2028                 err = -ENXIO;
2029                 goto aes_dd_err;
2030         }
2031
2032         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2033         if (aes_dd == NULL) {
2034                 dev_err(dev, "unable to alloc data struct.\n");
2035                 err = -ENOMEM;
2036                 goto aes_dd_err;
2037         }
2038
2039         aes_dd->dev = dev;
2040
2041         platform_set_drvdata(pdev, aes_dd);
2042
2043         INIT_LIST_HEAD(&aes_dd->list);
2044         spin_lock_init(&aes_dd->lock);
2045
2046         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2047                                         (unsigned long)aes_dd);
2048         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2049                                         (unsigned long)aes_dd);
2050
2051         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2052
2053         aes_dd->irq = -1;
2054
2055         /* Get the base address */
2056         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2057         if (!aes_res) {
2058                 dev_err(dev, "no MEM resource info\n");
2059                 err = -ENODEV;
2060                 goto res_err;
2061         }
2062         aes_dd->phys_base = aes_res->start;
2063
2064         /* Get the IRQ */
2065         aes_dd->irq = platform_get_irq(pdev,  0);
2066         if (aes_dd->irq < 0) {
2067                 dev_err(dev, "no IRQ resource info\n");
2068                 err = aes_dd->irq;
2069                 goto res_err;
2070         }
2071
2072         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2073                                IRQF_SHARED, "atmel-aes", aes_dd);
2074         if (err) {
2075                 dev_err(dev, "unable to request aes irq.\n");
2076                 goto res_err;
2077         }
2078
2079         /* Initializing the clock */
2080         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2081         if (IS_ERR(aes_dd->iclk)) {
2082                 dev_err(dev, "clock initialization failed.\n");
2083                 err = PTR_ERR(aes_dd->iclk);
2084                 goto res_err;
2085         }
2086
2087         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2088         if (!aes_dd->io_base) {
2089                 dev_err(dev, "can't ioremap\n");
2090                 err = -ENOMEM;
2091                 goto res_err;
2092         }
2093
2094         err = atmel_aes_hw_version_init(aes_dd);
2095         if (err)
2096                 goto res_err;
2097
2098         atmel_aes_get_cap(aes_dd);
2099
2100         err = atmel_aes_buff_init(aes_dd);
2101         if (err)
2102                 goto err_aes_buff;
2103
2104         err = atmel_aes_dma_init(aes_dd, pdata);
2105         if (err)
2106                 goto err_aes_dma;
2107
2108         spin_lock(&atmel_aes.lock);
2109         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2110         spin_unlock(&atmel_aes.lock);
2111
2112         err = atmel_aes_register_algs(aes_dd);
2113         if (err)
2114                 goto err_algs;
2115
2116         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2117                         dma_chan_name(aes_dd->src.chan),
2118                         dma_chan_name(aes_dd->dst.chan));
2119
2120         return 0;
2121
2122 err_algs:
2123         spin_lock(&atmel_aes.lock);
2124         list_del(&aes_dd->list);
2125         spin_unlock(&atmel_aes.lock);
2126         atmel_aes_dma_cleanup(aes_dd);
2127 err_aes_dma:
2128         atmel_aes_buff_cleanup(aes_dd);
2129 err_aes_buff:
2130 res_err:
2131         tasklet_kill(&aes_dd->done_task);
2132         tasklet_kill(&aes_dd->queue_task);
2133 aes_dd_err:
2134         dev_err(dev, "initialization failed.\n");
2135
2136         return err;
2137 }
2138
2139 static int atmel_aes_remove(struct platform_device *pdev)
2140 {
2141         static struct atmel_aes_dev *aes_dd;
2142
2143         aes_dd = platform_get_drvdata(pdev);
2144         if (!aes_dd)
2145                 return -ENODEV;
2146         spin_lock(&atmel_aes.lock);
2147         list_del(&aes_dd->list);
2148         spin_unlock(&atmel_aes.lock);
2149
2150         atmel_aes_unregister_algs(aes_dd);
2151
2152         tasklet_kill(&aes_dd->done_task);
2153         tasklet_kill(&aes_dd->queue_task);
2154
2155         atmel_aes_dma_cleanup(aes_dd);
2156         atmel_aes_buff_cleanup(aes_dd);
2157
2158         return 0;
2159 }
2160
2161 static struct platform_driver atmel_aes_driver = {
2162         .probe          = atmel_aes_probe,
2163         .remove         = atmel_aes_remove,
2164         .driver         = {
2165                 .name   = "atmel_aes",
2166                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2167         },
2168 };
2169
2170 module_platform_driver(atmel_aes_driver);
2171
2172 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2173 MODULE_LICENSE("GPL v2");
2174 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");