x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / crypto / atmel-aes.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43
44 #define ATMEL_AES_PRIORITY      300
45
46 #define ATMEL_AES_BUFFER_ORDER  2
47 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE         1
50 #define CFB16_BLOCK_SIZE        2
51 #define CFB32_BLOCK_SIZE        4
52 #define CFB64_BLOCK_SIZE        8
53
54 #define SIZE_IN_WORDS(x)        ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
71
72 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
73                                  AES_FLAGS_ENCRYPT |            \
74                                  AES_FLAGS_GTAGEN)
75
76 #define AES_FLAGS_INIT          BIT(2)
77 #define AES_FLAGS_BUSY          BIT(3)
78 #define AES_FLAGS_DUMP_REG      BIT(4)
79
80 #define AES_FLAGS_PERSISTENT    (AES_FLAGS_INIT | AES_FLAGS_BUSY)
81
82 #define ATMEL_AES_QUEUE_LENGTH  50
83
84 #define ATMEL_AES_DMA_THRESHOLD         256
85
86
87 struct atmel_aes_caps {
88         bool                    has_dualbuff;
89         bool                    has_cfb64;
90         bool                    has_ctr32;
91         bool                    has_gcm;
92         u32                     max_burst_size;
93 };
94
95 struct atmel_aes_dev;
96
97
98 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
99
100
101 struct atmel_aes_base_ctx {
102         struct atmel_aes_dev    *dd;
103         atmel_aes_fn_t          start;
104         int                     keylen;
105         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
106         u16                     block_size;
107 };
108
109 struct atmel_aes_ctx {
110         struct atmel_aes_base_ctx       base;
111 };
112
113 struct atmel_aes_ctr_ctx {
114         struct atmel_aes_base_ctx       base;
115
116         u32                     iv[AES_BLOCK_SIZE / sizeof(u32)];
117         size_t                  offset;
118         struct scatterlist      src[2];
119         struct scatterlist      dst[2];
120 };
121
122 struct atmel_aes_gcm_ctx {
123         struct atmel_aes_base_ctx       base;
124
125         struct scatterlist      src[2];
126         struct scatterlist      dst[2];
127
128         u32                     j0[AES_BLOCK_SIZE / sizeof(u32)];
129         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
130         u32                     ghash[AES_BLOCK_SIZE / sizeof(u32)];
131         size_t                  textlen;
132
133         const u32               *ghash_in;
134         u32                     *ghash_out;
135         atmel_aes_fn_t          ghash_resume;
136 };
137
138 struct atmel_aes_reqctx {
139         unsigned long           mode;
140 };
141
142 struct atmel_aes_dma {
143         struct dma_chan         *chan;
144         struct scatterlist      *sg;
145         int                     nents;
146         unsigned int            remainder;
147         unsigned int            sg_len;
148 };
149
150 struct atmel_aes_dev {
151         struct list_head        list;
152         unsigned long           phys_base;
153         void __iomem            *io_base;
154
155         struct crypto_async_request     *areq;
156         struct atmel_aes_base_ctx       *ctx;
157
158         bool                    is_async;
159         atmel_aes_fn_t          resume;
160         atmel_aes_fn_t          cpu_transfer_complete;
161
162         struct device           *dev;
163         struct clk              *iclk;
164         int                     irq;
165
166         unsigned long           flags;
167
168         spinlock_t              lock;
169         struct crypto_queue     queue;
170
171         struct tasklet_struct   done_task;
172         struct tasklet_struct   queue_task;
173
174         size_t                  total;
175         size_t                  datalen;
176         u32                     *data;
177
178         struct atmel_aes_dma    src;
179         struct atmel_aes_dma    dst;
180
181         size_t                  buflen;
182         void                    *buf;
183         struct scatterlist      aligned_sg;
184         struct scatterlist      *real_dst;
185
186         struct atmel_aes_caps   caps;
187
188         u32                     hw_version;
189 };
190
191 struct atmel_aes_drv {
192         struct list_head        dev_list;
193         spinlock_t              lock;
194 };
195
196 static struct atmel_aes_drv atmel_aes = {
197         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
198         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
199 };
200
201 #ifdef VERBOSE_DEBUG
202 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
203 {
204         switch (offset) {
205         case AES_CR:
206                 return "CR";
207
208         case AES_MR:
209                 return "MR";
210
211         case AES_ISR:
212                 return "ISR";
213
214         case AES_IMR:
215                 return "IMR";
216
217         case AES_IER:
218                 return "IER";
219
220         case AES_IDR:
221                 return "IDR";
222
223         case AES_KEYWR(0):
224         case AES_KEYWR(1):
225         case AES_KEYWR(2):
226         case AES_KEYWR(3):
227         case AES_KEYWR(4):
228         case AES_KEYWR(5):
229         case AES_KEYWR(6):
230         case AES_KEYWR(7):
231                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
232                 break;
233
234         case AES_IDATAR(0):
235         case AES_IDATAR(1):
236         case AES_IDATAR(2):
237         case AES_IDATAR(3):
238                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
239                 break;
240
241         case AES_ODATAR(0):
242         case AES_ODATAR(1):
243         case AES_ODATAR(2):
244         case AES_ODATAR(3):
245                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
246                 break;
247
248         case AES_IVR(0):
249         case AES_IVR(1):
250         case AES_IVR(2):
251         case AES_IVR(3):
252                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
253                 break;
254
255         case AES_AADLENR:
256                 return "AADLENR";
257
258         case AES_CLENR:
259                 return "CLENR";
260
261         case AES_GHASHR(0):
262         case AES_GHASHR(1):
263         case AES_GHASHR(2):
264         case AES_GHASHR(3):
265                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
266                 break;
267
268         case AES_TAGR(0):
269         case AES_TAGR(1):
270         case AES_TAGR(2):
271         case AES_TAGR(3):
272                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
273                 break;
274
275         case AES_CTRR:
276                 return "CTRR";
277
278         case AES_GCMHR(0):
279         case AES_GCMHR(1):
280         case AES_GCMHR(2):
281         case AES_GCMHR(3):
282                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
283                 break;
284
285         default:
286                 snprintf(tmp, sz, "0x%02x", offset);
287                 break;
288         }
289
290         return tmp;
291 }
292 #endif /* VERBOSE_DEBUG */
293
294 /* Shared functions */
295
296 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
297 {
298         u32 value = readl_relaxed(dd->io_base + offset);
299
300 #ifdef VERBOSE_DEBUG
301         if (dd->flags & AES_FLAGS_DUMP_REG) {
302                 char tmp[16];
303
304                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
305                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
306         }
307 #endif /* VERBOSE_DEBUG */
308
309         return value;
310 }
311
312 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
313                                         u32 offset, u32 value)
314 {
315 #ifdef VERBOSE_DEBUG
316         if (dd->flags & AES_FLAGS_DUMP_REG) {
317                 char tmp[16];
318
319                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
320                          atmel_aes_reg_name(offset, tmp));
321         }
322 #endif /* VERBOSE_DEBUG */
323
324         writel_relaxed(value, dd->io_base + offset);
325 }
326
327 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
328                                         u32 *value, int count)
329 {
330         for (; count--; value++, offset += 4)
331                 *value = atmel_aes_read(dd, offset);
332 }
333
334 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
335                               const u32 *value, int count)
336 {
337         for (; count--; value++, offset += 4)
338                 atmel_aes_write(dd, offset, *value);
339 }
340
341 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
342                                         u32 *value)
343 {
344         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
345 }
346
347 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
348                                          const u32 *value)
349 {
350         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
351 }
352
353 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
354                                                 atmel_aes_fn_t resume)
355 {
356         u32 isr = atmel_aes_read(dd, AES_ISR);
357
358         if (unlikely(isr & AES_INT_DATARDY))
359                 return resume(dd);
360
361         dd->resume = resume;
362         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
363         return -EINPROGRESS;
364 }
365
366 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
367 {
368         len &= block_size - 1;
369         return len ? block_size - len : 0;
370 }
371
372 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
373 {
374         struct atmel_aes_dev *aes_dd = NULL;
375         struct atmel_aes_dev *tmp;
376
377         spin_lock_bh(&atmel_aes.lock);
378         if (!ctx->dd) {
379                 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
380                         aes_dd = tmp;
381                         break;
382                 }
383                 ctx->dd = aes_dd;
384         } else {
385                 aes_dd = ctx->dd;
386         }
387
388         spin_unlock_bh(&atmel_aes.lock);
389
390         return aes_dd;
391 }
392
393 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
394 {
395         int err;
396
397         err = clk_enable(dd->iclk);
398         if (err)
399                 return err;
400
401         if (!(dd->flags & AES_FLAGS_INIT)) {
402                 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
403                 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
404                 dd->flags |= AES_FLAGS_INIT;
405         }
406
407         return 0;
408 }
409
410 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
411 {
412         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
413 }
414
415 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
416 {
417         int err;
418
419         err = atmel_aes_hw_init(dd);
420         if (err)
421                 return err;
422
423         dd->hw_version = atmel_aes_get_version(dd);
424
425         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
426
427         clk_disable(dd->iclk);
428         return 0;
429 }
430
431 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
432                                       const struct atmel_aes_reqctx *rctx)
433 {
434         /* Clear all but persistent flags and set request flags. */
435         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
436 }
437
438 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
439 {
440         return (dd->flags & AES_FLAGS_ENCRYPT);
441 }
442
443 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
444 {
445         clk_disable(dd->iclk);
446         dd->flags &= ~AES_FLAGS_BUSY;
447
448         if (dd->is_async)
449                 dd->areq->complete(dd->areq, err);
450
451         tasklet_schedule(&dd->queue_task);
452
453         return err;
454 }
455
456 static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
457                                  const u32 *iv)
458 {
459         u32 valmr = 0;
460
461         /* MR register must be set before IV registers */
462         if (dd->ctx->keylen == AES_KEYSIZE_128)
463                 valmr |= AES_MR_KEYSIZE_128;
464         else if (dd->ctx->keylen == AES_KEYSIZE_192)
465                 valmr |= AES_MR_KEYSIZE_192;
466         else
467                 valmr |= AES_MR_KEYSIZE_256;
468
469         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
470
471         if (use_dma) {
472                 valmr |= AES_MR_SMOD_IDATAR0;
473                 if (dd->caps.has_dualbuff)
474                         valmr |= AES_MR_DUALBUFF;
475         } else {
476                 valmr |= AES_MR_SMOD_AUTO;
477         }
478
479         atmel_aes_write(dd, AES_MR, valmr);
480
481         atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
482                           SIZE_IN_WORDS(dd->ctx->keylen));
483
484         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
485                 atmel_aes_write_block(dd, AES_IVR(0), iv);
486 }
487
488
489 /* CPU transfer */
490
491 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
492 {
493         int err = 0;
494         u32 isr;
495
496         for (;;) {
497                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
498                 dd->data += 4;
499                 dd->datalen -= AES_BLOCK_SIZE;
500
501                 if (dd->datalen < AES_BLOCK_SIZE)
502                         break;
503
504                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
505
506                 isr = atmel_aes_read(dd, AES_ISR);
507                 if (!(isr & AES_INT_DATARDY)) {
508                         dd->resume = atmel_aes_cpu_transfer;
509                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
510                         return -EINPROGRESS;
511                 }
512         }
513
514         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
515                                  dd->buf, dd->total))
516                 err = -EINVAL;
517
518         if (err)
519                 return atmel_aes_complete(dd, err);
520
521         return dd->cpu_transfer_complete(dd);
522 }
523
524 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
525                                struct scatterlist *src,
526                                struct scatterlist *dst,
527                                size_t len,
528                                atmel_aes_fn_t resume)
529 {
530         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
531
532         if (unlikely(len == 0))
533                 return -EINVAL;
534
535         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
536
537         dd->total = len;
538         dd->real_dst = dst;
539         dd->cpu_transfer_complete = resume;
540         dd->datalen = len + padlen;
541         dd->data = (u32 *)dd->buf;
542         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
543         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
544 }
545
546
547 /* DMA transfer */
548
549 static void atmel_aes_dma_callback(void *data);
550
551 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
552                                     struct scatterlist *sg,
553                                     size_t len,
554                                     struct atmel_aes_dma *dma)
555 {
556         int nents;
557
558         if (!IS_ALIGNED(len, dd->ctx->block_size))
559                 return false;
560
561         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
562                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
563                         return false;
564
565                 if (len <= sg->length) {
566                         if (!IS_ALIGNED(len, dd->ctx->block_size))
567                                 return false;
568
569                         dma->nents = nents+1;
570                         dma->remainder = sg->length - len;
571                         sg->length = len;
572                         return true;
573                 }
574
575                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
576                         return false;
577
578                 len -= sg->length;
579         }
580
581         return false;
582 }
583
584 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
585 {
586         struct scatterlist *sg = dma->sg;
587         int nents = dma->nents;
588
589         if (!dma->remainder)
590                 return;
591
592         while (--nents > 0 && sg)
593                 sg = sg_next(sg);
594
595         if (!sg)
596                 return;
597
598         sg->length += dma->remainder;
599 }
600
601 static int atmel_aes_map(struct atmel_aes_dev *dd,
602                          struct scatterlist *src,
603                          struct scatterlist *dst,
604                          size_t len)
605 {
606         bool src_aligned, dst_aligned;
607         size_t padlen;
608
609         dd->total = len;
610         dd->src.sg = src;
611         dd->dst.sg = dst;
612         dd->real_dst = dst;
613
614         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
615         if (src == dst)
616                 dst_aligned = src_aligned;
617         else
618                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
619         if (!src_aligned || !dst_aligned) {
620                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
621
622                 if (dd->buflen < len + padlen)
623                         return -ENOMEM;
624
625                 if (!src_aligned) {
626                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
627                         dd->src.sg = &dd->aligned_sg;
628                         dd->src.nents = 1;
629                         dd->src.remainder = 0;
630                 }
631
632                 if (!dst_aligned) {
633                         dd->dst.sg = &dd->aligned_sg;
634                         dd->dst.nents = 1;
635                         dd->dst.remainder = 0;
636                 }
637
638                 sg_init_table(&dd->aligned_sg, 1);
639                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
640         }
641
642         if (dd->src.sg == dd->dst.sg) {
643                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
644                                             DMA_BIDIRECTIONAL);
645                 dd->dst.sg_len = dd->src.sg_len;
646                 if (!dd->src.sg_len)
647                         return -EFAULT;
648         } else {
649                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
650                                             DMA_TO_DEVICE);
651                 if (!dd->src.sg_len)
652                         return -EFAULT;
653
654                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
655                                             DMA_FROM_DEVICE);
656                 if (!dd->dst.sg_len) {
657                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
658                                      DMA_TO_DEVICE);
659                         return -EFAULT;
660                 }
661         }
662
663         return 0;
664 }
665
666 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
667 {
668         if (dd->src.sg == dd->dst.sg) {
669                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
670                              DMA_BIDIRECTIONAL);
671
672                 if (dd->src.sg != &dd->aligned_sg)
673                         atmel_aes_restore_sg(&dd->src);
674         } else {
675                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
676                              DMA_FROM_DEVICE);
677
678                 if (dd->dst.sg != &dd->aligned_sg)
679                         atmel_aes_restore_sg(&dd->dst);
680
681                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
682                              DMA_TO_DEVICE);
683
684                 if (dd->src.sg != &dd->aligned_sg)
685                         atmel_aes_restore_sg(&dd->src);
686         }
687
688         if (dd->dst.sg == &dd->aligned_sg)
689                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
690                                     dd->buf, dd->total);
691 }
692
693 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
694                                         enum dma_slave_buswidth addr_width,
695                                         enum dma_transfer_direction dir,
696                                         u32 maxburst)
697 {
698         struct dma_async_tx_descriptor *desc;
699         struct dma_slave_config config;
700         dma_async_tx_callback callback;
701         struct atmel_aes_dma *dma;
702         int err;
703
704         memset(&config, 0, sizeof(config));
705         config.direction = dir;
706         config.src_addr_width = addr_width;
707         config.dst_addr_width = addr_width;
708         config.src_maxburst = maxburst;
709         config.dst_maxburst = maxburst;
710
711         switch (dir) {
712         case DMA_MEM_TO_DEV:
713                 dma = &dd->src;
714                 callback = NULL;
715                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
716                 break;
717
718         case DMA_DEV_TO_MEM:
719                 dma = &dd->dst;
720                 callback = atmel_aes_dma_callback;
721                 config.src_addr = dd->phys_base + AES_ODATAR(0);
722                 break;
723
724         default:
725                 return -EINVAL;
726         }
727
728         err = dmaengine_slave_config(dma->chan, &config);
729         if (err)
730                 return err;
731
732         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
733                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
734         if (!desc)
735                 return -ENOMEM;
736
737         desc->callback = callback;
738         desc->callback_param = dd;
739         dmaengine_submit(desc);
740         dma_async_issue_pending(dma->chan);
741
742         return 0;
743 }
744
745 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
746                                         enum dma_transfer_direction dir)
747 {
748         struct atmel_aes_dma *dma;
749
750         switch (dir) {
751         case DMA_MEM_TO_DEV:
752                 dma = &dd->src;
753                 break;
754
755         case DMA_DEV_TO_MEM:
756                 dma = &dd->dst;
757                 break;
758
759         default:
760                 return;
761         }
762
763         dmaengine_terminate_all(dma->chan);
764 }
765
766 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
767                                struct scatterlist *src,
768                                struct scatterlist *dst,
769                                size_t len,
770                                atmel_aes_fn_t resume)
771 {
772         enum dma_slave_buswidth addr_width;
773         u32 maxburst;
774         int err;
775
776         switch (dd->ctx->block_size) {
777         case CFB8_BLOCK_SIZE:
778                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
779                 maxburst = 1;
780                 break;
781
782         case CFB16_BLOCK_SIZE:
783                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
784                 maxburst = 1;
785                 break;
786
787         case CFB32_BLOCK_SIZE:
788         case CFB64_BLOCK_SIZE:
789                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790                 maxburst = 1;
791                 break;
792
793         case AES_BLOCK_SIZE:
794                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795                 maxburst = dd->caps.max_burst_size;
796                 break;
797
798         default:
799                 err = -EINVAL;
800                 goto exit;
801         }
802
803         err = atmel_aes_map(dd, src, dst, len);
804         if (err)
805                 goto exit;
806
807         dd->resume = resume;
808
809         /* Set output DMA transfer first */
810         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
811                                            maxburst);
812         if (err)
813                 goto unmap;
814
815         /* Then set input DMA transfer */
816         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
817                                            maxburst);
818         if (err)
819                 goto output_transfer_stop;
820
821         return -EINPROGRESS;
822
823 output_transfer_stop:
824         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
825 unmap:
826         atmel_aes_unmap(dd);
827 exit:
828         return atmel_aes_complete(dd, err);
829 }
830
831 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
832 {
833         atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
834         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
835         atmel_aes_unmap(dd);
836 }
837
838 static void atmel_aes_dma_callback(void *data)
839 {
840         struct atmel_aes_dev *dd = data;
841
842         atmel_aes_dma_stop(dd);
843         dd->is_async = true;
844         (void)dd->resume(dd);
845 }
846
847 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
848                                   struct crypto_async_request *new_areq)
849 {
850         struct crypto_async_request *areq, *backlog;
851         struct atmel_aes_base_ctx *ctx;
852         unsigned long flags;
853         int err, ret = 0;
854
855         spin_lock_irqsave(&dd->lock, flags);
856         if (new_areq)
857                 ret = crypto_enqueue_request(&dd->queue, new_areq);
858         if (dd->flags & AES_FLAGS_BUSY) {
859                 spin_unlock_irqrestore(&dd->lock, flags);
860                 return ret;
861         }
862         backlog = crypto_get_backlog(&dd->queue);
863         areq = crypto_dequeue_request(&dd->queue);
864         if (areq)
865                 dd->flags |= AES_FLAGS_BUSY;
866         spin_unlock_irqrestore(&dd->lock, flags);
867
868         if (!areq)
869                 return ret;
870
871         if (backlog)
872                 backlog->complete(backlog, -EINPROGRESS);
873
874         ctx = crypto_tfm_ctx(areq->tfm);
875
876         dd->areq = areq;
877         dd->ctx = ctx;
878         dd->is_async = (areq != new_areq);
879
880         err = ctx->start(dd);
881         return (dd->is_async) ? ret : err;
882 }
883
884
885 /* AES async block ciphers */
886
887 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
888 {
889         return atmel_aes_complete(dd, 0);
890 }
891
892 static int atmel_aes_start(struct atmel_aes_dev *dd)
893 {
894         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
895         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
896         bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
897                         dd->ctx->block_size != AES_BLOCK_SIZE);
898         int err;
899
900         atmel_aes_set_mode(dd, rctx);
901
902         err = atmel_aes_hw_init(dd);
903         if (err)
904                 return atmel_aes_complete(dd, err);
905
906         atmel_aes_write_ctrl(dd, use_dma, req->info);
907         if (use_dma)
908                 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
909                                            atmel_aes_transfer_complete);
910
911         return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
912                                    atmel_aes_transfer_complete);
913 }
914
915 static inline struct atmel_aes_ctr_ctx *
916 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
917 {
918         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
919 }
920
921 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
922 {
923         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
924         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
925         struct scatterlist *src, *dst;
926         u32 ctr, blocks;
927         size_t datalen;
928         bool use_dma, fragmented = false;
929
930         /* Check for transfer completion. */
931         ctx->offset += dd->total;
932         if (ctx->offset >= req->nbytes)
933                 return atmel_aes_transfer_complete(dd);
934
935         /* Compute data length. */
936         datalen = req->nbytes - ctx->offset;
937         blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
938         ctr = be32_to_cpu(ctx->iv[3]);
939         if (dd->caps.has_ctr32) {
940                 /* Check 32bit counter overflow. */
941                 u32 start = ctr;
942                 u32 end = start + blocks - 1;
943
944                 if (end < start) {
945                         ctr |= 0xffffffff;
946                         datalen = AES_BLOCK_SIZE * -start;
947                         fragmented = true;
948                 }
949         } else {
950                 /* Check 16bit counter overflow. */
951                 u16 start = ctr & 0xffff;
952                 u16 end = start + (u16)blocks - 1;
953
954                 if (blocks >> 16 || end < start) {
955                         ctr |= 0xffff;
956                         datalen = AES_BLOCK_SIZE * (0x10000-start);
957                         fragmented = true;
958                 }
959         }
960         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
961
962         /* Jump to offset. */
963         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
964         dst = ((req->src == req->dst) ? src :
965                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
966
967         /* Configure hardware. */
968         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
969         if (unlikely(fragmented)) {
970                 /*
971                  * Increment the counter manually to cope with the hardware
972                  * counter overflow.
973                  */
974                 ctx->iv[3] = cpu_to_be32(ctr);
975                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
976         }
977
978         if (use_dma)
979                 return atmel_aes_dma_start(dd, src, dst, datalen,
980                                            atmel_aes_ctr_transfer);
981
982         return atmel_aes_cpu_start(dd, src, dst, datalen,
983                                    atmel_aes_ctr_transfer);
984 }
985
986 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
987 {
988         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
989         struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
990         struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
991         int err;
992
993         atmel_aes_set_mode(dd, rctx);
994
995         err = atmel_aes_hw_init(dd);
996         if (err)
997                 return atmel_aes_complete(dd, err);
998
999         memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1000         ctx->offset = 0;
1001         dd->total = 0;
1002         return atmel_aes_ctr_transfer(dd);
1003 }
1004
1005 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1006 {
1007         struct atmel_aes_base_ctx *ctx;
1008         struct atmel_aes_reqctx *rctx;
1009         struct atmel_aes_dev *dd;
1010
1011         ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1012         switch (mode & AES_FLAGS_OPMODE_MASK) {
1013         case AES_FLAGS_CFB8:
1014                 ctx->block_size = CFB8_BLOCK_SIZE;
1015                 break;
1016
1017         case AES_FLAGS_CFB16:
1018                 ctx->block_size = CFB16_BLOCK_SIZE;
1019                 break;
1020
1021         case AES_FLAGS_CFB32:
1022                 ctx->block_size = CFB32_BLOCK_SIZE;
1023                 break;
1024
1025         case AES_FLAGS_CFB64:
1026                 ctx->block_size = CFB64_BLOCK_SIZE;
1027                 break;
1028
1029         default:
1030                 ctx->block_size = AES_BLOCK_SIZE;
1031                 break;
1032         }
1033
1034         dd = atmel_aes_find_dev(ctx);
1035         if (!dd)
1036                 return -ENODEV;
1037
1038         rctx = ablkcipher_request_ctx(req);
1039         rctx->mode = mode;
1040
1041         return atmel_aes_handle_queue(dd, &req->base);
1042 }
1043
1044 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1045                            unsigned int keylen)
1046 {
1047         struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1048
1049         if (keylen != AES_KEYSIZE_128 &&
1050             keylen != AES_KEYSIZE_192 &&
1051             keylen != AES_KEYSIZE_256) {
1052                 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1053                 return -EINVAL;
1054         }
1055
1056         memcpy(ctx->key, key, keylen);
1057         ctx->keylen = keylen;
1058
1059         return 0;
1060 }
1061
1062 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1063 {
1064         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1065 }
1066
1067 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1068 {
1069         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1070 }
1071
1072 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1073 {
1074         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1075 }
1076
1077 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1078 {
1079         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1080 }
1081
1082 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1083 {
1084         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1085 }
1086
1087 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1088 {
1089         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1090 }
1091
1092 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1093 {
1094         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1095 }
1096
1097 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1098 {
1099         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1100 }
1101
1102 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1103 {
1104         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1105 }
1106
1107 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1108 {
1109         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1110 }
1111
1112 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1113 {
1114         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1115 }
1116
1117 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1118 {
1119         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1120 }
1121
1122 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1123 {
1124         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1125 }
1126
1127 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1128 {
1129         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1130 }
1131
1132 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1133 {
1134         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1135 }
1136
1137 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1138 {
1139         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1140 }
1141
1142 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1143 {
1144         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1145 }
1146
1147 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1148 {
1149         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1150 }
1151
1152 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1153 {
1154         struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1155
1156         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1157         ctx->base.start = atmel_aes_start;
1158
1159         return 0;
1160 }
1161
1162 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1163 {
1164         struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1165
1166         tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1167         ctx->base.start = atmel_aes_ctr_start;
1168
1169         return 0;
1170 }
1171
1172 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1173 {
1174 }
1175
1176 static struct crypto_alg aes_algs[] = {
1177 {
1178         .cra_name               = "ecb(aes)",
1179         .cra_driver_name        = "atmel-ecb-aes",
1180         .cra_priority           = ATMEL_AES_PRIORITY,
1181         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1182         .cra_blocksize          = AES_BLOCK_SIZE,
1183         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1184         .cra_alignmask          = 0xf,
1185         .cra_type               = &crypto_ablkcipher_type,
1186         .cra_module             = THIS_MODULE,
1187         .cra_init               = atmel_aes_cra_init,
1188         .cra_exit               = atmel_aes_cra_exit,
1189         .cra_u.ablkcipher = {
1190                 .min_keysize    = AES_MIN_KEY_SIZE,
1191                 .max_keysize    = AES_MAX_KEY_SIZE,
1192                 .setkey         = atmel_aes_setkey,
1193                 .encrypt        = atmel_aes_ecb_encrypt,
1194                 .decrypt        = atmel_aes_ecb_decrypt,
1195         }
1196 },
1197 {
1198         .cra_name               = "cbc(aes)",
1199         .cra_driver_name        = "atmel-cbc-aes",
1200         .cra_priority           = ATMEL_AES_PRIORITY,
1201         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1202         .cra_blocksize          = AES_BLOCK_SIZE,
1203         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1204         .cra_alignmask          = 0xf,
1205         .cra_type               = &crypto_ablkcipher_type,
1206         .cra_module             = THIS_MODULE,
1207         .cra_init               = atmel_aes_cra_init,
1208         .cra_exit               = atmel_aes_cra_exit,
1209         .cra_u.ablkcipher = {
1210                 .min_keysize    = AES_MIN_KEY_SIZE,
1211                 .max_keysize    = AES_MAX_KEY_SIZE,
1212                 .ivsize         = AES_BLOCK_SIZE,
1213                 .setkey         = atmel_aes_setkey,
1214                 .encrypt        = atmel_aes_cbc_encrypt,
1215                 .decrypt        = atmel_aes_cbc_decrypt,
1216         }
1217 },
1218 {
1219         .cra_name               = "ofb(aes)",
1220         .cra_driver_name        = "atmel-ofb-aes",
1221         .cra_priority           = ATMEL_AES_PRIORITY,
1222         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1223         .cra_blocksize          = AES_BLOCK_SIZE,
1224         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1225         .cra_alignmask          = 0xf,
1226         .cra_type               = &crypto_ablkcipher_type,
1227         .cra_module             = THIS_MODULE,
1228         .cra_init               = atmel_aes_cra_init,
1229         .cra_exit               = atmel_aes_cra_exit,
1230         .cra_u.ablkcipher = {
1231                 .min_keysize    = AES_MIN_KEY_SIZE,
1232                 .max_keysize    = AES_MAX_KEY_SIZE,
1233                 .ivsize         = AES_BLOCK_SIZE,
1234                 .setkey         = atmel_aes_setkey,
1235                 .encrypt        = atmel_aes_ofb_encrypt,
1236                 .decrypt        = atmel_aes_ofb_decrypt,
1237         }
1238 },
1239 {
1240         .cra_name               = "cfb(aes)",
1241         .cra_driver_name        = "atmel-cfb-aes",
1242         .cra_priority           = ATMEL_AES_PRIORITY,
1243         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1244         .cra_blocksize          = AES_BLOCK_SIZE,
1245         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1246         .cra_alignmask          = 0xf,
1247         .cra_type               = &crypto_ablkcipher_type,
1248         .cra_module             = THIS_MODULE,
1249         .cra_init               = atmel_aes_cra_init,
1250         .cra_exit               = atmel_aes_cra_exit,
1251         .cra_u.ablkcipher = {
1252                 .min_keysize    = AES_MIN_KEY_SIZE,
1253                 .max_keysize    = AES_MAX_KEY_SIZE,
1254                 .ivsize         = AES_BLOCK_SIZE,
1255                 .setkey         = atmel_aes_setkey,
1256                 .encrypt        = atmel_aes_cfb_encrypt,
1257                 .decrypt        = atmel_aes_cfb_decrypt,
1258         }
1259 },
1260 {
1261         .cra_name               = "cfb32(aes)",
1262         .cra_driver_name        = "atmel-cfb32-aes",
1263         .cra_priority           = ATMEL_AES_PRIORITY,
1264         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1265         .cra_blocksize          = CFB32_BLOCK_SIZE,
1266         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1267         .cra_alignmask          = 0x3,
1268         .cra_type               = &crypto_ablkcipher_type,
1269         .cra_module             = THIS_MODULE,
1270         .cra_init               = atmel_aes_cra_init,
1271         .cra_exit               = atmel_aes_cra_exit,
1272         .cra_u.ablkcipher = {
1273                 .min_keysize    = AES_MIN_KEY_SIZE,
1274                 .max_keysize    = AES_MAX_KEY_SIZE,
1275                 .ivsize         = AES_BLOCK_SIZE,
1276                 .setkey         = atmel_aes_setkey,
1277                 .encrypt        = atmel_aes_cfb32_encrypt,
1278                 .decrypt        = atmel_aes_cfb32_decrypt,
1279         }
1280 },
1281 {
1282         .cra_name               = "cfb16(aes)",
1283         .cra_driver_name        = "atmel-cfb16-aes",
1284         .cra_priority           = ATMEL_AES_PRIORITY,
1285         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1286         .cra_blocksize          = CFB16_BLOCK_SIZE,
1287         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1288         .cra_alignmask          = 0x1,
1289         .cra_type               = &crypto_ablkcipher_type,
1290         .cra_module             = THIS_MODULE,
1291         .cra_init               = atmel_aes_cra_init,
1292         .cra_exit               = atmel_aes_cra_exit,
1293         .cra_u.ablkcipher = {
1294                 .min_keysize    = AES_MIN_KEY_SIZE,
1295                 .max_keysize    = AES_MAX_KEY_SIZE,
1296                 .ivsize         = AES_BLOCK_SIZE,
1297                 .setkey         = atmel_aes_setkey,
1298                 .encrypt        = atmel_aes_cfb16_encrypt,
1299                 .decrypt        = atmel_aes_cfb16_decrypt,
1300         }
1301 },
1302 {
1303         .cra_name               = "cfb8(aes)",
1304         .cra_driver_name        = "atmel-cfb8-aes",
1305         .cra_priority           = ATMEL_AES_PRIORITY,
1306         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1307         .cra_blocksize          = CFB8_BLOCK_SIZE,
1308         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1309         .cra_alignmask          = 0x0,
1310         .cra_type               = &crypto_ablkcipher_type,
1311         .cra_module             = THIS_MODULE,
1312         .cra_init               = atmel_aes_cra_init,
1313         .cra_exit               = atmel_aes_cra_exit,
1314         .cra_u.ablkcipher = {
1315                 .min_keysize    = AES_MIN_KEY_SIZE,
1316                 .max_keysize    = AES_MAX_KEY_SIZE,
1317                 .ivsize         = AES_BLOCK_SIZE,
1318                 .setkey         = atmel_aes_setkey,
1319                 .encrypt        = atmel_aes_cfb8_encrypt,
1320                 .decrypt        = atmel_aes_cfb8_decrypt,
1321         }
1322 },
1323 {
1324         .cra_name               = "ctr(aes)",
1325         .cra_driver_name        = "atmel-ctr-aes",
1326         .cra_priority           = ATMEL_AES_PRIORITY,
1327         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1328         .cra_blocksize          = 1,
1329         .cra_ctxsize            = sizeof(struct atmel_aes_ctr_ctx),
1330         .cra_alignmask          = 0xf,
1331         .cra_type               = &crypto_ablkcipher_type,
1332         .cra_module             = THIS_MODULE,
1333         .cra_init               = atmel_aes_ctr_cra_init,
1334         .cra_exit               = atmel_aes_cra_exit,
1335         .cra_u.ablkcipher = {
1336                 .min_keysize    = AES_MIN_KEY_SIZE,
1337                 .max_keysize    = AES_MAX_KEY_SIZE,
1338                 .ivsize         = AES_BLOCK_SIZE,
1339                 .setkey         = atmel_aes_setkey,
1340                 .encrypt        = atmel_aes_ctr_encrypt,
1341                 .decrypt        = atmel_aes_ctr_decrypt,
1342         }
1343 },
1344 };
1345
1346 static struct crypto_alg aes_cfb64_alg = {
1347         .cra_name               = "cfb64(aes)",
1348         .cra_driver_name        = "atmel-cfb64-aes",
1349         .cra_priority           = ATMEL_AES_PRIORITY,
1350         .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1351         .cra_blocksize          = CFB64_BLOCK_SIZE,
1352         .cra_ctxsize            = sizeof(struct atmel_aes_ctx),
1353         .cra_alignmask          = 0x7,
1354         .cra_type               = &crypto_ablkcipher_type,
1355         .cra_module             = THIS_MODULE,
1356         .cra_init               = atmel_aes_cra_init,
1357         .cra_exit               = atmel_aes_cra_exit,
1358         .cra_u.ablkcipher = {
1359                 .min_keysize    = AES_MIN_KEY_SIZE,
1360                 .max_keysize    = AES_MAX_KEY_SIZE,
1361                 .ivsize         = AES_BLOCK_SIZE,
1362                 .setkey         = atmel_aes_setkey,
1363                 .encrypt        = atmel_aes_cfb64_encrypt,
1364                 .decrypt        = atmel_aes_cfb64_decrypt,
1365         }
1366 };
1367
1368
1369 /* gcm aead functions */
1370
1371 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1372                                const u32 *data, size_t datalen,
1373                                const u32 *ghash_in, u32 *ghash_out,
1374                                atmel_aes_fn_t resume);
1375 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1376 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1377
1378 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1379 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1380 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1381 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1382 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1383 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1384 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1385
1386 static inline struct atmel_aes_gcm_ctx *
1387 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1388 {
1389         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1390 }
1391
1392 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1393                                const u32 *data, size_t datalen,
1394                                const u32 *ghash_in, u32 *ghash_out,
1395                                atmel_aes_fn_t resume)
1396 {
1397         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1398
1399         dd->data = (u32 *)data;
1400         dd->datalen = datalen;
1401         ctx->ghash_in = ghash_in;
1402         ctx->ghash_out = ghash_out;
1403         ctx->ghash_resume = resume;
1404
1405         atmel_aes_write_ctrl(dd, false, NULL);
1406         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1407 }
1408
1409 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1410 {
1411         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1412
1413         /* Set the data length. */
1414         atmel_aes_write(dd, AES_AADLENR, dd->total);
1415         atmel_aes_write(dd, AES_CLENR, 0);
1416
1417         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1418         if (ctx->ghash_in)
1419                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1420
1421         return atmel_aes_gcm_ghash_finalize(dd);
1422 }
1423
1424 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1425 {
1426         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1427         u32 isr;
1428
1429         /* Write data into the Input Data Registers. */
1430         while (dd->datalen > 0) {
1431                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1432                 dd->data += 4;
1433                 dd->datalen -= AES_BLOCK_SIZE;
1434
1435                 isr = atmel_aes_read(dd, AES_ISR);
1436                 if (!(isr & AES_INT_DATARDY)) {
1437                         dd->resume = atmel_aes_gcm_ghash_finalize;
1438                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1439                         return -EINPROGRESS;
1440                 }
1441         }
1442
1443         /* Read the computed hash from GHASHRx. */
1444         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1445
1446         return ctx->ghash_resume(dd);
1447 }
1448
1449
1450 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1451 {
1452         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1453         struct aead_request *req = aead_request_cast(dd->areq);
1454         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1455         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1456         size_t ivsize = crypto_aead_ivsize(tfm);
1457         size_t datalen, padlen;
1458         const void *iv = req->iv;
1459         u8 *data = dd->buf;
1460         int err;
1461
1462         atmel_aes_set_mode(dd, rctx);
1463
1464         err = atmel_aes_hw_init(dd);
1465         if (err)
1466                 return atmel_aes_complete(dd, err);
1467
1468         if (likely(ivsize == 12)) {
1469                 memcpy(ctx->j0, iv, ivsize);
1470                 ctx->j0[3] = cpu_to_be32(1);
1471                 return atmel_aes_gcm_process(dd);
1472         }
1473
1474         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1475         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1476         if (datalen > dd->buflen)
1477                 return atmel_aes_complete(dd, -EINVAL);
1478
1479         memcpy(data, iv, ivsize);
1480         memset(data + ivsize, 0, padlen + sizeof(u64));
1481         ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1482
1483         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1484                                    NULL, ctx->j0, atmel_aes_gcm_process);
1485 }
1486
1487 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1488 {
1489         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1490         struct aead_request *req = aead_request_cast(dd->areq);
1491         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1492         bool enc = atmel_aes_is_encrypt(dd);
1493         u32 authsize;
1494
1495         /* Compute text length. */
1496         authsize = crypto_aead_authsize(tfm);
1497         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1498
1499         /*
1500          * According to tcrypt test suite, the GCM Automatic Tag Generation
1501          * fails when both the message and its associated data are empty.
1502          */
1503         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1504                 dd->flags |= AES_FLAGS_GTAGEN;
1505
1506         atmel_aes_write_ctrl(dd, false, NULL);
1507         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1508 }
1509
1510 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1511 {
1512         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513         struct aead_request *req = aead_request_cast(dd->areq);
1514         u32 j0_lsw, *j0 = ctx->j0;
1515         size_t padlen;
1516
1517         /* Write incr32(J0) into IV. */
1518         j0_lsw = j0[3];
1519         j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1520         atmel_aes_write_block(dd, AES_IVR(0), j0);
1521         j0[3] = j0_lsw;
1522
1523         /* Set aad and text lengths. */
1524         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1525         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1526
1527         /* Check whether AAD are present. */
1528         if (unlikely(req->assoclen == 0)) {
1529                 dd->datalen = 0;
1530                 return atmel_aes_gcm_data(dd);
1531         }
1532
1533         /* Copy assoc data and add padding. */
1534         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1535         if (unlikely(req->assoclen + padlen > dd->buflen))
1536                 return atmel_aes_complete(dd, -EINVAL);
1537         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1538
1539         /* Write assoc data into the Input Data register. */
1540         dd->data = (u32 *)dd->buf;
1541         dd->datalen = req->assoclen + padlen;
1542         return atmel_aes_gcm_data(dd);
1543 }
1544
1545 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1546 {
1547         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1548         struct aead_request *req = aead_request_cast(dd->areq);
1549         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1550         struct scatterlist *src, *dst;
1551         u32 isr, mr;
1552
1553         /* Write AAD first. */
1554         while (dd->datalen > 0) {
1555                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1556                 dd->data += 4;
1557                 dd->datalen -= AES_BLOCK_SIZE;
1558
1559                 isr = atmel_aes_read(dd, AES_ISR);
1560                 if (!(isr & AES_INT_DATARDY)) {
1561                         dd->resume = atmel_aes_gcm_data;
1562                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1563                         return -EINPROGRESS;
1564                 }
1565         }
1566
1567         /* GMAC only. */
1568         if (unlikely(ctx->textlen == 0))
1569                 return atmel_aes_gcm_tag_init(dd);
1570
1571         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1572         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1573         dst = ((req->src == req->dst) ? src :
1574                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1575
1576         if (use_dma) {
1577                 /* Update the Mode Register for DMA transfers. */
1578                 mr = atmel_aes_read(dd, AES_MR);
1579                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1580                 mr |= AES_MR_SMOD_IDATAR0;
1581                 if (dd->caps.has_dualbuff)
1582                         mr |= AES_MR_DUALBUFF;
1583                 atmel_aes_write(dd, AES_MR, mr);
1584
1585                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1586                                            atmel_aes_gcm_tag_init);
1587         }
1588
1589         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1590                                    atmel_aes_gcm_tag_init);
1591 }
1592
1593 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1594 {
1595         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1596         struct aead_request *req = aead_request_cast(dd->areq);
1597         u64 *data = dd->buf;
1598
1599         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1600                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1601                         dd->resume = atmel_aes_gcm_tag_init;
1602                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1603                         return -EINPROGRESS;
1604                 }
1605
1606                 return atmel_aes_gcm_finalize(dd);
1607         }
1608
1609         /* Read the GCM Intermediate Hash Word Registers. */
1610         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1611
1612         data[0] = cpu_to_be64(req->assoclen * 8);
1613         data[1] = cpu_to_be64(ctx->textlen * 8);
1614
1615         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1616                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1617 }
1618
1619 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1620 {
1621         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1622         unsigned long flags;
1623
1624         /*
1625          * Change mode to CTR to complete the tag generation.
1626          * Use J0 as Initialization Vector.
1627          */
1628         flags = dd->flags;
1629         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1630         dd->flags |= AES_FLAGS_CTR;
1631         atmel_aes_write_ctrl(dd, false, ctx->j0);
1632         dd->flags = flags;
1633
1634         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1635         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1636 }
1637
1638 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1639 {
1640         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1641         struct aead_request *req = aead_request_cast(dd->areq);
1642         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1643         bool enc = atmel_aes_is_encrypt(dd);
1644         u32 offset, authsize, itag[4], *otag = ctx->tag;
1645         int err;
1646
1647         /* Read the computed tag. */
1648         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1649                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1650         else
1651                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1652
1653         offset = req->assoclen + ctx->textlen;
1654         authsize = crypto_aead_authsize(tfm);
1655         if (enc) {
1656                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1657                 err = 0;
1658         } else {
1659                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1660                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1661         }
1662
1663         return atmel_aes_complete(dd, err);
1664 }
1665
1666 static int atmel_aes_gcm_crypt(struct aead_request *req,
1667                                unsigned long mode)
1668 {
1669         struct atmel_aes_base_ctx *ctx;
1670         struct atmel_aes_reqctx *rctx;
1671         struct atmel_aes_dev *dd;
1672
1673         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1674         ctx->block_size = AES_BLOCK_SIZE;
1675
1676         dd = atmel_aes_find_dev(ctx);
1677         if (!dd)
1678                 return -ENODEV;
1679
1680         rctx = aead_request_ctx(req);
1681         rctx->mode = AES_FLAGS_GCM | mode;
1682
1683         return atmel_aes_handle_queue(dd, &req->base);
1684 }
1685
1686 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1687                                 unsigned int keylen)
1688 {
1689         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1690
1691         if (keylen != AES_KEYSIZE_256 &&
1692             keylen != AES_KEYSIZE_192 &&
1693             keylen != AES_KEYSIZE_128) {
1694                 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1695                 return -EINVAL;
1696         }
1697
1698         memcpy(ctx->key, key, keylen);
1699         ctx->keylen = keylen;
1700
1701         return 0;
1702 }
1703
1704 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1705                                      unsigned int authsize)
1706 {
1707         /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1708         switch (authsize) {
1709         case 4:
1710         case 8:
1711         case 12:
1712         case 13:
1713         case 14:
1714         case 15:
1715         case 16:
1716                 break;
1717         default:
1718                 return -EINVAL;
1719         }
1720
1721         return 0;
1722 }
1723
1724 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1725 {
1726         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1727 }
1728
1729 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1730 {
1731         return atmel_aes_gcm_crypt(req, 0);
1732 }
1733
1734 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1735 {
1736         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1737
1738         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1739         ctx->base.start = atmel_aes_gcm_start;
1740
1741         return 0;
1742 }
1743
1744 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1745 {
1746
1747 }
1748
1749 static struct aead_alg aes_gcm_alg = {
1750         .setkey         = atmel_aes_gcm_setkey,
1751         .setauthsize    = atmel_aes_gcm_setauthsize,
1752         .encrypt        = atmel_aes_gcm_encrypt,
1753         .decrypt        = atmel_aes_gcm_decrypt,
1754         .init           = atmel_aes_gcm_init,
1755         .exit           = atmel_aes_gcm_exit,
1756         .ivsize         = 12,
1757         .maxauthsize    = AES_BLOCK_SIZE,
1758
1759         .base = {
1760                 .cra_name               = "gcm(aes)",
1761                 .cra_driver_name        = "atmel-gcm-aes",
1762                 .cra_priority           = ATMEL_AES_PRIORITY,
1763                 .cra_flags              = CRYPTO_ALG_ASYNC,
1764                 .cra_blocksize          = 1,
1765                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1766                 .cra_alignmask          = 0xf,
1767                 .cra_module             = THIS_MODULE,
1768         },
1769 };
1770
1771
1772 /* Probe functions */
1773
1774 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1775 {
1776         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1777         dd->buflen = ATMEL_AES_BUFFER_SIZE;
1778         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1779
1780         if (!dd->buf) {
1781                 dev_err(dd->dev, "unable to alloc pages.\n");
1782                 return -ENOMEM;
1783         }
1784
1785         return 0;
1786 }
1787
1788 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1789 {
1790         free_page((unsigned long)dd->buf);
1791 }
1792
1793 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1794 {
1795         struct at_dma_slave     *sl = slave;
1796
1797         if (sl && sl->dma_dev == chan->device->dev) {
1798                 chan->private = sl;
1799                 return true;
1800         } else {
1801                 return false;
1802         }
1803 }
1804
1805 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1806                               struct crypto_platform_data *pdata)
1807 {
1808         struct at_dma_slave *slave;
1809         int err = -ENOMEM;
1810         dma_cap_mask_t mask;
1811
1812         dma_cap_zero(mask);
1813         dma_cap_set(DMA_SLAVE, mask);
1814
1815         /* Try to grab 2 DMA channels */
1816         slave = &pdata->dma_slave->rxdata;
1817         dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1818                                                         slave, dd->dev, "tx");
1819         if (!dd->src.chan)
1820                 goto err_dma_in;
1821
1822         slave = &pdata->dma_slave->txdata;
1823         dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1824                                                         slave, dd->dev, "rx");
1825         if (!dd->dst.chan)
1826                 goto err_dma_out;
1827
1828         return 0;
1829
1830 err_dma_out:
1831         dma_release_channel(dd->src.chan);
1832 err_dma_in:
1833         dev_warn(dd->dev, "no DMA channel available\n");
1834         return err;
1835 }
1836
1837 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1838 {
1839         dma_release_channel(dd->dst.chan);
1840         dma_release_channel(dd->src.chan);
1841 }
1842
1843 static void atmel_aes_queue_task(unsigned long data)
1844 {
1845         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1846
1847         atmel_aes_handle_queue(dd, NULL);
1848 }
1849
1850 static void atmel_aes_done_task(unsigned long data)
1851 {
1852         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1853
1854         dd->is_async = true;
1855         (void)dd->resume(dd);
1856 }
1857
1858 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
1859 {
1860         struct atmel_aes_dev *aes_dd = dev_id;
1861         u32 reg;
1862
1863         reg = atmel_aes_read(aes_dd, AES_ISR);
1864         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
1865                 atmel_aes_write(aes_dd, AES_IDR, reg);
1866                 if (AES_FLAGS_BUSY & aes_dd->flags)
1867                         tasklet_schedule(&aes_dd->done_task);
1868                 else
1869                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
1870                 return IRQ_HANDLED;
1871         }
1872
1873         return IRQ_NONE;
1874 }
1875
1876 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
1877 {
1878         int i;
1879
1880         if (dd->caps.has_gcm)
1881                 crypto_unregister_aead(&aes_gcm_alg);
1882
1883         if (dd->caps.has_cfb64)
1884                 crypto_unregister_alg(&aes_cfb64_alg);
1885
1886         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1887                 crypto_unregister_alg(&aes_algs[i]);
1888 }
1889
1890 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
1891 {
1892         int err, i, j;
1893
1894         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1895                 err = crypto_register_alg(&aes_algs[i]);
1896                 if (err)
1897                         goto err_aes_algs;
1898         }
1899
1900         if (dd->caps.has_cfb64) {
1901                 err = crypto_register_alg(&aes_cfb64_alg);
1902                 if (err)
1903                         goto err_aes_cfb64_alg;
1904         }
1905
1906         if (dd->caps.has_gcm) {
1907                 err = crypto_register_aead(&aes_gcm_alg);
1908                 if (err)
1909                         goto err_aes_gcm_alg;
1910         }
1911
1912         return 0;
1913
1914 err_aes_gcm_alg:
1915         crypto_unregister_alg(&aes_cfb64_alg);
1916 err_aes_cfb64_alg:
1917         i = ARRAY_SIZE(aes_algs);
1918 err_aes_algs:
1919         for (j = 0; j < i; j++)
1920                 crypto_unregister_alg(&aes_algs[j]);
1921
1922         return err;
1923 }
1924
1925 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
1926 {
1927         dd->caps.has_dualbuff = 0;
1928         dd->caps.has_cfb64 = 0;
1929         dd->caps.has_ctr32 = 0;
1930         dd->caps.has_gcm = 0;
1931         dd->caps.max_burst_size = 1;
1932
1933         /* keep only major version number */
1934         switch (dd->hw_version & 0xff0) {
1935         case 0x500:
1936                 dd->caps.has_dualbuff = 1;
1937                 dd->caps.has_cfb64 = 1;
1938                 dd->caps.has_ctr32 = 1;
1939                 dd->caps.has_gcm = 1;
1940                 dd->caps.max_burst_size = 4;
1941                 break;
1942         case 0x200:
1943                 dd->caps.has_dualbuff = 1;
1944                 dd->caps.has_cfb64 = 1;
1945                 dd->caps.has_ctr32 = 1;
1946                 dd->caps.has_gcm = 1;
1947                 dd->caps.max_burst_size = 4;
1948                 break;
1949         case 0x130:
1950                 dd->caps.has_dualbuff = 1;
1951                 dd->caps.has_cfb64 = 1;
1952                 dd->caps.max_burst_size = 4;
1953                 break;
1954         case 0x120:
1955                 break;
1956         default:
1957                 dev_warn(dd->dev,
1958                                 "Unmanaged aes version, set minimum capabilities\n");
1959                 break;
1960         }
1961 }
1962
1963 #if defined(CONFIG_OF)
1964 static const struct of_device_id atmel_aes_dt_ids[] = {
1965         { .compatible = "atmel,at91sam9g46-aes" },
1966         { /* sentinel */ }
1967 };
1968 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
1969
1970 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1971 {
1972         struct device_node *np = pdev->dev.of_node;
1973         struct crypto_platform_data *pdata;
1974
1975         if (!np) {
1976                 dev_err(&pdev->dev, "device node not found\n");
1977                 return ERR_PTR(-EINVAL);
1978         }
1979
1980         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1981         if (!pdata) {
1982                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1983                 return ERR_PTR(-ENOMEM);
1984         }
1985
1986         pdata->dma_slave = devm_kzalloc(&pdev->dev,
1987                                         sizeof(*(pdata->dma_slave)),
1988                                         GFP_KERNEL);
1989         if (!pdata->dma_slave) {
1990                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1991                 devm_kfree(&pdev->dev, pdata);
1992                 return ERR_PTR(-ENOMEM);
1993         }
1994
1995         return pdata;
1996 }
1997 #else
1998 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1999 {
2000         return ERR_PTR(-EINVAL);
2001 }
2002 #endif
2003
2004 static int atmel_aes_probe(struct platform_device *pdev)
2005 {
2006         struct atmel_aes_dev *aes_dd;
2007         struct crypto_platform_data *pdata;
2008         struct device *dev = &pdev->dev;
2009         struct resource *aes_res;
2010         int err;
2011
2012         pdata = pdev->dev.platform_data;
2013         if (!pdata) {
2014                 pdata = atmel_aes_of_init(pdev);
2015                 if (IS_ERR(pdata)) {
2016                         err = PTR_ERR(pdata);
2017                         goto aes_dd_err;
2018                 }
2019         }
2020
2021         if (!pdata->dma_slave) {
2022                 err = -ENXIO;
2023                 goto aes_dd_err;
2024         }
2025
2026         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2027         if (aes_dd == NULL) {
2028                 dev_err(dev, "unable to alloc data struct.\n");
2029                 err = -ENOMEM;
2030                 goto aes_dd_err;
2031         }
2032
2033         aes_dd->dev = dev;
2034
2035         platform_set_drvdata(pdev, aes_dd);
2036
2037         INIT_LIST_HEAD(&aes_dd->list);
2038         spin_lock_init(&aes_dd->lock);
2039
2040         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2041                                         (unsigned long)aes_dd);
2042         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2043                                         (unsigned long)aes_dd);
2044
2045         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2046
2047         aes_dd->irq = -1;
2048
2049         /* Get the base address */
2050         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2051         if (!aes_res) {
2052                 dev_err(dev, "no MEM resource info\n");
2053                 err = -ENODEV;
2054                 goto res_err;
2055         }
2056         aes_dd->phys_base = aes_res->start;
2057
2058         /* Get the IRQ */
2059         aes_dd->irq = platform_get_irq(pdev,  0);
2060         if (aes_dd->irq < 0) {
2061                 dev_err(dev, "no IRQ resource info\n");
2062                 err = aes_dd->irq;
2063                 goto res_err;
2064         }
2065
2066         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2067                                IRQF_SHARED, "atmel-aes", aes_dd);
2068         if (err) {
2069                 dev_err(dev, "unable to request aes irq.\n");
2070                 goto res_err;
2071         }
2072
2073         /* Initializing the clock */
2074         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2075         if (IS_ERR(aes_dd->iclk)) {
2076                 dev_err(dev, "clock initialization failed.\n");
2077                 err = PTR_ERR(aes_dd->iclk);
2078                 goto res_err;
2079         }
2080
2081         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2082         if (IS_ERR(aes_dd->io_base)) {
2083                 dev_err(dev, "can't ioremap\n");
2084                 err = PTR_ERR(aes_dd->io_base);
2085                 goto res_err;
2086         }
2087
2088         err = clk_prepare(aes_dd->iclk);
2089         if (err)
2090                 goto res_err;
2091
2092         err = atmel_aes_hw_version_init(aes_dd);
2093         if (err)
2094                 goto iclk_unprepare;
2095
2096         atmel_aes_get_cap(aes_dd);
2097
2098         err = atmel_aes_buff_init(aes_dd);
2099         if (err)
2100                 goto err_aes_buff;
2101
2102         err = atmel_aes_dma_init(aes_dd, pdata);
2103         if (err)
2104                 goto err_aes_dma;
2105
2106         spin_lock(&atmel_aes.lock);
2107         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2108         spin_unlock(&atmel_aes.lock);
2109
2110         err = atmel_aes_register_algs(aes_dd);
2111         if (err)
2112                 goto err_algs;
2113
2114         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2115                         dma_chan_name(aes_dd->src.chan),
2116                         dma_chan_name(aes_dd->dst.chan));
2117
2118         return 0;
2119
2120 err_algs:
2121         spin_lock(&atmel_aes.lock);
2122         list_del(&aes_dd->list);
2123         spin_unlock(&atmel_aes.lock);
2124         atmel_aes_dma_cleanup(aes_dd);
2125 err_aes_dma:
2126         atmel_aes_buff_cleanup(aes_dd);
2127 err_aes_buff:
2128 iclk_unprepare:
2129         clk_unprepare(aes_dd->iclk);
2130 res_err:
2131         tasklet_kill(&aes_dd->done_task);
2132         tasklet_kill(&aes_dd->queue_task);
2133 aes_dd_err:
2134         dev_err(dev, "initialization failed.\n");
2135
2136         return err;
2137 }
2138
2139 static int atmel_aes_remove(struct platform_device *pdev)
2140 {
2141         static struct atmel_aes_dev *aes_dd;
2142
2143         aes_dd = platform_get_drvdata(pdev);
2144         if (!aes_dd)
2145                 return -ENODEV;
2146         spin_lock(&atmel_aes.lock);
2147         list_del(&aes_dd->list);
2148         spin_unlock(&atmel_aes.lock);
2149
2150         atmel_aes_unregister_algs(aes_dd);
2151
2152         tasklet_kill(&aes_dd->done_task);
2153         tasklet_kill(&aes_dd->queue_task);
2154
2155         atmel_aes_dma_cleanup(aes_dd);
2156         atmel_aes_buff_cleanup(aes_dd);
2157
2158         clk_unprepare(aes_dd->iclk);
2159
2160         return 0;
2161 }
2162
2163 static struct platform_driver atmel_aes_driver = {
2164         .probe          = atmel_aes_probe,
2165         .remove         = atmel_aes_remove,
2166         .driver         = {
2167                 .name   = "atmel_aes",
2168                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2169         },
2170 };
2171
2172 module_platform_driver(atmel_aes_driver);
2173
2174 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2175 MODULE_LICENSE("GPL v2");
2176 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");